Entropy production minimization and non-Darcy resistance within wavy motion of Sutterby liquid subject to variable physical characteristics
Non-Darcy resistance in peristaltic transport of Sutterby liquid in curved configuration is modeled. Variable characteristics of material (i.e., thermal conductivity and viscosity) are taken as temperature-dependent. Soret and Dufour features have also been retained. Problem is modeled by using cons...
Saved in:
Published in | Journal of thermal analysis and calorimetry Vol. 143; no. 3; pp. 2215 - 2225 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
01.02.2021
Springer Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Non-Darcy resistance in peristaltic transport of Sutterby liquid in curved configuration is modeled. Variable characteristics of material (i.e., thermal conductivity and viscosity) are taken as temperature-dependent. Soret and Dufour features have also been retained. Problem is modeled by using conservation laws. Long wavelength and small Reynolds number have been invoked. Resulting problems have been solved numerically. Entropy optimization analysis is made. Axial velocity, temperature, concentration, entropy, Bejan number and heat transfer rate are examined for influential variables. It is found that velocity increases for variable viscosity coefficient and porous-space parameter. Temperature decreases for increased values of variable thermal conductivity. Opposite behavior of mass and energy is noted for Soret and Dufour parameters. Entropy minimized for thermal conductivity and viscosity coefficients. Entropy enhancement is noticed for Soret and Dufour parameters. Heat transfer rate at upper wall is enhanced for Soret and Dufour variables. |
---|---|
AbstractList | Non-Darcy resistance in peristaltic transport of Sutterby liquid in curved configuration is modeled. Variable characteristics of material (i.e., thermal conductivity and viscosity) are taken as temperature-dependent. Soret and Dufour features have also been retained. Problem is modeled by using conservation laws. Long wavelength and small Reynolds number have been invoked. Resulting problems have been solved numerically. Entropy optimization analysis is made. Axial velocity, temperature, concentration, entropy, Bejan number and heat transfer rate are examined for influential variables. It is found that velocity increases for variable viscosity coefficient and porous-space parameter. Temperature decreases for increased values of variable thermal conductivity. Opposite behavior of mass and energy is noted for Soret and Dufour parameters. Entropy minimized for thermal conductivity and viscosity coefficients. Entropy enhancement is noticed for Soret and Dufour parameters. Heat transfer rate at upper wall is enhanced for Soret and Dufour variables. |
Audience | Academic |
Author | Hayat, T. Alsaedi, A. Bibi, Farhat Khan, A. A. |
Author_xml | – sequence: 1 givenname: T. surname: Hayat fullname: Hayat, T. organization: Department of Mathematics, Quaid-I-Azam University, Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University – sequence: 2 givenname: Farhat surname: Bibi fullname: Bibi, Farhat organization: Department of Mathematics and Statistics, International Islamic University – sequence: 3 givenname: A. A. surname: Khan fullname: Khan, A. A. email: ambreen.afsar@iiu.edu.pk organization: Department of Mathematics and Statistics, International Islamic University – sequence: 4 givenname: A. surname: Alsaedi fullname: Alsaedi, A. organization: Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University |
BookMark | eNp9kc9u1DAQxiNUJNrCC3CyxIlDih3HSXysSoFKlZAonC1nYu96ldhb22kJr9CX7nSDhMqh8sEz1u-bP_5OiiMfvCmK94yeMUrbT4lR2fKSVrTEnLYlf1UcM9F1ZSWr5ghjjnHDBH1TnKS0Q0ZKyo6Lh0ufY9gvZB_DMEN2wZPJeTe5P_qQaD8QbFZ-1hEWEk1yKWsPhty7vHWe3Ou7hUzhwAZLbuacTewXMrrb2Q0kzf3OQCY5kDsdne5HQ_bbJTnQI4GtjhqQx5oO0tvitdVjMu_-3qfFry-XPy--ldffv15dnF-XUFcylzW1FJpWmha6pjJDV4PuG0tb0wsxSCtbgLpB1LQMetYMTFScDlaCbURdUX5afFjr4s63s0lZ7cIcPbZUVS1ryZjgHKmzldro0Sjnbcg4LJ7BTA7w-63D9_NGcMFZJyQKPj4TIJPN77zRc0rq6ubHc7ZaWYghpWis2kc36bgoRtWTo2p1VKGj6uCoepqo-08ELh9cwsnc-LKUr9KEffzGxH8rv6B6BAv7udk |
CitedBy_id | crossref_primary_10_1088_1402_4896_abbbce crossref_primary_10_1134_S1810232822020126 crossref_primary_10_1080_10407782_2024_2320273 crossref_primary_10_1007_s13204_021_01863_y crossref_primary_10_1007_s10483_021_2770_9 crossref_primary_10_1080_01430750_2023_2258896 crossref_primary_10_1080_02286203_2023_2205987 crossref_primary_10_1177_09544089211041278 |
Cites_doi | 10.1016/0360-5442(80)90091-2 10.1007/s10973-018-7459-5 10.1615/HeatTransRes.2019025622 10.1016/j.molliq.2016.03.010 10.1016/j.physa.2019.123921 10.1016/j.physa.2019.123979 10.1201/9781482239171 10.1007/s10973-019-09097-5 10.1016/j.molliq.2019.110892 10.1007/s10973-019-08348-9 10.1017/S0022112069000899 10.1139/cjp-2018-0582 10.1016/j.tsep.2019.100424 10.1016/j.aej.2016.04.009 10.1007/s00231-003-0497-x 10.1007/s00521-017-3037-1 10.1016/j.jppr.2017.07.006 10.1007/s10973-019-09125-4 10.1016/j.ijheatmasstransfer.2010.02.036 10.1007/s10973-020-09454-9 10.1016/j.aej.2015.03.030 10.1016/j.joems.2013.05.003 10.1007/s00419-007-0181-6 10.1016/j.cjph.2017.08.004 10.1007/s10973-018-7866-7 10.1088/0253-6102/71/9/1075 |
ContentType | Journal Article |
Copyright | Akadémiai Kiadó, Budapest, Hungary 2020 COPYRIGHT 2021 Springer Akadémiai Kiadó, Budapest, Hungary 2020. |
Copyright_xml | – notice: Akadémiai Kiadó, Budapest, Hungary 2020 – notice: COPYRIGHT 2021 Springer – notice: Akadémiai Kiadó, Budapest, Hungary 2020. |
DBID | AAYXX CITATION ISR |
DOI | 10.1007/s10973-020-10007-3 |
DatabaseName | CrossRef Science (Gale In Context) |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 1588-2926 |
EndPage | 2225 |
ExternalDocumentID | A653531859 10_1007_s10973_020_10007_3 |
GroupedDBID | -4Y -58 -5G -BR -EM -Y2 -~C .86 .VR 06C 06D 0R~ 0VY 1N0 2.D 203 29L 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 53G 5GY 5QI 5VS 67Z 6NX 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAIKT AAJBT AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDBF ABDZT ABECU ABFTV ABHLI ABHQN ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACUHS ACZOJ ADHIR ADINQ ADKNI ADKPE ADMLS ADPHR ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AI. AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AOCGG ARMRJ AXYYD AYJHY AZFZN B-. B0M BA0 BDATZ BGNMA BSONS CAG COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP DU5 EAD EAP EBLON EBS EIOEI EJD EMK EPL ESBYG ESX F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC G-Y G-Z GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I-F IAO IHE IJ- IKXTQ ISR ITC ITM IWAJR IXC IXE IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV LAK LLZTM M4Y MA- MET MKB N2Q N9A NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P9N PF0 PT4 PT5 QOK QOR QOS R89 R9I RKA RNI RNS ROL RPX RSV RZC RZE RZK S16 S1Z S26 S27 S28 S3B SAP SCG SCLPG SCM SDH SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC TUS U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW VH1 W23 W48 W4F WJK WK8 YLTOR Z45 Z5O Z7R Z7S Z7U Z7V Z7W Z7X Z7Y Z7Z Z81 Z83 Z85 Z86 Z87 Z88 Z8M Z8N Z8O Z8P Z8Q Z8R Z8T Z8W Z91 Z92 ZE2 ZMTXR ~02 ~8M AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION AEIIB ABRTQ |
ID | FETCH-LOGICAL-c429t-40f0c679e7c862ed84cab6f07eb55d9f97cc46429e71cb16d15230df9cf654203 |
IEDL.DBID | U2A |
ISSN | 1388-6150 |
IngestDate | Fri Jul 25 11:12:30 EDT 2025 Tue Jun 10 20:37:04 EDT 2025 Fri Jun 27 04:19:20 EDT 2025 Tue Jul 01 02:44:35 EDT 2025 Thu Apr 24 22:51:03 EDT 2025 Fri Feb 21 02:49:28 EST 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | No-slip conditions Sutterby fluid Soret and Dufour effects Variable physical properties Entropy generation Non-Darcy resistance |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-40f0c679e7c862ed84cab6f07eb55d9f97cc46429e71cb16d15230df9cf654203 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
PQID | 2494911533 |
PQPubID | 2043843 |
PageCount | 11 |
ParticipantIDs | proquest_journals_2494911533 gale_infotracacademiconefile_A653531859 gale_incontextgauss_ISR_A653531859 crossref_primary_10_1007_s10973_020_10007_3 crossref_citationtrail_10_1007_s10973_020_10007_3 springer_journals_10_1007_s10973_020_10007_3 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-01 |
PublicationDateYYYYMMDD | 2021-02-01 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: Dordrecht |
PublicationSubtitle | An International Forum for Thermal Studies |
PublicationTitle | Journal of thermal analysis and calorimetry |
PublicationTitleAbbrev | J Therm Anal Calorim |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Springer Nature B.V |
Publisher_xml | – name: Springer International Publishing – name: Springer – name: Springer Nature B.V |
References | HayatTAlsaadiFRafiqMAhmadBOn effects of thermal radiation and radial magnetic field for peristalsis of Sutterby liquid in a curved channel with wall propertiesChin J Phys201755200520241:CAS:528:DC%2BC2sXhvFOmu7zE10.1016/j.cjph.2017.08.004 RehmanKUMalikMYZahriMAl-MdallalQMJameelMKhanMIFinite element technique for the analysis of buoyantly convective multiply connected domain as a trapezium enclosure with heated circular obstacleJ Mol Liq20192861–101108921:CAS:528:DC%2BC1MXhtVekurbL10.1016/j.molliq.2019.110892 BejanAEntropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes2013New YorkCRC Press199610.1201/9781482239171 EldabeNTEl-SayedMFGhalyAYSayedHMMixed convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature-dependent viscosityJ Arch Appl Mech20087859962410.1007/s00419-007-0181-6 AliNSajidMJavedTAbbasZHeat transfer analysis of peristaltic flow in a curved channelInt J Heat Mass Transf201053331933251:CAS:528:DC%2BC3cXmtFOhs74%3D10.1016/j.ijheatmasstransfer.2010.02.036 SadiqMAHayatTDarcy–Forchheimer stretched flow of MHD Maxwell material with heterogeneous and homogeneous reactionsNeural Comput Appl20193185786410.1007/s00521-017-3037-1 RiazAKhanSUZeeshanAKhanSUHassanMMuhammadTThermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous mediumJ Therm Anal Calorim202010.1007/s10973-020-09454-9 KhanLARazaMMirNAEllahiREffects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channelJ Therm Anal Calorim20201408798901:CAS:528:DC%2BC1MXhtVWksbbE10.1007/s10973-019-08348-9 AlderremyAANaziraUSaleemSNawazMSadiqMAStudy of transport phenomenon in Carreau fluid using Cattaneo-Christov heat flux model with temperature dependent diffusion coefficientsPhys A Stat Mech Appl202055412392110.1016/j.physa.2019.123921 MekheimerKSSalemAMZaherAZPeristaltically induced MHD slip flow in a porous medium due to a surface acoustic wavy wallJ Egypt Math Soc20142214315110.1016/j.joems.2013.05.003 RashidMAnsarKNadeemSEffects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channelPhys A Stat Mech Appl202055312397910.1016/j.physa.2019.123979 ReddyMGHeat and mass transfer on magnetohydrodynamic peristaltic flow in a porous medium with partial slipAlex Eng J2016551225123410.1016/j.aej.2016.04.009 RaizREllahiRBhattiMMMarinMStudy of heat and mass transfer in the Eyring–Powell model of fluid propagating peristaltically through a rectangular compliant channelHeat Transf Res2019501539156010.1615/HeatTransRes.2019025622 AwaisMBilalSUr RehmanKMalikMYNumerical investigation of MHD Prandtl melted fluid flow towards a cylindrical surface: comprehensive outcomesCan J Phys2020982232321:CAS:528:DC%2BB3cXitlKgt70%3D10.1139/cjp-2018-0582 ShapiroAHJafrinMYWeinbergSLPeristaltic pumping with long wavelengths at low Reynolds numberJ Fluid Mech19693779982510.1017/S0022112069000899 ErbayLBAltaçZSülüşBEntropy generation in a square enclosure with partial heating from a vertical lateral wallHeat Mass Transf20044090991810.1007/s00231-003-0497-x SouidiFAyachiKBenyahiaNEntropy generation rate for a peristaltic pumpJ Non-Eqm Therms200934171194 RazaMEllahiRSaitSMSarafrazMMShadlooMSWaheedIEnhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTsJ Therm Anal Calorim2020140127712971:CAS:528:DC%2BC1MXisVyrs7vJ10.1007/s10973-019-09097-5 BejanASecond law analysis in heat transferEnergy1980572073210.1016/0360-5442(80)90091-2 KhanIKhanWAEffect of viscous dissipation on MHD water-Cu and EG–Cu nanofluids flowing through a porous mediumJ Therm Anal Calorim20191356456561:CAS:528:DC%2BC1cXhtFelsLrL10.1007/s10973-018-7459-5 BibiFHayatTFarooqSKhanAAAlsaediAEntropy generation analysis in peristaltic motion of Sisko material with variable viscosity and thermal conductivityJ Therm Anal Calorim201910.1007/s10973-019-09125-4 Latham TW. Fluid motion in a peristaltic pump. MS Thesis. MIT Cambridge, MA. 1966. SinhaAShitGCRanjitNKPeristaltic transport of MHD flow and heat transfer in an asymmetric channel: effects of variable viscosity, velocity-slip and temperature jumpAlex Eng J20155469170410.1016/j.aej.2015.03.030 BhattiMMRashidiMMStudy of heat and mass transfer with Joule heating on magnetohydrodynamic (MHD) peristaltic blood flow under the influence of Hall effectPropuls Power Res2017617718510.1016/j.jppr.2017.07.006 NarlaVKTripathiDBégOAAnalysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with Joule dissipationTherm Sci Eng Prog20201510042410.1016/j.tsep.2019.100424 AwaisMBilalSMalikMYNumerical analysis of magnetohydrodynamic Navier’s slip visco nanofluid flow induced by rotating disk with heat source/sinkCommun Theor Phys201971107510831:CAS:528:DC%2BB3cXhvVeqtrY%3D10.1088/0253-6102/71/9/1075 SheikholeslamiMJafaryarMShafeeALiZNanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticlesJ Therm Anal Calorim2018134229523031:CAS:528:DC%2BC1cXitFSqt7rM10.1007/s10973-018-7866-7 RameshKInfluence of heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channelJ Mol Liq20162192562711:CAS:528:DC%2BC28Xks1yku7Y%3D10.1016/j.molliq.2016.03.010 R Raiz (10007_CR5) 2019; 50 10007_CR1 KU Rehman (10007_CR16) 2019; 286 N Ali (10007_CR3) 2010; 53 M Raza (10007_CR14) 2020; 140 M Awais (10007_CR18) 2020; 98 LB Erbay (10007_CR26) 2004; 40 A Sinha (10007_CR9) 2015; 54 LA Khan (10007_CR13) 2020; 140 M Rashid (10007_CR19) 2020; 553 F Bibi (10007_CR21) 2019 A Bejan (10007_CR24) 1980; 5 KS Mekheimer (10007_CR12) 2014; 22 NT Eldabe (10007_CR20) 2008; 78 T Hayat (10007_CR7) 2017; 55 AH Shapiro (10007_CR2) 1969; 37 VK Narla (10007_CR6) 2020; 15 MA Sadiq (10007_CR23) 2019; 31 M Awais (10007_CR15) 2019; 71 A Bejan (10007_CR25) 2013 MG Reddy (10007_CR10) 2016; 55 K Ramesh (10007_CR22) 2016; 219 M Sheikholeslami (10007_CR28) 2018; 134 AA Alderremy (10007_CR17) 2020; 554 I Khan (10007_CR11) 2019; 135 A Riaz (10007_CR4) 2020 MM Bhatti (10007_CR8) 2017; 6 F Souidi (10007_CR27) 2009; 34 |
References_xml | – reference: BhattiMMRashidiMMStudy of heat and mass transfer with Joule heating on magnetohydrodynamic (MHD) peristaltic blood flow under the influence of Hall effectPropuls Power Res2017617718510.1016/j.jppr.2017.07.006 – reference: AwaisMBilalSMalikMYNumerical analysis of magnetohydrodynamic Navier’s slip visco nanofluid flow induced by rotating disk with heat source/sinkCommun Theor Phys201971107510831:CAS:528:DC%2BB3cXhvVeqtrY%3D10.1088/0253-6102/71/9/1075 – reference: NarlaVKTripathiDBégOAAnalysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with Joule dissipationTherm Sci Eng Prog20201510042410.1016/j.tsep.2019.100424 – reference: SinhaAShitGCRanjitNKPeristaltic transport of MHD flow and heat transfer in an asymmetric channel: effects of variable viscosity, velocity-slip and temperature jumpAlex Eng J20155469170410.1016/j.aej.2015.03.030 – reference: BejanAEntropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes2013New YorkCRC Press199610.1201/9781482239171 – reference: ReddyMGHeat and mass transfer on magnetohydrodynamic peristaltic flow in a porous medium with partial slipAlex Eng J2016551225123410.1016/j.aej.2016.04.009 – reference: RameshKInfluence of heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channelJ Mol Liq20162192562711:CAS:528:DC%2BC28Xks1yku7Y%3D10.1016/j.molliq.2016.03.010 – reference: AliNSajidMJavedTAbbasZHeat transfer analysis of peristaltic flow in a curved channelInt J Heat Mass Transf201053331933251:CAS:528:DC%2BC3cXmtFOhs74%3D10.1016/j.ijheatmasstransfer.2010.02.036 – reference: SouidiFAyachiKBenyahiaNEntropy generation rate for a peristaltic pumpJ Non-Eqm Therms200934171194 – reference: BibiFHayatTFarooqSKhanAAAlsaediAEntropy generation analysis in peristaltic motion of Sisko material with variable viscosity and thermal conductivityJ Therm Anal Calorim201910.1007/s10973-019-09125-4 – reference: AlderremyAANaziraUSaleemSNawazMSadiqMAStudy of transport phenomenon in Carreau fluid using Cattaneo-Christov heat flux model with temperature dependent diffusion coefficientsPhys A Stat Mech Appl202055412392110.1016/j.physa.2019.123921 – reference: KhanLARazaMMirNAEllahiREffects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channelJ Therm Anal Calorim20201408798901:CAS:528:DC%2BC1MXhtVWksbbE10.1007/s10973-019-08348-9 – reference: KhanIKhanWAEffect of viscous dissipation on MHD water-Cu and EG–Cu nanofluids flowing through a porous mediumJ Therm Anal Calorim20191356456561:CAS:528:DC%2BC1cXhtFelsLrL10.1007/s10973-018-7459-5 – reference: EldabeNTEl-SayedMFGhalyAYSayedHMMixed convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature-dependent viscosityJ Arch Appl Mech20087859962410.1007/s00419-007-0181-6 – reference: RaizREllahiRBhattiMMMarinMStudy of heat and mass transfer in the Eyring–Powell model of fluid propagating peristaltically through a rectangular compliant channelHeat Transf Res2019501539156010.1615/HeatTransRes.2019025622 – reference: BejanASecond law analysis in heat transferEnergy1980572073210.1016/0360-5442(80)90091-2 – reference: MekheimerKSSalemAMZaherAZPeristaltically induced MHD slip flow in a porous medium due to a surface acoustic wavy wallJ Egypt Math Soc20142214315110.1016/j.joems.2013.05.003 – reference: RiazAKhanSUZeeshanAKhanSUHassanMMuhammadTThermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous mediumJ Therm Anal Calorim202010.1007/s10973-020-09454-9 – reference: HayatTAlsaadiFRafiqMAhmadBOn effects of thermal radiation and radial magnetic field for peristalsis of Sutterby liquid in a curved channel with wall propertiesChin J Phys201755200520241:CAS:528:DC%2BC2sXhvFOmu7zE10.1016/j.cjph.2017.08.004 – reference: RashidMAnsarKNadeemSEffects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channelPhys A Stat Mech Appl202055312397910.1016/j.physa.2019.123979 – reference: RazaMEllahiRSaitSMSarafrazMMShadlooMSWaheedIEnhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTsJ Therm Anal Calorim2020140127712971:CAS:528:DC%2BC1MXisVyrs7vJ10.1007/s10973-019-09097-5 – reference: ShapiroAHJafrinMYWeinbergSLPeristaltic pumping with long wavelengths at low Reynolds numberJ Fluid Mech19693779982510.1017/S0022112069000899 – reference: Latham TW. Fluid motion in a peristaltic pump. MS Thesis. MIT Cambridge, MA. 1966. – reference: ErbayLBAltaçZSülüşBEntropy generation in a square enclosure with partial heating from a vertical lateral wallHeat Mass Transf20044090991810.1007/s00231-003-0497-x – reference: RehmanKUMalikMYZahriMAl-MdallalQMJameelMKhanMIFinite element technique for the analysis of buoyantly convective multiply connected domain as a trapezium enclosure with heated circular obstacleJ Mol Liq20192861–101108921:CAS:528:DC%2BC1MXhtVekurbL10.1016/j.molliq.2019.110892 – reference: AwaisMBilalSUr RehmanKMalikMYNumerical investigation of MHD Prandtl melted fluid flow towards a cylindrical surface: comprehensive outcomesCan J Phys2020982232321:CAS:528:DC%2BB3cXitlKgt70%3D10.1139/cjp-2018-0582 – reference: SadiqMAHayatTDarcy–Forchheimer stretched flow of MHD Maxwell material with heterogeneous and homogeneous reactionsNeural Comput Appl20193185786410.1007/s00521-017-3037-1 – reference: SheikholeslamiMJafaryarMShafeeALiZNanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticlesJ Therm Anal Calorim2018134229523031:CAS:528:DC%2BC1cXitFSqt7rM10.1007/s10973-018-7866-7 – volume: 5 start-page: 720 year: 1980 ident: 10007_CR24 publication-title: Energy doi: 10.1016/0360-5442(80)90091-2 – volume: 135 start-page: 645 year: 2019 ident: 10007_CR11 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7459-5 – volume: 50 start-page: 1539 year: 2019 ident: 10007_CR5 publication-title: Heat Transf Res doi: 10.1615/HeatTransRes.2019025622 – volume: 219 start-page: 256 year: 2016 ident: 10007_CR22 publication-title: J Mol Liq doi: 10.1016/j.molliq.2016.03.010 – volume: 554 start-page: 123921 year: 2020 ident: 10007_CR17 publication-title: Phys A Stat Mech Appl doi: 10.1016/j.physa.2019.123921 – volume: 553 start-page: 123979 year: 2020 ident: 10007_CR19 publication-title: Phys A Stat Mech Appl doi: 10.1016/j.physa.2019.123979 – start-page: 1996 volume-title: Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes year: 2013 ident: 10007_CR25 doi: 10.1201/9781482239171 – volume: 140 start-page: 1277 year: 2020 ident: 10007_CR14 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-09097-5 – volume: 34 start-page: 171 year: 2009 ident: 10007_CR27 publication-title: J Non-Eqm Therms – volume: 286 start-page: 110892 issue: 1–10 year: 2019 ident: 10007_CR16 publication-title: J Mol Liq doi: 10.1016/j.molliq.2019.110892 – volume: 140 start-page: 879 year: 2020 ident: 10007_CR13 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-08348-9 – volume: 37 start-page: 799 year: 1969 ident: 10007_CR2 publication-title: J Fluid Mech doi: 10.1017/S0022112069000899 – volume: 98 start-page: 223 year: 2020 ident: 10007_CR18 publication-title: Can J Phys doi: 10.1139/cjp-2018-0582 – volume: 15 start-page: 100424 year: 2020 ident: 10007_CR6 publication-title: Therm Sci Eng Prog doi: 10.1016/j.tsep.2019.100424 – volume: 55 start-page: 1225 year: 2016 ident: 10007_CR10 publication-title: Alex Eng J doi: 10.1016/j.aej.2016.04.009 – volume: 40 start-page: 909 year: 2004 ident: 10007_CR26 publication-title: Heat Mass Transf doi: 10.1007/s00231-003-0497-x – volume: 31 start-page: 857 year: 2019 ident: 10007_CR23 publication-title: Neural Comput Appl doi: 10.1007/s00521-017-3037-1 – volume: 6 start-page: 177 year: 2017 ident: 10007_CR8 publication-title: Propuls Power Res doi: 10.1016/j.jppr.2017.07.006 – year: 2019 ident: 10007_CR21 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-019-09125-4 – volume: 53 start-page: 3319 year: 2010 ident: 10007_CR3 publication-title: Int J Heat Mass Transf doi: 10.1016/j.ijheatmasstransfer.2010.02.036 – year: 2020 ident: 10007_CR4 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-020-09454-9 – volume: 54 start-page: 691 year: 2015 ident: 10007_CR9 publication-title: Alex Eng J doi: 10.1016/j.aej.2015.03.030 – volume: 22 start-page: 143 year: 2014 ident: 10007_CR12 publication-title: J Egypt Math Soc doi: 10.1016/j.joems.2013.05.003 – volume: 78 start-page: 599 year: 2008 ident: 10007_CR20 publication-title: J Arch Appl Mech doi: 10.1007/s00419-007-0181-6 – volume: 55 start-page: 2005 year: 2017 ident: 10007_CR7 publication-title: Chin J Phys doi: 10.1016/j.cjph.2017.08.004 – ident: 10007_CR1 – volume: 134 start-page: 2295 year: 2018 ident: 10007_CR28 publication-title: J Therm Anal Calorim doi: 10.1007/s10973-018-7866-7 – volume: 71 start-page: 1075 year: 2019 ident: 10007_CR15 publication-title: Commun Theor Phys doi: 10.1088/0253-6102/71/9/1075 |
SSID | ssj0009901 |
Score | 2.3353193 |
Snippet | Non-Darcy resistance in peristaltic transport of Sutterby liquid in curved configuration is modeled. Variable characteristics of material (i.e., thermal... |
SourceID | proquest gale crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2215 |
SubjectTerms | Analytical Chemistry Chemistry Chemistry and Materials Science Conservation laws Electric properties Entropy Environmental law Fluid flow Heat conductivity Heat transfer Inorganic Chemistry Mathematical models Measurement Science and Instrumentation Motional resistance Optimization Parameters Physical Chemistry Physical properties Polymer Sciences Reynolds number Temperature dependence Thermal conductivity Thermal energy Viscosity |
Title | Entropy production minimization and non-Darcy resistance within wavy motion of Sutterby liquid subject to variable physical characteristics |
URI | https://link.springer.com/article/10.1007/s10973-020-10007-3 https://www.proquest.com/docview/2494911533 |
Volume | 143 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61cGgvFX0gUh4aVUgcqCW_7T0GmpQWwaEQCU4r73oXRYIk4ASU38CfZsZeN01LK_Xkg2dt786s57Ez3wDsai5tt7SRisDPyUEpladILXsmzJPE2DDQJYcGTk7To0H8_SK5cEVhVZvt3h5J1n_qX4rdRMZnjr7HMWnaGi9hNWHfnaR4EHYXULvCb9wskgGGO3elMs8_Y0kd_f5T_uN0tFY6_TV446xF7DbsfQsvzOgdvDpsm7S9h8ceZ5pP5jhpkFtplZHRQm5ceSUWoxLJw_e-kEDPkXxrtheJ0cgB2OEIH4r7OTatfHBs8azuW63meD28nQ1LrGaKAzU4HeM9edVcZ4UTx1rUy2DPH2DQ750fHnmuv4KnSQtNiTPW12kmTKbJrzFlHutCpdbPjEqSUliRaR2Tf0IEgVZBWgYcQi6t0JbbXPnROqzQDMwGoA1EJlIRkbbzY5OpPM1DExc0MorSSOcdCNplltqBj3MPjGu5gE1m1khijaxZI6MO7P8cM2mgN_5J_Ym5JxnTYsRJM1fFrKrkt7MfspsmUcJV4qIDe47Ijun1unA1CDQJhsFaotxqpUC6XV3JkKF8AraQO_C5lYzF7b9_3Mf_I9-E1yGnztTJ4VuwMr2bmW2yfaZqB1a7_YODU75-vTzu7dSi_wSCC_28 |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB616YFeKihUTRtgVCH1UCz5be8x4qHQAodCJG4r73oXRaJJWieg_Ab-NDP2mhD6kHr2rO3dmd157Mw3AHuaS9stbaQi8HNyUErlKVLLngnzJDE2DHTJoYGz83QwjL9eJVeuKKxqs93bK8n6pH5S7CYyvnP0PY5J09Z4Ca_IGMg5kWsY9pdQu8Jv3CySAYY7d6Uyf37Hijp6fij_djtaK53jdXjjrEXsN-zdgBdm_BbWDtombZtwf8SZ5tMFThvkVlplZLSQH668EotxieThe4ck0Ask35rtRWI0cgB2NMa74naBTSsfnFi8qPtWqwXejH7ORyVWc8WBGpxN8Ja8aq6zwqljLepVsOctGB4fXR4MPNdfwdOkhWbEGevrNBMm0-TXmDKPdaFS62dGJUkprMi0jsk_IYJAqyAtAw4hl1Zoy22u_OgddGgG5j2gDUQmUhGRtvNjk6k8zUMTFzQyitJI510I2mWW2oGPcw-MG7mETWbWSGKNrFkjoy58eRwzbaA3_kn9ibknGdNizEkz18W8quTJxXfZT5Mo4Spx0YXPjshO6PO6cDUINAmGwVqh7LVSIN2urmTIUD4BW8hd2G8lY_n47z_34f_Id2FtcHl2Kk9Pzr99hNchp9HUieI96Mx-zc022UEztVOL_QO6L_2f |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEN8oJsqL8TMeAk6MiQ_a0O33Pl6AC_hBjHgJb5vuF7kEe4XrYe5v8J9mpt16nIgJz51tu53Zzs7s_H7D2DtN0HaHC6nkYYEBilGBQrcc2KhIU-sirg2lBr4eZQfj5NNJenINxd9Wu_dHkh2mgViaqmanNm7nGvBN5HT-GAaUn8Zlcp89wN8xJ7seR8Ml7a4Iu5AL7YGozz1s5t_3WHFNf_-gb5yUtg5o9IQ99jtHGHaqfsru2eoZe7TbN2x7zn7vU9V5vYC6Y3HFLw7EHPLTQy2hrAxgtB_soXEvAONs2jui0oGSsZMKfpWXC-ja-sDUwXHbw1ot4GxyPp8YmM0VJW2gmcIlRtiEuYLaqxn0KvHzCzYe7f_YPQh8r4VAo0dqUEsu1FkubK4xxrGmSHSpMhfmVqWpEU7kWicYq6AA14pnhlM62TihHbW8CuOXbA1nYF8xcFzkIhMxer4wsbkqsiKySYkj4ziLdTFgvP_MUnsicuqHcSaXFMqkGomqka1qZDxgH_6MqTsajv9KvyXtSeK3qKiA5rScz2by8Pi7HGZpnBJiXAzYey_kpvh4XXo8Ak6CKLFWJDd7K5B-hc9kRLQ-nHbLA_axt4zl5dtfbuNu4m_Yw297I_nl8Ojza7YeUUVNWzO-ydaai7ndwi1Ro7Zbq78CNawB6g |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy+production+minimization+and+non-Darcy+resistance+within+wavy+motion+of+Sutterby+liquid+subject+to+variable+physical+characteristics&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Hayat%2C+T&rft.au=Bibi%2C+Farhat&rft.au=Khan%2C+A.+A&rft.au=Alsaedi%2C+A&rft.date=2021-02-01&rft.pub=Springer&rft.issn=1388-6150&rft.volume=143&rft.issue=3&rft.spage=2215&rft_id=info:doi/10.1007%2Fs10973-020-10007-3&rft.externalDocID=A653531859 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon |