Platelet Activation and Apoptosis Modulate Monocyte Inflammatory Responses in Dengue
Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma ar...
Saved in:
Published in | The Journal of immunology (1950) Vol. 193; no. 4; pp. 1864 - 1872 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
15.08.2014
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma are features of severe dengue. Although monocytes have been recognized as important sources of cytokines in dengue, the contributions of platelet–monocyte interactions to inflammatory responses in dengue have not been addressed. Patients with dengue were investigated for platelet–monocyte aggregate formation. Platelet-induced cytokine responses by monocytes and underlying mechanisms were also investigated in vitro. We observed increased levels of platelet–monocyte aggregates in blood samples from patients with dengue, especially patients with thrombocytopenia and increased vascular permeability. Moreover, the exposure of monocytes from healthy volunteers to platelets from patients with dengue induced the secretion of the cytokines IL-1β, IL-8, IL-10 and MCP-1, whereas exposure to platelets from healthy volunteers only induced the secretion of MCP-1. In addition to the well-established modulation of monocyte cytokine responses by activated platelets through P-selectin binding, we found that interaction of monocytes with apoptotic platelets mediate IL-10 secretion through phosphatidylserine recognition in platelet–monocyte aggregates. Moreover, IL-10 secretion required platelet–monocyte contact but not phagocytosis. Together, our results demonstrate that activated and apoptotic platelets aggregate with monocytes during dengue infection and signal specific cytokine responses that may contribute to the pathogenesis of dengue. |
---|---|
AbstractList | Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma are features of severe dengue. Although monocytes have been recognized as important sources of cytokines in dengue, the contributions of platelet–monocyte interactions to inflammatory responses in dengue have not been addressed. Patients with dengue were investigated for platelet–monocyte aggregate formation. Platelet-induced cytokine responses by monocytes and underlying mechanisms were also investigated in vitro. We observed increased levels of platelet–monocyte aggregates in blood samples from patients with dengue, especially patients with thrombocytopenia and increased vascular permeability. Moreover, the exposure of monocytes from healthy volunteers to platelets from patients with dengue induced the secretion of the cytokines IL-1β, IL-8, IL-10 and MCP-1, whereas exposure to platelets from healthy volunteers only induced the secretion of MCP-1. In addition to the well-established modulation of monocyte cytokine responses by activated platelets through P-selectin binding, we found that interaction of monocytes with apoptotic platelets mediate IL-10 secretion through phosphatidylserine recognition in platelet–monocyte aggregates. Moreover, IL-10 secretion required platelet–monocyte contact but not phagocytosis. Together, our results demonstrate that activated and apoptotic platelets aggregate with monocytes during dengue infection and signal specific cytokine responses that may contribute to the pathogenesis of dengue. Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma are features of severe dengue. Although monocytes have been recognized as important sources of cytokines in dengue, the contributions of platelet-monocyte interactions to inflammatory responses in dengue have not been addressed. Patients with dengue were investigated for platelet-monocyte aggregate formation. Platelet-induced cytokine responses by monocytes and underlying mechanisms were also investigated in vitro. We observed increased levels of platelet-monocyte aggregates in blood samples from patients with dengue, especially patients with thrombocytopenia and increased vascular permeability. Moreover, the exposure of monocytes from healthy volunteers to platelets from patients with dengue induced the secretion of the cytokines IL-1β, IL-8, IL-10 and MCP-1, whereas exposure to platelets from healthy volunteers only induced the secretion of MCP-1. In addition to the well-established modulation of monocyte cytokine responses by activated platelets through P-selectin binding, we found that interaction of monocytes with apoptotic platelets mediate IL-10 secretion through phosphatidylserine recognition in platelet-monocyte aggregates. Moreover, IL-10 secretion required platelet-monocyte contact but not phagocytosis. Together, our results demonstrate that activated and apoptotic platelets aggregate with monocytes during dengue infection and signal specific cytokine responses that may contribute to the pathogenesis of dengue.Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma are features of severe dengue. Although monocytes have been recognized as important sources of cytokines in dengue, the contributions of platelet-monocyte interactions to inflammatory responses in dengue have not been addressed. Patients with dengue were investigated for platelet-monocyte aggregate formation. Platelet-induced cytokine responses by monocytes and underlying mechanisms were also investigated in vitro. We observed increased levels of platelet-monocyte aggregates in blood samples from patients with dengue, especially patients with thrombocytopenia and increased vascular permeability. Moreover, the exposure of monocytes from healthy volunteers to platelets from patients with dengue induced the secretion of the cytokines IL-1β, IL-8, IL-10 and MCP-1, whereas exposure to platelets from healthy volunteers only induced the secretion of MCP-1. In addition to the well-established modulation of monocyte cytokine responses by activated platelets through P-selectin binding, we found that interaction of monocytes with apoptotic platelets mediate IL-10 secretion through phosphatidylserine recognition in platelet-monocyte aggregates. Moreover, IL-10 secretion required platelet-monocyte contact but not phagocytosis. Together, our results demonstrate that activated and apoptotic platelets aggregate with monocytes during dengue infection and signal specific cytokine responses that may contribute to the pathogenesis of dengue. Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile illness to severe syndromes accompanied by bleeding and shock. Thrombocytopenia and vascular leak with altered cytokine profiles in plasma are features of severe dengue. Although monocytes have been recognized as important sources of cytokines in dengue, the contributions of platelet-monocyte interactions to inflammatory responses in dengue have not been addressed. Patients with dengue were investigated for platelet-monocyte aggregate formation. Platelet-induced cytokine responses by monocytes and underlying mechanisms were also investigated in vitro. We observed increased levels of platelet-monocyte aggregates in blood samples from patients with dengue, especially patients with thrombocytopenia and increased vascular permeability. Moreover, the exposure of monocytes from healthy volunteers to platelets from patients with dengue induced the secretion of the cytokines IL-1 beta , IL-8, IL-10 and MCP-1, whereas exposure to platelets from healthy volunteers only induced the secretion of MCP-1. In addition to the well-established modulation of monocyte cytokine responses by activated platelets through P-selectin binding, we found that interaction of monocytes with apoptotic platelets mediate IL-10 secretion through phosphatidylserine recognition in platelet-monocyte aggregates. Moreover, IL-10 secretion required platelet-monocyte contact but not phagocytosis. Together, our results demonstrate that activated and apoptotic platelets aggregate with monocytes during dengue infection and signal specific cytokine responses that may contribute to the pathogenesis of dengue. |
Author | Hottz, Eugenio D Weyrich, Andrew S Bozza, Fernando A Vals-de-Souza, Rogério Zimmerman, Guy A de Assis, Edson F Castro-Faria-Neto, Hugo C Medeiros-de-Moraes, Isabel M Bozza, Patrícia T Vieira-de-Abreu, Adriana |
AuthorAffiliation | 4 Molecular Medicine Program, University of Utah, Salt Lake City, Utah 3 Department of Medicine, University of Utah, Salt Lake City, Utah 1 Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil 2 Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil |
AuthorAffiliation_xml | – name: 2 Instituto de Pesquisa Clínica Evandro Chagas, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil – name: 1 Laboratório de Imunofarmacologia, Instituto Oswaldo Cruz, Fundação Oswaldo Cruz, Rio de Janeiro, Brazil – name: 4 Molecular Medicine Program, University of Utah, Salt Lake City, Utah – name: 3 Department of Medicine, University of Utah, Salt Lake City, Utah |
Author_xml | – sequence: 1 givenname: Eugenio D surname: Hottz fullname: Hottz, Eugenio D – sequence: 2 givenname: Isabel M surname: Medeiros-de-Moraes fullname: Medeiros-de-Moraes, Isabel M – sequence: 3 givenname: Adriana surname: Vieira-de-Abreu fullname: Vieira-de-Abreu, Adriana – sequence: 4 givenname: Edson F surname: de Assis fullname: de Assis, Edson F – sequence: 5 givenname: Rogério surname: Vals-de-Souza fullname: Vals-de-Souza, Rogério – sequence: 6 givenname: Hugo C surname: Castro-Faria-Neto fullname: Castro-Faria-Neto, Hugo C – sequence: 7 givenname: Andrew S surname: Weyrich fullname: Weyrich, Andrew S – sequence: 8 givenname: Guy A surname: Zimmerman fullname: Zimmerman, Guy A – sequence: 9 givenname: Fernando A surname: Bozza fullname: Bozza, Fernando A – sequence: 10 givenname: Patrícia T surname: Bozza fullname: Bozza, Patrícia T |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/25015827$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9rFTEQx4NU7Gv17kn26GXrJJsfuxfh0WpbqChSzyGbna0p2WTdZAvvvze1r0UF8TQD8_l-mZnvETkIMSAhrymccODdu1s3TWuI_oRyAOjoM7KhQkAtJcgDsgFgrKZKqkNylNJtQSQw_oIcMgFUtExtyPUXbzJ6zNXWZndnsouhMmGotnOcc0wuVZ_isN5DpQnR7kpzGUZvpsnkuOyqr5jmGBKmyoXqDMPNii_J89H4hK_29Zh8-_jh-vSivvp8fnm6vaotZ12uOQc1DD1tjaSCccU72xtmaG8sguqVwrGFwghUbFCWjZL2BWBDI0YDTd8ck_cPvvPaTzhYDHkxXs-Lm8yy09E4_eckuO_6Jt5pThvVsKYYvN0bLPHHiinrySWL3puAcU2attAq2opC_xcVggLtpOgK-ub3tZ72efx6AeABsEtMacHxCaGg74PVj8HqfbBFIv-SWJd_pVUOc_7fwp8uxaws |
CitedBy_id | crossref_primary_10_1371_journal_pntd_0011710 crossref_primary_10_1016_j_thromres_2022_03_022 crossref_primary_10_1371_journal_ppat_1010065 crossref_primary_10_1371_journal_pone_0157115 crossref_primary_10_1007_s11033_025_10222_x crossref_primary_10_3389_fimmu_2019_01320 crossref_primary_10_3390_ijms241612862 crossref_primary_10_1093_infdis_jiy434 crossref_primary_10_1080_09537104_2022_2026907 crossref_primary_10_1002_JLB_4MA0620_658R crossref_primary_10_1080_09537104_2021_1921722 crossref_primary_10_1096_fj_202402278RR crossref_primary_10_3389_fimmu_2021_770436 crossref_primary_10_3390_cells9040855 crossref_primary_10_3390_diagnostics13213365 crossref_primary_10_1016_j_intimp_2020_107336 crossref_primary_10_1186_s12878_018_0116_1 crossref_primary_10_1002_cncr_32010 crossref_primary_10_1002_JLB_4MR0620_701R crossref_primary_10_1182_blood_2018_09_873984 crossref_primary_10_2147_JIR_S356742 crossref_primary_10_1186_s12906_019_2438_3 crossref_primary_10_3389_fimmu_2019_02400 crossref_primary_10_1182_blood_2015_05_647362 crossref_primary_10_3389_fimmu_2022_958820 crossref_primary_10_3389_fmed_2018_00121 crossref_primary_10_1016_j_tim_2024_04_011 crossref_primary_10_3390_jcm10040877 crossref_primary_10_1182_blood_2018_08_869156 crossref_primary_10_1093_tropej_fmaf014 crossref_primary_10_1155_2015_313842 crossref_primary_10_3389_fcimb_2021_714088 crossref_primary_10_3389_fimmu_2022_856713 crossref_primary_10_1016_j_virusres_2018_09_013 crossref_primary_10_1080_09537104_2021_1952179 crossref_primary_10_1093_infdis_jiae355 crossref_primary_10_1186_s12959_018_0170_8 crossref_primary_10_1159_000444807 crossref_primary_10_1093_cei_uxac073 crossref_primary_10_1016_j_critrevonc_2014_11_002 crossref_primary_10_3389_fimmu_2021_616394 crossref_primary_10_3390_hemato4040029 crossref_primary_10_3389_fcvm_2023_1308170 crossref_primary_10_1152_physrev_00038_2015 crossref_primary_10_4049_jimmunol_2001218 crossref_primary_10_1007_s11262_024_02114_2 crossref_primary_10_1007_s00284_023_03239_7 crossref_primary_10_1016_j_cyto_2021_155644 crossref_primary_10_1097_SHK_0000000000001619 crossref_primary_10_1038_s41467_019_10360_4 crossref_primary_10_1186_s12879_016_1596_x crossref_primary_10_3390_v10070357 crossref_primary_10_1093_ofid_ofx051 crossref_primary_10_1146_annurev_immunol_042718_041607 crossref_primary_10_1002_rth2_12429 crossref_primary_10_1161_ATVBAHA_120_314645 crossref_primary_10_1182_blood_2020007252 crossref_primary_10_3389_fcimb_2020_590004 crossref_primary_10_1007_s12033_025_01407_7 crossref_primary_10_1038_s41467_020_16849_7 crossref_primary_10_1055_s_0041_1726033 crossref_primary_10_3389_fcvm_2023_960398 crossref_primary_10_3390_ijms24087462 crossref_primary_10_1097_TA_0000000000003450 crossref_primary_10_3389_fimmu_2023_1285162 crossref_primary_10_1186_s12918_017_0415_3 crossref_primary_10_1371_journal_pntd_0003459 crossref_primary_10_1002_jmv_29635 crossref_primary_10_1099_jgv_0_001024 crossref_primary_10_1155_2015_435783 crossref_primary_10_1182_bloodadvances_2021006680 crossref_primary_10_1186_s12929_018_0482_9 crossref_primary_10_3892_etm_2016_3323 crossref_primary_10_17709_2409_2231_2018_5_3_4 crossref_primary_10_2217_fvl_2017_0043 crossref_primary_10_1186_s12959_024_00626_3 crossref_primary_10_3389_fimmu_2015_00070 crossref_primary_10_3390_pathogens11050558 crossref_primary_10_3390_v13091789 crossref_primary_10_1089_jir_2015_0029 crossref_primary_10_3389_fimmu_2019_02204 crossref_primary_10_1038_s41598_018_33403_0 crossref_primary_10_1128_microbiolspec_MCHD_0007_2015 crossref_primary_10_1155_2021_4936571 crossref_primary_10_1186_s12879_020_05248_4 crossref_primary_10_3389_fimmu_2014_00649 crossref_primary_10_1038_srep41697 crossref_primary_10_3389_fmed_2023_1074878 crossref_primary_10_1016_j_jtha_2024_12_012 crossref_primary_10_1080_09537104_2019_1689383 crossref_primary_10_3389_fmed_2024_1444481 crossref_primary_10_3389_fcimb_2020_561366 crossref_primary_10_1182_asheducation_2014_1_400 crossref_primary_10_1111_bph_14646 crossref_primary_10_5812_semj_146016 crossref_primary_10_1016_j_ijcard_2020_09_064 crossref_primary_10_1155_2021_6654617 crossref_primary_10_3390_v12070765 crossref_primary_10_3389_fimmu_2014_00678 crossref_primary_10_3390_ijms24032009 crossref_primary_10_3389_fcimb_2023_1252509 crossref_primary_10_1080_09537104_2018_1430358 crossref_primary_10_1111_imm_12748 crossref_primary_10_1038_s41598_019_43275_7 crossref_primary_10_1080_09537104_2021_2020491 crossref_primary_10_3390_ijms22157894 crossref_primary_10_1371_journal_ppat_1006385 crossref_primary_10_14712_fb2018064010023 crossref_primary_10_1089_vim_2015_0082 crossref_primary_10_3389_fimmu_2023_1210219 crossref_primary_10_1016_j_virusres_2024_199519 crossref_primary_10_1111_trf_13454 crossref_primary_10_1371_journal_ppat_1007625 crossref_primary_10_1186_s12936_015_0835_8 crossref_primary_10_3390_pathogens10050501 crossref_primary_10_3389_fimmu_2022_1029213 crossref_primary_10_3389_fphys_2023_1210509 crossref_primary_10_15789_1563_0625_PLI_2511 crossref_primary_10_1038_s41467_020_15584_3 crossref_primary_10_1080_09537104_2023_2206916 crossref_primary_10_1182_bloodadvances_2019001169 crossref_primary_10_3390_ijms23073868 crossref_primary_10_1055_s_0041_1731288 crossref_primary_10_1186_s12936_020_03305_6 |
Cites_doi | 10.1182/blood-2009-09-242990 10.1016/0166-0934(91)90011-N 10.1038/sj.icb.7100008 10.1128/CVI.00105-06 10.1080/09537100701426604 10.1038/nri2956 10.1016/j.jacc.2013.03.003 10.1172/JCI118575 10.1182/blood-2007-05-092684 10.1161/01.CIR.0000154607.90506.45 10.1158/1078-0432.CCR-11-1074 10.1007/s00281-011-0286-4 10.1038/nature12060 10.1111/jth.12178 10.1172/JCI27209. 10.1046/j.1538-7836.2003.00304.x 10.1186/1471-2334-8-86 10.1016/j.immuni.2007.11.014 10.1371/journal.pone.0050387 10.1056/NEJMcibr1005904 10.1111/j.1348-0421.2009.00148.x 10.1016/0092-8674(89)90292-4 10.1371/journal.pone.0008709 10.1371/journal.pntd.0002409 10.1182/blood-2013-05-504449 10.4049/jimmunol.1202672 10.4049/jimmunol.1201103 10.1371/journal.pone.0038527 10.1159/000322904 10.1099/vir.0.19652-0 10.1099/vir.0.82093-0 10.1111/j.1537-2995.2007.01441.x 10.4269/ajtmh.2006.74.142 10.4049/jimmunol.1301250 10.1016/j.ddmec.2011.09.001 10.1093/infdis/jis180 10.1371/journal.pone.0052215 10.1371/journal.pntd.0002236 10.1078/0171-2985-00058 10.1038/35003208 10.7705/biomedica.v30i4.297 10.1016/j.thromres.2013.02.020 10.1016/j.cell.2005.06.015 10.1182/blood-2008-09-180794 |
ContentType | Journal Article |
Copyright | Copyright © 2014 by The American Association of Immunologists, Inc. |
Copyright_xml | – notice: Copyright © 2014 by The American Association of Immunologists, Inc. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7T5 7U9 H94 5PM |
DOI | 10.4049/jimmunol.1400091 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Immunology Abstracts Virology and AIDS Abstracts AIDS and Cancer Research Abstracts PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic AIDS and Cancer Research Abstracts Immunology Abstracts Virology and AIDS Abstracts |
DatabaseTitleList | CrossRef MEDLINE - Academic AIDS and Cancer Research Abstracts MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Biology |
EISSN | 1550-6606 |
EndPage | 1872 |
ExternalDocumentID | PMC4137323 25015827 10_4049_jimmunol_1400091 |
Genre | Research Support, Non-U.S. Gov't Journal Article Research Support, N.I.H., Extramural |
GrantInformation_xml | – fundername: NHLBI NIH HHS grantid: R37HL044525 – fundername: NHLBI NIH HHS grantid: R01 HL091754 – fundername: NHLBI NIH HHS grantid: HL091754 – fundername: NHLBI NIH HHS grantid: R37 HL044525 – fundername: NHLBI NIH HHS grantid: R01 HL066277 – fundername: NHLBI NIH HHS grantid: HL066277 |
GroupedDBID | --- -~X .55 0R~ 18M 2WC 34G 39C 53G 5GY 5RE 5VS 5WD 79B 85S AARDX AAYXX ABCQX ABDFA ABEJV ABGNP ABJNI ABOCM ABPPZ ABXVV ACGFO ACGFS ACIWK ACNCT ACPRK ADBBV ADIPN ADNWM AENEX AETEA AFHIN AFOSN AFRAH AGORE AHMMS AHWXS AIZAD ALMA_UNASSIGNED_HOLDINGS ARBBW BAWUL BCRHZ BTFSW CITATION D0L DIK DU5 E3Z EBS EJD F5P FRP GX1 IH2 K-O KQ8 L7B OCZFY OK1 OWPYF P0W P2P PQQKQ R.V RHI ROX RZQ SJN TR2 TWZ W8F WH7 WOQ X7M XJT XSW XTH YHG CGR CUY CVF ECM EIF KOP NPM 7X8 7T5 7U9 H94 5PM |
ID | FETCH-LOGICAL-c429t-4407ddb18a61524749cba2a1bace07b77ef804075e72d7c2f61bba22d35fa03b3 |
ISSN | 0022-1767 1550-6606 |
IngestDate | Thu Aug 21 14:07:05 EDT 2025 Fri Jul 11 04:28:49 EDT 2025 Fri Jul 11 08:30:46 EDT 2025 Mon Jul 21 05:56:05 EDT 2025 Thu Apr 24 23:09:54 EDT 2025 Tue Jul 01 05:22:03 EDT 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | https://academic.oup.com/pages/standard-publication-reuse-rights Copyright © 2014 by The American Association of Immunologists, Inc. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c429t-4407ddb18a61524749cba2a1bace07b77ef804075e72d7c2f61bba22d35fa03b3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 The first authors contributed equally The senior authors contributed equally |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/4137323 |
PMID | 25015827 |
PQID | 1551019659 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_4137323 proquest_miscellaneous_1808718537 proquest_miscellaneous_1551019659 pubmed_primary_25015827 crossref_primary_10_4049_jimmunol_1400091 crossref_citationtrail_10_4049_jimmunol_1400091 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2014-08-15 |
PublicationDateYYYYMMDD | 2014-08-15 |
PublicationDate_xml | – month: 08 year: 2014 text: 2014-08-15 day: 15 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | The Journal of immunology (1950) |
PublicationTitleAlternate | J Immunol |
PublicationYear | 2014 |
References | Bozza (2025030707283123800_r4) 2008; 8 van de Weg (2025030707283123800_r40) 2013; 7 World Health Organization (2025030707283123800_r3) 2009 Talavera (2025030707283123800_r35) 2004; 85 Lee (2025030707283123800_r36) 2006; 87 Weyrich (2025030707283123800_r10) 2005; 111 Chung (2025030707283123800_r16) 2007; 27 Maugeri (2025030707283123800_r44) 2009; 113 de-Oliveira-Pinto (2025030707283123800_r32) 2012; 7 Onlamoon (2025030707283123800_r30) 2010; 115 Larsen (2025030707283123800_r24) 1989; 59 Dixon (2025030707283123800_r25) 2006; 116 Tsai (2025030707283123800_r14) 2011; 3 Hottz (2025030707283123800_r8) 2013; 11 Jaiyen (2025030707283123800_r28) 2009; 53 Houghton-Triviño (2025030707283123800_r27) 2010; 30 Stephen (2025030707283123800_r31) 2013; 191 Tardif (2025030707283123800_r47) 2013; 61 Schmidt (2025030707283123800_r1) 2010; 363 Aggrey (2025030707283123800_r37) 2013; 190 Malavige (2025030707283123800_r38) 2013; 7 Malavige (2025030707283123800_r39) 2012; 7 Schexneider (2025030707283123800_r5) 2005; 4 Vieira-de-Abreu (2025030707283123800_r13) 2012; 34 Kuno (2025030707283123800_r19) 1991; 33 Hottz (2025030707283123800_r7) 2011; 8 Denis (2025030707283123800_r22) 2005; 122 Kling (2025030707283123800_r46) 2013; 131 Gudbrandsdottir (2025030707283123800_r43) 2013; 191 Jobe (2025030707283123800_r26) 2008; 111 Priyadarshini (2025030707283123800_r33) 2010; 5 Rathakrishnan (2025030707283123800_r29) 2012; 7 Aslam (2025030707283123800_r23) 2007; 47 Bhatt (2025030707283123800_r2) 2013; 496 Semple (2025030707283123800_r9) 2011; 11 Pang (2025030707283123800_r17) 2007; 85 Gerber (2025030707283123800_r45) 2011; 17 Azeredo (2025030707283123800_r34) 2001; 204 Freire-de-Lima (2025030707283123800_r42) 2000; 403 Alonzo (2025030707283123800_r15) 2012; 205 Weyrich (2025030707283123800_r11) 1996; 97 Weyrich (2025030707283123800_r12) 2003; 1 Falconar (2025030707283123800_r18) 2006; 13 Chen (2025030707283123800_r41) 2006; 74 Shu (2025030707283123800_r20) 2003; 10 Mourão (2025030707283123800_r6) 2007; 18 Hottz (2025030707283123800_r21) 2013; 122 |
References_xml | – volume: 115 start-page: 1823 year: 2010 ident: 2025030707283123800_r30 article-title: Dengue virus-induced hemorrhage in a nonhuman primate model publication-title: Blood doi: 10.1182/blood-2009-09-242990 – volume: 33 start-page: 101 year: 1991 ident: 2025030707283123800_r19 article-title: An ELISA procedure for the diagnosis of dengue infections publication-title: J. Virol. Methods doi: 10.1016/0166-0934(91)90011-N – volume: 85 start-page: 43 year: 2007 ident: 2025030707283123800_r17 article-title: Of cascades and perfect storms: the immunopathogenesis of dengue haemorrhagic fever-dengue shock syndrome (DHF/DSS) publication-title: Immunol. Cell Biol. doi: 10.1038/sj.icb.7100008 – volume: 13 start-page: 1044 year: 2006 ident: 2025030707283123800_r18 article-title: Altered enzyme-linked immunosorbent assay immunoglobulin M (IgM)/IgG optical density ratios can correctly classify all primary or secondary dengue virus infections 1 day after the onset of symptoms, when all of the viruses can be isolated publication-title: Clin. Vaccine Immunol. doi: 10.1128/CVI.00105-06 – volume: 18 start-page: 605 year: 2007 ident: 2025030707283123800_r6 article-title: Thrombocytopenia in patients with dengue virus infection in the Brazilian Amazon publication-title: Platelets doi: 10.1080/09537100701426604 – volume: 11 start-page: 264 year: 2011 ident: 2025030707283123800_r9 article-title: Platelets and the immune continuum publication-title: Nat. Rev. Immunol. doi: 10.1038/nri2956 – volume: 61 start-page: 2048 year: 2013 ident: 2025030707283123800_r47 article-title: Effects of the P-selectin antagonist inclacumab on myocardial damage after percutaneous coronary intervention for non-ST-segment elevation myocardial infarction: results of the SELECT-ACS trial publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2013.03.003 – volume-title: Dengue: Guidelines for diagnosis, treatment, prevention and control year: 2009 ident: 2025030707283123800_r3 – volume: 97 start-page: 1525 year: 1996 ident: 2025030707283123800_r11 article-title: Activated platelets signal chemokine synthesis by human monocytes publication-title: J. Clin. Invest. doi: 10.1172/JCI118575 – volume: 111 start-page: 1257 year: 2008 ident: 2025030707283123800_r26 article-title: Critical role for the mitochondrial permeability transition pore and cyclophilin D in platelet activation and thrombosis publication-title: Blood doi: 10.1182/blood-2007-05-092684 – volume: 4 start-page: 145 year: 2005 ident: 2025030707283123800_r5 article-title: Thrombocytopenia in dengue fever publication-title: Curr. Hematol. Rep. – volume: 111 start-page: 633 year: 2005 ident: 2025030707283123800_r10 article-title: Dipyridamole selectively inhibits inflammatory gene expression in platelet-monocyte aggregates publication-title: Circulation doi: 10.1161/01.CIR.0000154607.90506.45 – volume: 17 start-page: 6888 year: 2011 ident: 2025030707283123800_r45 article-title: Phase I safety and pharmacokinetic study of bavituximab, a chimeric phosphatidylserine-targeting monoclonal antibody, in patients with advanced solid tumors publication-title: Clin. Cancer Res. doi: 10.1158/1078-0432.CCR-11-1074 – volume: 34 start-page: 5 year: 2012 ident: 2025030707283123800_r13 article-title: Platelets: versatile effector cells in hemostasis, inflammation, and the immune continuum publication-title: Semin. Immunopathol. doi: 10.1007/s00281-011-0286-4 – volume: 10 start-page: 622 year: 2003 ident: 2025030707283123800_r20 article-title: Comparison of capture immunoglobulin M (IgM) and IgG enzyme-linked immunosorbent assay (ELISA) and nonstructural protein NS1 serotype-specific IgG ELISA for differentiation of primary and secondary dengue virus infections publication-title: Clin. Diagn. Lab. Immunol. – volume: 496 start-page: 504 year: 2013 ident: 2025030707283123800_r2 article-title: The global distribution and burden of dengue publication-title: Nature doi: 10.1038/nature12060 – volume: 11 start-page: 951 year: 2013 ident: 2025030707283123800_r8 article-title: Dengue induces platelet activation, mitochondrial dysfunction and cell death through mechanisms that involve DC-SIGN and caspases publication-title: J. Thromb. Haemost. doi: 10.1111/jth.12178 – volume: 116 start-page: 2727 year: 2006 ident: 2025030707283123800_r25 article-title: Expression of COX-2 in platelet-monocyte interactions occurs via combinatorial regulation involving adhesion and cytokine signaling publication-title: J. Clin. Invest. doi: 10.1172/JCI27209. – volume: 1 start-page: 1897 year: 2003 ident: 2025030707283123800_r12 article-title: The evolving role of platelets in inflammation publication-title: J. Thromb. Haemost. doi: 10.1046/j.1538-7836.2003.00304.x – volume: 8 start-page: 86 year: 2008 ident: 2025030707283123800_r4 article-title: Multiplex cytokine profile from dengue patients: MIP-1beta and IFN-gamma as predictive factors for severity publication-title: BMC Infect. Dis. doi: 10.1186/1471-2334-8-86 – volume: 27 start-page: 952 year: 2007 ident: 2025030707283123800_r16 article-title: Interleukin-10 expression in macrophages during phagocytosis of apoptotic cells is mediated by homeodomain proteins Pbx1 and Prep-1 publication-title: Immunity doi: 10.1016/j.immuni.2007.11.014 – volume: 7 start-page: e50387 year: 2012 ident: 2025030707283123800_r39 article-title: Cellular and cytokine correlates of severe dengue infection publication-title: PLoS ONE doi: 10.1371/journal.pone.0050387 – volume: 363 start-page: 484 year: 2010 ident: 2025030707283123800_r1 article-title: Response to dengue fever—the good, the bad, and the ugly? publication-title: N. Engl. J. Med. doi: 10.1056/NEJMcibr1005904 – volume: 53 start-page: 442 year: 2009 ident: 2025030707283123800_r28 article-title: Characteristics of dengue virus-infected peripheral blood mononuclear cell death that correlates with the severity of illness publication-title: Microbiol. Immunol. doi: 10.1111/j.1348-0421.2009.00148.x – volume: 59 start-page: 305 year: 1989 ident: 2025030707283123800_r24 article-title: PADGEM protein: a receptor that mediates the interaction of activated platelets with neutrophils and monocytes publication-title: Cell doi: 10.1016/0092-8674(89)90292-4 – volume: 5 start-page: e8709 year: 2010 ident: 2025030707283123800_r33 article-title: Clinical findings and pro-inflammatory cytokines in dengue patients in Western India: a facility-based study publication-title: PLoS ONE doi: 10.1371/journal.pone.0008709 – volume: 7 start-page: e2409 year: 2013 ident: 2025030707283123800_r38 article-title: Suppression of virus specific immune responses by IL-10 in acute dengue infection publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0002409 – volume: 122 start-page: 3405 year: 2013 ident: 2025030707283123800_r21 article-title: Platelets mediate increased endothelium permeability in dengue through NLRP3-inflammasome activation publication-title: Blood doi: 10.1182/blood-2013-05-504449 – volume: 190 start-page: 4685 year: 2013 ident: 2025030707283123800_r37 article-title: Platelet induction of the acute-phase response is protective in murine experimental cerebral malaria publication-title: J. Immunol. doi: 10.4049/jimmunol.1202672 – volume: 191 start-page: 4059 year: 2013 ident: 2025030707283123800_r43 article-title: Activated platelets enhance IL-10 secretion and reduce TNF-α secretion by monocytes publication-title: J. Immunol. doi: 10.4049/jimmunol.1201103 – volume: 7 start-page: e38527 year: 2012 ident: 2025030707283123800_r32 article-title: Regulation of inflammatory chemokine receptors on blood T cells associated to the circulating versus liver chemokines in dengue fever publication-title: PLoS ONE doi: 10.1371/journal.pone.0038527 – volume: 3 start-page: 530 year: 2011 ident: 2025030707283123800_r14 article-title: Frequency alterations in key innate immune cell components in the peripheral blood of dengue patients detected by FACS analysis publication-title: J. Innate Immun. doi: 10.1159/000322904 – volume: 85 start-page: 1801 year: 2004 ident: 2025030707283123800_r35 article-title: IL8 release, tight junction and cytoskeleton dynamic reorganization conducive to permeability increase are induced by dengue virus infection of microvascular endothelial monolayers publication-title: J. Gen. Virol. doi: 10.1099/vir.0.19652-0 – volume: 87 start-page: 3623 year: 2006 ident: 2025030707283123800_r36 article-title: MCP-1, a highly expressed chemokine in dengue haemorrhagic fever/dengue shock syndrome patients, may cause permeability change, possibly through reduced tight junctions of vascular endothelium cells publication-title: J. Gen. Virol. doi: 10.1099/vir.0.82093-0 – volume: 47 start-page: 2161 year: 2007 ident: 2025030707283123800_r23 article-title: Platelet and red blood cell phagocytosis kinetics are differentially controlled by phosphatase activity within mononuclear cells publication-title: Transfusion doi: 10.1111/j.1537-2995.2007.01441.x – volume: 74 start-page: 142 year: 2006 ident: 2025030707283123800_r41 article-title: Correlation of serum levels of macrophage migration inhibitory factor with disease severity and clinical outcome in dengue patients publication-title: Am. J. Trop. Med. Hyg. doi: 10.4269/ajtmh.2006.74.142 – volume: 191 start-page: 5677 year: 2013 ident: 2025030707283123800_r31 article-title: The uncoupling of monocyte-platelet interactions from the induction of proinflammatory signaling in monocytes publication-title: J. Immunol. doi: 10.4049/jimmunol.1301250 – volume: 8 start-page: e33 year: 2011 ident: 2025030707283123800_r7 article-title: Platelets in Dengue Infection publication-title: Drug Discov. Today Dis. Mech. doi: 10.1016/j.ddmec.2011.09.001 – volume: 205 start-page: 1321 year: 2012 ident: 2025030707283123800_r15 article-title: Platelet apoptosis and apoptotic platelet clearance by macrophages in secondary dengue virus infections publication-title: J. Infect. Dis. doi: 10.1093/infdis/jis180 – volume: 7 start-page: e52215 year: 2012 ident: 2025030707283123800_r29 article-title: Cytokine expression profile of dengue patients at different phases of illness publication-title: PLoS ONE doi: 10.1371/journal.pone.0052215 – volume: 7 start-page: e2236 year: 2013 ident: 2025030707283123800_r40 article-title: Microbial translocation is associated with extensive immune activation in dengue virus infected patients with severe disease publication-title: PLoS Negl. Trop. Dis. doi: 10.1371/journal.pntd.0002236 – volume: 204 start-page: 494 year: 2001 ident: 2025030707283123800_r34 article-title: Characterisation of lymphocyte response and cytokine patterns in patients with dengue fever publication-title: Immunobiology doi: 10.1078/0171-2985-00058 – volume: 403 start-page: 199 year: 2000 ident: 2025030707283123800_r42 article-title: Uptake of apoptotic cells drives the growth of a pathogenic trypanosome in macrophages publication-title: Nature doi: 10.1038/35003208 – volume: 30 start-page: 587 year: 2010 ident: 2025030707283123800_r27 article-title: [Comparison of the transcriptional profiles of patients with dengue fever and dengue hemorrhagic fever reveals differences in the immune response and clues in immunopathogenesis] publication-title: Biomedica doi: 10.7705/biomedica.v30i4.297 – volume: 131 start-page: 401 year: 2013 ident: 2025030707283123800_r46 article-title: Pharmacological control of platelet-leukocyte interactions by the human anti-P-selectin antibody inclacumab—preclinical and clinical studies publication-title: Thromb. Res. doi: 10.1016/j.thromres.2013.02.020 – volume: 122 start-page: 379 year: 2005 ident: 2025030707283123800_r22 article-title: Escaping the nuclear confines: signal-dependent pre-mRNA splicing in anucleate platelets publication-title: Cell doi: 10.1016/j.cell.2005.06.015 – volume: 113 start-page: 5254 year: 2009 ident: 2025030707283123800_r44 article-title: Neutrophils phagocytose activated platelets in vivo: a phosphatidylserine, P-selectin, and beta2 integrin-dependent cell clearance program publication-title: Blood doi: 10.1182/blood-2008-09-180794 |
SSID | ssj0006024 |
Score | 2.5035172 |
Snippet | Dengue is the most prevalent human arbovirus disease in the world. Dengue infection has a large spectrum of clinical manifestations, from self-limited febrile... |
SourceID | pubmedcentral proquest pubmed crossref |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source |
StartPage | 1864 |
SubjectTerms | Adult Apoptosis - immunology Arbovirus Blood Platelets - immunology Capillary Permeability Chemokine CCL2 - metabolism Dengue - immunology Dengue Virus - immunology Female Humans Inflammation - immunology Interleukin-10 - metabolism Interleukin-1beta - metabolism Interleukin-8 - metabolism Male Monocytes - immunology P-Selectin - immunology Phagocytosis Phosphatidylserines - immunology Platelet Activation - immunology Thrombocytopenia - immunology |
Title | Platelet Activation and Apoptosis Modulate Monocyte Inflammatory Responses in Dengue |
URI | https://www.ncbi.nlm.nih.gov/pubmed/25015827 https://www.proquest.com/docview/1551019659 https://www.proquest.com/docview/1808718537 https://pubmed.ncbi.nlm.nih.gov/PMC4137323 |
Volume | 193 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Jb9QwFLaGIhAXBGXpsMlIcEBV2sRx4uQ4QoMGUBBCU9TbyFsgEk1GNDmUf8U_5Dl2tgEqyiUaJW-cxO_LW-y3IPQijCXlQZh7XKvUozLnHheh9HjKSZxzwUnbGzD7EK9O6LvT6HQ2-zmKWmpqcSR__DGv5H-4CueAryZL9gqc7QeFE_Ab-AtH4DAc_4nHH7-BpQgTf7iQXZeydjNgsa22dWVKjWSVMv252m-3khe1iZTMAQRndnP9k42QbYOyQPSUX5pJZNCQN2ZLS5hcEluz6WW7M-aP1hFWVd22hj1cNvC8RTWEEmda6QKUsae0lwHinGA658JE1XZUnwsg4oZmAV5608osBXNY9npDaQMmWxNhaTLFXFSyW7MIqFmEtVmboxyCgNlGHEfaid4IHNnYjyey2bZPdCCkI0kbJLb6udPaQWI7AO1qBAoekNEIboZAMRirMhi0X7fjv6MU-1BFcJLMGJtuhI0b4Rq6TsAzab34t-975R_7hHYF6s0L2p1xM8Lx7jNMLaHf3JvdKN2R2bO-g2477uOFBd9dNNPlPrphO5he7KObmYvNuIfWHRrxgEYMaMQ9GnGHRtyhEY_RiHs04qLEFo330cmb5fr1ynM9OzwJlk3tUeozpUSQcDCVCWU0lfC980BwqX0mGNN5AnqDRZoRxSTJ40AAAVFhlHM_FOEDtFdWpT5AOI1SmScKbOhIwAQmQqRxEkrQziqUkSRzdNzN30a6gvamrwqw6C88m6NX_T-2tpjLJbTPO5ZsQOKabTRe6qo53xgnwxbivIQm8RNmTGE2Rw8tG_s7gtMRRAmBK2zC4J7AVHyfXimLr23ld7A4WUjCR1d4j8fo1vAFPkF79fdGPwU7uhbPWuT-AvTyzeI |
linkProvider | Flying Publisher |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Platelet+Activation+and+Apoptosis+Modulate+Monocyte+Inflammatory+Responses+in+Dengue&rft.jtitle=The+Journal+of+immunology+%281950%29&rft.au=Hottz%2C+Eugenio+D&rft.au=Medeiros-de-Moraes%2C+Isabel+M&rft.au=Vieira-de-Abreu%2C+Adriana&rft.au=de+Assis%2C+Edson+F&rft.date=2014-08-15&rft.issn=0022-1767&rft.eissn=1550-6606&rft.volume=193&rft.issue=4&rft.spage=1864&rft.epage=1872&rft_id=info:doi/10.4049%2Fjimmunol.1400091&rft.externalDBID=n%2Fa&rft.externalDocID=10_4049_jimmunol_1400091 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0022-1767&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0022-1767&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0022-1767&client=summon |