A system of conservation laws with discontinuous flux modelling flotation with sedimentation

Abstract The continuous unit operation of flotation is extensively used in mineral processing, wastewater treatment and other applications for selectively separating hydrophobic particles (or droplets) from hydrophilic ones, where both are suspended in a viscous fluid. Within a flotation column, the...

Full description

Saved in:
Bibliographic Details
Published inIMA journal of applied mathematics Vol. 84; no. 5; pp. 930 - 973
Main Authors Bürger, Raimund, Diehl, Stefan, Martí, María del Carmen
Format Journal Article
LanguageEnglish
Published Oxford University Press 11.10.2019
Subjects
Online AccessGet full text
ISSN0272-4960
1464-3634
1464-3634
DOI10.1093/imamat/hxz021

Cover

Loading…
Abstract Abstract The continuous unit operation of flotation is extensively used in mineral processing, wastewater treatment and other applications for selectively separating hydrophobic particles (or droplets) from hydrophilic ones, where both are suspended in a viscous fluid. Within a flotation column, the hydrophobic particles are attached to gas bubbles that are injected and float as aggregates forming a foam or froth at the top that is skimmed. The hydrophilic particles sediment and are discharged at the bottom. The hydrodynamics of a flotation column is described in simplified form by studying three phases, namely the fluid, the aggregates and solid particles, in one space dimension. The relative movements between the phases are given by constitutive drift-flux functions. The resulting model is a system of two scalar conservation laws with a multiply discontinuous flux for the aggregates and solids volume fractions as functions of height and time. The model is of triangular nature since one equation can be solved independently of the other. Based on the theory of conservation laws with discontinuous flux, steady-state solutions that satisfy all jump and entropy conditions are constructed. For the existence of the industrially relevant steady states, conditions on feed flows and concentrations are established and mapped as ‘operating charts’. A numerical method that exploits the triangular structure is formulated on a pair of staggered grids and is employed for the simulation of the fill-up and transitions between steady states of the flotation column.
AbstractList Abstract The continuous unit operation of flotation is extensively used in mineral processing, wastewater treatment and other applications for selectively separating hydrophobic particles (or droplets) from hydrophilic ones, where both are suspended in a viscous fluid. Within a flotation column, the hydrophobic particles are attached to gas bubbles that are injected and float as aggregates forming a foam or froth at the top that is skimmed. The hydrophilic particles sediment and are discharged at the bottom. The hydrodynamics of a flotation column is described in simplified form by studying three phases, namely the fluid, the aggregates and solid particles, in one space dimension. The relative movements between the phases are given by constitutive drift-flux functions. The resulting model is a system of two scalar conservation laws with a multiply discontinuous flux for the aggregates and solids volume fractions as functions of height and time. The model is of triangular nature since one equation can be solved independently of the other. Based on the theory of conservation laws with discontinuous flux, steady-state solutions that satisfy all jump and entropy conditions are constructed. For the existence of the industrially relevant steady states, conditions on feed flows and concentrations are established and mapped as ‘operating charts’. A numerical method that exploits the triangular structure is formulated on a pair of staggered grids and is employed for the simulation of the fill-up and transitions between steady states of the flotation column.
The continuous unit operation of flotation is extensively used in mineral processing, wastewater treatment and other applications for selectively separating hydrophobic particles (or droplets) from hydrophilic ones, where both are suspended in a viscous fluid. Within a flotation column, the hydrophobic particles are attached to gas bubbles that are injected and float as aggregates forming a foam or froth at the top that is skimmed. The hydrophilic particles sediment and are discharged at the bottom. The hydrodynamics of a flotation column is described in simplified form by studying three phases, namely the fluid, the aggregates and solid particles, in one space dimension. The relative movements between the phases are given by constitutive drift-flux functions. The resulting model is a system of two scalar conservation laws with a multiply discontinuous flux for the aggregates and solids volume fractions as functions of height and time. The model is of triangular nature since one equation can be solved independently of the other. Based on the theory of conservation laws with discontinuous flux, steady-state solutions that satisfy all jump and entropy conditions are constructed. For the existence of the industrially relevant steady states, conditions on feed flows and concentrations are established and mapped as ‘operating charts’. A numerical method that exploits the triangular structure is formulated on a pair of staggered grids and is employed for the simulation of the fill-up and transitions between steady states of the flotation column.
Author Bürger, Raimund
Martí, María del Carmen
Diehl, Stefan
Author_xml – sequence: 1
  givenname: Raimund
  surname: Bürger
  fullname: Bürger, Raimund
  organization: CI2MA and Departamento de Ingeniería Matemática, Facultad de Ciencias Físicas y Matemáticas, Universidad de Concepción, Casilla 160-C, Concepción, Chile
– sequence: 2
  givenname: Stefan
  surname: Diehl
  fullname: Diehl, Stefan
  email: stefan.diehl@math.lth.se
  organization: Centre for Mathematical Sciences, Lund University, P.O. Box 118, S-221 00 Lund, Sweden
– sequence: 3
  givenname: María del Carmen
  surname: Martí
  fullname: Martí, María del Carmen
  organization: Departament de Matemàtiques, Universitat de València, Avda. Vicent Andrés Estellés s/n, Burjassot, València, Spain
BackLink https://lup.lub.lu.se/record/e1942a78-f2f6-431a-a5d4-06d2d18df96a$$DView record from Swedish Publication Index
oai:portal.research.lu.se:publications/e1942a78-f2f6-431a-a5d4-06d2d18df96a$$DView record from Swedish Publication Index
BookMark eNqNUU1r3TAQFCWFvqQ99u5jL04kWZbtYwj5gge5tLfCIkurPhXZekhyX5JfHyVOL4WEHhaxq5nZYeeYHM1hRkK-MnrK6NCcuUlNKp_t7h8pZx_Ihgkp6kY24ohsKO94LQZJP5HjlH5TSlnb0Q35eV6lh5RxqoKtdJgTxj8quzBXXh1SdXB5VxmXyk928xKWVFm_3FdTMOi9m3-VNuSV8IJNaNyE8zr6TD5a5RN-eX1PyI-ry-8XN_X27vr24nxba8GHXDdCjLbrKaK1VgscbG-MEUqOpuusRqpHUfwPTHM5tn2LUmquWtSs4ZRb25wQteqmA-6XEfaxnCI-QFAO9iFm5SFiQhX1DvwCCaGgvNMvJhMgGwRXXQ-WWwmiYQpUawRQabhhvbGDVGXH9s0dftmXGl-1_1OuWeV0DClFtKDderQclfPAKDxnCmumsGZaWPU_rL823sJ_W_GhOHwf-gQdwLxP
CitedBy_id crossref_primary_10_3934_nhm_2023006
crossref_primary_10_1093_imamat_hxac033
crossref_primary_10_2166_wst_2020_258
crossref_primary_10_1016_j_mineng_2020_106419
crossref_primary_10_3390_min13030344
crossref_primary_10_1016_j_mineng_2021_107028
Cites_doi 10.3934/nhm.2018015
10.1137/S0036139994242425
10.1142/S0219891609001794
10.1016/S0892-6875(01)00216-3
10.1061/(ASCE)0733-9372(2007)133:1(104)
10.1016/j.ces.2013.11.027
10.1007/978-94-015-9327-4
10.1017/CBO9780511807169
10.1023/A:1011959425670
10.1007/978-3-662-47507-2
10.1002/cjce.5450670608
10.1016/j.watres.2003.10.026
10.1016/j.ifacol.2018.09.399
10.1016/j.ces.2013.11.006
10.1002/cjce.5450830203
10.1039/tf9524800166
10.1007/s10665-007-9148-4
10.1142/S0219891617500229
10.1093/imamat/hxy018
10.1137/04060620X
10.1016/0301-9322(74)90003-2
10.1137/S0036141093242533
10.5539/mas.v9n5p114
10.1016/j.mineng.2014.02.008
10.1002/cjce.20076
10.1070/SM1970v010n02ABEH002156
10.1016/j.chemosphere.2015.08.087
10.1016/j.ces.2007.05.038
10.1137/17M1127089
10.1137/100809374
10.1016/j.watres.2008.09.005
10.1016/j.seppur.2017.06.007
ContentType Journal Article
Copyright The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2019
Copyright_xml – notice: The Author(s) 2019. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permission@oup.com. 2019
CorporateAuthor Matematik LTH
Centre for Mathematical Sciences
Research groups at the Centre for Mathematical Sciences
Forskargrupper vid Matematikcentrum
Mathematics (Faculty of Engineering)
Lunds universitet
Naturvetenskapliga fakulteten
Matematikcentrum
Numerisk analys och beräkningsmatematik
Faculty of Science
Lund University
Numerical Analysis and Scientific Computing
CorporateAuthor_xml – name: Naturvetenskapliga fakulteten
– name: Mathematics (Faculty of Engineering)
– name: Lund University
– name: Numerical Analysis and Scientific Computing
– name: Matematik LTH
– name: Centre for Mathematical Sciences
– name: Research groups at the Centre for Mathematical Sciences
– name: Numerisk analys och beräkningsmatematik
– name: Forskargrupper vid Matematikcentrum
– name: Faculty of Science
– name: Lunds universitet
– name: Matematikcentrum
DBID AAYXX
CITATION
ADTPV
AOWAS
D95
DOI 10.1093/imamat/hxz021
DatabaseName CrossRef
SwePub
SwePub Articles
SWEPUB Lunds universitet
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef


DeliveryMethod fulltext_linktorsrc
Discipline Mathematics
EISSN 1464-3634
EndPage 973
ExternalDocumentID oai_portal_research_lu_se_publications_e1942a78_f2f6_431a_a5d4_06d2d18df96a
oai_lup_lub_lu_se_e1942a78_f2f6_431a_a5d4_06d2d18df96a
10_1093_imamat_hxz021
10.1093/imamat/hxz021
GrantInformation_xml – fundername: Comisión Nacional de Investigación Científica y Tecnológica
  grantid: CONICYT/PIA/AFB170001
  funderid: 10.13039/501100002848
– fundername: Centro de Recursos Hídricos para la Agricultura y la Minería
  grantid: CONICYT/FONDAP/15130015
  funderid: 10.13039/501100011084
– fundername: Institut National de Recherche en Sciences du Numérique
  grantid: 2018–2020
– fundername: Lars Hierta Memorial Foundation
  funderid: 10.13039/501100004722
– fundername: Fondo Nacional de Desarrollo Científico y Tecnológico
  grantid: 1170473
  funderid: 10.13039/501100002850
– fundername: Spanish MINECO
  grantid: MTM2017-83942-P
GroupedDBID -E4
-~X
.2P
.I3
0R~
18M
1TH
29I
4.4
482
48X
5GY
5VS
5WA
70D
AAIJN
AAJKP
AAMVS
AAOGV
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
ABAZT
ABDBF
ABDFA
ABDTM
ABEJV
ABEUO
ABGNP
ABIXL
ABJNI
ABNKS
ABPQP
ABPTD
ABQLI
ABVGC
ABWST
ABXVV
ABZBJ
ACGFO
ACGFS
ACGOD
ACIWK
ACUFI
ACUHS
ACUTJ
ACUXJ
ACYTK
ADEYI
ADEZT
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRDM
ADRTK
ADVEK
ADYVW
ADZXQ
AECKG
AEGPL
AEGXH
AEJOX
AEKKA
AEKSI
AEMDU
AENEX
AENZO
AEPUE
AETBJ
AEWNT
AFFZL
AFIYH
AFOFC
AFYAG
AGINJ
AGKEF
AGQXC
AGSYK
AHXPO
AIAGR
AIJHB
AJEEA
AJEUX
AJNCP
ALMA_UNASSIGNED_HOLDINGS
ALTZX
ALUQC
ALXQX
ANAKG
APIBT
APWMN
ATGXG
AXUDD
AZVOD
BAYMD
BCRHZ
BEFXN
BEYMZ
BFFAM
BGNUA
BHONS
BKEBE
BPEOZ
BQUQU
BTQHN
CDBKE
CS3
CZ4
DAKXR
DILTD
DU5
D~K
EBS
EE~
ESX
F9B
FLIZI
FLUFQ
FOEOM
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HW0
HZ~
I-F
IOX
J21
JAVBF
JXSIZ
KAQDR
KBUDW
KOP
KSI
KSN
M-Z
M43
M49
N9A
NGC
NMDNZ
NOMLY
NU-
O9-
OCL
ODMLO
OJQWA
OJZSN
P2P
PAFKI
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
ROL
ROX
ROZ
RUSNO
RW1
RXO
TJP
TN5
TUS
UPT
WH7
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
ABVLG
ADYJX
AGORE
AHGBF
AJBYB
AMVHM
CITATION
OXVGQ
ADTPV
AOWAS
D95
ID FETCH-LOGICAL-c429t-344bf780eefffc4e9f8ddd4a6bd77fce0cb402791c26b585e66c2a5ec13202ff3
ISSN 0272-4960
1464-3634
IngestDate Thu Aug 21 06:17:44 EDT 2025
Thu Jul 03 05:24:26 EDT 2025
Thu Apr 24 22:52:19 EDT 2025
Tue Jul 01 01:59:18 EDT 2025
Wed Apr 02 07:01:55 EDT 2025
IsPeerReviewed true
IsScholarly true
Issue 5
Keywords discontinuous flux
flotation
non-strictly hyperbolic triangular system
conservation law
sedimentation
kinematic flow models
Language English
License This article is published and distributed under the terms of the Oxford University Press, Standard Journals Publication Model (https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model)
https://academic.oup.com/journals/pages/open_access/funder_policies/chorus/standard_publication_model
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c429t-344bf780eefffc4e9f8ddd4a6bd77fce0cb402791c26b585e66c2a5ec13202ff3
PageCount 44
ParticipantIDs swepub_primary_oai_portal_research_lu_se_publications_e1942a78_f2f6_431a_a5d4_06d2d18df96a
swepub_primary_oai_lup_lub_lu_se_e1942a78_f2f6_431a_a5d4_06d2d18df96a
crossref_citationtrail_10_1093_imamat_hxz021
crossref_primary_10_1093_imamat_hxz021
oup_primary_10_1093_imamat_hxz021
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-10-11
PublicationDateYYYYMMDD 2019-10-11
PublicationDate_xml – month: 10
  year: 2019
  text: 2019-10-11
  day: 11
PublicationDecade 2010
PublicationTitle IMA journal of applied mathematics
PublicationYear 2019
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Galvin (2019101504350503600_ref25) 2014; 66–68
Stevenson (2019101504350503600_ref39) 2008; 86
Dickinson (2019101504350503600_ref13) 2014; 108
Brown (2019101504350503600_ref5) 2018; 78
Cruz (2019101504350503600_ref12) 1997
Diehl (2019101504350503600_ref17) 2008; 42
Kružkov (2019101504350503600_ref30) 1970; 10
Bürger (2019101504350503600_ref6) 2018; 83
Bürger (2019101504350503600_ref10) 2005; 65
Diehl (2019101504350503600_ref14) 1995; 26
Eskin (2019101504350503600_ref21) 2015; 9
Ekama (2019101504350503600_ref19) 1997
Godunov (2019101504350503600_ref27) 1959; 47
Wallis (2019101504350503600_ref43) 1974; 1
Galvin (2019101504350503600_ref24) 2014; 108
Andreianov (2019101504350503600_ref1) 2011
Bürger (2019101504350503600_ref7) 2018; 13
Etchepare (2019101504350503600_ref22) 2017; 186
Oleinik (2019101504350503600_ref33) 1959; 14
Tian (2019101504350503600_ref40) 2018; 51
Diehl (2019101504350503600_ref15) 1996; 56
Armbruster (2019101504350503600_ref2) 2011; 71
Bürger (2019101504350503600_ref8) 2019
Holden (2019101504350503600_ref28) 2015
La Motta (2019101504350503600_ref32) 2007; 133
Pal (2019101504350503600_ref34) 1989; 67
Bürger (2019101504350503600_ref9) 2008; 60
Karlsen (2019101504350503600_ref29) 2017; 14
Vandenberghe (2019101504350503600_ref41) 2008; 83
Diehl (2019101504350503600_ref18) 2009; 6
Bustos (2019101504350503600_ref11) 1999
Gimse (2019101504350503600_ref26) 1990
Brennen (2019101504350503600_ref4) 2005
Rubio (2019101504350503600_ref36) 2002; 15
Stevenson (2019101504350503600_ref38) 2007; 62
Kynch (2019101504350503600_ref31) 1952; 48
Wallis (2019101504350503600_ref42) 1969
Ekama (2019101504350503600_ref20) 2004; 38
Saththasivam (2019101504350503600_ref37) 2016; 144
Diehl (2019101504350503600_ref16) 2001; 41
Richardson (2019101504350503600_ref35) 1954; 32
Finch (2019101504350503600_ref23) 1990
Bascur (2019101504350503600_ref3) 1991; 4
References_xml – volume: 13
  start-page: 339
  year: 2018
  ident: 2019101504350503600_ref7
  article-title: A conservation law with multiply discontinuous flux modelling a flotation column
  publication-title: Networks Heterog. Media
  doi: 10.3934/nhm.2018015
– volume: 56
  start-page: 388
  year: 1996
  ident: 2019101504350503600_ref15
  article-title: A conservation law with point source and discontinuous flux function modelling continuous sedimentation
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/S0036139994242425
– volume: 6
  start-page: 127
  year: 2009
  ident: 2019101504350503600_ref18
  article-title: A uniqueness condition for nonlinear convection-diffusion equations with discontinuous coefficients
  publication-title: J. Hyperbolic Differential Equations
  doi: 10.1142/S0219891609001794
– volume: 15
  start-page: 139
  year: 2002
  ident: 2019101504350503600_ref36
  article-title: Overview of flotation as a wastewater treatment technique
  publication-title: Minerals Eng.
  doi: 10.1016/S0892-6875(01)00216-3
– volume: 133
  start-page: 104
  year: 2007
  ident: 2019101504350503600_ref32
  article-title: Using the kinetics of biological flocculation and the limiting flux theory for the preliminary design of activated sludge systems. I: model development
  publication-title: J. Environ. Eng.
  doi: 10.1061/(ASCE)0733-9372(2007)133:1(104)
– volume: 108
  start-page: 299
  year: 2014
  ident: 2019101504350503600_ref24
  article-title: Fluidized bed desliming in fine particle flotation—part II: flotation of a model feed
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.11.027
– volume-title: Sedimentation and Thickening: Phenomenological Foundation and Mathematical Theory
  year: 1999
  ident: 2019101504350503600_ref11
  doi: 10.1007/978-94-015-9327-4
– volume-title: Column Flotation
  year: 1990
  ident: 2019101504350503600_ref23
– volume-title: Fundamentals of Multiphase Flow
  year: 2005
  ident: 2019101504350503600_ref4
  doi: 10.1017/CBO9780511807169
– volume: 41
  start-page: 117
  year: 2001
  ident: 2019101504350503600_ref16
  article-title: Operating charts for continuous sedimentation I: control of steady states
  publication-title: J. Engrg. Math.
  doi: 10.1023/A:1011959425670
– volume-title: Front Tracking for Hyperbolic Conservation Laws
  year: 2015
  ident: 2019101504350503600_ref28
  doi: 10.1007/978-3-662-47507-2
– start-page: 488
  volume-title: Third International Conference on Hyperbolic Problems, Theory, Numerical Methods and Applications
  year: 1990
  ident: 2019101504350503600_ref26
  article-title: Riemann problems with a discontinuous flux function
– start-page: 1
  volume-title: Arch. Ration. Mech. Anal.
  year: 2011
  ident: 2019101504350503600_ref1
  article-title: A theory of ${L}^1$-dissipative solvers for scalar conservation laws with discontinuous flux
– volume: 47
  start-page: 271
  year: 1959
  ident: 2019101504350503600_ref27
  article-title: A finite difference method for the numerical computations of discontinuous solutions of the equations of fluid dynamics
  publication-title: Mat. Sb.
– volume-title: A comprehensive dynamic model of the column flotation unit operation
  year: 1997
  ident: 2019101504350503600_ref12
– volume: 67
  start-page: 916
  year: 1989
  ident: 2019101504350503600_ref34
  article-title: Flow characterization of a flotation column
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450670608
– volume: 38
  start-page: 495
  year: 2004
  ident: 2019101504350503600_ref20
  article-title: Assessing the applicability of the 1D flux theory to full-scale secondary settling tank design with a 2D hydrodynamic model
  publication-title: Water Res.
  doi: 10.1016/j.watres.2003.10.026
– volume: 51
  start-page: 99
  year: 2018
  ident: 2019101504350503600_ref40
  article-title: Three-phases dynamic modelling of column flotation process
  publication-title: IFAC-PapersOnLine
  doi: 10.1016/j.ifacol.2018.09.399
– volume: 108
  start-page: 283
  year: 2014
  ident: 2019101504350503600_ref13
  article-title: Fluidized bed desliming in fine particle flotation—part I
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2013.11.006
– volume-title: IAWQ scientific and technical report no. 6.
  year: 1997
  ident: 2019101504350503600_ref19
  article-title: Secondary Settling Tanks: Theory, Modelling, Design and Operation
– volume: 83
  start-page: 169
  year: 2008
  ident: 2019101504350503600_ref41
  article-title: Drift flux modelling for a two-phase system in a flotation column
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.5450830203
– volume: 48
  start-page: 166
  year: 1952
  ident: 2019101504350503600_ref31
  article-title: A theory of sedimentation
  publication-title: Trans. Faraday Soc.
  doi: 10.1039/tf9524800166
– volume: 60
  start-page: 387
  year: 2008
  ident: 2019101504350503600_ref9
  article-title: A family of numerical schemes for kinematic flows with discontinuous flux
  publication-title: J. Engrg. Math.
  doi: 10.1007/s10665-007-9148-4
– volume: 14
  start-page: 671
  year: 2017
  ident: 2019101504350503600_ref29
  article-title: Convergence of a Godunov scheme for conservation laws with a discontinuous flux lacking the crossing condition
  publication-title: J. Hyperbolic Differential Equations
  doi: 10.1142/S0219891617500229
– volume: 83
  start-page: 526
  year: 2018
  ident: 2019101504350503600_ref6
  article-title: Flux identification of scalar conservation laws from sedimentation in a cone
  publication-title: IMA J. Appl. Math.
  doi: 10.1093/imamat/hxy018
– volume: 65
  start-page: 882
  year: 2005
  ident: 2019101504350503600_ref10
  article-title: A model of continuous sedimentation of flocculated suspensions in clarifier-thickener units
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/04060620X
– volume-title: One-Dimensional Two-Phase Flow
  year: 1969
  ident: 2019101504350503600_ref42
– volume: 1
  start-page: 491
  year: 1974
  ident: 2019101504350503600_ref43
  article-title: The terminal speed of single drops or bubbles in an infinite medium
  publication-title: Int. J. Multiphase Flow
  doi: 10.1016/0301-9322(74)90003-2
– volume: 26
  start-page: 1425
  year: 1995
  ident: 2019101504350503600_ref14
  article-title: On scalar conservation laws with point source and discontinuous flux function
  publication-title: SIAM J. Math. Anal.
  doi: 10.1137/S0036141093242533
– volume: 9
  start-page: 114
  year: 2015
  ident: 2019101504350503600_ref21
  article-title: Intensification dissolved air flotation treatment of oil-containing wastewater
  publication-title: Modern Applied Sci.
  doi: 10.5539/mas.v9n5p114
– volume: 14
  start-page: 165
  year: 1959
  ident: 2019101504350503600_ref33
  article-title: Uniqueness and stability of the generalized solution of the Cauchy problem for a quasi-linear equation. Uspekhi Mat. Nauk
  publication-title: Amer. Math. Soc. Trans. Ser. 2
– volume: 66–68
  start-page: 94
  year: 2014
  ident: 2019101504350503600_ref25
  article-title: Fluidized bed desliming in fine particle flotation—part III flotation of difficult to clean coal
  publication-title: Minerals Eng.
  doi: 10.1016/j.mineng.2014.02.008
– volume: 86
  start-page: 635
  year: 2008
  ident: 2019101504350503600_ref39
  article-title: On the drift-flux analysis of flotation and foam fractionation processes
  publication-title: Can. J. Chem. Eng.
  doi: 10.1002/cjce.20076
– volume: 10
  start-page: 217
  year: 1970
  ident: 2019101504350503600_ref30
  article-title: First order quasilinear equations in several independent variables
  publication-title: Math. USSR-Sb.
  doi: 10.1070/SM1970v010n02ABEH002156
– volume: 32
  start-page: 35
  year: 1954
  ident: 2019101504350503600_ref35
  article-title: Sedimentation and fluidization: part I
  publication-title: Trans. Inst. Chem. Engineers (London)
– volume: 144
  start-page: 671
  year: 2016
  ident: 2019101504350503600_ref37
  article-title: An overview of oil–water separation using gas flotation systems
  publication-title: Chemosphere
  doi: 10.1016/j.chemosphere.2015.08.087
– volume: 62
  start-page: 5736
  year: 2007
  ident: 2019101504350503600_ref38
  article-title: Convective–dispersive gangue transport in flotation froth
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2007.05.038
– volume: 78
  start-page: 1823
  year: 2018
  ident: 2019101504350503600_ref5
  article-title: A scalar conservation law for plume migration in carbon sequestration
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/17M1127089
– volume-title: A numerical scheme for a triangular system of conservation laws with discontinuous flux modelling kinematic flow with two disperse phases
  year: 2019
  ident: 2019101504350503600_ref8
– volume: 71
  start-page: 1070
  year: 2011
  ident: 2019101504350503600_ref2
  article-title: A scalar conservation law with discontinuous flux for supply chains with finite buffers
  publication-title: SIAM J. Appl. Math.
  doi: 10.1137/100809374
– volume: 42
  start-page: 4976
  year: 2008
  ident: 2019101504350503600_ref17
  article-title: The solids-flux theory—confirmation and extension by using partial differential equations
  publication-title: Water Res.
  doi: 10.1016/j.watres.2008.09.005
– volume: 186
  start-page: 326
  year: 2017
  ident: 2019101504350503600_ref22
  article-title: Separation of emulsified crude oil in saline water by dissolved air flotation with micro and nanobubbles
  publication-title: Sep. Purif. Tech.
  doi: 10.1016/j.seppur.2017.06.007
– volume: 4
  start-page: 117
  year: 1991
  ident: 2019101504350503600_ref3
  article-title: A unified solid/liquid separation framework
  publication-title: Fluid/Particle Sep. J.
SSID ssj0001570
Score 2.210675
Snippet Abstract The continuous unit operation of flotation is extensively used in mineral processing, wastewater treatment and other applications for selectively...
The continuous unit operation of flotation is extensively used in mineral processing, wastewater treatment and other applications for selectively separating...
SourceID swepub
crossref
oup
SourceType Open Access Repository
Enrichment Source
Index Database
Publisher
StartPage 930
SubjectTerms conservation law
discontinuous flux
flotation
kinematic flow models
Matematik
Mathematical Sciences
Mathematics
Natural Sciences
Naturvetenskap
non-strictly hyperbolic triangular system
sedimentation
Title A system of conservation laws with discontinuous flux modelling flotation with sedimentation
URI https://lup.lub.lu.se/record/e1942a78-f2f6-431a-a5d4-06d2d18df96a
oai:portal.research.lu.se:publications/e1942a78-f2f6-431a-a5d4-06d2d18df96a
Volume 84
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Li9swEBZh99IeSp90-0KF0kvrbizLsnVM9sG2kJ52YSkFIetBAo6ztDFd9lf0J3eU0ToOTem2tBfjCEXIms_jmdF8I0JeFWma8aHRiXCSJbyUJimrzCdMgjOmGSCiCnHIyUdxcsY_nOfng8H3XtZSu6zemautvJK_kSq0gVwDS_YPJNsNCg1wD_KFK0gYrjeS8SgWYsbc8KYLsL6p9bdIWwus20U4DaINua6-bi_x8JsVC93Xi5hsiJnq8CGbRy5S07da309G_RITOlqu867k6zrWHjbexweBar0Snp7N28Z21vLMTeuYW-bXsAylDFYb9oeRPYQ_NCjDOmSkzCNdLQYnUhm0elSeqMNYAQiQeGTAtcLFM-EisPKe9pS4RfOTVseKV7O5hkeCm-nl1RBp1VtKZaPXomKppKmqW_XVqYteDFS5VHKmi1J55oUCC0ornVuuhsIym5bWSwEW9y4DxwNU_e5ofDg-7r7uaV5g3C4-GLLXeJKJjMcarjDdfZzsPk51w-ZBHuVGXdqVLXN6l9yJTggdIaLukYFr7pPbk7U4H5DPI4rYogtP-9iiAVs04IVuYIsGbNEOW7TDFvbdwNZDcnZ8dHpwksSTOBID9soyyTivfFEOnfPeG-6kL621XIvKFoU3bmgqDisiU8NEBQ6oE8IwnTsTCPrM--wR2WkWjXtMqAF_3-UuLaos56IsS1mEgIizlbNpauUeeXu9VsrEMvXhtJRaYbpEpnBpFS7tHnnddb_A-iy_6vgSFv53fY5QLF23gKga_lZDGyLpJuDZI5-2jPOPkPnkfw7-lNxav8bPyM7yS-ueg9W9rF7EF-EHboDlRQ
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+system+of+conservation+laws+with+discontinuous+flux+modelling+flotation+with+sedimentation&rft.jtitle=IMA+journal+of+applied+mathematics&rft.au=B%C3%BCrger%2C+Raimund&rft.au=Diehl%2C+Stefan&rft.au=Mart%C3%AD%2C+Mar%C3%ADa+Del+Carmen&rft.date=2019-10-11&rft.issn=0272-4960&rft.volume=84&rft.issue=5&rft.spage=930&rft_id=info:doi/10.1093%2Fimamat%2Fhxz021&rft.externalDocID=oai_portal_research_lu_se_publications_e1942a78_f2f6_431a_a5d4_06d2d18df96a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0272-4960&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0272-4960&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0272-4960&client=summon