An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems

The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and irregular geometries subject to Dirichlet, Neumann and Robin boundary conditions. Toward this, the meshless point collocation method (MPCM) is us...

Full description

Saved in:
Bibliographic Details
Published inJournal of computational physics Vol. 228; no. 21; pp. 8135 - 8160
Main Authors Bourantas, G.C., Skouras, E.D., Loukopoulos, V.C., Nikiforidis, G.C.
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Inc 20.11.2009
Elsevier
Subjects
Online AccessGet full text
ISSN0021-9991
1090-2716
DOI10.1016/j.jcp.2009.07.031

Cover

Loading…
Abstract The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and irregular geometries subject to Dirichlet, Neumann and Robin boundary conditions. Toward this, the meshless point collocation method (MPCM) is used for MHD flow problems in channels with fully insulating or partially insulating and partially conducting walls, having rectangular, circular, elliptical or even arbitrary cross sections. MPC is a truly meshless and computationally efficient method. The maximum principle for the discrete harmonic operator in the meshfree point collocation method has been proven very recently, and the convergence proof for the numerical solution of the Poisson problem with Dirichlet boundary conditions have been attained also. Additionally, in the present work convergence is attained for Neumann and Robin boundary conditions, accordingly. The shape functions are constructed using the Moving Least Squares (MLS) approximation. The refinement procedure with meshless methods is obtained with an easily handled and fully automated manner. We present results for Hartmann number up to 10 5 . The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the exact solution and the conventional FEM and BEM, for the Dirichlet, Neumann and Robin boundary conditions of interior problems with simple or complex boundaries.
AbstractList The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and irregular geometries subject to Dirichlet, Neumann and Robin boundary conditions. Toward this, the meshless point collocation method (MPCM) is used for MHD flow problems in channels with fully insulating or partially insulating and partially conducting walls, having rectangular, circular, elliptical or even arbitrary cross sections. MPC is a truly meshless and computationally efficient method. The maximum principle for the discrete harmonic operator in the meshfree point collocation method has been proven very recently, and the convergence proof for the numerical solution of the Poisson problem with Dirichlet boundary conditions have been attained also. Additionally, in the present work convergence is attained for Neumann and Robin boundary conditions, accordingly. The shape functions are constructed using the Moving Least Squares (MLS) approximation. The refinement procedure with meshless methods is obtained with an easily handled and fully automated manner. We present results for Hartmann number up to 10(5). The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the exact solution and the conventional FEM and BEM, for the Dirichlet, Neumann and Robin boundary conditions of interior problems with simple or complex boundaries.
The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and irregular geometries subject to Dirichlet, Neumann and Robin boundary conditions. Toward this, the meshless point collocation method (MPCM) is used for MHD flow problems in channels with fully insulating or partially insulating and partially conducting walls, having rectangular, circular, elliptical or even arbitrary cross sections. MPC is a truly meshless and computationally efficient method. The maximum principle for the discrete harmonic operator in the meshfree point collocation method has been proven very recently, and the convergence proof for the numerical solution of the Poisson problem with Dirichlet boundary conditions have been attained also. Additionally, in the present work convergence is attained for Neumann and Robin boundary conditions, accordingly. The shape functions are constructed using the Moving Least Squares (MLS) approximation. The refinement procedure with meshless methods is obtained with an easily handled and fully automated manner. We present results for Hartmann number up to 10 5 . The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the exact solution and the conventional FEM and BEM, for the Dirichlet, Neumann and Robin boundary conditions of interior problems with simple or complex boundaries.
The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and irregular geometries subject to Dirichlet, Neumann and Robin boundary conditions. Toward this, the meshless point collocation method (MPCM) is used for MHD flow problems in channels with fully insulating or partially insulating and partially conducting walls, having rectangular, circular, elliptical or even arbitrary cross sections. MPC is a truly meshless and computationally efficient method. The maximum principle for the discrete harmonic operator in the meshfree point collocation method has been proven very recently, and the convergence proof for the numerical solution of the Poisson problem with Dirichlet boundary conditions have been attained also. Additionally, in the present work convergence is attained for Neumann and Robin boundary conditions, accordingly. The shape functions are constructed using the Moving Least Squares (MLS) approximation. The refinement procedure with meshless methods is obtained with an easily handled and fully automated manner. We present results for Hartmann number up to 10{sup 5}. The numerical evidences of the proposed meshless method demonstrate the accuracy of the solutions after comparing with the exact solution and the conventional FEM and BEM, for the Dirichlet, Neumann and Robin boundary conditions of interior problems with simple or complex boundaries.
Author Skouras, E.D.
Nikiforidis, G.C.
Bourantas, G.C.
Loukopoulos, V.C.
Author_xml – sequence: 1
  givenname: G.C.
  surname: Bourantas
  fullname: Bourantas, G.C.
  email: bourantas@med.upatras.gr
  organization: Department of Medical Physics, School of Medicine, University of Patras, GR 26500, Rion, Greece
– sequence: 2
  givenname: E.D.
  surname: Skouras
  fullname: Skouras, E.D.
  email: eugene@iceht.forth.gr
  organization: Department of Chemical Engineering, University of Patras, GR 26500, Rion, Greece
– sequence: 3
  givenname: V.C.
  surname: Loukopoulos
  fullname: Loukopoulos, V.C.
  email: vxloukop@physics.upatras.gr
  organization: Department of Physics, University of Patras, Patras, GR 26500, Rion, Greece
– sequence: 4
  givenname: G.C.
  surname: Nikiforidis
  fullname: Nikiforidis, G.C.
  email: gnikif@med.upatras.gr
  organization: Department of Medical Physics, School of Medicine, University of Patras, GR 26500, Rion, Greece
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=22011558$$DView record in Pascal Francis
https://www.osti.gov/biblio/21308121$$D View this record in Osti.gov
BookMark eNp9kT1vFDEQhi0UJC4HP4DOEoKKXfyxH7aoovARpCAaqC3v7Fjn05592L5E-fd4dRFFijQeF88zmpn3klyEGJCQt5y1nPHh077dw7EVjOmWjS2T_AXZcKZZI0Y-XJANY4I3Wmv-ilzmvGeMqb5TGwJXgVqAU7IFP9Jc7LQgtWGm6JwHj6HQOR6sD015OCI9YN4tmHP9lF2cqYuJlh3SHJdT8THQ6OjPmy_ULfGeHlOs3Q75NXnp7JLxzWPdkj_fvv6-vmluf33_cX1120AndGlk3yMARwe6F72U8wSjVJMcWNerwXY9uK4DGKbBTlqhHK3USjilFLgB515uybtz35iLNxl8QdhBDAGhGMElU7y-W_LhTNXx_p4wF3PwGXBZbMB4ykZ2SsuhExV8_wjaDHZxyQbw2RyTP9j0YIRgnPe9qhw_c5Bizgndf4Qzs4Zj9qaGY9ZwDBtNDac64xOnTmvXC5Zk_fKs-flsYr3knce0LooBcPZp3XOO_hn7HzS9qvw
CODEN JCTPAH
CitedBy_id crossref_primary_10_1016_j_camwa_2015_08_032
crossref_primary_10_1016_j_amc_2025_129334
crossref_primary_10_1016_j_jocs_2024_102381
crossref_primary_10_3390_app10051633
crossref_primary_10_1007_s10483_023_2970_6
crossref_primary_10_1016_j_cpc_2012_12_002
crossref_primary_10_1016_j_apm_2012_05_020
crossref_primary_10_1016_j_enganabound_2010_09_007
crossref_primary_10_1002_nme_4309
crossref_primary_10_1007_s00366_024_01969_1
crossref_primary_10_1016_j_enganabound_2020_03_021
crossref_primary_10_1016_j_amc_2022_127293
crossref_primary_10_1016_j_jcp_2010_10_003
crossref_primary_10_1016_j_matcom_2021_08_009
crossref_primary_10_1016_j_camwa_2025_02_016
crossref_primary_10_1016_j_apnum_2019_07_003
crossref_primary_10_1007_s00466_010_0535_8
crossref_primary_10_3390_math8020270
crossref_primary_10_1016_j_amc_2015_02_084
crossref_primary_10_1063_5_0250997
crossref_primary_10_1080_17797179_2017_1306831
crossref_primary_10_1016_j_compfluid_2012_06_022
crossref_primary_10_1002_fld_4834
crossref_primary_10_1016_j_ijheatmasstransfer_2017_05_043
crossref_primary_10_1016_j_euromechflu_2021_05_007
crossref_primary_10_1007_s00466_013_0886_z
crossref_primary_10_1016_j_enganabound_2012_03_014
crossref_primary_10_1016_j_euromechflu_2022_01_004
crossref_primary_10_1016_j_apsusc_2012_03_071
crossref_primary_10_1002_fld_2689
crossref_primary_10_1177_1687814015591319
crossref_primary_10_1016_j_amc_2018_11_054
crossref_primary_10_1016_j_enganabound_2011_11_005
crossref_primary_10_3390_sym12071083
crossref_primary_10_1016_j_apnum_2018_10_004
crossref_primary_10_1002_num_22215
Cites_doi 10.1016/j.enganabound.2004.08.004
10.1016/j.cam.2006.03.013
10.1016/0045-7825(94)90056-6
10.1016/S0168-9274(00)00054-4
10.1017/S0305004100028139
10.1093/mnras/181.3.375
10.1002/(SICI)1097-0207(20000228)47:6<1083::AID-NME816>3.0.CO;2-N
10.1016/S0045-7825(96)01087-0
10.1016/j.cma.2004.06.035
10.1002/nme.101
10.1002/nme.1620381005
10.1007/s004660050351
10.1016/S0045-7825(96)01085-7
10.1007/BF00364252
10.1023/A:1018981221740
10.1002/nme.1620180714
10.1007/s004660050457
10.1016/j.jcp.2005.03.007
10.1002/fld.1650200824
10.1137/04060809X
10.1017/S0022112062000889
10.1137/0704008
10.1016/j.enganabound.2005.12.001
ContentType Journal Article
Copyright 2009 Elsevier Inc.
2009 INIST-CNRS
Copyright_xml – notice: 2009 Elsevier Inc.
– notice: 2009 INIST-CNRS
DBID AAYXX
CITATION
IQODW
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
OTOTI
DOI 10.1016/j.jcp.2009.07.031
DatabaseName CrossRef
Pascal-Francis
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ProQuest Computer Science Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
OSTI.GOV
DatabaseTitle CrossRef
Technology Research Database
Computer and Information Systems Abstracts – Academic
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
Solid State and Superconductivity Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts Professional
DatabaseTitleList Technology Research Database


DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1090-2716
EndPage 8160
ExternalDocumentID 21308121
22011558
10_1016_j_jcp_2009_07_031
S0021999109004227
GroupedDBID --K
--M
-~X
.~1
0R~
1B1
1RT
1~.
1~5
29K
4.4
457
4G.
5GY
5VS
6OB
6TJ
7-5
71M
8P~
8WZ
9JN
A6W
AABNK
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXUO
AAYFN
ABBOA
ABFNM
ABFRF
ABJNI
ABMAC
ABNEU
ABTAH
ABXDB
ABYKQ
ACBEA
ACDAQ
ACFVG
ACGFO
ACGFS
ACNCT
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADFGL
ADIYS
ADJOM
ADMUD
AEBSH
AEFWE
AEKER
AENEX
AFFNX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AIVDX
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ASPBG
AVWKF
AXJTR
AZFZN
BBWZM
BKOJK
BLXMC
CAG
COF
CS3
D-I
DM4
DU5
EBS
EFBJH
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HME
HMV
HVGLF
HZ~
IHE
J1W
K-O
KOM
LG5
LX9
LZ4
M37
M41
MO0
N9A
NDZJH
O-L
O9-
OAUVE
OGIMB
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SBC
SDF
SDG
SDP
SES
SEW
SHN
SPC
SPCBC
SPD
SPG
SSQ
SSV
SSZ
T5K
T9H
TN5
UPT
UQL
WUQ
XFK
YQT
ZMT
ZU3
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
EFKBS
IQODW
7SC
7SP
7U5
8FD
JQ2
L7M
L~C
L~D
AALMO
ABPIF
ABPTK
ABQIS
EFJIC
OTOTI
ID FETCH-LOGICAL-c429t-355ecc1efc952533dbc738b3604586a45cf44cc6b6ab98e37a3982f888cf6ed53
IEDL.DBID AIKHN
ISSN 0021-9991
IngestDate Fri May 19 01:42:26 EDT 2023
Tue Aug 05 10:33:10 EDT 2025
Mon Jul 21 09:17:16 EDT 2025
Tue Jul 01 04:33:29 EDT 2025
Thu Apr 24 22:54:25 EDT 2025
Fri Feb 23 02:35:02 EST 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 21
Keywords MLS
MHD
47.11.−j
02.60.−x
52.30Cv
47.65.−d
Point collocation
Hartmann number
Meshless
Operator
Magnetohydrodynamics
Boundary conditions
Robin problem
02.60.-x
Calculation methods
Exact solution
MHD flow
Algorithms
Numerical solution
Meshless method
Dirichlet problem
Calculation
47.11.-j
Cross sections
47.65.-d
Language English
License https://www.elsevier.com/tdm/userlicense/1.0
CC BY 4.0
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-355ecc1efc952533dbc738b3604586a45cf44cc6b6ab98e37a3982f888cf6ed53
Notes ObjectType-Article-2
SourceType-Scholarly Journals-1
ObjectType-Feature-1
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S0021999109004227
PQID 34893642
PQPubID 23500
PageCount 26
ParticipantIDs osti_scitechconnect_21308121
proquest_miscellaneous_34893642
pascalfrancis_primary_22011558
crossref_primary_10_1016_j_jcp_2009_07_031
crossref_citationtrail_10_1016_j_jcp_2009_07_031
elsevier_sciencedirect_doi_10_1016_j_jcp_2009_07_031
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2009-11-20
PublicationDateYYYYMMDD 2009-11-20
PublicationDate_xml – month: 11
  year: 2009
  text: 2009-11-20
  day: 20
PublicationDecade 2000
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
– name: United States
PublicationTitle Journal of computational physics
PublicationYear 2009
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Lu, Belytschko, Gu (bib5) 1994; 113
Bourantas, Skouras, Nikiforidis (bib26) 2009; 43
Singh, Lal (bib20) 1979; 17
Gold (bib31) 1962; 13
Liu, Jun, Zhang (bib6) 1995; 20
Melenk, Babuška (bib8) 1996; 139
Atluri, Liu, Han (bib29) 2006; 15
Liu, Li, Belytschko (bib10) 1996; 143
Aluru (bib13) 2000; 47
Armentano, Durán (bib32) 2001; 37
Blums, Mikhailov, Ozols (bib17) 1987
Kim, Liu (bib24) 2006; 44
Barrett (bib23) 2001; 50
Nesliturk, Tezer-Sezgin (bib22) 2005; 194
Singh, Lal (bib21) 1982; 18
Shercliff (bib30) 1953; 49
Young, Chen, Lee (bib2) 2005; 209
Atluri, Kim, Cho (bib12) 1999; 24
Tezer-Sezgin, Han Aydın (bib18) 2006; 30
Bozkaya, Tezer-Sezgin (bib19) 2007; 203
Liu, Jun, Li, Adee, Belytschko (bib7) 1995; 38
Atluri, Liu, Han (bib28) 2006; 14
Gingold, Monaghan (bib3) 1977; 181
Nayroles, Touzot, Villon (bib4) 1992; 10
Duarte, Oden (bib9) 1996; 139
Zhu, Zhang, Atluri (bib11) 1998; 22
Liu (bib25) 2002
Davinson (bib16) 2001
Faireeather, Karageorghis (bib14) 1998; 9
Fox, Henrici, Moler (bib15) 1967; 4
Chantasiriwan (bib1) 2004; 28
Atluri (bib27) 2004
Lu (10.1016/j.jcp.2009.07.031_bib5) 1994; 113
Nayroles (10.1016/j.jcp.2009.07.031_bib4) 1992; 10
Davinson (10.1016/j.jcp.2009.07.031_bib16) 2001
Atluri (10.1016/j.jcp.2009.07.031_bib29) 2006; 15
Singh (10.1016/j.jcp.2009.07.031_bib20) 1979; 17
Young (10.1016/j.jcp.2009.07.031_bib2) 2005; 209
Faireeather (10.1016/j.jcp.2009.07.031_bib14) 1998; 9
Kim (10.1016/j.jcp.2009.07.031_bib24) 2006; 44
Chantasiriwan (10.1016/j.jcp.2009.07.031_bib1) 2004; 28
Bozkaya (10.1016/j.jcp.2009.07.031_bib19) 2007; 203
Liu (10.1016/j.jcp.2009.07.031_bib7) 1995; 38
Nesliturk (10.1016/j.jcp.2009.07.031_bib22) 2005; 194
Aluru (10.1016/j.jcp.2009.07.031_bib13) 2000; 47
Shercliff (10.1016/j.jcp.2009.07.031_bib30) 1953; 49
Liu (10.1016/j.jcp.2009.07.031_bib6) 1995; 20
Liu (10.1016/j.jcp.2009.07.031_bib10) 1996; 143
Gold (10.1016/j.jcp.2009.07.031_bib31) 1962; 13
Melenk (10.1016/j.jcp.2009.07.031_bib8) 1996; 139
Zhu (10.1016/j.jcp.2009.07.031_bib11) 1998; 22
Duarte (10.1016/j.jcp.2009.07.031_bib9) 1996; 139
Atluri (10.1016/j.jcp.2009.07.031_bib28) 2006; 14
Blums (10.1016/j.jcp.2009.07.031_bib17) 1987
Fox (10.1016/j.jcp.2009.07.031_bib15) 1967; 4
Liu (10.1016/j.jcp.2009.07.031_bib25) 2002
Tezer-Sezgin (10.1016/j.jcp.2009.07.031_bib18) 2006; 30
Singh (10.1016/j.jcp.2009.07.031_bib21) 1982; 18
Atluri (10.1016/j.jcp.2009.07.031_bib27) 2004
Bourantas (10.1016/j.jcp.2009.07.031_bib26) 2009; 43
Gingold (10.1016/j.jcp.2009.07.031_bib3) 1977; 181
Armentano (10.1016/j.jcp.2009.07.031_bib32) 2001; 37
Atluri (10.1016/j.jcp.2009.07.031_bib12) 1999; 24
Barrett (10.1016/j.jcp.2009.07.031_bib23) 2001; 50
References_xml – volume: 37
  start-page: 397
  year: 2001
  end-page: 416
  ident: bib32
  article-title: Error estimates for moving least square approximations
  publication-title: Appl. Numer. Math.
– volume: 47
  start-page: 1083
  year: 2000
  end-page: 1121
  ident: bib13
  article-title: A point collocation method based on reproducing kernel approximations
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 28
  start-page: 1417
  year: 2004
  end-page: 1425
  ident: bib1
  article-title: Cartesian grid methods using radial basis functions for solving Poisson, Helmholtz, and diffusion–convection equations
  publication-title: Eng. Anal. Bound. Elem.
– volume: 20
  start-page: 1081
  year: 1995
  end-page: 1106
  ident: bib6
  article-title: Reproducing kernel particle methods
  publication-title: Int. J. Numer. Meth. Fluids
– volume: 50
  start-page: 1893
  year: 2001
  end-page: 1906
  ident: bib23
  article-title: Duct flow with a transverse magnetic field at high Hartmann numbers
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 44
  start-page: 515
  year: 2006
  end-page: 539
  ident: bib24
  article-title: Maximum principle and convergence analysis for the meshfree point collocation method
  publication-title: SIAM J. Numer. Anal.
– volume: 15
  start-page: 1
  year: 2006
  end-page: 16
  ident: bib29
  article-title: Meshless local Petrov–Galerkin (MLPG) mixed finite differences method for solid mechanics
  publication-title: CMES: Comp. Model. Eng.
– year: 1987
  ident: bib17
  article-title: Heat and Mass Transfer in MHD Flows
– volume: 30
  start-page: 411
  year: 2006
  end-page: 418
  ident: bib18
  article-title: Solution of magnetohydrodynamic flow problems using the boundary element method
  publication-title: Eng. Anal. Bound. Elem.
– volume: 18
  start-page: 1104
  year: 1982
  end-page: 1111
  ident: bib21
  article-title: Finite element method in MHD channel flow problems
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 9
  start-page: 69
  year: 1998
  end-page: 95
  ident: bib14
  article-title: The method of fundamental solutions for elliptic boundary value problems
  publication-title: Adv. Comput. Math.
– volume: 49
  start-page: 136
  year: 1953
  end-page: 144
  ident: bib30
  article-title: Steady motion of conducting fluids in pipes under transverse magnetic fields
  publication-title: Proc. Camb. Philos. Soc.
– volume: 209
  start-page: 290
  year: 2005
  end-page: 321
  ident: bib2
  article-title: Novel meshless method for solving the potential problems with arbitrary domain
  publication-title: J. Comput. Phys.
– volume: 113
  start-page: 397
  year: 1994
  end-page: 414
  ident: bib5
  article-title: A new implementation of the element free Galerkin method
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 139
  start-page: 289
  year: 1996
  end-page: 314
  ident: bib8
  article-title: The partition of unity finite element method: basic theory and applications
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 22
  start-page: 174
  year: 1998
  end-page: 186
  ident: bib11
  article-title: A meshless local boundary integral equation (LBIE) method for solving nonlinear problems
  publication-title: Comput. Mech.
– volume: 13
  start-page: 505
  year: 1962
  end-page: 512
  ident: bib31
  article-title: Magnetohydrodynamic pipe flow I
  publication-title: J. Fluid Mech.
– volume: 17
  start-page: 184
  year: 1979
  end-page: 189
  ident: bib20
  article-title: MHD axial flow in a triangular pipe under transverse magnetic field parallel to a side of the triangle
  publication-title: Ind. J. Technol.
– volume: 139
  start-page: 237
  year: 1996
  end-page: 262
  ident: bib9
  article-title: An h–p adaptive method using clouds
  publication-title: Comput. Meth. Appl. Mech. Eng.
– year: 2004
  ident: bib27
  article-title: The Mesheless Method (MLPG) for Domain and BIE Discretizations
– volume: 143
  start-page: 422
  year: 1996
  end-page: 433
  ident: bib10
  article-title: Moving least square reproducing kernel methods (I) methodology and convergence
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 24
  start-page: 348
  year: 1999
  end-page: 372
  ident: bib12
  article-title: A critical assessment of the truly meshless local Petrov–Galerkin (MLPG) methods
  publication-title: Comput. Mech.
– volume: 14
  start-page: 141
  year: 2006
  end-page: 152
  ident: bib28
  article-title: Meshless local Petrov–Galerkin (MLPG) mixed collocation method for elasticity problems
  publication-title: CMES: Comp. Model. Eng.
– volume: 203
  start-page: 125
  year: 2007
  end-page: 144
  ident: bib19
  article-title: Fundamental solution for coupled magnetohydrodynamic flow equations
  publication-title: J. Comput. Appl. Math.
– volume: 10
  start-page: 307
  year: 1992
  end-page: 318
  ident: bib4
  article-title: Generalizing the finite element method: diffuse approximation and diffuse elements
  publication-title: Comput. Mech.
– volume: 38
  start-page: 1655
  year: 1995
  end-page: 1679
  ident: bib7
  article-title: Reproducing kernel particle methods for structural dynamics
  publication-title: Int. J. Numer. Meth. Eng.
– volume: 181
  start-page: 275
  year: 1977
  end-page: 389
  ident: bib3
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon. Not. Roy. Astron. Soc.
– year: 2001
  ident: bib16
  article-title: An Introduction to Magnetohydrodynamics
– volume: 194
  start-page: 1201
  year: 2005
  end-page: 1224
  ident: bib22
  article-title: The finite element method for MHD flow at high Hartmann numbers
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 43
  start-page: 1
  year: 2009
  end-page: 25
  ident: bib26
  article-title: Adaptive support domain implementation on the moving least squares approximation for Mfree methods applied on elliptic and parabolic PDE problems using strong-form description
  publication-title: CMES: Comput. Model. Eng.
– volume: 4
  start-page: 89
  year: 1967
  end-page: 102
  ident: bib15
  article-title: Approximations and bounds for eigenvalues of elliptic operators
  publication-title: SIAM J. Numer. Anal.
– year: 2002
  ident: bib25
  article-title: Mesh Free Methods, Moving beyond the Finite Elements Method
– volume: 28
  start-page: 1417
  year: 2004
  ident: 10.1016/j.jcp.2009.07.031_bib1
  article-title: Cartesian grid methods using radial basis functions for solving Poisson, Helmholtz, and diffusion–convection equations
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2004.08.004
– volume: 203
  start-page: 125
  year: 2007
  ident: 10.1016/j.jcp.2009.07.031_bib19
  article-title: Fundamental solution for coupled magnetohydrodynamic flow equations
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2006.03.013
– year: 2002
  ident: 10.1016/j.jcp.2009.07.031_bib25
– volume: 113
  start-page: 397
  year: 1994
  ident: 10.1016/j.jcp.2009.07.031_bib5
  article-title: A new implementation of the element free Galerkin method
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/0045-7825(94)90056-6
– volume: 37
  start-page: 397
  year: 2001
  ident: 10.1016/j.jcp.2009.07.031_bib32
  article-title: Error estimates for moving least square approximations
  publication-title: Appl. Numer. Math.
  doi: 10.1016/S0168-9274(00)00054-4
– volume: 49
  start-page: 136
  year: 1953
  ident: 10.1016/j.jcp.2009.07.031_bib30
  article-title: Steady motion of conducting fluids in pipes under transverse magnetic fields
  publication-title: Proc. Camb. Philos. Soc.
  doi: 10.1017/S0305004100028139
– volume: 181
  start-page: 275
  year: 1977
  ident: 10.1016/j.jcp.2009.07.031_bib3
  article-title: Smoothed particle hydrodynamics: theory and application to non-spherical stars
  publication-title: Mon. Not. Roy. Astron. Soc.
  doi: 10.1093/mnras/181.3.375
– volume: 47
  start-page: 1083
  year: 2000
  ident: 10.1016/j.jcp.2009.07.031_bib13
  article-title: A point collocation method based on reproducing kernel approximations
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/(SICI)1097-0207(20000228)47:6<1083::AID-NME816>3.0.CO;2-N
– volume: 139
  start-page: 289
  year: 1996
  ident: 10.1016/j.jcp.2009.07.031_bib8
  article-title: The partition of unity finite element method: basic theory and applications
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01087-0
– volume: 194
  start-page: 1201
  year: 2005
  ident: 10.1016/j.jcp.2009.07.031_bib22
  article-title: The finite element method for MHD flow at high Hartmann numbers
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/j.cma.2004.06.035
– volume: 50
  start-page: 1893
  year: 2001
  ident: 10.1016/j.jcp.2009.07.031_bib23
  article-title: Duct flow with a transverse magnetic field at high Hartmann numbers
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.101
– volume: 14
  start-page: 141
  year: 2006
  ident: 10.1016/j.jcp.2009.07.031_bib28
  article-title: Meshless local Petrov–Galerkin (MLPG) mixed collocation method for elasticity problems
  publication-title: CMES: Comp. Model. Eng.
– volume: 38
  start-page: 1655
  year: 1995
  ident: 10.1016/j.jcp.2009.07.031_bib7
  article-title: Reproducing kernel particle methods for structural dynamics
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1620381005
– volume: 22
  start-page: 174
  year: 1998
  ident: 10.1016/j.jcp.2009.07.031_bib11
  article-title: A meshless local boundary integral equation (LBIE) method for solving nonlinear problems
  publication-title: Comput. Mech.
  doi: 10.1007/s004660050351
– volume: 139
  start-page: 237
  year: 1996
  ident: 10.1016/j.jcp.2009.07.031_bib9
  article-title: An h–p adaptive method using clouds
  publication-title: Comput. Meth. Appl. Mech. Eng.
  doi: 10.1016/S0045-7825(96)01085-7
– year: 2004
  ident: 10.1016/j.jcp.2009.07.031_bib27
– volume: 10
  start-page: 307
  year: 1992
  ident: 10.1016/j.jcp.2009.07.031_bib4
  article-title: Generalizing the finite element method: diffuse approximation and diffuse elements
  publication-title: Comput. Mech.
  doi: 10.1007/BF00364252
– volume: 9
  start-page: 69
  issue: 1–2
  year: 1998
  ident: 10.1016/j.jcp.2009.07.031_bib14
  article-title: The method of fundamental solutions for elliptic boundary value problems
  publication-title: Adv. Comput. Math.
  doi: 10.1023/A:1018981221740
– volume: 17
  start-page: 184
  year: 1979
  ident: 10.1016/j.jcp.2009.07.031_bib20
  article-title: MHD axial flow in a triangular pipe under transverse magnetic field parallel to a side of the triangle
  publication-title: Ind. J. Technol.
– volume: 18
  start-page: 1104
  year: 1982
  ident: 10.1016/j.jcp.2009.07.031_bib21
  article-title: Finite element method in MHD channel flow problems
  publication-title: Int. J. Numer. Meth. Eng.
  doi: 10.1002/nme.1620180714
– volume: 24
  start-page: 348
  year: 1999
  ident: 10.1016/j.jcp.2009.07.031_bib12
  article-title: A critical assessment of the truly meshless local Petrov–Galerkin (MLPG) methods
  publication-title: Comput. Mech.
  doi: 10.1007/s004660050457
– volume: 209
  start-page: 290
  year: 2005
  ident: 10.1016/j.jcp.2009.07.031_bib2
  article-title: Novel meshless method for solving the potential problems with arbitrary domain
  publication-title: J. Comput. Phys.
  doi: 10.1016/j.jcp.2005.03.007
– volume: 20
  start-page: 1081
  year: 1995
  ident: 10.1016/j.jcp.2009.07.031_bib6
  article-title: Reproducing kernel particle methods
  publication-title: Int. J. Numer. Meth. Fluids
  doi: 10.1002/fld.1650200824
– year: 1987
  ident: 10.1016/j.jcp.2009.07.031_bib17
– volume: 143
  start-page: 422
  year: 1996
  ident: 10.1016/j.jcp.2009.07.031_bib10
  article-title: Moving least square reproducing kernel methods (I) methodology and convergence
  publication-title: Comput. Meth. Appl. Mech. Eng.
– volume: 44
  start-page: 515
  year: 2006
  ident: 10.1016/j.jcp.2009.07.031_bib24
  article-title: Maximum principle and convergence analysis for the meshfree point collocation method
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/04060809X
– volume: 13
  start-page: 505
  year: 1962
  ident: 10.1016/j.jcp.2009.07.031_bib31
  article-title: Magnetohydrodynamic pipe flow I
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112062000889
– volume: 4
  start-page: 89
  year: 1967
  ident: 10.1016/j.jcp.2009.07.031_bib15
  article-title: Approximations and bounds for eigenvalues of elliptic operators
  publication-title: SIAM J. Numer. Anal.
  doi: 10.1137/0704008
– year: 2001
  ident: 10.1016/j.jcp.2009.07.031_bib16
– volume: 15
  start-page: 1
  year: 2006
  ident: 10.1016/j.jcp.2009.07.031_bib29
  article-title: Meshless local Petrov–Galerkin (MLPG) mixed finite differences method for solid mechanics
  publication-title: CMES: Comp. Model. Eng.
– volume: 30
  start-page: 411
  year: 2006
  ident: 10.1016/j.jcp.2009.07.031_bib18
  article-title: Solution of magnetohydrodynamic flow problems using the boundary element method
  publication-title: Eng. Anal. Bound. Elem.
  doi: 10.1016/j.enganabound.2005.12.001
– volume: 43
  start-page: 1
  year: 2009
  ident: 10.1016/j.jcp.2009.07.031_bib26
  article-title: Adaptive support domain implementation on the moving least squares approximation for Mfree methods applied on elliptic and parabolic PDE problems using strong-form description
  publication-title: CMES: Comput. Model. Eng.
SSID ssj0008548
Score 2.156089
Snippet The aim of the present paper is the development of an efficient numerical algorithm for the solution of magnetohydrodynamics flow problems for regular and...
SourceID osti
proquest
pascalfrancis
crossref
elsevier
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 8135
SubjectTerms ALGORITHMS
APPROXIMATIONS
BOUNDARY CONDITIONS
Computational techniques
CONVERGENCE
CROSS SECTIONS
DIRICHLET PROBLEM
Exact sciences and technology
EXACT SOLUTIONS
FUNCTIONS
GEOMETRY
HARTMANN NUMBER
LEAST SQUARE FIT
MAGNETOHYDRODYNAMICS
MATHEMATICAL METHODS AND COMPUTING
Mathematical methods in physics
Meshless
MHD
MLS
Physics
Point collocation
Title An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems
URI https://dx.doi.org/10.1016/j.jcp.2009.07.031
https://www.proquest.com/docview/34893642
https://www.osti.gov/biblio/21308121
Volume 228
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT9wwEB7BcumlhT7ULbD1oaeqgcSPPI4rCtq2glORuFm2Y6uLlgSRXfXW385M4qyEqnLoNclIlsfzfV_s8QzAJ144qYq0SIKwaSJ5rRKLvJxIK6yrPDKIoa2By6t8cS2_36ibHTgb78JQWmXE_gHTe7SOT07jbJ7eL5d0x5fTHXrKLKRCVsUu7HFR5eUE9ubffiyutoBcKjkAMmUjoMF4uNmned26sWplcZKK7F_0NGkx4ihx0nQ4d2FoevEXfvekdLEPL6OaZPNhwAew45vX8CoqSxbjtnsDbt4w49yG6kJ8YSgI7coz09TM9xUkkHhY3d6ZZZPQliy7892vFUIgG_pLMxS2DIUiG9cpawO7XHxlYdX-ZrElTfcWri_Of54tktheIXFIQusElQb6L_PBVYqj6qutK0RpRU5np7mRygUpncttbmxVelEYUZU84C-zC7mvlXgHk6Zt_HtgsuIBAzmty6KWpUDgUrTbzPNQW5OKagrpOKvaxdrj1AJjpccks1uNjqCemJVOC42OmMLnrcn9UHjjuY_l6Cr9ZPVoJIbnzI7IrWRCFXMdpRahDUdeR92Dr2dP3L0dByfVpFQ5hY-j_zVGJR21mMa3m04LqumDv3Yf_m9gh_CiP7XKMkSxI5isHzb-GMXP2s5g9-RPNotL_BGMTAGC
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB2V7QEufKMulNYHTojQbGzHyXFVqFLa3VMr9WbZji222iYV2RV_n5nEWalC9MA1yUiWx_PmxR6_AfiUKSekSlUSuE0TkdUysZiXE2G5daXHDGJoa2CxzKtr8eNG3uzB6XgXhsoqI_YPmN6jdXxyEmfz5H61oju-Gd2hp8pCErJST2Cf1KnEBPbn5xfVcgfIhRQDIFM1AhqMh5t9mdetG1Ur1deUz_6VniYtRhwVTpoO5y4MTS_-wu8-KZ29hOeRTbL5MOBXsOeb1_AiMksW47Z7A27eMOPclnQhvjAkhHbtmWlq5nsFCUw8rG7vzKpJaEuW3fnu5xohkA39pRkSW4ZEkY3rlLWBLapvLKzb3yy2pOnewvXZ96vTKontFRKHSWiTINNA_818cKXMkPXV1ileWJ7T2WluhHRBCOdymxtbFp4rw8siC_jL7ELua8nfwaRpG38ATJRZwEBO60LVouAIXJJ2m7M81NakvJxCOs6qdlF7nFpgrPVYZHar0RHUE7PUqdLoiCl83pncD8Ibj30sRlfpB6tHY2J4zOyQ3EompJjrqLQIbTLM68h78PXRA3fvxpERa5KymMLx6H-NUUlHLabx7bbTnDR98Nfu_f8N7BieVleLS315vrz4AM_6E6zZDBHtECabX1v_EYnQxh7Fhf4HonQDag
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+accurate%2C+stable+and+efficient+domain-type+meshless+method+for+the+solution+of+MHD+flow+problems&rft.jtitle=Journal+of+computational+physics&rft.au=Bourantas%2C+G+C&rft.au=Skouras%2C+E+D&rft.au=Loukopoulos%2C+V+C&rft.au=Nikiforidis%2C+G+C&rft.date=2009-11-20&rft.issn=0021-9991&rft.volume=228&rft.issue=21&rft.spage=8135&rft.epage=8160&rft_id=info:doi/10.1016%2Fj.jcp.2009.07.031&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9991&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9991&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9991&client=summon