Entropy production minimization and non-Darcy resistance within wavy motion of Sutterby liquid subject to variable physical characteristics

Non-Darcy resistance in peristaltic transport of Sutterby liquid in curved configuration is modeled. Variable characteristics of material (i.e., thermal conductivity and viscosity) are taken as temperature-dependent. Soret and Dufour features have also been retained. Problem is modeled by using cons...

Full description

Saved in:
Bibliographic Details
Published inJournal of thermal analysis and calorimetry Vol. 143; no. 3; pp. 2215 - 2225
Main Authors Hayat, T., Bibi, Farhat, Khan, A. A., Alsaedi, A.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.02.2021
Springer
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Non-Darcy resistance in peristaltic transport of Sutterby liquid in curved configuration is modeled. Variable characteristics of material (i.e., thermal conductivity and viscosity) are taken as temperature-dependent. Soret and Dufour features have also been retained. Problem is modeled by using conservation laws. Long wavelength and small Reynolds number have been invoked. Resulting problems have been solved numerically. Entropy optimization analysis is made. Axial velocity, temperature, concentration, entropy, Bejan number and heat transfer rate are examined for influential variables. It is found that velocity increases for variable viscosity coefficient and porous-space parameter. Temperature decreases for increased values of variable thermal conductivity. Opposite behavior of mass and energy is noted for Soret and Dufour parameters. Entropy minimized for thermal conductivity and viscosity coefficients. Entropy enhancement is noticed for Soret and Dufour parameters. Heat transfer rate at upper wall is enhanced for Soret and Dufour variables.
AbstractList Non-Darcy resistance in peristaltic transport of Sutterby liquid in curved configuration is modeled. Variable characteristics of material (i.e., thermal conductivity and viscosity) are taken as temperature-dependent. Soret and Dufour features have also been retained. Problem is modeled by using conservation laws. Long wavelength and small Reynolds number have been invoked. Resulting problems have been solved numerically. Entropy optimization analysis is made. Axial velocity, temperature, concentration, entropy, Bejan number and heat transfer rate are examined for influential variables. It is found that velocity increases for variable viscosity coefficient and porous-space parameter. Temperature decreases for increased values of variable thermal conductivity. Opposite behavior of mass and energy is noted for Soret and Dufour parameters. Entropy minimized for thermal conductivity and viscosity coefficients. Entropy enhancement is noticed for Soret and Dufour parameters. Heat transfer rate at upper wall is enhanced for Soret and Dufour variables.
Audience Academic
Author Hayat, T.
Alsaedi, A.
Bibi, Farhat
Khan, A. A.
Author_xml – sequence: 1
  givenname: T.
  surname: Hayat
  fullname: Hayat, T.
  organization: Department of Mathematics, Quaid-I-Azam University, Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University
– sequence: 2
  givenname: Farhat
  surname: Bibi
  fullname: Bibi, Farhat
  organization: Department of Mathematics and Statistics, International Islamic University
– sequence: 3
  givenname: A. A.
  surname: Khan
  fullname: Khan, A. A.
  email: ambreen.afsar@iiu.edu.pk
  organization: Department of Mathematics and Statistics, International Islamic University
– sequence: 4
  givenname: A.
  surname: Alsaedi
  fullname: Alsaedi, A.
  organization: Nonlinear Analysis and Applied Mathematics (NAAM) Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University
BookMark eNp9kc9u1DAQxiNUJNrCC3CyxIlDih3HSXysSoFKlZAonC1nYu96ldhb22kJr9CX7nSDhMqh8sEz1u-bP_5OiiMfvCmK94yeMUrbT4lR2fKSVrTEnLYlf1UcM9F1ZSWr5ghjjnHDBH1TnKS0Q0ZKyo6Lh0ufY9gvZB_DMEN2wZPJeTe5P_qQaD8QbFZ-1hEWEk1yKWsPhty7vHWe3Ou7hUzhwAZLbuacTewXMrrb2Q0kzf3OQCY5kDsdne5HQ_bbJTnQI4GtjhqQx5oO0tvitdVjMu_-3qfFry-XPy--ldffv15dnF-XUFcylzW1FJpWmha6pjJDV4PuG0tb0wsxSCtbgLpB1LQMetYMTFScDlaCbURdUX5afFjr4s63s0lZ7cIcPbZUVS1ryZjgHKmzldro0Sjnbcg4LJ7BTA7w-63D9_NGcMFZJyQKPj4TIJPN77zRc0rq6ubHc7ZaWYghpWis2kc36bgoRtWTo2p1VKGj6uCoepqo-08ELh9cwsnc-LKUr9KEffzGxH8rv6B6BAv7udk
CitedBy_id crossref_primary_10_1088_1402_4896_abbbce
crossref_primary_10_1134_S1810232822020126
crossref_primary_10_1080_10407782_2024_2320273
crossref_primary_10_1007_s13204_021_01863_y
crossref_primary_10_1007_s10483_021_2770_9
crossref_primary_10_1080_01430750_2023_2258896
crossref_primary_10_1080_02286203_2023_2205987
crossref_primary_10_1177_09544089211041278
Cites_doi 10.1016/0360-5442(80)90091-2
10.1007/s10973-018-7459-5
10.1615/HeatTransRes.2019025622
10.1016/j.molliq.2016.03.010
10.1016/j.physa.2019.123921
10.1016/j.physa.2019.123979
10.1201/9781482239171
10.1007/s10973-019-09097-5
10.1016/j.molliq.2019.110892
10.1007/s10973-019-08348-9
10.1017/S0022112069000899
10.1139/cjp-2018-0582
10.1016/j.tsep.2019.100424
10.1016/j.aej.2016.04.009
10.1007/s00231-003-0497-x
10.1007/s00521-017-3037-1
10.1016/j.jppr.2017.07.006
10.1007/s10973-019-09125-4
10.1016/j.ijheatmasstransfer.2010.02.036
10.1007/s10973-020-09454-9
10.1016/j.aej.2015.03.030
10.1016/j.joems.2013.05.003
10.1007/s00419-007-0181-6
10.1016/j.cjph.2017.08.004
10.1007/s10973-018-7866-7
10.1088/0253-6102/71/9/1075
ContentType Journal Article
Copyright Akadémiai Kiadó, Budapest, Hungary 2020
COPYRIGHT 2021 Springer
Akadémiai Kiadó, Budapest, Hungary 2020.
Copyright_xml – notice: Akadémiai Kiadó, Budapest, Hungary 2020
– notice: COPYRIGHT 2021 Springer
– notice: Akadémiai Kiadó, Budapest, Hungary 2020.
DBID AAYXX
CITATION
ISR
DOI 10.1007/s10973-020-10007-3
DatabaseName CrossRef
Science (Gale In Context)
DatabaseTitle CrossRef
DatabaseTitleList


DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1588-2926
EndPage 2225
ExternalDocumentID A653531859
10_1007_s10973_020_10007_3
GroupedDBID -4Y
-58
-5G
-BR
-EM
-Y2
-~C
.86
.VR
06C
06D
0R~
0VY
1N0
2.D
203
29L
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
53G
5GY
5QI
5VS
67Z
6NX
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAIKT
AAJBT
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDBF
ABDZT
ABECU
ABFTV
ABHLI
ABHQN
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACUHS
ACZOJ
ADHIR
ADINQ
ADKNI
ADKPE
ADMLS
ADPHR
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AOCGG
ARMRJ
AXYYD
AYJHY
AZFZN
B-.
B0M
BA0
BDATZ
BGNMA
BSONS
CAG
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
DU5
EAD
EAP
EBLON
EBS
EIOEI
EJD
EMK
EPL
ESBYG
ESX
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
IAO
IHE
IJ-
IKXTQ
ISR
ITC
ITM
IWAJR
IXC
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
LAK
LLZTM
M4Y
MA-
MET
MKB
N2Q
N9A
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P9N
PF0
PT4
PT5
QOK
QOR
QOS
R89
R9I
RKA
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3B
SAP
SCG
SCLPG
SCM
SDH
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
TUS
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
W4F
WJK
WK8
YLTOR
Z45
Z5O
Z7R
Z7S
Z7U
Z7V
Z7W
Z7X
Z7Y
Z7Z
Z81
Z83
Z85
Z86
Z87
Z88
Z8M
Z8N
Z8O
Z8P
Z8Q
Z8R
Z8T
Z8W
Z91
Z92
ZE2
ZMTXR
~02
~8M
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
AEIIB
ABRTQ
ID FETCH-LOGICAL-c429t-40f0c679e7c862ed84cab6f07eb55d9f97cc46429e71cb16d15230df9cf654203
IEDL.DBID U2A
ISSN 1388-6150
IngestDate Fri Jul 25 11:12:30 EDT 2025
Tue Jun 10 20:37:04 EDT 2025
Fri Jun 27 04:19:20 EDT 2025
Tue Jul 01 02:44:35 EDT 2025
Thu Apr 24 22:51:03 EDT 2025
Fri Feb 21 02:49:28 EST 2025
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords No-slip conditions
Sutterby fluid
Soret and Dufour effects
Variable physical properties
Entropy generation
Non-Darcy resistance
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-40f0c679e7c862ed84cab6f07eb55d9f97cc46429e71cb16d15230df9cf654203
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
PQID 2494911533
PQPubID 2043843
PageCount 11
ParticipantIDs proquest_journals_2494911533
gale_infotracacademiconefile_A653531859
gale_incontextgauss_ISR_A653531859
crossref_primary_10_1007_s10973_020_10007_3
crossref_citationtrail_10_1007_s10973_020_10007_3
springer_journals_10_1007_s10973_020_10007_3
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-01
PublicationDateYYYYMMDD 2021-02-01
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-01
  day: 01
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: Dordrecht
PublicationSubtitle An International Forum for Thermal Studies
PublicationTitle Journal of thermal analysis and calorimetry
PublicationTitleAbbrev J Therm Anal Calorim
PublicationYear 2021
Publisher Springer International Publishing
Springer
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer
– name: Springer Nature B.V
References HayatTAlsaadiFRafiqMAhmadBOn effects of thermal radiation and radial magnetic field for peristalsis of Sutterby liquid in a curved channel with wall propertiesChin J Phys201755200520241:CAS:528:DC%2BC2sXhvFOmu7zE10.1016/j.cjph.2017.08.004
RehmanKUMalikMYZahriMAl-MdallalQMJameelMKhanMIFinite element technique for the analysis of buoyantly convective multiply connected domain as a trapezium enclosure with heated circular obstacleJ Mol Liq20192861–101108921:CAS:528:DC%2BC1MXhtVekurbL10.1016/j.molliq.2019.110892
BejanAEntropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes2013New YorkCRC Press199610.1201/9781482239171
EldabeNTEl-SayedMFGhalyAYSayedHMMixed convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature-dependent viscosityJ Arch Appl Mech20087859962410.1007/s00419-007-0181-6
AliNSajidMJavedTAbbasZHeat transfer analysis of peristaltic flow in a curved channelInt J Heat Mass Transf201053331933251:CAS:528:DC%2BC3cXmtFOhs74%3D10.1016/j.ijheatmasstransfer.2010.02.036
SadiqMAHayatTDarcy–Forchheimer stretched flow of MHD Maxwell material with heterogeneous and homogeneous reactionsNeural Comput Appl20193185786410.1007/s00521-017-3037-1
RiazAKhanSUZeeshanAKhanSUHassanMMuhammadTThermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous mediumJ Therm Anal Calorim202010.1007/s10973-020-09454-9
KhanLARazaMMirNAEllahiREffects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channelJ Therm Anal Calorim20201408798901:CAS:528:DC%2BC1MXhtVWksbbE10.1007/s10973-019-08348-9
AlderremyAANaziraUSaleemSNawazMSadiqMAStudy of transport phenomenon in Carreau fluid using Cattaneo-Christov heat flux model with temperature dependent diffusion coefficientsPhys A Stat Mech Appl202055412392110.1016/j.physa.2019.123921
MekheimerKSSalemAMZaherAZPeristaltically induced MHD slip flow in a porous medium due to a surface acoustic wavy wallJ Egypt Math Soc20142214315110.1016/j.joems.2013.05.003
RashidMAnsarKNadeemSEffects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channelPhys A Stat Mech Appl202055312397910.1016/j.physa.2019.123979
ReddyMGHeat and mass transfer on magnetohydrodynamic peristaltic flow in a porous medium with partial slipAlex Eng J2016551225123410.1016/j.aej.2016.04.009
RaizREllahiRBhattiMMMarinMStudy of heat and mass transfer in the Eyring–Powell model of fluid propagating peristaltically through a rectangular compliant channelHeat Transf Res2019501539156010.1615/HeatTransRes.2019025622
AwaisMBilalSUr RehmanKMalikMYNumerical investigation of MHD Prandtl melted fluid flow towards a cylindrical surface: comprehensive outcomesCan J Phys2020982232321:CAS:528:DC%2BB3cXitlKgt70%3D10.1139/cjp-2018-0582
ShapiroAHJafrinMYWeinbergSLPeristaltic pumping with long wavelengths at low Reynolds numberJ Fluid Mech19693779982510.1017/S0022112069000899
ErbayLBAltaçZSülüşBEntropy generation in a square enclosure with partial heating from a vertical lateral wallHeat Mass Transf20044090991810.1007/s00231-003-0497-x
SouidiFAyachiKBenyahiaNEntropy generation rate for a peristaltic pumpJ Non-Eqm Therms200934171194
RazaMEllahiRSaitSMSarafrazMMShadlooMSWaheedIEnhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTsJ Therm Anal Calorim2020140127712971:CAS:528:DC%2BC1MXisVyrs7vJ10.1007/s10973-019-09097-5
BejanASecond law analysis in heat transferEnergy1980572073210.1016/0360-5442(80)90091-2
KhanIKhanWAEffect of viscous dissipation on MHD water-Cu and EG–Cu nanofluids flowing through a porous mediumJ Therm Anal Calorim20191356456561:CAS:528:DC%2BC1cXhtFelsLrL10.1007/s10973-018-7459-5
BibiFHayatTFarooqSKhanAAAlsaediAEntropy generation analysis in peristaltic motion of Sisko material with variable viscosity and thermal conductivityJ Therm Anal Calorim201910.1007/s10973-019-09125-4
Latham TW. Fluid motion in a peristaltic pump. MS Thesis. MIT Cambridge, MA. 1966.
SinhaAShitGCRanjitNKPeristaltic transport of MHD flow and heat transfer in an asymmetric channel: effects of variable viscosity, velocity-slip and temperature jumpAlex Eng J20155469170410.1016/j.aej.2015.03.030
BhattiMMRashidiMMStudy of heat and mass transfer with Joule heating on magnetohydrodynamic (MHD) peristaltic blood flow under the influence of Hall effectPropuls Power Res2017617718510.1016/j.jppr.2017.07.006
NarlaVKTripathiDBégOAAnalysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with Joule dissipationTherm Sci Eng Prog20201510042410.1016/j.tsep.2019.100424
AwaisMBilalSMalikMYNumerical analysis of magnetohydrodynamic Navier’s slip visco nanofluid flow induced by rotating disk with heat source/sinkCommun Theor Phys201971107510831:CAS:528:DC%2BB3cXhvVeqtrY%3D10.1088/0253-6102/71/9/1075
SheikholeslamiMJafaryarMShafeeALiZNanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticlesJ Therm Anal Calorim2018134229523031:CAS:528:DC%2BC1cXitFSqt7rM10.1007/s10973-018-7866-7
RameshKInfluence of heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channelJ Mol Liq20162192562711:CAS:528:DC%2BC28Xks1yku7Y%3D10.1016/j.molliq.2016.03.010
R Raiz (10007_CR5) 2019; 50
10007_CR1
KU Rehman (10007_CR16) 2019; 286
N Ali (10007_CR3) 2010; 53
M Raza (10007_CR14) 2020; 140
M Awais (10007_CR18) 2020; 98
LB Erbay (10007_CR26) 2004; 40
A Sinha (10007_CR9) 2015; 54
LA Khan (10007_CR13) 2020; 140
M Rashid (10007_CR19) 2020; 553
F Bibi (10007_CR21) 2019
A Bejan (10007_CR24) 1980; 5
KS Mekheimer (10007_CR12) 2014; 22
NT Eldabe (10007_CR20) 2008; 78
T Hayat (10007_CR7) 2017; 55
AH Shapiro (10007_CR2) 1969; 37
VK Narla (10007_CR6) 2020; 15
MA Sadiq (10007_CR23) 2019; 31
M Awais (10007_CR15) 2019; 71
A Bejan (10007_CR25) 2013
MG Reddy (10007_CR10) 2016; 55
K Ramesh (10007_CR22) 2016; 219
M Sheikholeslami (10007_CR28) 2018; 134
AA Alderremy (10007_CR17) 2020; 554
I Khan (10007_CR11) 2019; 135
A Riaz (10007_CR4) 2020
MM Bhatti (10007_CR8) 2017; 6
F Souidi (10007_CR27) 2009; 34
References_xml – reference: BhattiMMRashidiMMStudy of heat and mass transfer with Joule heating on magnetohydrodynamic (MHD) peristaltic blood flow under the influence of Hall effectPropuls Power Res2017617718510.1016/j.jppr.2017.07.006
– reference: AwaisMBilalSMalikMYNumerical analysis of magnetohydrodynamic Navier’s slip visco nanofluid flow induced by rotating disk with heat source/sinkCommun Theor Phys201971107510831:CAS:528:DC%2BB3cXhvVeqtrY%3D10.1088/0253-6102/71/9/1075
– reference: NarlaVKTripathiDBégOAAnalysis of entropy generation in biomimetic electroosmotic nanofluid pumping through a curved channel with Joule dissipationTherm Sci Eng Prog20201510042410.1016/j.tsep.2019.100424
– reference: SinhaAShitGCRanjitNKPeristaltic transport of MHD flow and heat transfer in an asymmetric channel: effects of variable viscosity, velocity-slip and temperature jumpAlex Eng J20155469170410.1016/j.aej.2015.03.030
– reference: BejanAEntropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes2013New YorkCRC Press199610.1201/9781482239171
– reference: ReddyMGHeat and mass transfer on magnetohydrodynamic peristaltic flow in a porous medium with partial slipAlex Eng J2016551225123410.1016/j.aej.2016.04.009
– reference: RameshKInfluence of heat and mass transfer on peristaltic flow of a couple stress fluid through porous medium in the presence of inclined magnetic field in an inclined asymmetric channelJ Mol Liq20162192562711:CAS:528:DC%2BC28Xks1yku7Y%3D10.1016/j.molliq.2016.03.010
– reference: AliNSajidMJavedTAbbasZHeat transfer analysis of peristaltic flow in a curved channelInt J Heat Mass Transf201053331933251:CAS:528:DC%2BC3cXmtFOhs74%3D10.1016/j.ijheatmasstransfer.2010.02.036
– reference: SouidiFAyachiKBenyahiaNEntropy generation rate for a peristaltic pumpJ Non-Eqm Therms200934171194
– reference: BibiFHayatTFarooqSKhanAAAlsaediAEntropy generation analysis in peristaltic motion of Sisko material with variable viscosity and thermal conductivityJ Therm Anal Calorim201910.1007/s10973-019-09125-4
– reference: AlderremyAANaziraUSaleemSNawazMSadiqMAStudy of transport phenomenon in Carreau fluid using Cattaneo-Christov heat flux model with temperature dependent diffusion coefficientsPhys A Stat Mech Appl202055412392110.1016/j.physa.2019.123921
– reference: KhanLARazaMMirNAEllahiREffects of different shapes of nanoparticles on peristaltic flow of MHD nanofluids filled in an asymmetric channelJ Therm Anal Calorim20201408798901:CAS:528:DC%2BC1MXhtVWksbbE10.1007/s10973-019-08348-9
– reference: KhanIKhanWAEffect of viscous dissipation on MHD water-Cu and EG–Cu nanofluids flowing through a porous mediumJ Therm Anal Calorim20191356456561:CAS:528:DC%2BC1cXhtFelsLrL10.1007/s10973-018-7459-5
– reference: EldabeNTEl-SayedMFGhalyAYSayedHMMixed convective heat and mass transfer in a non-Newtonian fluid at a peristaltic surface with temperature-dependent viscosityJ Arch Appl Mech20087859962410.1007/s00419-007-0181-6
– reference: RaizREllahiRBhattiMMMarinMStudy of heat and mass transfer in the Eyring–Powell model of fluid propagating peristaltically through a rectangular compliant channelHeat Transf Res2019501539156010.1615/HeatTransRes.2019025622
– reference: BejanASecond law analysis in heat transferEnergy1980572073210.1016/0360-5442(80)90091-2
– reference: MekheimerKSSalemAMZaherAZPeristaltically induced MHD slip flow in a porous medium due to a surface acoustic wavy wallJ Egypt Math Soc20142214315110.1016/j.joems.2013.05.003
– reference: RiazAKhanSUZeeshanAKhanSUHassanMMuhammadTThermal analysis of peristaltic flow of nanosized particles within a curved channel with second-order partial slip and porous mediumJ Therm Anal Calorim202010.1007/s10973-020-09454-9
– reference: HayatTAlsaadiFRafiqMAhmadBOn effects of thermal radiation and radial magnetic field for peristalsis of Sutterby liquid in a curved channel with wall propertiesChin J Phys201755200520241:CAS:528:DC%2BC2sXhvFOmu7zE10.1016/j.cjph.2017.08.004
– reference: RashidMAnsarKNadeemSEffects of induced magnetic field for peristaltic flow of Williamson fluid in a curved channelPhys A Stat Mech Appl202055312397910.1016/j.physa.2019.123979
– reference: RazaMEllahiRSaitSMSarafrazMMShadlooMSWaheedIEnhancement of heat transfer in peristaltic flow in a permeable channel under induced magnetic field using different CNTsJ Therm Anal Calorim2020140127712971:CAS:528:DC%2BC1MXisVyrs7vJ10.1007/s10973-019-09097-5
– reference: ShapiroAHJafrinMYWeinbergSLPeristaltic pumping with long wavelengths at low Reynolds numberJ Fluid Mech19693779982510.1017/S0022112069000899
– reference: Latham TW. Fluid motion in a peristaltic pump. MS Thesis. MIT Cambridge, MA. 1966.
– reference: ErbayLBAltaçZSülüşBEntropy generation in a square enclosure with partial heating from a vertical lateral wallHeat Mass Transf20044090991810.1007/s00231-003-0497-x
– reference: RehmanKUMalikMYZahriMAl-MdallalQMJameelMKhanMIFinite element technique for the analysis of buoyantly convective multiply connected domain as a trapezium enclosure with heated circular obstacleJ Mol Liq20192861–101108921:CAS:528:DC%2BC1MXhtVekurbL10.1016/j.molliq.2019.110892
– reference: AwaisMBilalSUr RehmanKMalikMYNumerical investigation of MHD Prandtl melted fluid flow towards a cylindrical surface: comprehensive outcomesCan J Phys2020982232321:CAS:528:DC%2BB3cXitlKgt70%3D10.1139/cjp-2018-0582
– reference: SadiqMAHayatTDarcy–Forchheimer stretched flow of MHD Maxwell material with heterogeneous and homogeneous reactionsNeural Comput Appl20193185786410.1007/s00521-017-3037-1
– reference: SheikholeslamiMJafaryarMShafeeALiZNanofluid heat transfer and entropy generation through a heat exchanger considering a new turbulator and CuO nanoparticlesJ Therm Anal Calorim2018134229523031:CAS:528:DC%2BC1cXitFSqt7rM10.1007/s10973-018-7866-7
– volume: 5
  start-page: 720
  year: 1980
  ident: 10007_CR24
  publication-title: Energy
  doi: 10.1016/0360-5442(80)90091-2
– volume: 135
  start-page: 645
  year: 2019
  ident: 10007_CR11
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7459-5
– volume: 50
  start-page: 1539
  year: 2019
  ident: 10007_CR5
  publication-title: Heat Transf Res
  doi: 10.1615/HeatTransRes.2019025622
– volume: 219
  start-page: 256
  year: 2016
  ident: 10007_CR22
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2016.03.010
– volume: 554
  start-page: 123921
  year: 2020
  ident: 10007_CR17
  publication-title: Phys A Stat Mech Appl
  doi: 10.1016/j.physa.2019.123921
– volume: 553
  start-page: 123979
  year: 2020
  ident: 10007_CR19
  publication-title: Phys A Stat Mech Appl
  doi: 10.1016/j.physa.2019.123979
– start-page: 1996
  volume-title: Entropy generation minimization: the method of thermodynamic optimization of finite-size systems and finite-time processes
  year: 2013
  ident: 10007_CR25
  doi: 10.1201/9781482239171
– volume: 140
  start-page: 1277
  year: 2020
  ident: 10007_CR14
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-019-09097-5
– volume: 34
  start-page: 171
  year: 2009
  ident: 10007_CR27
  publication-title: J Non-Eqm Therms
– volume: 286
  start-page: 110892
  issue: 1–10
  year: 2019
  ident: 10007_CR16
  publication-title: J Mol Liq
  doi: 10.1016/j.molliq.2019.110892
– volume: 140
  start-page: 879
  year: 2020
  ident: 10007_CR13
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-019-08348-9
– volume: 37
  start-page: 799
  year: 1969
  ident: 10007_CR2
  publication-title: J Fluid Mech
  doi: 10.1017/S0022112069000899
– volume: 98
  start-page: 223
  year: 2020
  ident: 10007_CR18
  publication-title: Can J Phys
  doi: 10.1139/cjp-2018-0582
– volume: 15
  start-page: 100424
  year: 2020
  ident: 10007_CR6
  publication-title: Therm Sci Eng Prog
  doi: 10.1016/j.tsep.2019.100424
– volume: 55
  start-page: 1225
  year: 2016
  ident: 10007_CR10
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2016.04.009
– volume: 40
  start-page: 909
  year: 2004
  ident: 10007_CR26
  publication-title: Heat Mass Transf
  doi: 10.1007/s00231-003-0497-x
– volume: 31
  start-page: 857
  year: 2019
  ident: 10007_CR23
  publication-title: Neural Comput Appl
  doi: 10.1007/s00521-017-3037-1
– volume: 6
  start-page: 177
  year: 2017
  ident: 10007_CR8
  publication-title: Propuls Power Res
  doi: 10.1016/j.jppr.2017.07.006
– year: 2019
  ident: 10007_CR21
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-019-09125-4
– volume: 53
  start-page: 3319
  year: 2010
  ident: 10007_CR3
  publication-title: Int J Heat Mass Transf
  doi: 10.1016/j.ijheatmasstransfer.2010.02.036
– year: 2020
  ident: 10007_CR4
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-020-09454-9
– volume: 54
  start-page: 691
  year: 2015
  ident: 10007_CR9
  publication-title: Alex Eng J
  doi: 10.1016/j.aej.2015.03.030
– volume: 22
  start-page: 143
  year: 2014
  ident: 10007_CR12
  publication-title: J Egypt Math Soc
  doi: 10.1016/j.joems.2013.05.003
– volume: 78
  start-page: 599
  year: 2008
  ident: 10007_CR20
  publication-title: J Arch Appl Mech
  doi: 10.1007/s00419-007-0181-6
– volume: 55
  start-page: 2005
  year: 2017
  ident: 10007_CR7
  publication-title: Chin J Phys
  doi: 10.1016/j.cjph.2017.08.004
– ident: 10007_CR1
– volume: 134
  start-page: 2295
  year: 2018
  ident: 10007_CR28
  publication-title: J Therm Anal Calorim
  doi: 10.1007/s10973-018-7866-7
– volume: 71
  start-page: 1075
  year: 2019
  ident: 10007_CR15
  publication-title: Commun Theor Phys
  doi: 10.1088/0253-6102/71/9/1075
SSID ssj0009901
Score 2.3353193
Snippet Non-Darcy resistance in peristaltic transport of Sutterby liquid in curved configuration is modeled. Variable characteristics of material (i.e., thermal...
SourceID proquest
gale
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 2215
SubjectTerms Analytical Chemistry
Chemistry
Chemistry and Materials Science
Conservation laws
Electric properties
Entropy
Environmental law
Fluid flow
Heat conductivity
Heat transfer
Inorganic Chemistry
Mathematical models
Measurement Science and Instrumentation
Motional resistance
Optimization
Parameters
Physical Chemistry
Physical properties
Polymer Sciences
Reynolds number
Temperature dependence
Thermal conductivity
Thermal energy
Viscosity
Title Entropy production minimization and non-Darcy resistance within wavy motion of Sutterby liquid subject to variable physical characteristics
URI https://link.springer.com/article/10.1007/s10973-020-10007-3
https://www.proquest.com/docview/2494911533
Volume 143
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB61cGgvFX0gUh4aVUgcqCW_7T0GmpQWwaEQCU4r73oXRYIk4ASU38CfZsZeN01LK_Xkg2dt786s57Ez3wDsai5tt7SRisDPyUEpladILXsmzJPE2DDQJYcGTk7To0H8_SK5cEVhVZvt3h5J1n_qX4rdRMZnjr7HMWnaGi9hNWHfnaR4EHYXULvCb9wskgGGO3elMs8_Y0kd_f5T_uN0tFY6_TV446xF7DbsfQsvzOgdvDpsm7S9h8ceZ5pP5jhpkFtplZHRQm5ceSUWoxLJw_e-kEDPkXxrtheJ0cgB2OEIH4r7OTatfHBs8azuW63meD28nQ1LrGaKAzU4HeM9edVcZ4UTx1rUy2DPH2DQ750fHnmuv4KnSQtNiTPW12kmTKbJrzFlHutCpdbPjEqSUliRaR2Tf0IEgVZBWgYcQi6t0JbbXPnROqzQDMwGoA1EJlIRkbbzY5OpPM1DExc0MorSSOcdCNplltqBj3MPjGu5gE1m1khijaxZI6MO7P8cM2mgN_5J_Ym5JxnTYsRJM1fFrKrkt7MfspsmUcJV4qIDe47Ijun1unA1CDQJhsFaotxqpUC6XV3JkKF8AraQO_C5lYzF7b9_3Mf_I9-E1yGnztTJ4VuwMr2bmW2yfaZqB1a7_YODU75-vTzu7dSi_wSCC_28
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9tAEB616YFeKihUTRtgVCH1UCz5be8x4qHQAodCJG4r73oXRaJJWieg_Ab-NDP2mhD6kHr2rO3dmd157Mw3AHuaS9stbaQi8HNyUErlKVLLngnzJDE2DHTJoYGz83QwjL9eJVeuKKxqs93bK8n6pH5S7CYyvnP0PY5J09Z4Ca_IGMg5kWsY9pdQu8Jv3CySAYY7d6Uyf37Hijp6fij_djtaK53jdXjjrEXsN-zdgBdm_BbWDtombZtwf8SZ5tMFThvkVlplZLSQH668EotxieThe4ck0Ask35rtRWI0cgB2NMa74naBTSsfnFi8qPtWqwXejH7ORyVWc8WBGpxN8Ja8aq6zwqljLepVsOctGB4fXR4MPNdfwdOkhWbEGevrNBMm0-TXmDKPdaFS62dGJUkprMi0jsk_IYJAqyAtAw4hl1Zoy22u_OgddGgG5j2gDUQmUhGRtvNjk6k8zUMTFzQyitJI510I2mWW2oGPcw-MG7mETWbWSGKNrFkjoy58eRwzbaA3_kn9ibknGdNizEkz18W8quTJxXfZT5Mo4Spx0YXPjshO6PO6cDUINAmGwVqh7LVSIN2urmTIUD4BW8hd2G8lY_n47z_34f_Id2FtcHl2Kk9Pzr99hNchp9HUieI96Mx-zc022UEztVOL_QO6L_2f
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dT9RAEN8oJsqL8TMeAk6MiQ_a0O33Pl6AC_hBjHgJb5vuF7kEe4XrYe5v8J9mpt16nIgJz51tu53Zzs7s_H7D2DtN0HaHC6nkYYEBilGBQrcc2KhIU-sirg2lBr4eZQfj5NNJenINxd9Wu_dHkh2mgViaqmanNm7nGvBN5HT-GAaUn8Zlcp89wN8xJ7seR8Ml7a4Iu5AL7YGozz1s5t_3WHFNf_-gb5yUtg5o9IQ99jtHGHaqfsru2eoZe7TbN2x7zn7vU9V5vYC6Y3HFLw7EHPLTQy2hrAxgtB_soXEvAONs2jui0oGSsZMKfpWXC-ja-sDUwXHbw1ot4GxyPp8YmM0VJW2gmcIlRtiEuYLaqxn0KvHzCzYe7f_YPQh8r4VAo0dqUEsu1FkubK4xxrGmSHSpMhfmVqWpEU7kWicYq6AA14pnhlM62TihHbW8CuOXbA1nYF8xcFzkIhMxer4wsbkqsiKySYkj4ziLdTFgvP_MUnsicuqHcSaXFMqkGomqka1qZDxgH_6MqTsajv9KvyXtSeK3qKiA5rScz2by8Pi7HGZpnBJiXAzYey_kpvh4XXo8Ak6CKLFWJDd7K5B-hc9kRLQ-nHbLA_axt4zl5dtfbuNu4m_Yw297I_nl8Ojza7YeUUVNWzO-ydaai7ndwi1Ro7Zbq78CNawB6g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Entropy+production+minimization+and+non-Darcy+resistance+within+wavy+motion+of+Sutterby+liquid+subject+to+variable+physical+characteristics&rft.jtitle=Journal+of+thermal+analysis+and+calorimetry&rft.au=Hayat%2C+T&rft.au=Bibi%2C+Farhat&rft.au=Khan%2C+A.+A&rft.au=Alsaedi%2C+A&rft.date=2021-02-01&rft.pub=Springer&rft.issn=1388-6150&rft.volume=143&rft.issue=3&rft.spage=2215&rft_id=info:doi/10.1007%2Fs10973-020-10007-3&rft.externalDocID=A653531859
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1388-6150&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1388-6150&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1388-6150&client=summon