Platelet Activation and Apoptosis Modulate Monocyte Inflammatory Responses in Dengue

Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma ar...

Full description

Saved in:
Bibliographic Details
Published inThe Journal of immunology (1950) Vol. 193; no. 4; pp. 1864 - 1872
Main Authors Hottz, Eugenio D, Medeiros-de-Moraes, Isabel M, Vieira-de-Abreu, Adriana, de Assis, Edson F, Vals-de-Souza, Rogério, Castro-Faria-Neto, Hugo C, Weyrich, Andrew S, Zimmerman, Guy A, Bozza, Fernando A, Bozza, Patrícia T
Format Journal Article
LanguageEnglish
Published United States 15.08.2014
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma are features of severe dengue. Although monocytes have been recognized as important sources of cytokines in dengue, the contributions of platelet–monocyte interactions to inflammatory responses in dengue have not been addressed. Patients with dengue were investigated for platelet–monocyte aggregate formation. Platelet-induced cytokine responses by monocytes and underlying mechanisms were also investigated in vitro. We observed increased levels of platelet–monocyte aggregates in blood samples from patients with dengue, especially patients with thrombocytopenia and increased vascular permeability. Moreover, the exposure of monocytes from healthy volunteers to platelets from patients with dengue induced the secretion of the cytokines IL-1β, IL-8, IL-10 and MCP-1, whereas exposure to platelets from healthy volunteers only induced the secretion of MCP-1. In addition to the well-established modulation of monocyte cytokine responses by activated platelets through P-selectin binding, we found that interaction of monocytes with apoptotic platelets mediate IL-10 secretion through phosphatidylserine recognition in platelet–monocyte aggregates. Moreover, IL-10 secretion required platelet–monocyte contact but not phagocytosis. Together, our results demonstrate that activated and apoptotic platelets aggregate with monocytes during dengue infection and signal specific cytokine responses that may contribute to the pathogenesis of dengue.
AbstractList Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma are features of severe dengue. Although monocytes have been recognized as important sources of cytokines in dengue, the contributions of platelet–monocyte interactions to inflammatory responses in dengue have not been addressed. Patients with dengue were investigated for platelet–monocyte aggregate formation. Platelet-induced cytokine responses by monocytes and underlying mechanisms were also investigated in vitro. We observed increased levels of platelet–monocyte aggregates in blood samples from patients with dengue, especially patients with thrombocytopenia and increased vascular permeability. Moreover, the exposure of monocytes from healthy volunteers to platelets from patients with dengue induced the secretion of the cytokines IL-1β, IL-8, IL-10 and MCP-1, whereas exposure to platelets from healthy volunteers only induced the secretion of MCP-1. In addition to the well-established modulation of monocyte cytokine responses by activated platelets through P-selectin binding, we found that interaction of monocytes with apoptotic platelets mediate IL-10 secretion through phosphatidylserine recognition in platelet–monocyte aggregates. Moreover, IL-10 secretion required platelet–monocyte contact but not phagocytosis. Together, our results demonstrate that activated and apoptotic platelets aggregate with monocytes during dengue infection and signal specific cytokine responses that may contribute to the pathogenesis of dengue.
Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma are features of severe dengue. Although monocytes have been recognized as important sources of cytokines in dengue, the contributions of platelet-monocyte interactions to inflammatory responses in dengue have not been addressed. Patients with dengue were investigated for platelet-monocyte aggregate formation. Platelet-induced cytokine responses by monocytes and underlying mechanisms were also investigated in vitro. We observed increased levels of platelet-monocyte aggregates in blood samples from patients with dengue, especially patients with thrombocytopenia and increased vascular permeability. Moreover, the exposure of monocytes from healthy volunteers to platelets from patients with dengue induced the secretion of the cytokines IL-1β, IL-8, IL-10 and MCP-1, whereas exposure to platelets from healthy volunteers only induced the secretion of MCP-1. In addition to the well-established modulation of monocyte cytokine responses by activated platelets through P-selectin binding, we found that interaction of monocytes with apoptotic platelets mediate IL-10 secretion through phosphatidylserine recognition in platelet-monocyte aggregates. Moreover, IL-10 secretion required platelet-monocyte contact but not phagocytosis. Together, our results demonstrate that activated and apoptotic platelets aggregate with monocytes during dengue infection and signal specific cytokine responses that may contribute to the pathogenesis of dengue.Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma are features of severe dengue. Although monocytes have been recognized as important sources of cytokines in dengue, the contributions of platelet-monocyte interactions to inflammatory responses in dengue have not been addressed. Patients with dengue were investigated for platelet-monocyte aggregate formation. Platelet-induced cytokine responses by monocytes and underlying mechanisms were also investigated in vitro. We observed increased levels of platelet-monocyte aggregates in blood samples from patients with dengue, especially patients with thrombocytopenia and increased vascular permeability. Moreover, the exposure of monocytes from healthy volunteers to platelets from patients with dengue induced the secretion of the cytokines IL-1β, IL-8, IL-10 and MCP-1, whereas exposure to platelets from healthy volunteers only induced the secretion of MCP-1. In addition to the well-established modulation of monocyte cytokine responses by activated platelets through P-selectin binding, we found that interaction of monocytes with apoptotic platelets mediate IL-10 secretion through phosphatidylserine recognition in platelet-monocyte aggregates. Moreover, IL-10 secretion required platelet-monocyte contact but not phagocytosis. Together, our results demonstrate that activated and apoptotic platelets aggregate with monocytes during dengue infection and signal specific cytokine responses that may contribute to the pathogenesis of dengue.
Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma are features of severe dengue. Although monocytes have been recognized as important sources of cytokines in dengue, the contributions of platelet-monocyte interactions to inflammatory responses in dengue have not been addressed. Patients with dengue were investigated for platelet-monocyte aggregate formation. Platelet-induced cytokine responses by monocytes and underlying mechanisms were also investigated in vitro. We observed increased levels of platelet-monocyte aggregates in blood samples from patients with dengue, especially patients with thrombocytopenia and increased vascular permeability. Moreover, the exposure of monocytes from healthy volunteers to platelets from patients with dengue induced the secretion of the cytokines IL-1 beta , IL-8, IL-10 and MCP-1, whereas exposure to platelets from healthy volunteers only induced the secretion of MCP-1. In addition to the well-established modulation of monocyte cytokine responses by activated platelets through P-selectin binding, we found that interaction of monocytes with apoptotic platelets mediate IL-10 secretion through phosphatidylserine recognition in platelet-monocyte aggregates. Moreover, IL-10 secretion required platelet-monocyte contact but not phagocytosis. Together, our results demonstrate that activated and apoptotic platelets aggregate with monocytes during dengue infection and signal specific cytokine responses that may contribute to the pathogenesis of dengue.
Author Hottz, Eugenio D
Weyrich, Andrew S
Bozza, Fernando A
Vals-de-Souza, Rogério
Zimmerman, Guy A
de Assis, Edson F
Castro-Faria-Neto, Hugo C
Medeiros-de-Moraes, Isabel M
Bozza, Patrícia T
Vieira-de-Abreu, Adriana
AuthorAffiliation 4 Molecular Medicine Program, University of Utah, Salt Lake City, Utah
3 Department of Medicine, University of Utah, Salt Lake City, Utah
1 Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
2 Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
AuthorAffiliation_xml – name: 2 Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
– name: 1 Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil
– name: 4 Molecular Medicine Program, University of Utah, Salt Lake City, Utah
– name: 3 Department of Medicine, University of Utah, Salt Lake City, Utah
Author_xml – sequence: 1
  givenname: Eugenio D
  surname: Hottz
  fullname: Hottz, Eugenio D
– sequence: 2
  givenname: Isabel M
  surname: Medeiros-de-Moraes
  fullname: Medeiros-de-Moraes, Isabel M
– sequence: 3
  givenname: Adriana
  surname: Vieira-de-Abreu
  fullname: Vieira-de-Abreu, Adriana
– sequence: 4
  givenname: Edson F
  surname: de Assis
  fullname: de Assis, Edson F
– sequence: 5
  givenname: Rogério
  surname: Vals-de-Souza
  fullname: Vals-de-Souza, Rogério
– sequence: 6
  givenname: Hugo C
  surname: Castro-Faria-Neto
  fullname: Castro-Faria-Neto, Hugo C
– sequence: 7
  givenname: Andrew S
  surname: Weyrich
  fullname: Weyrich, Andrew S
– sequence: 8
  givenname: Guy A
  surname: Zimmerman
  fullname: Zimmerman, Guy A
– sequence: 9
  givenname: Fernando A
  surname: Bozza
  fullname: Bozza, Fernando A
– sequence: 10
  givenname: Patrícia T
  surname: Bozza
  fullname: Bozza, Patrícia T
BackLink https://www.ncbi.nlm.nih.gov/pubmed/25015827$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9rFTEQx4NU7Gv17kn26GXrJJsfuxfh0WpbqChSzyGbna0p2WTdZAvvvze1r0UF8TQD8_l-mZnvETkIMSAhrymccODdu1s3TWuI_oRyAOjoM7KhQkAtJcgDsgFgrKZKqkNylNJtQSQw_oIcMgFUtExtyPUXbzJ6zNXWZndnsouhMmGotnOcc0wuVZ_isN5DpQnR7kpzGUZvpsnkuOyqr5jmGBKmyoXqDMPNii_J89H4hK_29Zh8-_jh-vSivvp8fnm6vaotZ12uOQc1DD1tjaSCccU72xtmaG8sguqVwrGFwghUbFCWjZL2BWBDI0YDTd8ck_cPvvPaTzhYDHkxXs-Lm8yy09E4_eckuO_6Jt5pThvVsKYYvN0bLPHHiinrySWL3puAcU2attAq2opC_xcVggLtpOgK-ub3tZ72efx6AeABsEtMacHxCaGg74PVj8HqfbBFIv-SWJd_pVUOc_7fwp8uxaws
CitedBy_id crossref_primary_10_1371_journal_pntd_0011710
crossref_primary_10_1016_j_thromres_2022_03_022
crossref_primary_10_1371_journal_ppat_1010065
crossref_primary_10_1371_journal_pone_0157115
crossref_primary_10_1007_s11033_025_10222_x
crossref_primary_10_3389_fimmu_2019_01320
crossref_primary_10_3390_ijms241612862
crossref_primary_10_1093_infdis_jiy434
crossref_primary_10_1080_09537104_2022_2026907
crossref_primary_10_1002_JLB_4MA0620_658R
crossref_primary_10_1080_09537104_2021_1921722
crossref_primary_10_1096_fj_202402278RR
crossref_primary_10_3389_fimmu_2021_770436
crossref_primary_10_3390_cells9040855
crossref_primary_10_3390_diagnostics13213365
crossref_primary_10_1016_j_intimp_2020_107336
crossref_primary_10_1186_s12878_018_0116_1
crossref_primary_10_1002_cncr_32010
crossref_primary_10_1002_JLB_4MR0620_701R
crossref_primary_10_1182_blood_2018_09_873984
crossref_primary_10_2147_JIR_S356742
crossref_primary_10_1186_s12906_019_2438_3
crossref_primary_10_3389_fimmu_2019_02400
crossref_primary_10_1182_blood_2015_05_647362
crossref_primary_10_3389_fimmu_2022_958820
crossref_primary_10_3389_fmed_2018_00121
crossref_primary_10_1016_j_tim_2024_04_011
crossref_primary_10_3390_jcm10040877
crossref_primary_10_1182_blood_2018_08_869156
crossref_primary_10_1093_tropej_fmaf014
crossref_primary_10_1155_2015_313842
crossref_primary_10_3389_fcimb_2021_714088
crossref_primary_10_3389_fimmu_2022_856713
crossref_primary_10_1016_j_virusres_2018_09_013
crossref_primary_10_1080_09537104_2021_1952179
crossref_primary_10_1093_infdis_jiae355
crossref_primary_10_1186_s12959_018_0170_8
crossref_primary_10_1159_000444807
crossref_primary_10_1093_cei_uxac073
crossref_primary_10_1016_j_critrevonc_2014_11_002
crossref_primary_10_3389_fimmu_2021_616394
crossref_primary_10_3390_hemato4040029
crossref_primary_10_3389_fcvm_2023_1308170
crossref_primary_10_1152_physrev_00038_2015
crossref_primary_10_4049_jimmunol_2001218
crossref_primary_10_1007_s11262_024_02114_2
crossref_primary_10_1007_s00284_023_03239_7
crossref_primary_10_1016_j_cyto_2021_155644
crossref_primary_10_1097_SHK_0000000000001619
crossref_primary_10_1038_s41467_019_10360_4
crossref_primary_10_1186_s12879_016_1596_x
crossref_primary_10_3390_v10070357
crossref_primary_10_1093_ofid_ofx051
crossref_primary_10_1146_annurev_immunol_042718_041607
crossref_primary_10_1002_rth2_12429
crossref_primary_10_1161_ATVBAHA_120_314645
crossref_primary_10_1182_blood_2020007252
crossref_primary_10_3389_fcimb_2020_590004
crossref_primary_10_1007_s12033_025_01407_7
crossref_primary_10_1038_s41467_020_16849_7
crossref_primary_10_1055_s_0041_1726033
crossref_primary_10_3389_fcvm_2023_960398
crossref_primary_10_3390_ijms24087462
crossref_primary_10_1097_TA_0000000000003450
crossref_primary_10_3389_fimmu_2023_1285162
crossref_primary_10_1186_s12918_017_0415_3
crossref_primary_10_1371_journal_pntd_0003459
crossref_primary_10_1002_jmv_29635
crossref_primary_10_1099_jgv_0_001024
crossref_primary_10_1155_2015_435783
crossref_primary_10_1182_bloodadvances_2021006680
crossref_primary_10_1186_s12929_018_0482_9
crossref_primary_10_3892_etm_2016_3323
crossref_primary_10_17709_2409_2231_2018_5_3_4
crossref_primary_10_2217_fvl_2017_0043
crossref_primary_10_1186_s12959_024_00626_3
crossref_primary_10_3389_fimmu_2015_00070
crossref_primary_10_3390_pathogens11050558
crossref_primary_10_3390_v13091789
crossref_primary_10_1089_jir_2015_0029
crossref_primary_10_3389_fimmu_2019_02204
crossref_primary_10_1038_s41598_018_33403_0
crossref_primary_10_1128_microbiolspec_MCHD_0007_2015
crossref_primary_10_1155_2021_4936571
crossref_primary_10_1186_s12879_020_05248_4
crossref_primary_10_3389_fimmu_2014_00649
crossref_primary_10_1038_srep41697
crossref_primary_10_3389_fmed_2023_1074878
crossref_primary_10_1016_j_jtha_2024_12_012
crossref_primary_10_1080_09537104_2019_1689383
crossref_primary_10_3389_fmed_2024_1444481
crossref_primary_10_3389_fcimb_2020_561366
crossref_primary_10_1182_asheducation_2014_1_400
crossref_primary_10_1111_bph_14646
crossref_primary_10_5812_semj_146016
crossref_primary_10_1016_j_ijcard_2020_09_064
crossref_primary_10_1155_2021_6654617
crossref_primary_10_3390_v12070765
crossref_primary_10_3389_fimmu_2014_00678
crossref_primary_10_3390_ijms24032009
crossref_primary_10_3389_fcimb_2023_1252509
crossref_primary_10_1080_09537104_2018_1430358
crossref_primary_10_1111_imm_12748
crossref_primary_10_1038_s41598_019_43275_7
crossref_primary_10_1080_09537104_2021_2020491
crossref_primary_10_3390_ijms22157894
crossref_primary_10_1371_journal_ppat_1006385
crossref_primary_10_14712_fb2018064010023
crossref_primary_10_1089_vim_2015_0082
crossref_primary_10_3389_fimmu_2023_1210219
crossref_primary_10_1016_j_virusres_2024_199519
crossref_primary_10_1111_trf_13454
crossref_primary_10_1371_journal_ppat_1007625
crossref_primary_10_1186_s12936_015_0835_8
crossref_primary_10_3390_pathogens10050501
crossref_primary_10_3389_fimmu_2022_1029213
crossref_primary_10_3389_fphys_2023_1210509
crossref_primary_10_15789_1563_0625_PLI_2511
crossref_primary_10_1038_s41467_020_15584_3
crossref_primary_10_1080_09537104_2023_2206916
crossref_primary_10_1182_bloodadvances_2019001169
crossref_primary_10_3390_ijms23073868
crossref_primary_10_1055_s_0041_1731288
crossref_primary_10_1186_s12936_020_03305_6
Cites_doi 10.1182/blood-2009-09-242990
10.1016/0166-0934(91)90011-N
10.1038/sj.icb.7100008
10.1128/CVI.00105-06
10.1080/09537100701426604
10.1038/nri2956
10.1016/j.jacc.2013.03.003
10.1172/JCI118575
10.1182/blood-2007-05-092684
10.1161/01.CIR.0000154607.90506.45
10.1158/1078-0432.CCR-11-1074
10.1007/s00281-011-0286-4
10.1038/nature12060
10.1111/jth.12178
10.1172/JCI27209.
10.1046/j.1538-7836.2003.00304.x
10.1186/1471-2334-8-86
10.1016/j.immuni.2007.11.014
10.1371/journal.pone.0050387
10.1056/NEJMcibr1005904
10.1111/j.1348-0421.2009.00148.x
10.1016/0092-8674(89)90292-4
10.1371/journal.pone.0008709
10.1371/journal.pntd.0002409
10.1182/blood-2013-05-504449
10.4049/jimmunol.1202672
10.4049/jimmunol.1201103
10.1371/journal.pone.0038527
10.1159/000322904
10.1099/vir.0.19652-0
10.1099/vir.0.82093-0
10.1111/j.1537-2995.2007.01441.x
10.4269/ajtmh.2006.74.142
10.4049/jimmunol.1301250
10.1016/j.ddmec.2011.09.001
10.1093/infdis/jis180
10.1371/journal.pone.0052215
10.1371/journal.pntd.0002236
10.1078/0171-2985-00058
10.1038/35003208
10.7705/biomedica.v30i4.297
10.1016/j.thromres.2013.02.020
10.1016/j.cell.2005.06.015
10.1182/blood-2008-09-180794
ContentType Journal Article
Copyright Copyright © 2014 by The American Association of Immunologists, Inc.
Copyright_xml – notice: Copyright © 2014 by The American Association of Immunologists, Inc.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7T5
7U9
H94
5PM
DOI 10.4049/jimmunol.1400091
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Immunology Abstracts
Virology and AIDS Abstracts
AIDS and Cancer Research Abstracts
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
AIDS and Cancer Research Abstracts
Immunology Abstracts
Virology and AIDS Abstracts
DatabaseTitleList CrossRef
MEDLINE - Academic
AIDS and Cancer Research Abstracts
MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Biology
EISSN 1550-6606
EndPage 1872
ExternalDocumentID PMC4137323
25015827
10_4049_jimmunol_1400091
Genre Research Support, Non-U.S. Gov't
Journal Article
Research Support, N.I.H., Extramural
GrantInformation_xml – fundername: NHLBI NIH HHS
  grantid: R37HL044525
– fundername: NHLBI NIH HHS
  grantid: R01 HL091754
– fundername: NHLBI NIH HHS
  grantid: HL091754
– fundername: NHLBI NIH HHS
  grantid: R37 HL044525
– fundername: NHLBI NIH HHS
  grantid: R01 HL066277
– fundername: NHLBI NIH HHS
  grantid: HL066277
GroupedDBID ---
-~X
.55
0R~
18M
2WC
34G
39C
53G
5GY
5RE
5VS
5WD
79B
85S
AARDX
AAYXX
ABCQX
ABDFA
ABEJV
ABGNP
ABJNI
ABOCM
ABPPZ
ABXVV
ACGFO
ACGFS
ACIWK
ACNCT
ACPRK
ADBBV
ADIPN
ADNWM
AENEX
AETEA
AFHIN
AFOSN
AFRAH
AGORE
AHMMS
AHWXS
AIZAD
ALMA_UNASSIGNED_HOLDINGS
ARBBW
BAWUL
BCRHZ
BTFSW
CITATION
D0L
DIK
DU5
E3Z
EBS
EJD
F5P
FRP
GX1
IH2
K-O
KQ8
L7B
OCZFY
OK1
OWPYF
P0W
P2P
PQQKQ
R.V
RHI
ROX
RZQ
SJN
TR2
TWZ
W8F
WH7
WOQ
X7M
XJT
XSW
XTH
YHG
CGR
CUY
CVF
ECM
EIF
KOP
NPM
7X8
7T5
7U9
H94
5PM
ID FETCH-LOGICAL-c429t-4407ddb18a61524749cba2a1bace07b77ef804075e72d7c2f61bba22d35fa03b3
ISSN 0022-1767
1550-6606
IngestDate Thu Aug 21 14:07:05 EDT 2025
Fri Jul 11 04:28:49 EDT 2025
Fri Jul 11 08:30:46 EDT 2025
Mon Jul 21 05:56:05 EDT 2025
Thu Apr 24 23:09:54 EDT 2025
Tue Jul 01 05:22:03 EDT 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License https://academic.oup.com/pages/standard-publication-reuse-rights
Copyright © 2014 by The American Association of Immunologists, Inc.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-4407ddb18a61524749cba2a1bace07b77ef804075e72d7c2f61bba22d35fa03b3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
The first authors contributed equally
The senior authors contributed equally
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/4137323
PMID 25015827
PQID 1551019659
PQPubID 23479
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_4137323
proquest_miscellaneous_1808718537
proquest_miscellaneous_1551019659
pubmed_primary_25015827
crossref_primary_10_4049_jimmunol_1400091
crossref_citationtrail_10_4049_jimmunol_1400091
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2014-08-15
PublicationDateYYYYMMDD 2014-08-15
PublicationDate_xml – month: 08
  year: 2014
  text: 2014-08-15
  day: 15
PublicationDecade 2010
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle The Journal of immunology (1950)
PublicationTitleAlternate J Immunol
PublicationYear 2014
References Bozza (2025030707283123800_r4) 2008; 8
van de Weg (2025030707283123800_r40) 2013; 7
World Health Organization (2025030707283123800_r3) 2009
Talavera (2025030707283123800_r35) 2004; 85
Lee (2025030707283123800_r36) 2006; 87
Weyrich (2025030707283123800_r10) 2005; 111
Chung (2025030707283123800_r16) 2007; 27
Maugeri (2025030707283123800_r44) 2009; 113
de-Oliveira-Pinto (2025030707283123800_r32) 2012; 7
Onlamoon (2025030707283123800_r30) 2010; 115
Larsen (2025030707283123800_r24) 1989; 59
Dixon (2025030707283123800_r25) 2006; 116
Tsai (2025030707283123800_r14) 2011; 3
Hottz (2025030707283123800_r8) 2013; 11
Jaiyen (2025030707283123800_r28) 2009; 53
Houghton-Triviño (2025030707283123800_r27) 2010; 30
Stephen (2025030707283123800_r31) 2013; 191
Tardif (2025030707283123800_r47) 2013; 61
Schmidt (2025030707283123800_r1) 2010; 363
Aggrey (2025030707283123800_r37) 2013; 190
Malavige (2025030707283123800_r38) 2013; 7
Malavige (2025030707283123800_r39) 2012; 7
Schexneider (2025030707283123800_r5) 2005; 4
Vieira-de-Abreu (2025030707283123800_r13) 2012; 34
Kuno (2025030707283123800_r19) 1991; 33
Hottz (2025030707283123800_r7) 2011; 8
Denis (2025030707283123800_r22) 2005; 122
Kling (2025030707283123800_r46) 2013; 131
Gudbrandsdottir (2025030707283123800_r43) 2013; 191
Jobe (2025030707283123800_r26) 2008; 111
Priyadarshini (2025030707283123800_r33) 2010; 5
Rathakrishnan (2025030707283123800_r29) 2012; 7
Aslam (2025030707283123800_r23) 2007; 47
Bhatt (2025030707283123800_r2) 2013; 496
Semple (2025030707283123800_r9) 2011; 11
Pang (2025030707283123800_r17) 2007; 85
Gerber (2025030707283123800_r45) 2011; 17
Azeredo (2025030707283123800_r34) 2001; 204
Freire-de-Lima (2025030707283123800_r42) 2000; 403
Alonzo (2025030707283123800_r15) 2012; 205
Weyrich (2025030707283123800_r11) 1996; 97
Weyrich (2025030707283123800_r12) 2003; 1
Falconar (2025030707283123800_r18) 2006; 13
Chen (2025030707283123800_r41) 2006; 74
Shu (2025030707283123800_r20) 2003; 10
Mourão (2025030707283123800_r6) 2007; 18
Hottz (2025030707283123800_r21) 2013; 122
References_xml – volume: 115
  start-page: 1823
  year: 2010
  ident: 2025030707283123800_r30
  article-title: Dengue virus-induced hemorrhage in a nonhuman primate model
  publication-title: Blood
  doi: 10.1182/blood-2009-09-242990
– volume: 33
  start-page: 101
  year: 1991
  ident: 2025030707283123800_r19
  article-title: An ELISA procedure for the diagnosis of dengue infections
  publication-title: J. Virol. Methods
  doi: 10.1016/0166-0934(91)90011-N
– volume: 85
  start-page: 43
  year: 2007
  ident: 2025030707283123800_r17
  article-title: Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS)
  publication-title: Immunol. Cell Biol.
  doi: 10.1038/sj.icb.7100008
– volume: 13
  start-page: 1044
  year: 2006
  ident: 2025030707283123800_r18
  article-title: Altered enzyme-linked immunosorbent assay immunoglobulin M (IgM)/IgG optical density ratios can correctly classify all primary or secondary dengue virus infections 1 day after the onset of symptoms, when all of the viruses can be isolated
  publication-title: Clin. Vaccine Immunol.
  doi: 10.1128/CVI.00105-06
– volume: 18
  start-page: 605
  year: 2007
  ident: 2025030707283123800_r6
  article-title: Thrombocytopenia in patients with dengue virus infection in the Brazilian Amazon
  publication-title: Platelets
  doi: 10.1080/09537100701426604
– volume: 11
  start-page: 264
  year: 2011
  ident: 2025030707283123800_r9
  article-title: Platelets and the immune continuum
  publication-title: Nat. Rev. Immunol.
  doi: 10.1038/nri2956
– volume: 61
  start-page: 2048
  year: 2013
  ident: 2025030707283123800_r47
  article-title: Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the SELECT-ACS trial
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2013.03.003
– volume-title: Dengue: Guidelines for diagnosis, treatment, prevention and control
  year: 2009
  ident: 2025030707283123800_r3
– volume: 97
  start-page: 1525
  year: 1996
  ident: 2025030707283123800_r11
  article-title: Activated platelets signal chemokine synthesis by human monocytes
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI118575
– volume: 111
  start-page: 1257
  year: 2008
  ident: 2025030707283123800_r26
  article-title: Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis
  publication-title: Blood
  doi: 10.1182/blood-2007-05-092684
– volume: 4
  start-page: 145
  year: 2005
  ident: 2025030707283123800_r5
  article-title: Thrombocytopenia in dengue fever
  publication-title: Curr. Hematol. Rep.
– volume: 111
  start-page: 633
  year: 2005
  ident: 2025030707283123800_r10
  article-title: Dipyridamole selectively inhibits inflammatory gene expression in platelet-monocyte aggregates
  publication-title: Circulation
  doi: 10.1161/01.CIR.0000154607.90506.45
– volume: 17
  start-page: 6888
  year: 2011
  ident: 2025030707283123800_r45
  article-title: Phase I safety and pharmacokinetic study of bavituximab, a chimeric phosphatidylserine-targeting monoclonal antibody, in patients with advanced solid tumors
  publication-title: Clin. Cancer Res.
  doi: 10.1158/1078-0432.CCR-11-1074
– volume: 34
  start-page: 5
  year: 2012
  ident: 2025030707283123800_r13
  article-title: Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum
  publication-title: Semin. Immunopathol.
  doi: 10.1007/s00281-011-0286-4
– volume: 10
  start-page: 622
  year: 2003
  ident: 2025030707283123800_r20
  article-title: Comparison of capture immunoglobulin M (IgM) and IgG enzyme-linked immunosorbent assay (ELISA) and nonstructural protein NS1 serotype-specific IgG ELISA for differentiation of primary and secondary dengue virus infections
  publication-title: Clin. Diagn. Lab. Immunol.
– volume: 496
  start-page: 504
  year: 2013
  ident: 2025030707283123800_r2
  article-title: The global distribution and burden of dengue
  publication-title: Nature
  doi: 10.1038/nature12060
– volume: 11
  start-page: 951
  year: 2013
  ident: 2025030707283123800_r8
  article-title: Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases
  publication-title: J. Thromb. Haemost.
  doi: 10.1111/jth.12178
– volume: 116
  start-page: 2727
  year: 2006
  ident: 2025030707283123800_r25
  article-title: Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling
  publication-title: J. Clin. Invest.
  doi: 10.1172/JCI27209.
– volume: 1
  start-page: 1897
  year: 2003
  ident: 2025030707283123800_r12
  article-title: The evolving role of platelets in inflammation
  publication-title: J. Thromb. Haemost.
  doi: 10.1046/j.1538-7836.2003.00304.x
– volume: 8
  start-page: 86
  year: 2008
  ident: 2025030707283123800_r4
  article-title: Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity
  publication-title: BMC Infect. Dis.
  doi: 10.1186/1471-2334-8-86
– volume: 27
  start-page: 952
  year: 2007
  ident: 2025030707283123800_r16
  article-title: Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1
  publication-title: Immunity
  doi: 10.1016/j.immuni.2007.11.014
– volume: 7
  start-page: e50387
  year: 2012
  ident: 2025030707283123800_r39
  article-title: Cellular and cytokine correlates of severe dengue infection
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0050387
– volume: 363
  start-page: 484
  year: 2010
  ident: 2025030707283123800_r1
  article-title: Response to dengue fever—the good, the bad, and the ugly?
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMcibr1005904
– volume: 53
  start-page: 442
  year: 2009
  ident: 2025030707283123800_r28
  article-title: Characteristics of dengue virus-infected peripheral blood mononuclear cell death that correlates with the severity of illness
  publication-title: Microbiol. Immunol.
  doi: 10.1111/j.1348-0421.2009.00148.x
– volume: 59
  start-page: 305
  year: 1989
  ident: 2025030707283123800_r24
  article-title: PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes
  publication-title: Cell
  doi: 10.1016/0092-8674(89)90292-4
– volume: 5
  start-page: e8709
  year: 2010
  ident: 2025030707283123800_r33
  article-title: Clinical findings and pro-inflammatory cytokines in dengue patients in Western India: a facility-based study
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0008709
– volume: 7
  start-page: e2409
  year: 2013
  ident: 2025030707283123800_r38
  article-title: Suppression of virus specific immune responses by IL-10 in acute dengue infection
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0002409
– volume: 122
  start-page: 3405
  year: 2013
  ident: 2025030707283123800_r21
  article-title: Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation
  publication-title: Blood
  doi: 10.1182/blood-2013-05-504449
– volume: 190
  start-page: 4685
  year: 2013
  ident: 2025030707283123800_r37
  article-title: Platelet induction of the acute-phase response is protective in murine experimental cerebral malaria
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1202672
– volume: 191
  start-page: 4059
  year: 2013
  ident: 2025030707283123800_r43
  article-title: Activated platelets enhance IL-10 secretion and reduce TNF-α secretion by monocytes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1201103
– volume: 7
  start-page: e38527
  year: 2012
  ident: 2025030707283123800_r32
  article-title: Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0038527
– volume: 3
  start-page: 530
  year: 2011
  ident: 2025030707283123800_r14
  article-title: Frequency alterations in key innate immune cell components in the peripheral blood of dengue patients detected by FACS analysis
  publication-title: J. Innate Immun.
  doi: 10.1159/000322904
– volume: 85
  start-page: 1801
  year: 2004
  ident: 2025030707283123800_r35
  article-title: IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.19652-0
– volume: 87
  start-page: 3623
  year: 2006
  ident: 2025030707283123800_r36
  article-title: MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells
  publication-title: J. Gen. Virol.
  doi: 10.1099/vir.0.82093-0
– volume: 47
  start-page: 2161
  year: 2007
  ident: 2025030707283123800_r23
  article-title: Platelet and red blood cell phagocytosis kinetics are differentially controlled by phosphatase activity within mononuclear cells
  publication-title: Transfusion
  doi: 10.1111/j.1537-2995.2007.01441.x
– volume: 74
  start-page: 142
  year: 2006
  ident: 2025030707283123800_r41
  article-title: Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients
  publication-title: Am. J. Trop. Med. Hyg.
  doi: 10.4269/ajtmh.2006.74.142
– volume: 191
  start-page: 5677
  year: 2013
  ident: 2025030707283123800_r31
  article-title: The uncoupling of monocyte-platelet interactions from the induction of proinflammatory signaling in monocytes
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1301250
– volume: 8
  start-page: e33
  year: 2011
  ident: 2025030707283123800_r7
  article-title: Platelets in Dengue Infection
  publication-title: Drug Discov. Today Dis. Mech.
  doi: 10.1016/j.ddmec.2011.09.001
– volume: 205
  start-page: 1321
  year: 2012
  ident: 2025030707283123800_r15
  article-title: Platelet apoptosis and apoptotic platelet clearance by macrophages in secondary dengue virus infections
  publication-title: J. Infect. Dis.
  doi: 10.1093/infdis/jis180
– volume: 7
  start-page: e52215
  year: 2012
  ident: 2025030707283123800_r29
  article-title: Cytokine expression profile of dengue patients at different phases of illness
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0052215
– volume: 7
  start-page: e2236
  year: 2013
  ident: 2025030707283123800_r40
  article-title: Microbial translocation is associated with extensive immune activation in dengue virus infected patients with severe disease
  publication-title: PLoS Negl. Trop. Dis.
  doi: 10.1371/journal.pntd.0002236
– volume: 204
  start-page: 494
  year: 2001
  ident: 2025030707283123800_r34
  article-title: Characterisation of lymphocyte response and cytokine patterns in patients with dengue fever
  publication-title: Immunobiology
  doi: 10.1078/0171-2985-00058
– volume: 403
  start-page: 199
  year: 2000
  ident: 2025030707283123800_r42
  article-title: Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages
  publication-title: Nature
  doi: 10.1038/35003208
– volume: 30
  start-page: 587
  year: 2010
  ident: 2025030707283123800_r27
  article-title: [Comparison of the transcriptional profiles of patients with dengue fever and dengue hemorrhagic fever reveals differences in the immune response and clues in immunopathogenesis]
  publication-title: Biomedica
  doi: 10.7705/biomedica.v30i4.297
– volume: 131
  start-page: 401
  year: 2013
  ident: 2025030707283123800_r46
  article-title: Pharmacological control of platelet-leukocyte interactions by the human anti-P-selectin antibody inclacumab—preclinical and clinical studies
  publication-title: Thromb. Res.
  doi: 10.1016/j.thromres.2013.02.020
– volume: 122
  start-page: 379
  year: 2005
  ident: 2025030707283123800_r22
  article-title: Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets
  publication-title: Cell
  doi: 10.1016/j.cell.2005.06.015
– volume: 113
  start-page: 5254
  year: 2009
  ident: 2025030707283123800_r44
  article-title: Neutrophils phagocytose activated platelets in vivo: a phosphatidylserine, P-selectin, and beta2 integrin-dependent cell clearance program
  publication-title: Blood
  doi: 10.1182/blood-2008-09-180794
SSID ssj0006024
Score 2.5035172
Snippet Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile...
SourceID pubmedcentral
proquest
pubmed
crossref
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
StartPage 1864
SubjectTerms Adult
Apoptosis - immunology
Arbovirus
Blood Platelets - immunology
Capillary Permeability
Chemokine CCL2 - metabolism
Dengue - immunology
Dengue Virus - immunology
Female
Humans
Inflammation - immunology
Interleukin-10 - metabolism
Interleukin-1beta - metabolism
Interleukin-8 - metabolism
Male
Monocytes - immunology
P-Selectin - immunology
Phagocytosis
Phosphatidylserines - immunology
Platelet Activation - immunology
Thrombocytopenia - immunology
Title Platelet Activation and Apoptosis Modulate Monocyte Inflammatory Responses in Dengue
URI https://www.ncbi.nlm.nih.gov/pubmed/25015827
https://www.proquest.com/docview/1551019659
https://www.proquest.com/docview/1808718537
https://pubmed.ncbi.nlm.nih.gov/PMC4137323
Volume 193
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaGIhAXBGXpsMlIcEBV2sRx4uQ4QoMGUBBCU9TbyFsgEk1GNDmUf8U_5Dl2tgEqyiUaJW-cxO_LW-y3IPQijCXlQZh7XKvUozLnHheh9HjKSZxzwUnbGzD7EK9O6LvT6HQ2-zmKWmpqcSR__DGv5H-4CueAryZL9gqc7QeFE_Ab-AtH4DAc_4nHH7-BpQgTf7iQXZeydjNgsa22dWVKjWSVMv252m-3khe1iZTMAQRndnP9k42QbYOyQPSUX5pJZNCQN2ZLS5hcEluz6WW7M-aP1hFWVd22hj1cNvC8RTWEEmda6QKUsae0lwHinGA658JE1XZUnwsg4oZmAV5608osBXNY9npDaQMmWxNhaTLFXFSyW7MIqFmEtVmboxyCgNlGHEfaid4IHNnYjyey2bZPdCCkI0kbJLb6udPaQWI7AO1qBAoekNEIboZAMRirMhi0X7fjv6MU-1BFcJLMGJtuhI0b4Rq6TsAzab34t-975R_7hHYF6s0L2p1xM8Lx7jNMLaHf3JvdKN2R2bO-g2477uOFBd9dNNPlPrphO5he7KObmYvNuIfWHRrxgEYMaMQ9GnGHRtyhEY_RiHs04qLEFo330cmb5fr1ynM9OzwJlk3tUeozpUSQcDCVCWU0lfC980BwqX0mGNN5AnqDRZoRxSTJ40AAAVFhlHM_FOEDtFdWpT5AOI1SmScKbOhIwAQmQqRxEkrQziqUkSRzdNzN30a6gvamrwqw6C88m6NX_T-2tpjLJbTPO5ZsQOKabTRe6qo53xgnwxbivIQm8RNmTGE2Rw8tG_s7gtMRRAmBK2zC4J7AVHyfXimLr23ld7A4WUjCR1d4j8fo1vAFPkF79fdGPwU7uhbPWuT-AvTyzeI
linkProvider Flying Publisher
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Platelet+Activation+and+Apoptosis+Modulate+Monocyte+Inflammatory+Responses+in+Dengue&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Hottz%2C+Eugenio+D&rft.au=Medeiros-de-Moraes%2C+Isabel+M&rft.au=Vieira-de-Abreu%2C+Adriana&rft.au=de+Assis%2C+Edson+F&rft.date=2014-08-15&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=193&rft.issue=4&rft.spage=1864&rft.epage=1872&rft_id=info:doi/10.4049%2Fjimmunol.1400091&rft.externalDBID=n%2Fa&rft.externalDocID=10_4049_jimmunol_1400091
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon