An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems
The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and irregular geometries subject to Dirichlet, Neumann and Robin boundary conditions. Toward this, the meshless point collocation method (MPCM) is us...
Saved in:
Published in | Journal of computational physics Vol. 228; no. 21; pp. 8135 - 8160 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Inc
20.11.2009
Elsevier |
Subjects | |
Online Access | Get full text |
ISSN | 0021-9991 1090-2716 |
DOI | 10.1016/j.jcp.2009.07.031 |
Cover
Loading…
Abstract | The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and irregular geometries subject to Dirichlet, Neumann and Robin boundary conditions. Toward this, the meshless point collocation method (MPCM) is used for MHD flow problems in channels with fully insulating or partially insulating and partially conducting walls, having rectangular, circular, elliptical or even arbitrary cross sections. MPC is a truly meshless and computationally efficient method. The maximum principle for the discrete harmonic operator in the meshfree point collocation method has been proven very recently, and the convergence proof for the numerical solution of the Poisson problem with Dirichlet boundary conditions have been attained also. Additionally, in the present work convergence is attained for Neumann and Robin boundary conditions, accordingly. The shape functions are constructed using the Moving Least Squares (MLS) approximation. The refinement procedure with meshless methods is obtained with an easily handled and fully automated manner. We present results for Hartmann number up to
10
5
. The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the exact solution and the conventional FEM and BEM, for the Dirichlet, Neumann and Robin boundary conditions of interior problems with simple or complex boundaries. |
---|---|
AbstractList | The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and irregular geometries subject to Dirichlet, Neumann and Robin boundary conditions. Toward this, the meshless point collocation method (MPCM) is used for MHD flow problems in channels with fully insulating or partially insulating and partially conducting walls, having rectangular, circular, elliptical or even arbitrary cross sections. MPC is a truly meshless and computationally efficient method. The maximum principle for the discrete harmonic operator in the meshfree point collocation method has been proven very recently, and the convergence proof for the numerical solution of the Poisson problem with Dirichlet boundary conditions have been attained also. Additionally, in the present work convergence is attained for Neumann and Robin boundary conditions, accordingly. The shape functions are constructed using the Moving Least Squares (MLS) approximation. The refinement procedure with meshless methods is obtained with an easily handled and fully automated manner. We present results for Hartmann number up to 10(5). The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the exact solution and the conventional FEM and BEM, for the Dirichlet, Neumann and Robin boundary conditions of interior problems with simple or complex boundaries. The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and irregular geometries subject to Dirichlet, Neumann and Robin boundary conditions. Toward this, the meshless point collocation method (MPCM) is used for MHD flow problems in channels with fully insulating or partially insulating and partially conducting walls, having rectangular, circular, elliptical or even arbitrary cross sections. MPC is a truly meshless and computationally efficient method. The maximum principle for the discrete harmonic operator in the meshfree point collocation method has been proven very recently, and the convergence proof for the numerical solution of the Poisson problem with Dirichlet boundary conditions have been attained also. Additionally, in the present work convergence is attained for Neumann and Robin boundary conditions, accordingly. The shape functions are constructed using the Moving Least Squares (MLS) approximation. The refinement procedure with meshless methods is obtained with an easily handled and fully automated manner. We present results for Hartmann number up to 10 5 . The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the exact solution and the conventional FEM and BEM, for the Dirichlet, Neumann and Robin boundary conditions of interior problems with simple or complex boundaries. The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and irregular geometries subject to Dirichlet, Neumann and Robin boundary conditions. Toward this, the meshless point collocation method (MPCM) is used for MHD flow problems in channels with fully insulating or partially insulating and partially conducting walls, having rectangular, circular, elliptical or even arbitrary cross sections. MPC is a truly meshless and computationally efficient method. The maximum principle for the discrete harmonic operator in the meshfree point collocation method has been proven very recently, and the convergence proof for the numerical solution of the Poisson problem with Dirichlet boundary conditions have been attained also. Additionally, in the present work convergence is attained for Neumann and Robin boundary conditions, accordingly. The shape functions are constructed using the Moving Least Squares (MLS) approximation. The refinement procedure with meshless methods is obtained with an easily handled and fully automated manner. We present results for Hartmann number up to 10{sup 5}. The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the exact solution and the conventional FEM and BEM, for the Dirichlet, Neumann and Robin boundary conditions of interior problems with simple or complex boundaries. |
Author | Skouras, E.D. Nikiforidis, G.C. Bourantas, G.C. Loukopoulos, V.C. |
Author_xml | – sequence: 1 givenname: G.C. surname: Bourantas fullname: Bourantas, G.C. email: bourantas@med.upatras.gr organization: Department of Medical Physics, School of Medicine, University of Patras, GR 26500, Rion, Greece – sequence: 2 givenname: E.D. surname: Skouras fullname: Skouras, E.D. email: eugene@iceht.forth.gr organization: Department of Chemical Engineering, University of Patras, GR 26500, Rion, Greece – sequence: 3 givenname: V.C. surname: Loukopoulos fullname: Loukopoulos, V.C. email: vxloukop@physics.upatras.gr organization: Department of Physics, University of Patras, Patras, GR 26500, Rion, Greece – sequence: 4 givenname: G.C. surname: Nikiforidis fullname: Nikiforidis, G.C. email: gnikif@med.upatras.gr organization: Department of Medical Physics, School of Medicine, University of Patras, GR 26500, Rion, Greece |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22011558$$DView record in Pascal Francis https://www.osti.gov/biblio/21308121$$D View this record in Osti.gov |
BookMark | eNp9kT1vFDEQhi0UJC4HP4DOEoKKXfyxH7aoovARpCAaqC3v7Fjn05592L5E-fd4dRFFijQeF88zmpn3klyEGJCQt5y1nPHh077dw7EVjOmWjS2T_AXZcKZZI0Y-XJANY4I3Wmv-ilzmvGeMqb5TGwJXgVqAU7IFP9Jc7LQgtWGm6JwHj6HQOR6sD015OCI9YN4tmHP9lF2cqYuJlh3SHJdT8THQ6OjPmy_ULfGeHlOs3Q75NXnp7JLxzWPdkj_fvv6-vmluf33_cX1120AndGlk3yMARwe6F72U8wSjVJMcWNerwXY9uK4DGKbBTlqhHK3USjilFLgB515uybtz35iLNxl8QdhBDAGhGMElU7y-W_LhTNXx_p4wF3PwGXBZbMB4ykZ2SsuhExV8_wjaDHZxyQbw2RyTP9j0YIRgnPe9qhw_c5Bizgndf4Qzs4Zj9qaGY9ZwDBtNDac64xOnTmvXC5Zk_fKs-flsYr3knce0LooBcPZp3XOO_hn7HzS9qvw |
CODEN | JCTPAH |
CitedBy_id | crossref_primary_10_1016_j_camwa_2015_08_032 crossref_primary_10_1016_j_amc_2025_129334 crossref_primary_10_1016_j_jocs_2024_102381 crossref_primary_10_3390_app10051633 crossref_primary_10_1007_s10483_023_2970_6 crossref_primary_10_1016_j_cpc_2012_12_002 crossref_primary_10_1016_j_apm_2012_05_020 crossref_primary_10_1016_j_enganabound_2010_09_007 crossref_primary_10_1002_nme_4309 crossref_primary_10_1007_s00366_024_01969_1 crossref_primary_10_1016_j_enganabound_2020_03_021 crossref_primary_10_1016_j_amc_2022_127293 crossref_primary_10_1016_j_jcp_2010_10_003 crossref_primary_10_1016_j_matcom_2021_08_009 crossref_primary_10_1016_j_camwa_2025_02_016 crossref_primary_10_1016_j_apnum_2019_07_003 crossref_primary_10_1007_s00466_010_0535_8 crossref_primary_10_3390_math8020270 crossref_primary_10_1016_j_amc_2015_02_084 crossref_primary_10_1063_5_0250997 crossref_primary_10_1080_17797179_2017_1306831 crossref_primary_10_1016_j_compfluid_2012_06_022 crossref_primary_10_1002_fld_4834 crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_043 crossref_primary_10_1016_j_euromechflu_2021_05_007 crossref_primary_10_1007_s00466_013_0886_z crossref_primary_10_1016_j_enganabound_2012_03_014 crossref_primary_10_1016_j_euromechflu_2022_01_004 crossref_primary_10_1016_j_apsusc_2012_03_071 crossref_primary_10_1002_fld_2689 crossref_primary_10_1177_1687814015591319 crossref_primary_10_1016_j_amc_2018_11_054 crossref_primary_10_1016_j_enganabound_2011_11_005 crossref_primary_10_3390_sym12071083 crossref_primary_10_1016_j_apnum_2018_10_004 crossref_primary_10_1002_num_22215 |
Cites_doi | 10.1016/j.enganabound.2004.08.004 10.1016/j.cam.2006.03.013 10.1016/0045-7825(94)90056-6 10.1016/S0168-9274(00)00054-4 10.1017/S0305004100028139 10.1093/mnras/181.3.375 10.1002/(SICI)1097-0207(20000228)47:6<1083::AID-NME816>3.0.CO;2-N 10.1016/S0045-7825(96)01087-0 10.1016/j.cma.2004.06.035 10.1002/nme.101 10.1002/nme.1620381005 10.1007/s004660050351 10.1016/S0045-7825(96)01085-7 10.1007/BF00364252 10.1023/A:1018981221740 10.1002/nme.1620180714 10.1007/s004660050457 10.1016/j.jcp.2005.03.007 10.1002/fld.1650200824 10.1137/04060809X 10.1017/S0022112062000889 10.1137/0704008 10.1016/j.enganabound.2005.12.001 |
ContentType | Journal Article |
Copyright | 2009 Elsevier Inc. 2009 INIST-CNRS |
Copyright_xml | – notice: 2009 Elsevier Inc. – notice: 2009 INIST-CNRS |
DBID | AAYXX CITATION IQODW 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D OTOTI |
DOI | 10.1016/j.jcp.2009.07.031 |
DatabaseName | CrossRef Pascal-Francis Computer and Information Systems Abstracts Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ProQuest Computer Science Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional OSTI.GOV |
DatabaseTitle | CrossRef Technology Research Database Computer and Information Systems Abstracts – Academic Electronics & Communications Abstracts ProQuest Computer Science Collection Computer and Information Systems Abstracts Solid State and Superconductivity Abstracts Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Professional |
DatabaseTitleList | Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1090-2716 |
EndPage | 8160 |
ExternalDocumentID | 21308121 22011558 10_1016_j_jcp_2009_07_031 S0021999109004227 |
GroupedDBID | --K --M -~X .~1 0R~ 1B1 1RT 1~. 1~5 29K 4.4 457 4G. 5GY 5VS 6OB 6TJ 7-5 71M 8P~ 8WZ 9JN A6W AABNK AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXUO AAYFN ABBOA ABFNM ABFRF ABJNI ABMAC ABNEU ABTAH ABXDB ABYKQ ACBEA ACDAQ ACFVG ACGFO ACGFS ACNCT ACNNM ACRLP ACZNC ADBBV ADEZE ADFGL ADIYS ADJOM ADMUD AEBSH AEFWE AEKER AENEX AFFNX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHZHX AIALX AIEXJ AIKHN AITUG AIVDX AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ASPBG AVWKF AXJTR AZFZN BBWZM BKOJK BLXMC CAG COF CS3 D-I DM4 DU5 EBS EFBJH EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q GBLVA GBOLZ HLZ HME HMV HVGLF HZ~ IHE J1W K-O KOM LG5 LX9 LZ4 M37 M41 MO0 N9A NDZJH O-L O9- OAUVE OGIMB OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SBC SDF SDG SDP SES SEW SHN SPC SPCBC SPD SPG SSQ SSV SSZ T5K T9H TN5 UPT UQL WUQ XFK YQT ZMT ZU3 ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH EFKBS IQODW 7SC 7SP 7U5 8FD JQ2 L7M L~C L~D AALMO ABPIF ABPTK ABQIS EFJIC OTOTI |
ID | FETCH-LOGICAL-c429t-355ecc1efc952533dbc738b3604586a45cf44cc6b6ab98e37a3982f888cf6ed53 |
IEDL.DBID | AIKHN |
ISSN | 0021-9991 |
IngestDate | Fri May 19 01:42:26 EDT 2023 Tue Aug 05 10:33:10 EDT 2025 Mon Jul 21 09:17:16 EDT 2025 Tue Jul 01 04:33:29 EDT 2025 Thu Apr 24 22:54:25 EDT 2025 Fri Feb 23 02:35:02 EST 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Keywords | MLS MHD 47.11.−j 02.60.−x 52.30Cv 47.65.−d Point collocation Hartmann number Meshless Operator Magnetohydrodynamics Boundary conditions Robin problem 02.60.-x Calculation methods Exact solution MHD flow Algorithms Numerical solution Meshless method Dirichlet problem Calculation 47.11.-j Cross sections 47.65.-d |
Language | English |
License | https://www.elsevier.com/tdm/userlicense/1.0 CC BY 4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-355ecc1efc952533dbc738b3604586a45cf44cc6b6ab98e37a3982f888cf6ed53 |
Notes | ObjectType-Article-2 SourceType-Scholarly Journals-1 ObjectType-Feature-1 content type line 23 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0021999109004227 |
PQID | 34893642 |
PQPubID | 23500 |
PageCount | 26 |
ParticipantIDs | osti_scitechconnect_21308121 proquest_miscellaneous_34893642 pascalfrancis_primary_22011558 crossref_primary_10_1016_j_jcp_2009_07_031 crossref_citationtrail_10_1016_j_jcp_2009_07_031 elsevier_sciencedirect_doi_10_1016_j_jcp_2009_07_031 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2009-11-20 |
PublicationDateYYYYMMDD | 2009-11-20 |
PublicationDate_xml | – month: 11 year: 2009 text: 2009-11-20 day: 20 |
PublicationDecade | 2000 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington – name: United States |
PublicationTitle | Journal of computational physics |
PublicationYear | 2009 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Lu, Belytschko, Gu (bib5) 1994; 113 Bourantas, Skouras, Nikiforidis (bib26) 2009; 43 Singh, Lal (bib20) 1979; 17 Gold (bib31) 1962; 13 Liu, Jun, Zhang (bib6) 1995; 20 Melenk, Babuška (bib8) 1996; 139 Atluri, Liu, Han (bib29) 2006; 15 Liu, Li, Belytschko (bib10) 1996; 143 Aluru (bib13) 2000; 47 Armentano, Durán (bib32) 2001; 37 Blums, Mikhailov, Ozols (bib17) 1987 Kim, Liu (bib24) 2006; 44 Barrett (bib23) 2001; 50 Nesliturk, Tezer-Sezgin (bib22) 2005; 194 Singh, Lal (bib21) 1982; 18 Shercliff (bib30) 1953; 49 Young, Chen, Lee (bib2) 2005; 209 Atluri, Kim, Cho (bib12) 1999; 24 Tezer-Sezgin, Han Aydın (bib18) 2006; 30 Bozkaya, Tezer-Sezgin (bib19) 2007; 203 Liu, Jun, Li, Adee, Belytschko (bib7) 1995; 38 Atluri, Liu, Han (bib28) 2006; 14 Gingold, Monaghan (bib3) 1977; 181 Nayroles, Touzot, Villon (bib4) 1992; 10 Duarte, Oden (bib9) 1996; 139 Zhu, Zhang, Atluri (bib11) 1998; 22 Liu (bib25) 2002 Davinson (bib16) 2001 Faireeather, Karageorghis (bib14) 1998; 9 Fox, Henrici, Moler (bib15) 1967; 4 Chantasiriwan (bib1) 2004; 28 Atluri (bib27) 2004 Lu (10.1016/j.jcp.2009.07.031_bib5) 1994; 113 Nayroles (10.1016/j.jcp.2009.07.031_bib4) 1992; 10 Davinson (10.1016/j.jcp.2009.07.031_bib16) 2001 Atluri (10.1016/j.jcp.2009.07.031_bib29) 2006; 15 Singh (10.1016/j.jcp.2009.07.031_bib20) 1979; 17 Young (10.1016/j.jcp.2009.07.031_bib2) 2005; 209 Faireeather (10.1016/j.jcp.2009.07.031_bib14) 1998; 9 Kim (10.1016/j.jcp.2009.07.031_bib24) 2006; 44 Chantasiriwan (10.1016/j.jcp.2009.07.031_bib1) 2004; 28 Bozkaya (10.1016/j.jcp.2009.07.031_bib19) 2007; 203 Liu (10.1016/j.jcp.2009.07.031_bib7) 1995; 38 Nesliturk (10.1016/j.jcp.2009.07.031_bib22) 2005; 194 Aluru (10.1016/j.jcp.2009.07.031_bib13) 2000; 47 Shercliff (10.1016/j.jcp.2009.07.031_bib30) 1953; 49 Liu (10.1016/j.jcp.2009.07.031_bib6) 1995; 20 Liu (10.1016/j.jcp.2009.07.031_bib10) 1996; 143 Gold (10.1016/j.jcp.2009.07.031_bib31) 1962; 13 Melenk (10.1016/j.jcp.2009.07.031_bib8) 1996; 139 Zhu (10.1016/j.jcp.2009.07.031_bib11) 1998; 22 Duarte (10.1016/j.jcp.2009.07.031_bib9) 1996; 139 Atluri (10.1016/j.jcp.2009.07.031_bib28) 2006; 14 Blums (10.1016/j.jcp.2009.07.031_bib17) 1987 Fox (10.1016/j.jcp.2009.07.031_bib15) 1967; 4 Liu (10.1016/j.jcp.2009.07.031_bib25) 2002 Tezer-Sezgin (10.1016/j.jcp.2009.07.031_bib18) 2006; 30 Singh (10.1016/j.jcp.2009.07.031_bib21) 1982; 18 Atluri (10.1016/j.jcp.2009.07.031_bib27) 2004 Bourantas (10.1016/j.jcp.2009.07.031_bib26) 2009; 43 Gingold (10.1016/j.jcp.2009.07.031_bib3) 1977; 181 Armentano (10.1016/j.jcp.2009.07.031_bib32) 2001; 37 Atluri (10.1016/j.jcp.2009.07.031_bib12) 1999; 24 Barrett (10.1016/j.jcp.2009.07.031_bib23) 2001; 50 |
References_xml | – volume: 37 start-page: 397 year: 2001 end-page: 416 ident: bib32 article-title: Error estimates for moving least square approximations publication-title: Appl. Numer. Math. – volume: 47 start-page: 1083 year: 2000 end-page: 1121 ident: bib13 article-title: A point collocation method based on reproducing kernel approximations publication-title: Int. J. Numer. Meth. Eng. – volume: 28 start-page: 1417 year: 2004 end-page: 1425 ident: bib1 article-title: Cartesian grid methods using radial basis functions for solving Poisson, Helmholtz, and diffusion–convection equations publication-title: Eng. Anal. Bound. Elem. – volume: 20 start-page: 1081 year: 1995 end-page: 1106 ident: bib6 article-title: Reproducing kernel particle methods publication-title: Int. J. Numer. Meth. Fluids – volume: 50 start-page: 1893 year: 2001 end-page: 1906 ident: bib23 article-title: Duct flow with a transverse magnetic field at high Hartmann numbers publication-title: Int. J. Numer. Meth. Eng. – volume: 44 start-page: 515 year: 2006 end-page: 539 ident: bib24 article-title: Maximum principle and convergence analysis for the meshfree point collocation method publication-title: SIAM J. Numer. Anal. – volume: 15 start-page: 1 year: 2006 end-page: 16 ident: bib29 article-title: Meshless local Petrov–Galerkin (MLPG) mixed finite differences method for solid mechanics publication-title: CMES: Comp. Model. Eng. – year: 1987 ident: bib17 article-title: Heat and Mass Transfer in MHD Flows – volume: 30 start-page: 411 year: 2006 end-page: 418 ident: bib18 article-title: Solution of magnetohydrodynamic flow problems using the boundary element method publication-title: Eng. Anal. Bound. Elem. – volume: 18 start-page: 1104 year: 1982 end-page: 1111 ident: bib21 article-title: Finite element method in MHD channel flow problems publication-title: Int. J. Numer. Meth. Eng. – volume: 9 start-page: 69 year: 1998 end-page: 95 ident: bib14 article-title: The method of fundamental solutions for elliptic boundary value problems publication-title: Adv. Comput. Math. – volume: 49 start-page: 136 year: 1953 end-page: 144 ident: bib30 article-title: Steady motion of conducting fluids in pipes under transverse magnetic fields publication-title: Proc. Camb. Philos. Soc. – volume: 209 start-page: 290 year: 2005 end-page: 321 ident: bib2 article-title: Novel meshless method for solving the potential problems with arbitrary domain publication-title: J. Comput. Phys. – volume: 113 start-page: 397 year: 1994 end-page: 414 ident: bib5 article-title: A new implementation of the element free Galerkin method publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 139 start-page: 289 year: 1996 end-page: 314 ident: bib8 article-title: The partition of unity finite element method: basic theory and applications publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 22 start-page: 174 year: 1998 end-page: 186 ident: bib11 article-title: A meshless local boundary integral equation (LBIE) method for solving nonlinear problems publication-title: Comput. Mech. – volume: 13 start-page: 505 year: 1962 end-page: 512 ident: bib31 article-title: Magnetohydrodynamic pipe flow I publication-title: J. Fluid Mech. – volume: 17 start-page: 184 year: 1979 end-page: 189 ident: bib20 article-title: MHD axial flow in a triangular pipe under transverse magnetic field parallel to a side of the triangle publication-title: Ind. J. Technol. – volume: 139 start-page: 237 year: 1996 end-page: 262 ident: bib9 article-title: An h–p adaptive method using clouds publication-title: Comput. Meth. Appl. Mech. Eng. – year: 2004 ident: bib27 article-title: The Mesheless Method (MLPG) for Domain and BIE Discretizations – volume: 143 start-page: 422 year: 1996 end-page: 433 ident: bib10 article-title: Moving least square reproducing kernel methods (I) methodology and convergence publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 24 start-page: 348 year: 1999 end-page: 372 ident: bib12 article-title: A critical assessment of the truly meshless local Petrov–Galerkin (MLPG) methods publication-title: Comput. Mech. – volume: 14 start-page: 141 year: 2006 end-page: 152 ident: bib28 article-title: Meshless local Petrov–Galerkin (MLPG) mixed collocation method for elasticity problems publication-title: CMES: Comp. Model. Eng. – volume: 203 start-page: 125 year: 2007 end-page: 144 ident: bib19 article-title: Fundamental solution for coupled magnetohydrodynamic flow equations publication-title: J. Comput. Appl. Math. – volume: 10 start-page: 307 year: 1992 end-page: 318 ident: bib4 article-title: Generalizing the finite element method: diffuse approximation and diffuse elements publication-title: Comput. Mech. – volume: 38 start-page: 1655 year: 1995 end-page: 1679 ident: bib7 article-title: Reproducing kernel particle methods for structural dynamics publication-title: Int. J. Numer. Meth. Eng. – volume: 181 start-page: 275 year: 1977 end-page: 389 ident: bib3 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon. Not. Roy. Astron. Soc. – year: 2001 ident: bib16 article-title: An Introduction to Magnetohydrodynamics – volume: 194 start-page: 1201 year: 2005 end-page: 1224 ident: bib22 article-title: The finite element method for MHD flow at high Hartmann numbers publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 43 start-page: 1 year: 2009 end-page: 25 ident: bib26 article-title: Adaptive support domain implementation on the moving least squares approximation for Mfree methods applied on elliptic and parabolic PDE problems using strong-form description publication-title: CMES: Comput. Model. Eng. – volume: 4 start-page: 89 year: 1967 end-page: 102 ident: bib15 article-title: Approximations and bounds for eigenvalues of elliptic operators publication-title: SIAM J. Numer. Anal. – year: 2002 ident: bib25 article-title: Mesh Free Methods, Moving beyond the Finite Elements Method – volume: 28 start-page: 1417 year: 2004 ident: 10.1016/j.jcp.2009.07.031_bib1 article-title: Cartesian grid methods using radial basis functions for solving Poisson, Helmholtz, and diffusion–convection equations publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2004.08.004 – volume: 203 start-page: 125 year: 2007 ident: 10.1016/j.jcp.2009.07.031_bib19 article-title: Fundamental solution for coupled magnetohydrodynamic flow equations publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2006.03.013 – year: 2002 ident: 10.1016/j.jcp.2009.07.031_bib25 – volume: 113 start-page: 397 year: 1994 ident: 10.1016/j.jcp.2009.07.031_bib5 article-title: A new implementation of the element free Galerkin method publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/0045-7825(94)90056-6 – volume: 37 start-page: 397 year: 2001 ident: 10.1016/j.jcp.2009.07.031_bib32 article-title: Error estimates for moving least square approximations publication-title: Appl. Numer. Math. doi: 10.1016/S0168-9274(00)00054-4 – volume: 49 start-page: 136 year: 1953 ident: 10.1016/j.jcp.2009.07.031_bib30 article-title: Steady motion of conducting fluids in pipes under transverse magnetic fields publication-title: Proc. Camb. Philos. Soc. doi: 10.1017/S0305004100028139 – volume: 181 start-page: 275 year: 1977 ident: 10.1016/j.jcp.2009.07.031_bib3 article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars publication-title: Mon. Not. Roy. Astron. Soc. doi: 10.1093/mnras/181.3.375 – volume: 47 start-page: 1083 year: 2000 ident: 10.1016/j.jcp.2009.07.031_bib13 article-title: A point collocation method based on reproducing kernel approximations publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/(SICI)1097-0207(20000228)47:6<1083::AID-NME816>3.0.CO;2-N – volume: 139 start-page: 289 year: 1996 ident: 10.1016/j.jcp.2009.07.031_bib8 article-title: The partition of unity finite element method: basic theory and applications publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/S0045-7825(96)01087-0 – volume: 194 start-page: 1201 year: 2005 ident: 10.1016/j.jcp.2009.07.031_bib22 article-title: The finite element method for MHD flow at high Hartmann numbers publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/j.cma.2004.06.035 – volume: 50 start-page: 1893 year: 2001 ident: 10.1016/j.jcp.2009.07.031_bib23 article-title: Duct flow with a transverse magnetic field at high Hartmann numbers publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.101 – volume: 14 start-page: 141 year: 2006 ident: 10.1016/j.jcp.2009.07.031_bib28 article-title: Meshless local Petrov–Galerkin (MLPG) mixed collocation method for elasticity problems publication-title: CMES: Comp. Model. Eng. – volume: 38 start-page: 1655 year: 1995 ident: 10.1016/j.jcp.2009.07.031_bib7 article-title: Reproducing kernel particle methods for structural dynamics publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1620381005 – volume: 22 start-page: 174 year: 1998 ident: 10.1016/j.jcp.2009.07.031_bib11 article-title: A meshless local boundary integral equation (LBIE) method for solving nonlinear problems publication-title: Comput. Mech. doi: 10.1007/s004660050351 – volume: 139 start-page: 237 year: 1996 ident: 10.1016/j.jcp.2009.07.031_bib9 article-title: An h–p adaptive method using clouds publication-title: Comput. Meth. Appl. Mech. Eng. doi: 10.1016/S0045-7825(96)01085-7 – year: 2004 ident: 10.1016/j.jcp.2009.07.031_bib27 – volume: 10 start-page: 307 year: 1992 ident: 10.1016/j.jcp.2009.07.031_bib4 article-title: Generalizing the finite element method: diffuse approximation and diffuse elements publication-title: Comput. Mech. doi: 10.1007/BF00364252 – volume: 9 start-page: 69 issue: 1–2 year: 1998 ident: 10.1016/j.jcp.2009.07.031_bib14 article-title: The method of fundamental solutions for elliptic boundary value problems publication-title: Adv. Comput. Math. doi: 10.1023/A:1018981221740 – volume: 17 start-page: 184 year: 1979 ident: 10.1016/j.jcp.2009.07.031_bib20 article-title: MHD axial flow in a triangular pipe under transverse magnetic field parallel to a side of the triangle publication-title: Ind. J. Technol. – volume: 18 start-page: 1104 year: 1982 ident: 10.1016/j.jcp.2009.07.031_bib21 article-title: Finite element method in MHD channel flow problems publication-title: Int. J. Numer. Meth. Eng. doi: 10.1002/nme.1620180714 – volume: 24 start-page: 348 year: 1999 ident: 10.1016/j.jcp.2009.07.031_bib12 article-title: A critical assessment of the truly meshless local Petrov–Galerkin (MLPG) methods publication-title: Comput. Mech. doi: 10.1007/s004660050457 – volume: 209 start-page: 290 year: 2005 ident: 10.1016/j.jcp.2009.07.031_bib2 article-title: Novel meshless method for solving the potential problems with arbitrary domain publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2005.03.007 – volume: 20 start-page: 1081 year: 1995 ident: 10.1016/j.jcp.2009.07.031_bib6 article-title: Reproducing kernel particle methods publication-title: Int. J. Numer. Meth. Fluids doi: 10.1002/fld.1650200824 – year: 1987 ident: 10.1016/j.jcp.2009.07.031_bib17 – volume: 143 start-page: 422 year: 1996 ident: 10.1016/j.jcp.2009.07.031_bib10 article-title: Moving least square reproducing kernel methods (I) methodology and convergence publication-title: Comput. Meth. Appl. Mech. Eng. – volume: 44 start-page: 515 year: 2006 ident: 10.1016/j.jcp.2009.07.031_bib24 article-title: Maximum principle and convergence analysis for the meshfree point collocation method publication-title: SIAM J. Numer. Anal. doi: 10.1137/04060809X – volume: 13 start-page: 505 year: 1962 ident: 10.1016/j.jcp.2009.07.031_bib31 article-title: Magnetohydrodynamic pipe flow I publication-title: J. Fluid Mech. doi: 10.1017/S0022112062000889 – volume: 4 start-page: 89 year: 1967 ident: 10.1016/j.jcp.2009.07.031_bib15 article-title: Approximations and bounds for eigenvalues of elliptic operators publication-title: SIAM J. Numer. Anal. doi: 10.1137/0704008 – year: 2001 ident: 10.1016/j.jcp.2009.07.031_bib16 – volume: 15 start-page: 1 year: 2006 ident: 10.1016/j.jcp.2009.07.031_bib29 article-title: Meshless local Petrov–Galerkin (MLPG) mixed finite differences method for solid mechanics publication-title: CMES: Comp. Model. Eng. – volume: 30 start-page: 411 year: 2006 ident: 10.1016/j.jcp.2009.07.031_bib18 article-title: Solution of magnetohydrodynamic flow problems using the boundary element method publication-title: Eng. Anal. Bound. Elem. doi: 10.1016/j.enganabound.2005.12.001 – volume: 43 start-page: 1 year: 2009 ident: 10.1016/j.jcp.2009.07.031_bib26 article-title: Adaptive support domain implementation on the moving least squares approximation for Mfree methods applied on elliptic and parabolic PDE problems using strong-form description publication-title: CMES: Comput. Model. Eng. |
SSID | ssj0008548 |
Score | 2.156089 |
Snippet | The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and... |
SourceID | osti proquest pascalfrancis crossref elsevier |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 8135 |
SubjectTerms | ALGORITHMS APPROXIMATIONS BOUNDARY CONDITIONS Computational techniques CONVERGENCE CROSS SECTIONS DIRICHLET PROBLEM Exact sciences and technology EXACT SOLUTIONS FUNCTIONS GEOMETRY HARTMANN NUMBER LEAST SQUARE FIT MAGNETOHYDRODYNAMICS MATHEMATICAL METHODS AND COMPUTING Mathematical methods in physics Meshless MHD MLS Physics Point collocation |
Title | An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems |
URI | https://dx.doi.org/10.1016/j.jcp.2009.07.031 https://www.proquest.com/docview/34893642 https://www.osti.gov/biblio/21308121 |
Volume | 228 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcumlhT7ULbD1oaeqgcSPPI4rCtq2glORuFm2Y6uLlgSRXfXW385M4qyEqnLoNclIlsfzfV_s8QzAJ144qYq0SIKwaSJ5rRKLvJxIK6yrPDKIoa2By6t8cS2_36ibHTgb78JQWmXE_gHTe7SOT07jbJ7eL5d0x5fTHXrKLKRCVsUu7HFR5eUE9ubffiyutoBcKjkAMmUjoMF4uNmned26sWplcZKK7F_0NGkx4ihx0nQ4d2FoevEXfvekdLEPL6OaZPNhwAew45vX8CoqSxbjtnsDbt4w49yG6kJ8YSgI7coz09TM9xUkkHhY3d6ZZZPQliy7892vFUIgG_pLMxS2DIUiG9cpawO7XHxlYdX-ZrElTfcWri_Of54tktheIXFIQusElQb6L_PBVYqj6qutK0RpRU5np7mRygUpncttbmxVelEYUZU84C-zC7mvlXgHk6Zt_HtgsuIBAzmty6KWpUDgUrTbzPNQW5OKagrpOKvaxdrj1AJjpccks1uNjqCemJVOC42OmMLnrcn9UHjjuY_l6Cr9ZPVoJIbnzI7IrWRCFXMdpRahDUdeR92Dr2dP3L0dByfVpFQ5hY-j_zVGJR21mMa3m04LqumDv3Yf_m9gh_CiP7XKMkSxI5isHzb-GMXP2s5g9-RPNotL_BGMTAGC |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QEufKMulNYHTojQbGzHyXFVqFLa3VMr9WbZji222iYV2RV_n5nEWalC9MA1yUiWx_PmxR6_AfiUKSekSlUSuE0TkdUysZiXE2G5daXHDGJoa2CxzKtr8eNG3uzB6XgXhsoqI_YPmN6jdXxyEmfz5H61oju-Gd2hp8pCErJST2Cf1KnEBPbn5xfVcgfIhRQDIFM1AhqMh5t9mdetG1Ur1deUz_6VniYtRhwVTpoO5y4MTS_-wu8-KZ29hOeRTbL5MOBXsOeb1_AiMksW47Z7A27eMOPclnQhvjAkhHbtmWlq5nsFCUw8rG7vzKpJaEuW3fnu5xohkA39pRkSW4ZEkY3rlLWBLapvLKzb3yy2pOnewvXZ96vTKontFRKHSWiTINNA_818cKXMkPXV1ileWJ7T2WluhHRBCOdymxtbFp4rw8siC_jL7ELua8nfwaRpG38ATJRZwEBO60LVouAIXJJ2m7M81NakvJxCOs6qdlF7nFpgrPVYZHar0RHUE7PUqdLoiCl83pncD8Ibj30sRlfpB6tHY2J4zOyQ3EompJjrqLQIbTLM68h78PXRA3fvxpERa5KymMLx6H-NUUlHLabx7bbTnDR98Nfu_f8N7BieVleLS315vrz4AM_6E6zZDBHtECabX1v_EYnQxh7Fhf4HonQDag |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate%2C+stable+and+efficient+domain-type+meshless+method+for+the+solution+of+MHD+flow+problems&rft.jtitle=Journal+of+computational+physics&rft.au=Bourantas%2C+G+C&rft.au=Skouras%2C+E+D&rft.au=Loukopoulos%2C+V+C&rft.au=Nikiforidis%2C+G+C&rft.date=2009-11-20&rft.issn=0021-9991&rft.volume=228&rft.issue=21&rft.spage=8135&rft.epage=8160&rft_id=info:doi/10.1016%2Fj.jcp.2009.07.031&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon |