Antiviral effect of the viroporin inhibitors against Taiwan isolates of infectious bronchitis virus (IBV)

•The envelope (E) proteins of infectious bronchitis virus (IBV) resulted in inhibited bacteria growth, increased permeability of bacteria, and blocked protein synthesis of bacteria.•Hygromycin B impeded protein translation in DF-1 cells and damaged their membrane integrity in the presence of E prote...

Full description

Saved in:
Bibliographic Details
Published inVirus research Vol. 349; p. 199458
Main Authors Sitinjak, Mikael Cristofer, Chen, Jui-Kai, Liu, Fang-Lin, Hou, Ming-Hon, Lin, Shan-Meng, Liu, Hung-Jen, Wang, Chi-Young
Format Journal Article
LanguageEnglish
Published Netherlands Elsevier B.V 01.11.2024
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •The envelope (E) proteins of infectious bronchitis virus (IBV) resulted in inhibited bacteria growth, increased permeability of bacteria, and blocked protein synthesis of bacteria.•Hygromycin B impeded protein translation in DF-1 cells and damaged their membrane integrity in the presence of E proteins.•The viroporin activity of the E proteins from IBV H-120, IBV serotype TW-I, and IBV serotype TW-II was confirmed.•Treatments with the viroporin inhibitors increased the survival rates in IBV-infected chicken embryos and chickens.•Viroporin inhibitors bound to the lipid-facing surface within the transmembrane domain of the E protein, inhibiting ion conduction. Coronaviruses (CoVs) are significant animal and human pathogens, characterized by being enveloped RNA viruses with positive-sense single-stranded RNA. The Coronaviridae family encompasses four genera, among which gammacoronaviruses pose a major threat to the poultry industry, which infectious bronchitis virus (IBV) being the most prominent of these threats. Particularly, IBV adversely affects broiler growth and egg production, causing substantial losses. The IBV strains currently circulating in Taiwan include the IBV Taiwan-I (TW-I) serotype, IBV Taiwan-II (TW-II) serotype, and vaccine strains. Therefore, ongoing efforts have focused on developing novel vaccines and discovering antiviral agents. The envelope (E) proteins of CoVs accumulate in the endoplasmic reticulum-Golgi intermediate compartment prior to virus budding. These E proteins assemble into viroporins, exhibiting ion channel activity that leads to cell membrane disruption, making them attractive targets for antiviral therapy. In this study, we investigated the E proteins of IBV H-120, as well as IBV serotypes TW-I and TW-II. E protein expression resulted in inhibited bacteria growth, increased permeability of bacteria to β-galactosidase substrates, and blocked protein synthesis of bacteria by hygromycin B (HygB). Furthermore, in the presence of E proteins, HygB also impeded protein translation in DF-1 cells and damaged their membrane integrity. Collectively, these findings confirm the viroporin activity of the E proteins from IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. Next, the viroporin inhibitors, 5-(N,N-hexamethylene) amiloride (HMA) and 4,4’-diisothiocyano stilbene-2,2’-disulphonic acid (DIDS) were used to inhibit the viroporin activities of the E proteins of IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. In chicken embryos and chickens infected with IBV serotypes TW-I and IBV TW-II, no survivors were observed at 6 and 11 days post-infection (dpi), respectively. However, treatments with both DIDS and HMA increased the survival rates in infected chicken embryos and chickens and mitigated histopathological lesions in the trachea and kidney. Additionally, a 3D pentameric structure of the IBV E protein was constructed via homology modeling. As expected, both inhibitors were found to bind to the lipid-facing surface within the transmembrane domain of the E protein, inhibiting ion conduction. Taken together, our findings provide comprehensive evidence supporting the use of viroporin inhibitors as promising antiviral agents against IBV Taiwan isolates.
AbstractList Coronaviruses (CoVs) are significant animal and human pathogens, characterized by being enveloped RNA viruses with positive-sense single-stranded RNA. The Coronaviridae family encompasses four genera, among which gammacoronaviruses pose a major threat to the poultry industry, which infectious bronchitis virus (IBV) being the most prominent of these threats. Particularly, IBV adversely affects broiler growth and egg production, causing substantial losses. The IBV strains currently circulating in Taiwan include the IBV Taiwan-I (TW-I) serotype, IBV Taiwan-II (TW-II) serotype, and vaccine strains. Therefore, ongoing efforts have focused on developing novel vaccines and discovering antiviral agents. The envelope (E) proteins of CoVs accumulate in the endoplasmic reticulum-Golgi intermediate compartment prior to virus budding. These E proteins assemble into viroporins, exhibiting ion channel activity that leads to cell membrane disruption, making them attractive targets for antiviral therapy.In this study, we investigated the E proteins of IBV H-120, as well as IBV serotypes TW-I and TW-II. E protein expression resulted in inhibited bacteria growth, increased permeability of bacteria to β-galactosidase substrates, and blocked protein synthesis of bacteria by hygromycin B (HygB). Furthermore, in the presence of E proteins, HygB also impeded protein translation in DF-1 cells and damaged their membrane integrity. Collectively, these findings confirm the viroporin activity of the E proteins from IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. Next, the viroporin inhibitors, 5-(N,N-hexamethylene) amiloride (HMA) and 4,4’-diisothiocyano stilbene-2,2’-disulphonic acid (DIDS) were used to inhibit the viroporin activities of the E proteins of IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. In chicken embryos and chickens infected with IBV serotypes TW-I and IBV TW-II, no survivors were observed at 6 and 11 days post-infection (dpi), respectively. However, treatments with both DIDS and HMA increased the survival rates in infected chicken embryos and chickens and mitigated histopathological lesions in the trachea and kidney. Additionally, a 3D pentameric structure of the IBV E protein was constructed via homology modeling. As expected, both inhibitors were found to bind to the lipid-facing surface within the transmembrane domain of the E protein, inhibiting ion conduction. Taken together, our findings provide comprehensive evidence supporting the use of viroporin inhibitors as promising antiviral agents against IBV Taiwan isolates.
•The envelope (E) proteins of infectious bronchitis virus (IBV) resulted in inhibited bacteria growth, increased permeability of bacteria, and blocked protein synthesis of bacteria.•Hygromycin B impeded protein translation in DF-1 cells and damaged their membrane integrity in the presence of E proteins.•The viroporin activity of the E proteins from IBV H-120, IBV serotype TW-I, and IBV serotype TW-II was confirmed.•Treatments with the viroporin inhibitors increased the survival rates in IBV-infected chicken embryos and chickens.•Viroporin inhibitors bound to the lipid-facing surface within the transmembrane domain of the E protein, inhibiting ion conduction. Coronaviruses (CoVs) are significant animal and human pathogens, characterized by being enveloped RNA viruses with positive-sense single-stranded RNA. The Coronaviridae family encompasses four genera, among which gammacoronaviruses pose a major threat to the poultry industry, which infectious bronchitis virus (IBV) being the most prominent of these threats. Particularly, IBV adversely affects broiler growth and egg production, causing substantial losses. The IBV strains currently circulating in Taiwan include the IBV Taiwan-I (TW-I) serotype, IBV Taiwan-II (TW-II) serotype, and vaccine strains. Therefore, ongoing efforts have focused on developing novel vaccines and discovering antiviral agents. The envelope (E) proteins of CoVs accumulate in the endoplasmic reticulum-Golgi intermediate compartment prior to virus budding. These E proteins assemble into viroporins, exhibiting ion channel activity that leads to cell membrane disruption, making them attractive targets for antiviral therapy. In this study, we investigated the E proteins of IBV H-120, as well as IBV serotypes TW-I and TW-II. E protein expression resulted in inhibited bacteria growth, increased permeability of bacteria to β-galactosidase substrates, and blocked protein synthesis of bacteria by hygromycin B (HygB). Furthermore, in the presence of E proteins, HygB also impeded protein translation in DF-1 cells and damaged their membrane integrity. Collectively, these findings confirm the viroporin activity of the E proteins from IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. Next, the viroporin inhibitors, 5-(N,N-hexamethylene) amiloride (HMA) and 4,4’-diisothiocyano stilbene-2,2’-disulphonic acid (DIDS) were used to inhibit the viroporin activities of the E proteins of IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. In chicken embryos and chickens infected with IBV serotypes TW-I and IBV TW-II, no survivors were observed at 6 and 11 days post-infection (dpi), respectively. However, treatments with both DIDS and HMA increased the survival rates in infected chicken embryos and chickens and mitigated histopathological lesions in the trachea and kidney. Additionally, a 3D pentameric structure of the IBV E protein was constructed via homology modeling. As expected, both inhibitors were found to bind to the lipid-facing surface within the transmembrane domain of the E protein, inhibiting ion conduction. Taken together, our findings provide comprehensive evidence supporting the use of viroporin inhibitors as promising antiviral agents against IBV Taiwan isolates.
Coronaviruses (CoVs) are significant animal and human pathogens, characterized by being enveloped RNA viruses with positive-sense single-stranded RNA. The Coronaviridae family encompasses four genera, among which gammacoronaviruses pose a major threat to the poultry industry, which infectious bronchitis virus (IBV) being the most prominent of these threats. Particularly, IBV adversely affects broiler growth and egg production, causing substantial losses. The IBV strains currently circulating in Taiwan include the IBV Taiwan-I (TW-I) serotype, IBV Taiwan-II (TW-II) serotype, and vaccine strains. Therefore, ongoing efforts have focused on developing novel vaccines and discovering antiviral agents. The envelope (E) proteins of CoVs accumulate in the endoplasmic reticulum-Golgi intermediate compartment prior to virus budding. These E proteins assemble into viroporins, exhibiting ion channel activity that leads to cell membrane disruption, making them attractive targets for antiviral therapy. In this study, we investigated the E proteins of IBV H-120, as well as IBV serotypes TW-I and TW-II. E protein expression resulted in inhibited bacteria growth, increased permeability of bacteria to β-galactosidase substrates, and blocked protein synthesis of bacteria by hygromycin B (HygB). Furthermore, in the presence of E proteins, HygB also impeded protein translation in DF-1 cells and damaged their membrane integrity. Collectively, these findings confirm the viroporin activity of the E proteins from IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. Next, the viroporin inhibitors, 5-(N,N-hexamethylene) amiloride (HMA) and 4,4'-diisothiocyano stilbene-2,2'-disulphonic acid (DIDS) were used to inhibit the viroporin activities of the E proteins of IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. In chicken embryos and chickens infected with IBV serotypes TW-I and IBV TW-II, no survivors were observed at 6 and 11 days post-infection (dpi), respectively. However, treatments with both DIDS and HMA increased the survival rates in infected chicken embryos and chickens and mitigated histopathological lesions in the trachea and kidney. Additionally, a 3D pentameric structure of the IBV E protein was constructed via homology modeling. As expected, both inhibitors were found to bind to the lipid-facing surface within the transmembrane domain of the E protein, inhibiting ion conduction. Taken together, our findings provide comprehensive evidence supporting the use of viroporin inhibitors as promising antiviral agents against IBV Taiwan isolates.Coronaviruses (CoVs) are significant animal and human pathogens, characterized by being enveloped RNA viruses with positive-sense single-stranded RNA. The Coronaviridae family encompasses four genera, among which gammacoronaviruses pose a major threat to the poultry industry, which infectious bronchitis virus (IBV) being the most prominent of these threats. Particularly, IBV adversely affects broiler growth and egg production, causing substantial losses. The IBV strains currently circulating in Taiwan include the IBV Taiwan-I (TW-I) serotype, IBV Taiwan-II (TW-II) serotype, and vaccine strains. Therefore, ongoing efforts have focused on developing novel vaccines and discovering antiviral agents. The envelope (E) proteins of CoVs accumulate in the endoplasmic reticulum-Golgi intermediate compartment prior to virus budding. These E proteins assemble into viroporins, exhibiting ion channel activity that leads to cell membrane disruption, making them attractive targets for antiviral therapy. In this study, we investigated the E proteins of IBV H-120, as well as IBV serotypes TW-I and TW-II. E protein expression resulted in inhibited bacteria growth, increased permeability of bacteria to β-galactosidase substrates, and blocked protein synthesis of bacteria by hygromycin B (HygB). Furthermore, in the presence of E proteins, HygB also impeded protein translation in DF-1 cells and damaged their membrane integrity. Collectively, these findings confirm the viroporin activity of the E proteins from IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. Next, the viroporin inhibitors, 5-(N,N-hexamethylene) amiloride (HMA) and 4,4'-diisothiocyano stilbene-2,2'-disulphonic acid (DIDS) were used to inhibit the viroporin activities of the E proteins of IBV H-120, IBV serotype TW-I, and IBV serotype TW-II. In chicken embryos and chickens infected with IBV serotypes TW-I and IBV TW-II, no survivors were observed at 6 and 11 days post-infection (dpi), respectively. However, treatments with both DIDS and HMA increased the survival rates in infected chicken embryos and chickens and mitigated histopathological lesions in the trachea and kidney. Additionally, a 3D pentameric structure of the IBV E protein was constructed via homology modeling. As expected, both inhibitors were found to bind to the lipid-facing surface within the transmembrane domain of the E protein, inhibiting ion conduction. Taken together, our findings provide comprehensive evidence supporting the use of viroporin inhibitors as promising antiviral agents against IBV Taiwan isolates.
ArticleNumber 199458
Author Sitinjak, Mikael Cristofer
Liu, Hung-Jen
Hou, Ming-Hon
Lin, Shan-Meng
Chen, Jui-Kai
Wang, Chi-Young
Liu, Fang-Lin
Author_xml – sequence: 1
  givenname: Mikael Cristofer
  surname: Sitinjak
  fullname: Sitinjak, Mikael Cristofer
  organization: Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
– sequence: 2
  givenname: Jui-Kai
  surname: Chen
  fullname: Chen, Jui-Kai
  organization: Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
– sequence: 3
  givenname: Fang-Lin
  surname: Liu
  fullname: Liu, Fang-Lin
  organization: Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
– sequence: 4
  givenname: Ming-Hon
  surname: Hou
  fullname: Hou, Ming-Hon
  organization: Institute of Genomics and Bioinformatics and Department of Life Sciences, College of Life Science, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
– sequence: 5
  givenname: Shan-Meng
  surname: Lin
  fullname: Lin, Shan-Meng
  organization: Institute of Genomics and Bioinformatics and Department of Life Sciences, College of Life Science, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
– sequence: 6
  givenname: Hung-Jen
  surname: Liu
  fullname: Liu, Hung-Jen
  organization: Institute of Molecular Biology, College of Life Science, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
– sequence: 7
  givenname: Chi-Young
  orcidid: 0000-0001-5407-3414
  surname: Wang
  fullname: Wang, Chi-Young
  email: cyoungwang@dragon.nchu.edu.tw
  organization: Department of Veterinary Medicine, College of Veterinary Medicine, National Chung Hsing University, 145 Xingda Road, Taichung 402, Taiwan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/39187047$$D View this record in MEDLINE/PubMed
BookMark eNqFkUFv3CAQhVGVqtmk_QsRx_TgLRgbzK1p1KQrRepl1SvCMGRn5TVb8Kbqvy-Ok1x7Qhq-92DeuyBnYxyBkCvO1pxx-WW_fsJ0ygnyumZ1s-ZaN233jqx4p-pKNbo-I6sCdhVXrD4nFznvGWNSKPmBnAtdMNaoFcGbccJiZQcKIYCbaAx02gEts3iMCUeK4w57nGLK1D5aHPNEtxb_2HKT42AnyLMGx1mN8ZRpn-Lodjhhps-fpNebb78-fyTvgx0yfHo5L8n27vv29kf18PN-c3vzULmm1lPVSO4t504EbYXuAVRgtdaiBc-cAN0Kqby2vLOtDLKpg9cQuhCkU77mrbgkm8XWR7s3x4QHm_6aaNE8D2J6NDZN6AYwPXjObK8U513DQuiF66TXNTAlvGR98bpevI4p_j5BnswBs4NhsCOURY1gek66aXhBr17QU38A__bwa9IFkAvgUsylt_CGcGbmSs3evFZq5krNUmkRfl2EUEJ7QkgmO4TRgcdUEi9r4f8s_gHDga5r
Cites_doi 10.1128/JVI.00015-19
10.1111/tbed.13412
10.1016/0014-5793(94)80564-4
10.1016/j.jcpa.2010.04.007
10.1053/jcpa.2001.0528
10.1021/ci200227u
10.1051/vetres:2006055
10.3389/fmicb.2021.692423
10.1080/03079450601110015
10.1128/JVI.01577-06
10.1016/j.jcpa.2018.04.006
10.3382/ps.0601981
10.1371/journal.ppat.0030103
10.1016/j.virusres.2008.11.012
10.1111/tbed.13000
10.1002/jmv.1890050306
10.1016/j.febslet.2005.05.046
10.1637/8954-060609-Reg.1
10.1038/s41594-020-00536-8
10.1128/JVI.01237-15
10.1637/6040
10.1637/9804-052011-Reg.1
10.1128/JVI.01914-07
10.1093/bioinformatics/16.4.404
10.1371/journal.pone.0125828
10.1016/j.bbamem.2018.02.017
10.1093/nar/gky427
10.1371/journal.ppat.1000511
10.1128/JVI.75.12.5656-5662.2001
10.1016/S0014-5793(03)00780-4
10.3390/v14081784
10.1111/j.1469-7793.1997.259bk.x
10.3389/fphar.2019.01272
10.1016/j.bbrc.2004.10.050
10.3382/ps.2009-00461
10.1016/j.virol.2006.05.028
10.1146/annurev-virology-100114-054846
10.2307/1592083
10.1002/pro.4075
10.1093/bioinformatics/btn392
10.1016/j.vetmic.2022.109551
10.1016/j.pep.2012.07.005
10.1007/s00705-015-2370-x
10.1083/jcb.124.1.55
10.1099/vir.0.000201
10.1016/0042-6822(91)90075-M
ContentType Journal Article
Copyright 2024
Copyright © 2024. Published by Elsevier B.V.
Copyright_xml – notice: 2024
– notice: Copyright © 2024. Published by Elsevier B.V.
DBID 6I.
AAFTH
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOA
DOI 10.1016/j.virusres.2024.199458
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList
MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
EISSN 1872-7492
ExternalDocumentID oai_doaj_org_article_bed10ab7711840ffb3c86d92e073d60b
39187047
10_1016_j_virusres_2024_199458
S0168170224001515
Genre Research Support, Non-U.S. Gov't
Journal Article
GroupedDBID ---
--K
--M
.GJ
.~1
0R~
0SF
123
1B1
1RT
1~.
1~5
29Q
4.4
457
4G.
53G
5RE
5VS
6I.
7-5
71M
8P~
9JM
AAAJQ
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHBH
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARKO
AAXKI
AAXUO
ABBQC
ABFNM
ABFRF
ABJNI
ABMAC
ABMZM
ABXDB
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
ADMUD
ADVLN
AEBSH
AEFWE
AEKER
AENEX
AFJKZ
AFKWA
AFTJW
AFXIZ
AGEKW
AGHFR
AGUBO
AGYEJ
AHHHB
AIEXJ
AIKHN
AITUG
AJOXV
AJRQY
AKRWK
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ANZVX
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CJTIS
CNWQP
CS3
DU5
EBS
EFJIC
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GROUPED_DOAJ
HMG
HVGLF
HZ~
IH2
IHE
J1W
KOM
LUGTX
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPM
RPZ
SCC
SDF
SDG
SDP
SES
SEW
SIN
SPCBC
SSH
SSI
SSZ
T5K
WH7
WUQ
ZGI
~G-
AATTM
AAYWO
AAYXX
ABWVN
ACIEU
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c429t-461da11c3f9a39bee7f029935ed0c3e95367d9a18a56f642fd9ef8ff6c7d2153
IEDL.DBID .~1
ISSN 0168-1702
1872-7492
IngestDate Wed Aug 27 01:31:38 EDT 2025
Fri Jul 11 06:06:17 EDT 2025
Fri Jun 20 01:35:04 EDT 2025
Tue Jul 01 01:45:36 EDT 2025
Sat Sep 21 15:58:25 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Coronavirus
Antivirals
Viroporin
Language English
License This is an open access article under the CC BY-NC-ND license.
Copyright © 2024. Published by Elsevier B.V.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-461da11c3f9a39bee7f029935ed0c3e95367d9a18a56f642fd9ef8ff6c7d2153
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-5407-3414
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0168170224001515
PMID 39187047
PQID 3097492441
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_bed10ab7711840ffb3c86d92e073d60b
proquest_miscellaneous_3097492441
pubmed_primary_39187047
crossref_primary_10_1016_j_virusres_2024_199458
elsevier_sciencedirect_doi_10_1016_j_virusres_2024_199458
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate November 2024
2024-11-00
20241101
2024-11-01
PublicationDateYYYYMMDD 2024-11-01
PublicationDate_xml – month: 11
  year: 2024
  text: November 2024
PublicationDecade 2020
PublicationPlace Netherlands
PublicationPlace_xml – name: Netherlands
PublicationTitle Virus research
PublicationTitleAlternate Virus Res
PublicationYear 2024
Publisher Elsevier B.V
Elsevier
Publisher_xml – name: Elsevier B.V
– name: Elsevier
References McGuffin, Bryson, Jones (bib0030) 2000; 16
Takano, Nakano, Doki, Hohdatsu (bib0040) 2015; 160
Guinea, Carrasco (bib0013) 1994; 343
Gonzalez, Carrasco (bib0012) 2003; 552
Chen, Muhammad, Zhang, Ren, Zhang, Huang, Diao, Liu, Li, Sun, Abbas, Li (bib0008) 2019; 10
Surya, Li, Torres (bib0039) 2018; 1860
Ao, Guo, Sun, Sun, Fung, Wei, Han, Yao, Cao, Liu, Liu (bib0002) 2015; 10
Scott, Griffin (bib0034) 2015; 96
Seto (bib0035) 1981; 60
Huang, Wang (bib0014) 2007; 36
Liao, Lescar, Tam, Liu (bib0025) 2004; 325
Lopez, Riffle, Pike, Gardner, Hogue (bib0026) 2008; 82
Wilson, Gage, Ewart (bib0047) 2006; 353
Krijnse-Locker, Ericsson, Rottier, Griffiths (bib0018) 1994; 124
Chen, Huang, Wang (bib0009) 2009; 140
Pervushin, Tan, Parthasarathy, Lin, Jiang, Yu (bib0033) 2009; 5
Khanh, Tan, Yeap, Lee, Choi, Hair-Bejo, Bich, Omar (bib0017) 2018; 161
Webb, Keep, Littolff, Stuart, Freimanis, Britton, Davidson, Maier, Bickerton (bib0043) 2022; 14
Wilkins, Gasteiger, Bairoch, Sanchez, Williams, Appel, Hochstrasser (bib0046) 1999; 112
Benyeda, Szeredi, Mato, Suveges, Balka, Abonyi-Toth, Rusvai, Palya (bib0004) 2010; 143
Sugrue, Hay (bib0038) 1991; 180
Cavanagh (bib0007) 2007; 38
Chen, Wang (bib0010) 2010; 54
Watanabe, Watanabe, Ito, Kida, Kawaoka (bib0041) 2001; 75
Lane, McBride, Hamill (bib0021) 1992; 106
Xia, Fang, Pan, Xiao, Zhang, Zhu, Xiao, Fang (bib0048) 2022; 274
Kuo, Hurst, Master (bib0019) 2007; 81
Li, Chen, Lin, Mase, Murakami, Horimoto, Chen (bib0024) 2020; 67
Madan, Garcia Mde, Sanz, Carrasco (bib0028) 2005; 579
Hyser, Estes (bib0015) 2015; 2
Parthasarathy, Lu, Surya, Vararattannavech, Pervushin, Torres (bib0032) 2012; 85
Steinmann, Penin, Kallis, Patel, Bartenschlager, Pietschmann (bib0036) 2007; 3
Avellaneda, Villegas, Jackwood, King (bib0003) 1994; 38
Mandala, McKay, Shcherbakov, Dregni, Kolocouris, Hong (bib0029) 2020; 27
Ignjatovic, Ashton, Reece, Scott, Hooper (bib0016) 2002; 126
Waterhouse, Bertoni, Bienert, Studer, Tauriello, Gumienny, Heer, de Beer, Rempfer, Bordoli, Lepore, Schwede (bib0042) 2018; 46
Alvarado, Villegas, El-Attrache, Brown (bib0001) 2003; 47
Cao, Yang, Lee, Zhang, Sun, Wang, Meng (bib0006) 2021; 30
Gautier, Douguet, Antonny, Drin (bib0011) 2008; 24
Westerbeck, Machamer (bib0044) 2015; 89
Breitinger, Ali, Sticht, Breitinger (bib0005) 2021; 12
Laconi, Listori, Franzo, Cecchinato, Naylor, Lupini, Catelli (bib0020) 2019; 66
Laskowski, Swindells (bib0023) 2011; 51
Westerbeck, Machamer (bib0045) 2019; 93
Ma, Shao, Sun, Han, Liu, Guo, Liu, Kong, Liu (bib0027) 2012; 56
Nelson, Conway, Knot, Brayden (bib0031) 1997; 502
Larson, Reed, Tyrrell (bib0022) 1980; 5
Sun, Wang, She, Ma, Peng, Jin (bib0037) 2010; 89
Surya (10.1016/j.virusres.2024.199458_bib0039) 2018; 1860
Khanh (10.1016/j.virusres.2024.199458_bib0017) 2018; 161
Scott (10.1016/j.virusres.2024.199458_bib0034) 2015; 96
Ignjatovic (10.1016/j.virusres.2024.199458_bib0016) 2002; 126
Li (10.1016/j.virusres.2024.199458_bib0024) 2020; 67
Huang (10.1016/j.virusres.2024.199458_bib0014) 2007; 36
Chen (10.1016/j.virusres.2024.199458_bib0010) 2010; 54
Nelson (10.1016/j.virusres.2024.199458_bib0031) 1997; 502
Pervushin (10.1016/j.virusres.2024.199458_bib0033) 2009; 5
Webb (10.1016/j.virusres.2024.199458_bib0043) 2022; 14
Watanabe (10.1016/j.virusres.2024.199458_bib0041) 2001; 75
Chen (10.1016/j.virusres.2024.199458_bib0008) 2019; 10
Breitinger (10.1016/j.virusres.2024.199458_bib0005) 2021; 12
Wilkins (10.1016/j.virusres.2024.199458_bib0046) 1999; 112
Lopez (10.1016/j.virusres.2024.199458_bib0026) 2008; 82
Mandala (10.1016/j.virusres.2024.199458_bib0029) 2020; 27
Takano (10.1016/j.virusres.2024.199458_bib0040) 2015; 160
Liao (10.1016/j.virusres.2024.199458_bib0025) 2004; 325
Avellaneda (10.1016/j.virusres.2024.199458_bib0003) 1994; 38
Krijnse-Locker (10.1016/j.virusres.2024.199458_bib0018) 1994; 124
Ao (10.1016/j.virusres.2024.199458_bib0002) 2015; 10
Guinea (10.1016/j.virusres.2024.199458_bib0013) 1994; 343
Madan (10.1016/j.virusres.2024.199458_bib0028) 2005; 579
Gautier (10.1016/j.virusres.2024.199458_bib0011) 2008; 24
Gonzalez (10.1016/j.virusres.2024.199458_bib0012) 2003; 552
Cavanagh (10.1016/j.virusres.2024.199458_bib0007) 2007; 38
Kuo (10.1016/j.virusres.2024.199458_bib0019) 2007; 81
Seto (10.1016/j.virusres.2024.199458_bib0035) 1981; 60
Lane (10.1016/j.virusres.2024.199458_bib0021) 1992; 106
Cao (10.1016/j.virusres.2024.199458_bib0006) 2021; 30
Laconi (10.1016/j.virusres.2024.199458_bib0020) 2019; 66
Parthasarathy (10.1016/j.virusres.2024.199458_bib0032) 2012; 85
Sugrue (10.1016/j.virusres.2024.199458_bib0038) 1991; 180
McGuffin (10.1016/j.virusres.2024.199458_bib0030) 2000; 16
Benyeda (10.1016/j.virusres.2024.199458_bib0004) 2010; 143
Larson (10.1016/j.virusres.2024.199458_bib0022) 1980; 5
Laskowski (10.1016/j.virusres.2024.199458_bib0023) 2011; 51
Waterhouse (10.1016/j.virusres.2024.199458_bib0042) 2018; 46
Chen (10.1016/j.virusres.2024.199458_bib0009) 2009; 140
Alvarado (10.1016/j.virusres.2024.199458_bib0001) 2003; 47
Sun (10.1016/j.virusres.2024.199458_bib0037) 2010; 89
Hyser (10.1016/j.virusres.2024.199458_bib0015) 2015; 2
Westerbeck (10.1016/j.virusres.2024.199458_bib0045) 2019; 93
Wilson (10.1016/j.virusres.2024.199458_bib0047) 2006; 353
Steinmann (10.1016/j.virusres.2024.199458_bib0036) 2007; 3
Xia (10.1016/j.virusres.2024.199458_bib0048) 2022; 274
Ma (10.1016/j.virusres.2024.199458_bib0027) 2012; 56
Westerbeck (10.1016/j.virusres.2024.199458_bib0044) 2015; 89
References_xml – volume: 579
  start-page: 3607
  year: 2005
  end-page: 3612
  ident: bib0028
  article-title: Viroporin activity of murine hepatitis E protein
  publication-title: FEBS Lett.
– volume: 30
  start-page: 1114
  year: 2021
  end-page: 1130
  ident: bib0006
  article-title: Characterization of the SARS-CoV-2 E protein: sequence, structure, viroporin, and inhibitors
  publication-title: Protein Sci.
– volume: 552
  start-page: 28
  year: 2003
  end-page: 34
  ident: bib0012
  article-title: Viroporins
  publication-title: FEBS Lett.
– volume: 112
  start-page: 531
  year: 1999
  end-page: 552
  ident: bib0046
  article-title: Protein identification and analysis tools in the ExPASy server
  publication-title: Methods Mol. Biol.
– volume: 2
  start-page: 473
  year: 2015
  end-page: 496
  ident: bib0015
  article-title: Pathophysiological consequences of calcium-conducting viroporins
  publication-title: Annu. Rev. Virol.
– volume: 1860
  start-page: 1309
  year: 2018
  end-page: 1317
  ident: bib0039
  article-title: Structural model of the SARS coronavirus E channel in LMPG micelles
  publication-title: Biochim. Biophs. Acta Biomembr.
– volume: 93
  start-page: e00015
  year: 2019
  end-page: e00019
  ident: bib0045
  article-title: The infectious bronchitis coronavirus envelope protein alters Golgi pH to protect the spike protein and promote the release of infectious virus
  publication-title: J. Virol.
– volume: 38
  start-page: 589
  year: 1994
  end-page: 597
  ident: bib0003
  article-title: In vivo evaluation of the pathogenicity of field isolates of infectious bronchitis virus
  publication-title: Avian Dis.
– volume: 5
  start-page: 221
  year: 1980
  end-page: 229
  ident: bib0022
  article-title: Isolation of rhinoviruses and coronaviruses from 38 colds in adults
  publication-title: J. Med. Virol.
– volume: 81
  start-page: 2249
  year: 2007
  end-page: 2262
  ident: bib0019
  article-title: Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function
  publication-title: J. Virol.
– volume: 353
  start-page: 294
  year: 2006
  end-page: 306
  ident: bib0047
  article-title: Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication
  publication-title: Virology
– volume: 24
  start-page: 2102
  year: 2008
  ident: bib0011
  article-title: HELIQUEST: a web server to screen sequences with specific alpha-helical properties
  publication-title: Bioinformatics
– volume: 27
  start-page: 1202
  year: 2020
  end-page: 1208
  ident: bib0029
  article-title: Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers
  publication-title: Nat. Struct. Mol. Biol.
– volume: 10
  year: 2015
  ident: bib0002
  article-title: Viroporin activity of the foot-and-mouth disease virus non-structural 2B protein
  publication-title: PLoS One
– volume: 14
  start-page: 1784
  year: 2022
  ident: bib0043
  article-title: The genetic stability, replication kinetics and cytopathogenicity of recombinant avian coronaviruses with a T16A or an A26F mutation within the E protein is cell-type dependent
  publication-title: Viruses
– volume: 10
  start-page: 1272
  year: 2019
  ident: bib0008
  article-title: Antiviral activity against infectious bronchitis virus and bioactive components of
  publication-title: Front. Pharmacol.
– volume: 16
  start-page: 404
  year: 2000
  end-page: 405
  ident: bib0030
  article-title: The PSIPRED protein structure prediction server
  publication-title: Bioinformatics
– volume: 67
  start-page: 884
  year: 2020
  end-page: 893
  ident: bib0024
  article-title: Emerging lethal infectious bronchitis coronavirus variants with multiorgan tropism
  publication-title: Transbound. Emerg. Dis.
– volume: 85
  start-page: 133
  year: 2012
  end-page: 141
  ident: bib0032
  article-title: Expression and purification of coronavirus envelope proteins using a modified β-barrel construct
  publication-title: Protein Expr. Purif.
– volume: 160
  start-page: 1163
  year: 2015
  end-page: 1170
  ident: bib0040
  article-title: Differential effects of viroporin inhibitors against feline infectious peritonitis serotypes I and II
  publication-title: Arch. Virol.
– volume: 140
  start-page: 121
  year: 2009
  end-page: 129
  ident: bib0009
  article-title: Identification of Taiwan and China-like recombinant avian infectious bronchitis viruses in Taiwan
  publication-title: Virus Res.
– volume: 96
  start-page: 2000
  year: 2015
  end-page: 2027
  ident: bib0034
  article-title: Viroporins: structure, function, and potential as antiviral targets
  publication-title: J. Gen. Virol.
– volume: 54
  start-page: 104
  year: 2010
  end-page: 108
  ident: bib0010
  article-title: A multiplex reverse transcriptase-PCR assay for the genotyping of avian infectious bronchitis viruses
  publication-title: Avian Dis.
– volume: 47
  start-page: 1298
  year: 2003
  end-page: 1304
  ident: bib0001
  article-title: Evaluation of the protection conferred by commercial vaccines against the California 99 isolate of infectious bronchitis virus
  publication-title: Avian Dis.
– volume: 124
  start-page: 55
  year: 1994
  end-page: 70
  ident: bib0018
  article-title: Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step
  publication-title: J. Cell Biol.
– volume: 502
  start-page: 259
  year: 1997
  end-page: 264
  ident: bib0031
  article-title: Chloride channel blockers inhibit myogenic tone in rat cerebral arteries
  publication-title: J. Physiol.
– volume: 36
  start-page: 59
  year: 2007
  end-page: 67
  ident: bib0014
  article-title: Sequence changes of infectious bronchitis virus isolates in the 3′ 7.3 kb of the genome after attenuating passage in embryonated eggs
  publication-title: Avian Pathol.
– volume: 3
  start-page: e103
  year: 2007
  ident: bib0036
  article-title: Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions
  publication-title: PLoS Pathog.
– volume: 180
  start-page: 617
  year: 1991
  end-page: 624
  ident: bib0038
  article-title: Structural characteristics of the M2 protein of influenza A viruses: evidence that it forms a tetrameric channel
  publication-title: Virology
– volume: 143
  start-page: 276
  year: 2010
  end-page: 283
  ident: bib0004
  article-title: Comparative histopathology and immunohistochemistry of QX-like, Massachusetts and 793/B serotypes of infectious bronchitis virus infection in chickens
  publication-title: J. Comp. Path.
– volume: 66
  start-page: 207
  year: 2019
  end-page: 216
  ident: bib0020
  article-title: Molecular characterization of whole genome sequence of infectious bronchitis virus 624I genotype confirms the close relationship with Q1 genotype
  publication-title: Transbound. Emerg. Dis.
– volume: 75
  start-page: 5656
  year: 2001
  end-page: 5662
  ident: bib0041
  article-title: Influenza A virus can undergo multiple cycles of replication without M2 ion channel activity
  publication-title: J. Virol.
– volume: 89
  start-page: 9313
  year: 2015
  end-page: 9323
  ident: bib0044
  article-title: A coronavirus E protein is present in two distinct pools with different effects on assembly and secretory pathway
  publication-title: J. Virol.
– volume: 5
  year: 2009
  ident: bib0033
  article-title: Structure and inhibition of the SARS Coronavirus envelope protein ion channel
  publication-title: PLoS Pathog.
– volume: 56
  start-page: 15
  year: 2012
  end-page: 28
  ident: bib0027
  article-title: Genetic diversity of avian infectious bronchitis coronavirus in recent years in China
  publication-title: Avian Dis.
– volume: 89
  start-page: 464
  year: 2010
  end-page: 469
  ident: bib0037
  article-title: Swine intestine antimicrobial peptides inhibit infectious bronchitis virus infectivity in chick embryos
  publication-title: Poult. Sci.
– volume: 325
  start-page: 374
  year: 2004
  end-page: 380
  ident: bib0025
  article-title: Expression of SARS-coronavirus envelope protein in
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 106
  start-page: 283
  year: 1992
  end-page: 286
  ident: bib0021
  article-title: Structure-activity relations of amiloride and its analogues in blocking the mechanosenitive channel in
  publication-title: J. Pharmacol.
– volume: 51
  start-page: 2778
  year: 2011
  end-page: 2786
  ident: bib0023
  article-title: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery
  publication-title: J. Chem. Inf. Model.
– volume: 60
  start-page: 1981
  year: 1981
  end-page: 1995
  ident: bib0035
  article-title: Early development of the avian immune system
  publication-title: Poult. Sci.
– volume: 343
  start-page: 242
  year: 1994
  end-page: 246
  ident: bib0013
  article-title: Influenza virus M2 protein modifies membrane permeability in
  publication-title: FEBS Lett.
– volume: 46
  start-page: W296
  year: 2018
  end-page: W303
  ident: bib0042
  article-title: SWISS-MODEL: homology modelling of protein structures and complexes
  publication-title: Nucleic Acids Res.
– volume: 12
  year: 2021
  ident: bib0005
  article-title: Inhibition of SARS CoV envelope protein by flavonoids and classical viroporin inhibitors
  publication-title: Front. Microbiol.
– volume: 126
  start-page: 115
  year: 2002
  end-page: 123
  ident: bib0016
  article-title: Pathogenicity of Australian strains of avian infectious bronchitis virus
  publication-title: J. Comp. Pathol.
– volume: 161
  start-page: 43
  year: 2018
  end-page: 54
  ident: bib0017
  article-title: Comparative pathogenicity of Malaysian QX-like and variant infectious virus strains in chickens at different age of exposure to the viruses
  publication-title: J. Comp. Path.
– volume: 82
  start-page: 3000
  year: 2008
  end-page: 3010
  ident: bib0026
  article-title: Importance of conserved cysteine residues in the coronavirus envelope protein
  publication-title: J. Virol.
– volume: 38
  start-page: 281
  year: 2007
  end-page: 297
  ident: bib0007
  article-title: Coronavirus avian infectious bronchitis virus
  publication-title: Vet. Res.
– volume: 274
  year: 2022
  ident: bib0048
  article-title: Porcine deltacoronavirus accessory protein NS7a possess the functional characteristics of a viroporin
  publication-title: Vet. Microbiol.
– volume: 93
  start-page: e00015
  year: 2019
  ident: 10.1016/j.virusres.2024.199458_bib0045
  article-title: The infectious bronchitis coronavirus envelope protein alters Golgi pH to protect the spike protein and promote the release of infectious virus
  publication-title: J. Virol.
  doi: 10.1128/JVI.00015-19
– volume: 67
  start-page: 884
  year: 2020
  ident: 10.1016/j.virusres.2024.199458_bib0024
  article-title: Emerging lethal infectious bronchitis coronavirus variants with multiorgan tropism
  publication-title: Transbound. Emerg. Dis.
  doi: 10.1111/tbed.13412
– volume: 343
  start-page: 242
  year: 1994
  ident: 10.1016/j.virusres.2024.199458_bib0013
  article-title: Influenza virus M2 protein modifies membrane permeability in E. coli cells
  publication-title: FEBS Lett.
  doi: 10.1016/0014-5793(94)80564-4
– volume: 143
  start-page: 276
  year: 2010
  ident: 10.1016/j.virusres.2024.199458_bib0004
  article-title: Comparative histopathology and immunohistochemistry of QX-like, Massachusetts and 793/B serotypes of infectious bronchitis virus infection in chickens
  publication-title: J. Comp. Path.
  doi: 10.1016/j.jcpa.2010.04.007
– volume: 126
  start-page: 115
  year: 2002
  ident: 10.1016/j.virusres.2024.199458_bib0016
  article-title: Pathogenicity of Australian strains of avian infectious bronchitis virus
  publication-title: J. Comp. Pathol.
  doi: 10.1053/jcpa.2001.0528
– volume: 51
  start-page: 2778
  year: 2011
  ident: 10.1016/j.virusres.2024.199458_bib0023
  article-title: LigPlot+: multiple ligand-protein interaction diagrams for drug discovery
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/ci200227u
– volume: 106
  start-page: 283
  year: 1992
  ident: 10.1016/j.virusres.2024.199458_bib0021
  article-title: Structure-activity relations of amiloride and its analogues in blocking the mechanosenitive channel in Xenopus oocytes
  publication-title: J. Pharmacol.
– volume: 38
  start-page: 281
  year: 2007
  ident: 10.1016/j.virusres.2024.199458_bib0007
  article-title: Coronavirus avian infectious bronchitis virus
  publication-title: Vet. Res.
  doi: 10.1051/vetres:2006055
– volume: 12
  year: 2021
  ident: 10.1016/j.virusres.2024.199458_bib0005
  article-title: Inhibition of SARS CoV envelope protein by flavonoids and classical viroporin inhibitors
  publication-title: Front. Microbiol.
  doi: 10.3389/fmicb.2021.692423
– volume: 36
  start-page: 59
  year: 2007
  ident: 10.1016/j.virusres.2024.199458_bib0014
  article-title: Sequence changes of infectious bronchitis virus isolates in the 3′ 7.3 kb of the genome after attenuating passage in embryonated eggs
  publication-title: Avian Pathol.
  doi: 10.1080/03079450601110015
– volume: 81
  start-page: 2249
  year: 2007
  ident: 10.1016/j.virusres.2024.199458_bib0019
  article-title: Exceptional flexibility in the sequence requirements for coronavirus small envelope protein function
  publication-title: J. Virol.
  doi: 10.1128/JVI.01577-06
– volume: 161
  start-page: 43
  year: 2018
  ident: 10.1016/j.virusres.2024.199458_bib0017
  article-title: Comparative pathogenicity of Malaysian QX-like and variant infectious virus strains in chickens at different age of exposure to the viruses
  publication-title: J. Comp. Path.
  doi: 10.1016/j.jcpa.2018.04.006
– volume: 60
  start-page: 1981
  year: 1981
  ident: 10.1016/j.virusres.2024.199458_bib0035
  article-title: Early development of the avian immune system
  publication-title: Poult. Sci.
  doi: 10.3382/ps.0601981
– volume: 3
  start-page: e103
  year: 2007
  ident: 10.1016/j.virusres.2024.199458_bib0036
  article-title: Hepatitis C virus p7 protein is crucial for assembly and release of infectious virions
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.0030103
– volume: 140
  start-page: 121
  year: 2009
  ident: 10.1016/j.virusres.2024.199458_bib0009
  article-title: Identification of Taiwan and China-like recombinant avian infectious bronchitis viruses in Taiwan
  publication-title: Virus Res.
  doi: 10.1016/j.virusres.2008.11.012
– volume: 66
  start-page: 207
  year: 2019
  ident: 10.1016/j.virusres.2024.199458_bib0020
  article-title: Molecular characterization of whole genome sequence of infectious bronchitis virus 624I genotype confirms the close relationship with Q1 genotype
  publication-title: Transbound. Emerg. Dis.
  doi: 10.1111/tbed.13000
– volume: 5
  start-page: 221
  year: 1980
  ident: 10.1016/j.virusres.2024.199458_bib0022
  article-title: Isolation of rhinoviruses and coronaviruses from 38 colds in adults
  publication-title: J. Med. Virol.
  doi: 10.1002/jmv.1890050306
– volume: 112
  start-page: 531
  year: 1999
  ident: 10.1016/j.virusres.2024.199458_bib0046
  article-title: Protein identification and analysis tools in the ExPASy server
  publication-title: Methods Mol. Biol.
– volume: 579
  start-page: 3607
  year: 2005
  ident: 10.1016/j.virusres.2024.199458_bib0028
  article-title: Viroporin activity of murine hepatitis E protein
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2005.05.046
– volume: 54
  start-page: 104
  year: 2010
  ident: 10.1016/j.virusres.2024.199458_bib0010
  article-title: A multiplex reverse transcriptase-PCR assay for the genotyping of avian infectious bronchitis viruses
  publication-title: Avian Dis.
  doi: 10.1637/8954-060609-Reg.1
– volume: 27
  start-page: 1202
  year: 2020
  ident: 10.1016/j.virusres.2024.199458_bib0029
  article-title: Structure and drug binding of the SARS-CoV-2 envelope protein transmembrane domain in lipid bilayers
  publication-title: Nat. Struct. Mol. Biol.
  doi: 10.1038/s41594-020-00536-8
– volume: 89
  start-page: 9313
  year: 2015
  ident: 10.1016/j.virusres.2024.199458_bib0044
  article-title: A coronavirus E protein is present in two distinct pools with different effects on assembly and secretory pathway
  publication-title: J. Virol.
  doi: 10.1128/JVI.01237-15
– volume: 47
  start-page: 1298
  year: 2003
  ident: 10.1016/j.virusres.2024.199458_bib0001
  article-title: Evaluation of the protection conferred by commercial vaccines against the California 99 isolate of infectious bronchitis virus
  publication-title: Avian Dis.
  doi: 10.1637/6040
– volume: 56
  start-page: 15
  year: 2012
  ident: 10.1016/j.virusres.2024.199458_bib0027
  article-title: Genetic diversity of avian infectious bronchitis coronavirus in recent years in China
  publication-title: Avian Dis.
  doi: 10.1637/9804-052011-Reg.1
– volume: 82
  start-page: 3000
  year: 2008
  ident: 10.1016/j.virusres.2024.199458_bib0026
  article-title: Importance of conserved cysteine residues in the coronavirus envelope protein
  publication-title: J. Virol.
  doi: 10.1128/JVI.01914-07
– volume: 16
  start-page: 404
  year: 2000
  ident: 10.1016/j.virusres.2024.199458_bib0030
  article-title: The PSIPRED protein structure prediction server
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/16.4.404
– volume: 10
  year: 2015
  ident: 10.1016/j.virusres.2024.199458_bib0002
  article-title: Viroporin activity of the foot-and-mouth disease virus non-structural 2B protein
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0125828
– volume: 1860
  start-page: 1309
  year: 2018
  ident: 10.1016/j.virusres.2024.199458_bib0039
  article-title: Structural model of the SARS coronavirus E channel in LMPG micelles
  publication-title: Biochim. Biophs. Acta Biomembr.
  doi: 10.1016/j.bbamem.2018.02.017
– volume: 46
  start-page: W296
  year: 2018
  ident: 10.1016/j.virusres.2024.199458_bib0042
  article-title: SWISS-MODEL: homology modelling of protein structures and complexes
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gky427
– volume: 5
  year: 2009
  ident: 10.1016/j.virusres.2024.199458_bib0033
  article-title: Structure and inhibition of the SARS Coronavirus envelope protein ion channel
  publication-title: PLoS Pathog.
  doi: 10.1371/journal.ppat.1000511
– volume: 75
  start-page: 5656
  year: 2001
  ident: 10.1016/j.virusres.2024.199458_bib0041
  article-title: Influenza A virus can undergo multiple cycles of replication without M2 ion channel activity
  publication-title: J. Virol.
  doi: 10.1128/JVI.75.12.5656-5662.2001
– volume: 552
  start-page: 28
  year: 2003
  ident: 10.1016/j.virusres.2024.199458_bib0012
  article-title: Viroporins
  publication-title: FEBS Lett.
  doi: 10.1016/S0014-5793(03)00780-4
– volume: 14
  start-page: 1784
  year: 2022
  ident: 10.1016/j.virusres.2024.199458_bib0043
  article-title: The genetic stability, replication kinetics and cytopathogenicity of recombinant avian coronaviruses with a T16A or an A26F mutation within the E protein is cell-type dependent
  publication-title: Viruses
  doi: 10.3390/v14081784
– volume: 502
  start-page: 259
  year: 1997
  ident: 10.1016/j.virusres.2024.199458_bib0031
  article-title: Chloride channel blockers inhibit myogenic tone in rat cerebral arteries
  publication-title: J. Physiol.
  doi: 10.1111/j.1469-7793.1997.259bk.x
– volume: 10
  start-page: 1272
  year: 2019
  ident: 10.1016/j.virusres.2024.199458_bib0008
  article-title: Antiviral activity against infectious bronchitis virus and bioactive components of Hypericum perforatum L
  publication-title: Front. Pharmacol.
  doi: 10.3389/fphar.2019.01272
– volume: 325
  start-page: 374
  year: 2004
  ident: 10.1016/j.virusres.2024.199458_bib0025
  article-title: Expression of SARS-coronavirus envelope protein in Escherichia coli cells alters membrane permeability
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2004.10.050
– volume: 89
  start-page: 464
  year: 2010
  ident: 10.1016/j.virusres.2024.199458_bib0037
  article-title: Swine intestine antimicrobial peptides inhibit infectious bronchitis virus infectivity in chick embryos
  publication-title: Poult. Sci.
  doi: 10.3382/ps.2009-00461
– volume: 353
  start-page: 294
  year: 2006
  ident: 10.1016/j.virusres.2024.199458_bib0047
  article-title: Hexamethylene amiloride blocks E protein ion channels and inhibits coronavirus replication
  publication-title: Virology
  doi: 10.1016/j.virol.2006.05.028
– volume: 2
  start-page: 473
  year: 2015
  ident: 10.1016/j.virusres.2024.199458_bib0015
  article-title: Pathophysiological consequences of calcium-conducting viroporins
  publication-title: Annu. Rev. Virol.
  doi: 10.1146/annurev-virology-100114-054846
– volume: 38
  start-page: 589
  year: 1994
  ident: 10.1016/j.virusres.2024.199458_bib0003
  article-title: In vivo evaluation of the pathogenicity of field isolates of infectious bronchitis virus
  publication-title: Avian Dis.
  doi: 10.2307/1592083
– volume: 30
  start-page: 1114
  year: 2021
  ident: 10.1016/j.virusres.2024.199458_bib0006
  article-title: Characterization of the SARS-CoV-2 E protein: sequence, structure, viroporin, and inhibitors
  publication-title: Protein Sci.
  doi: 10.1002/pro.4075
– volume: 24
  start-page: 2102
  year: 2008
  ident: 10.1016/j.virusres.2024.199458_bib0011
  article-title: HELIQUEST: a web server to screen sequences with specific alpha-helical properties
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btn392
– volume: 274
  year: 2022
  ident: 10.1016/j.virusres.2024.199458_bib0048
  article-title: Porcine deltacoronavirus accessory protein NS7a possess the functional characteristics of a viroporin
  publication-title: Vet. Microbiol.
  doi: 10.1016/j.vetmic.2022.109551
– volume: 85
  start-page: 133
  year: 2012
  ident: 10.1016/j.virusres.2024.199458_bib0032
  article-title: Expression and purification of coronavirus envelope proteins using a modified β-barrel construct
  publication-title: Protein Expr. Purif.
  doi: 10.1016/j.pep.2012.07.005
– volume: 160
  start-page: 1163
  year: 2015
  ident: 10.1016/j.virusres.2024.199458_bib0040
  article-title: Differential effects of viroporin inhibitors against feline infectious peritonitis serotypes I and II
  publication-title: Arch. Virol.
  doi: 10.1007/s00705-015-2370-x
– volume: 124
  start-page: 55
  year: 1994
  ident: 10.1016/j.virusres.2024.199458_bib0018
  article-title: Characterization of the budding compartment of mouse hepatitis virus: evidence that transport from the RER to the Golgi complex requires only one vesicular transport step
  publication-title: J. Cell Biol.
  doi: 10.1083/jcb.124.1.55
– volume: 96
  start-page: 2000
  year: 2015
  ident: 10.1016/j.virusres.2024.199458_bib0034
  article-title: Viroporins: structure, function, and potential as antiviral targets
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.000201
– volume: 180
  start-page: 617
  year: 1991
  ident: 10.1016/j.virusres.2024.199458_bib0038
  article-title: Structural characteristics of the M2 protein of influenza A viruses: evidence that it forms a tetrameric channel
  publication-title: Virology
  doi: 10.1016/0042-6822(91)90075-M
SSID ssj0006376
Score 2.4328165
Snippet •The envelope (E) proteins of infectious bronchitis virus (IBV) resulted in inhibited bacteria growth, increased permeability of bacteria, and blocked protein...
Coronaviruses (CoVs) are significant animal and human pathogens, characterized by being enveloped RNA viruses with positive-sense single-stranded RNA. The...
SourceID doaj
proquest
pubmed
crossref
elsevier
SourceType Open Website
Aggregation Database
Index Database
Publisher
StartPage 199458
SubjectTerms Amino Acid Sequence
Animals
Antiviral Agents - pharmacology
Antivirals
Cell Line
Cell Membrane Permeability
Chick Embryo
Chickens
Computational Biology
Coronavirus
Coronavirus Infections - drug therapy
Escherichia coli
Infectious bronchitis virus - chemistry
Infectious bronchitis virus - drug effects
Infectious bronchitis virus - isolation & purification
Infectious bronchitis virus - metabolism
Molecular Docking Simulation
Protein Multimerization
Serogroup
Viroporin
Viroporin Proteins - antagonists & inhibitors
Viroporin Proteins - chemistry
Viroporin Proteins - genetics
Viroporin Proteins - metabolism
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LT9wwELYqpEpcqvJql0dlJA5wCMSx14mPUBUBEj0tiJvlZ2sO2dWyS8W_ZyZO0PZQcek1saPJjO3vG3kehBwBYtiqDLFg3MlCKCYKY6MtGs6YLCvvrEFH8fanvLoTNw_jh5VWXxgTlssDZ8Wd2eBZaWxdM_RFYrTcNdKrKsDa9LK0ePoC5g3OVH8GS9g3K_nAj6fPab4EzMEC3ZXAFD2BTd5XoKir2P8XIv2LcXbIc_mZfOopIz3Pom6QD6HdJB9zE8mXLZLOW-wAMYchOTiDTiMFWkcxg22G8XU0tb-TTdhXh5pfJgEjpBOT_hh4A0sP2SbOGeKylk_UzqctXjCkJ9r9Ej2-vrg_2SaTyx-T71dF30ChcAAzi0JI5g1jjkdluLIh1LEE-OHj4EvHA97c1l4Z1pixjOCIRK9CbGKUrvZABfgOWWunbfhKKIxy0soG3J1KOG6bKoZYcc-lsZYpMSJngyr1LJfJ0EP82KMelK9R-Torf0QuUONvo7HMdfcAjK974-v3jD8iarCX7hlDZgLwqfSuAIeDgTVsKbwnMW0AHWtegpMFfqlgI_IlW_5NTK4YnHCi3v0f4u-RdRQopzbuk7XFfBkOgOMs7LduOb8CZGL8Qg
  priority: 102
  providerName: Directory of Open Access Journals
Title Antiviral effect of the viroporin inhibitors against Taiwan isolates of infectious bronchitis virus (IBV)
URI https://dx.doi.org/10.1016/j.virusres.2024.199458
https://www.ncbi.nlm.nih.gov/pubmed/39187047
https://www.proquest.com/docview/3097492441
https://doaj.org/article/bed10ab7711840ffb3c86d92e073d60b
Volume 349
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1Lb9QwELaqIiQuiDfLY2UkDnBIN469TnzcVlRbEL2woN4sP1v3kF2luyAu_HZmnKS0B8SBY5JJ4sw4M9_Y8yDkLVgMW5UhFow7WQjFRGFstEXDGZNl5Z016Ch-PpXLr-Lj2fxsjxyNuTAYVjno_l6nZ209nJkN3JxtUpp9AbCC1eVyFCSaZcxgFzXO8oNff8I8JM8N5pC4QOobWcKXB99TtwNLhGW7K4GJewJbv98wULmO_y079Tccmu3R8QNyfwCSdNGP9SHZC-0jcrdvLfnzMUmLFvtCdEDSh2zQdaQA9ijmtW0w6o6m9iLZhN12qDk3CXAiXZn0w8AVmJCIQfGeMVprd0Vtt25x2yFd0fxJ9N3J4bf3T8jq-MPqaFkMbRUKB8ZnWwjJvGHM8agMVzaEOpZglPg8-NLxgPu5tVeGNWYuI7gn0asQmxilqz0ABP6U7LfrNjwnFKictLIBJ6gSjtumiiFW3HNprGVKTMhsZKXe9MUz9BhVdqlH5mtkvu6ZPyGHyPFraix-nU-su3M9SF_b4FlpbF0zdE9jtNw10qsqgLrysrQTokZ56VtzCR6V_jmAN6OANfxouHti2gA81rwE1wu8VcEm5Fkv-ethcsVA74n6xX-8-SW5h0d9nuMrsr_tduE1AJ6tneYZPSV3FieflqfTvGwwzetSvwF5sgNr
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV1LbxMxEB6VVAguiGdJeRmJAxyWrNeOd_eYVlQJbXMhoN4se20X97CJ0oSKf8_MPqL2gDhwtce73vHsfDPyPAA-IGLYLPUh4aJSiSy5TIwNNikE5yrNXGUNOYrnczX9Lr9ejC_24LjPhaGwyk73tzq90dbdyKjj5mgV4-gbGitUXa6JgiRYvgf7VJ1qPID9yex0Ot8pZCWaHnNEn9CCW4nCV59_xfUWwYgqd2eScvckdX-_hVFNKf87UPU3U7SBpJPH8KizJdmk3e4T2PP1U7jfdpf8_QzipKbWEGskaaM22DIwtPcYpbatKPCOxfpntJEa7jBzaSKaimxh4o3BGZRJMkNpTR-wtb1mdr2s6eYhXrPmk9jH2dGPT89hcfJlcTxNus4KSYX4s0mk4s5wXolQGlFa7_OQIi6JsXdpJTxd6eauNLwwYxXQQwmu9KEIQVW5QxtBvIBBvaz9S2BIVSmrCvSDMlkJW2TBh0w4oYy1vJRDGPWs1Ku2fobuA8uudM98TczXLfOHcEQc31FT_etmYLm-1J0AaOsdT43Nc04eaghWVIVyZeZRYzmV2iGU_XnpO-KEj4r_3MD7_oA1_mt0gWJqjzzWIkXvCx1WyYdw0J78bpui5Kj6ZH74H29-Bw-mi_MzfTabn76ChzTTpj2-hsFmvfVv0P7Z2LedfP8BJgIEFw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Antiviral+effect+of+the+viroporin+inhibitors+against+Taiwan+isolates+of+infectious+bronchitis+virus+%28IBV%29&rft.jtitle=Virus+research&rft.au=Sitinjak%2C+Mikael+Cristofer&rft.au=Chen%2C+Jui-Kai&rft.au=Liu%2C+Fang-Lin&rft.au=Hou%2C+Ming-Hon&rft.date=2024-11-01&rft.pub=Elsevier+B.V&rft.issn=0168-1702&rft.volume=349&rft_id=info:doi/10.1016%2Fj.virusres.2024.199458&rft.externalDocID=S0168170224001515
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0168-1702&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0168-1702&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0168-1702&client=summon