Plug-and-play supervisory control using muscle and brain signals for real-time gesture and error detection

Effective human supervision of robots can be key for ensuring correct robot operation in a variety of potentially safety-critical scenarios. This paper takes a step towards fast and reliable human intervention in supervisory control tasks by combining two streams of human biosignals: muscle and brai...

Full description

Saved in:
Bibliographic Details
Published inAutonomous robots Vol. 44; no. 7; pp. 1303 - 1322
Main Authors DelPreto, Joseph, Salazar-Gomez, Andres F., Gil, Stephanie, Hasani, Ramin, Guenther, Frank H., Rus, Daniela
Format Journal Article
LanguageEnglish
Published New York Springer US 01.09.2020
Springer Nature B.V
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Effective human supervision of robots can be key for ensuring correct robot operation in a variety of potentially safety-critical scenarios. This paper takes a step towards fast and reliable human intervention in supervisory control tasks by combining two streams of human biosignals: muscle and brain activity acquired via EMG and EEG, respectively. It presents continuous classification of left and right hand-gestures using muscle signals, time-locked classification of error-related potentials using brain signals (unconsciously produced when observing an error), and a framework that combines these pipelines to detect and correct robot mistakes during multiple-choice tasks. The resulting hybrid system is evaluated in a “plug-and-play” fashion with 7 untrained subjects supervising an autonomous robot performing a target selection task. Offline analysis further explores the EMG classification performance, and investigates methods to select subsets of training data that may facilitate generalizable plug-and-play classifiers.
AbstractList Effective human supervision of robots can be key for ensuring correct robot operation in a variety of potentially safety-critical scenarios. This paper takes a step towards fast and reliable human intervention in supervisory control tasks by combining two streams of human biosignals: muscle and brain activity acquired via EMG and EEG, respectively. It presents continuous classification of left and right hand-gestures using muscle signals, time-locked classification of error-related potentials using brain signals (unconsciously produced when observing an error), and a framework that combines these pipelines to detect and correct robot mistakes during multiple-choice tasks. The resulting hybrid system is evaluated in a “plug-and-play” fashion with 7 untrained subjects supervising an autonomous robot performing a target selection task. Offline analysis further explores the EMG classification performance, and investigates methods to select subsets of training data that may facilitate generalizable plug-and-play classifiers.
Author Gil, Stephanie
DelPreto, Joseph
Hasani, Ramin
Salazar-Gomez, Andres F.
Rus, Daniela
Guenther, Frank H.
Author_xml – sequence: 1
  givenname: Joseph
  orcidid: 0000-0001-8162-5317
  surname: DelPreto
  fullname: DelPreto, Joseph
  email: delpreto@csail.mit.edu
  organization: Massachusetts Institute of Technology, Distributed Robotics Lab
– sequence: 2
  givenname: Andres F.
  surname: Salazar-Gomez
  fullname: Salazar-Gomez, Andres F.
  organization: Massachusetts Institute of Technology, Distributed Robotics Lab, Massachusetts Institute of Technology, Open Learning
– sequence: 3
  givenname: Stephanie
  surname: Gil
  fullname: Gil, Stephanie
  organization: Massachusetts Institute of Technology, Distributed Robotics Lab, Harvard University, REACT Lab
– sequence: 4
  givenname: Ramin
  surname: Hasani
  fullname: Hasani, Ramin
  organization: Massachusetts Institute of Technology, Distributed Robotics Lab, Technische Universität Wien, Cyber-Physical Systems Group
– sequence: 5
  givenname: Frank H.
  surname: Guenther
  fullname: Guenther, Frank H.
  organization: Boston University, Guenther
– sequence: 6
  givenname: Daniela
  surname: Rus
  fullname: Rus, Daniela
  organization: Massachusetts Institute of Technology, Distributed Robotics Lab
BookMark eNp9kMtOwzAQRS1UJNrCD7CyxNrgR5zES1TxkirBAtaW40yiVKld7AS1f49LkJBYdDUL3-O5cxZo5rwDhK4ZvWWUFneRUckyQjklVCmWk_0ZmjNZCFJIXszQnCquiJRKXKBFjBtKqSoonaPNWz-2xLia7HpzwHHcQfjqog8HbL0bgu_xGDvX4u0YbQ84JXEVTOdw7Fpn-ogbH3AA05Oh2wJuIQ5jmHIQQnqrYQA7dN5dovMmAXD1O5fo4_HhffVM1q9PL6v7NbEZVwMRrKwKVvGaCVlbKwoQPLOGNyqTslYNzSGvmDRQibIGC7kt8xIqyfKsYsoIsUQ307-74D_H1Edv_BiOXTXPMio4Z7xMKT6lbPAxBmj0LnRbEw6aUX10qienOjnVP071PkHlP8h2gzkeNyQn_WlUTGhMe1wL4a_VCeob8paQLg
CitedBy_id crossref_primary_10_1155_2021_5539793
crossref_primary_10_1038_s41598_024_64458_x
crossref_primary_10_1146_annurev_control_070122_102501
crossref_primary_10_1186_s12984_022_01098_0
crossref_primary_10_3390_ma13245815
crossref_primary_10_3390_s22176319
crossref_primary_10_1016_j_jneumeth_2023_109982
crossref_primary_10_1016_j_rcim_2021_102304
crossref_primary_10_1016_j_rcim_2023_102626
crossref_primary_10_1038_s42256_022_00556_7
crossref_primary_10_1371_journal_pone_0287958
crossref_primary_10_1002_aisy_202300359
crossref_primary_10_1109_JSEN_2024_3455334
crossref_primary_10_1109_JSEN_2020_3035169
crossref_primary_10_1007_s00170_024_14959_w
crossref_primary_10_1088_2632_2153_ad200c
crossref_primary_10_1007_s00170_023_10804_8
crossref_primary_10_1109_ACCESS_2022_3227049
Cites_doi 10.1109/ROBOT.2005.1570815
10.1016/S1388-2457(02)00057-3
10.1109/HUMANOIDS.2017.8246878
10.1109/TBME.2010.2082539
10.1109/TSMCB.2010.2045120
10.1145/1378773.1378778
10.1109/JPROC.2015.2411333
10.1109/BIOROB.2014.6913841
10.1109/TITB.2011.2178034
10.1088/1741-2560/12/6/066028
10.1109/TRO.2009.2039378
10.1109/IROS.2009.5353935
10.1109/ICRA.2017.7989777
10.1088/1741-2560/8/2/025009
10.1016/S0021-9290(03)00152-0
10.1038/srep13893
10.1109/86.712231
10.1016/S1388-2457(00)00457-0
10.3389/fninf.2011.00030
10.1109/IEMBS.2011.6090139
10.1109/LSP.2014.2368952
10.1038/18581
10.1016/0013-4694(91)90062-9
10.1016/j.robot.2010.05.010
10.1126/scirobotics.aat1228,
10.1109/TMECH.2007.897262
10.1109/TAC.1984.1103644
10.1016/S0013-4694(97)00022-2
10.1177/0278364917707024
10.1109/TNSRE.2016.2583464
10.1109/TITB.2010.2040832
10.1109/TIT.1982.1056489
10.1109/ICORR.2017.8009362
10.1016/j.neucom.2012.12.039
10.1109/ICBME.2015.7404136
10.1109/TBME.2014.2369483
10.1016/j.clinph.2011.11.082
10.1109/TNSRE.2006.875555
10.1088/1741-2560/10/4/046003
10.1109/IEMBS.2007.4352845
10.1016/j.specom.2010.01.001
10.1109/TSMCB.2012.2185843
10.1109/IEMBS.2010.5627380
10.1109/HUMANOIDS.2016.7803334
10.1109/IWW-BCI.2018.8311531
10.1088/1741-2552/aa525f
10.1109/TRO.2009.2020347
10.1186/1475-925X-8-5
10.5772/56174
10.1109/ICRA.2015.7140110
10.1109/ICORR.2005.1501122
10.1109/TNSRE.2017.2694553
10.1109/ROBOT.2004.1308056
10.1109/ICRA.2019.8794414
10.1109/TBME.2009.2012869
10.3389/fnhum.2015.00155
10.1016/j.neunet.2011.05.006
10.1007/978-3-319-51532-8_20
10.1109/TBME.2007.909536
10.1016/j.compbiomed.2014.04.020
10.1016/j.eswa.2014.10.052
10.1109/NER.2011.5910558,
10.1109/IEMBS.2011.6091049
ContentType Journal Article
Copyright The Author(s) 2020
The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2020
– notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
7SC
7SP
7TB
8FD
8FE
8FG
ABJCF
AFKRA
ARAPS
BENPR
BGLVJ
CCPQU
DWQXO
F28
FR3
HCIFZ
JQ2
L6V
L7M
L~C
L~D
M7S
P5Z
P62
PHGZM
PHGZT
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PTHSS
S0W
DOI 10.1007/s10514-020-09916-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Computer and Information Systems Abstracts
Electronics & Communications Abstracts
Mechanical & Transportation Engineering Abstracts
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
SciTech Premium Collection
ProQuest Central UK/Ireland
ProQuest Advanced Technologies & Aerospace Database
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
SciTech Premium Collection (UHCL Subscription)
ProQuest Computer Science Collection
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
Engineering Collection
DELNET Engineering & Technology Collection
DatabaseTitle CrossRef
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest One Community College
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
ProQuest DELNET Engineering and Technology Collection
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
DatabaseTitleList
Technology Collection
CrossRef
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1573-7527
EndPage 1322
ExternalDocumentID 10_1007_s10514_020_09916_x
GrantInformation_xml – fundername: Boeing
  funderid: http://dx.doi.org/10.13039/100000003http://dx.doi.org/10.13039/100000003
GroupedDBID -59
-5G
-BR
-EM
-Y2
-~C
-~X
.86
.DC
.VR
06D
0R~
0VY
199
1N0
1SB
2.D
203
23N
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
4.4
406
408
409
40D
40E
5GY
5QI
5VS
67Z
6NX
6TJ
78A
8FE
8FG
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANZL
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBXA
ABDZT
ABECU
ABFTD
ABFTV
ABHLI
ABHQN
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABQBU
ABQSL
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFS
ACHSB
ACHXU
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACSNA
ACZOJ
ADHHG
ADHIR
ADIMF
ADINQ
ADKNI
ADKPE
ADRFC
ADTPH
ADURQ
ADYFF
ADZKW
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEVLU
AEXYK
AFBBN
AFEXP
AFGCZ
AFKRA
AFLOW
AFQWF
AFWTZ
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHKAY
AHSBF
AHYZX
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AJBLW
AJRNO
AJZVZ
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARCEE
ARMRJ
ASPBG
AVWKF
AXYYD
AYJHY
AZFZN
B-.
BA0
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BSONS
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBLON
EBS
EIOEI
EJD
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
GGCAI
GGRSB
GJIRD
GNWQR
GQ6
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I09
IHE
IJ-
IKXTQ
ITM
IWAJR
IXC
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
L6V
LAK
LLZTM
M4Y
M7S
MA-
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
P9O
PF0
PT4
PT5
PTHSS
Q2X
QOK
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RSV
RZC
RZE
RZK
S0W
S16
S1Z
S26
S27
S28
S3B
SAP
SCLPG
SCO
SCV
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
STPWE
SZN
T13
T16
TEORI
TSG
TSK
TSV
TUC
U2A
UG4
UOJIU
UTJUX
UZXMN
VC2
VFIZW
W23
W48
WK8
YLTOR
Z45
Z7R
Z7S
Z7X
Z7Z
Z83
Z86
Z88
Z8M
Z8N
Z8T
Z8W
Z92
ZMTXR
_50
~02
~EX
AAPKM
AAYXX
ABBRH
ABDBE
ABFSG
ACSTC
ADHKG
AEZWR
AFDZB
AFHIU
AFOHR
AGQPQ
AHPBZ
AHWEU
AIXLP
ATHPR
AYFIA
CITATION
PHGZM
PHGZT
7SC
7SP
7TB
8FD
ABRTQ
DWQXO
F28
FR3
JQ2
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PUEGO
ID FETCH-LOGICAL-c429t-318b71b2d135dcc37e324ca2f9455d9f06e6b15aeb38dece6c868eb5164b19a33
IEDL.DBID U2A
ISSN 0929-5593
IngestDate Thu Aug 28 05:10:41 EDT 2025
Thu Apr 24 23:11:23 EDT 2025
Tue Jul 01 01:26:00 EDT 2025
Fri Feb 21 02:33:45 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Keywords Error-related potentials
EEG control
Hybrid control
Gesture detection
Human–robot interaction
EMG control
Plug-and-play supervisory control
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-318b71b2d135dcc37e324ca2f9455d9f06e6b15aeb38dece6c868eb5164b19a33
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0001-8162-5317
OpenAccessLink https://link.springer.com/10.1007/s10514-020-09916-x
PQID 2440322128
PQPubID 326361
PageCount 20
ParticipantIDs proquest_journals_2440322128
crossref_primary_10_1007_s10514_020_09916_x
crossref_citationtrail_10_1007_s10514_020_09916_x
springer_journals_10_1007_s10514_020_09916_x
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-01
PublicationDateYYYYMMDD 2020-09-01
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-01
  day: 01
PublicationDecade 2020
PublicationPlace New York
PublicationPlace_xml – name: New York
– name: Dordrecht
PublicationTitle Autonomous robots
PublicationTitleAbbrev Auton Robot
PublicationYear 2020
Publisher Springer US
Springer Nature B.V
Publisher_xml – name: Springer US
– name: Springer Nature B.V
References ButtfieldAFerrezPWMillanJRTowards a robust BCI: error potentials and online learningIEEE Transactions on Neural Systems and Rehabilitation Engineering200614216416810.1109/TNSRE.2006.875555
WolpawJRBirbaumerNMcFarlandDJPfurtschellerGVaughanTMBrain-computer interfaces for communication and controlClinical Neurophysiology2002113676779110.1016/S1388-2457(02)00057-3
SpülerMNiethammerCError-related potentials during continuous feedback: using EEG to detect errors of different type and severityFrontiers in Human Neuroscience2015915510.3389/fnhum.2015.00155
YinYHFanYJXuLDEMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeletonIEEE Transactions on Information Technology in Biomedicine201216454254910.1109/TITB.2011.2178034
Mulas, M., Folgheraiter, M., & Gini, G. (2005) An EMG-controlled exoskeleton for hand rehabilitation. In 2005 International conference on rehabilitation robotics (ICORR), IEEE, pp 371–374. https://doi.org/10.1109/ICORR.2005.1501122.
SchalkGWolpawJRMcFarlandDJPfurtschellerGEEG-based communication: presence of an error potentialClinical Neurophysiology2000111122138214410.1016/S1388-2457(00)00457-0
RamliRArofHIbrahimFMokhtarNIdrisMYIUsing finite state machine and a hybrid of EEG signal and EOG artifacts for an asynchronous wheelchair navigationExpert Systems with Applications20154252451246310.1016/j.eswa.2014.10.052
ChuJUMoonILeeYJKimSKMunMSA supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand controlIEEE/ASME Transactions on Mechatronics200712328229010.1109/TMECH.2007.897262
HoganNAdaptive control of mechanical impedance by coactivation of antagonist musclesIEEE Transactions on Automatic Control198429868169010.1109/TAC.1984.11036440542.92005
Tonin, L., Carlson, T., Leeb, R., & Millán, JdR. (2011) Brain-controlled telepresence robot by motor-disabled people. In 2011 annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp. 4227–4230.https://doi.org/10.1109/IEMBS.2011.6091049.
Kim, J., Mastnik, S., & André, E. (2008) EMG-based hand gesture recognition for realtime biosignal interfacing. In Proceedings of the 13th international conference on intelligent user interfaces, ACM, pp. 30–39. https://doi.org/10.1145/1378773.1378778.
HiggerMAkcakayaMNezamfarHLaMountainGOrhanUErdogmusDA bayesian framework for intent detection and stimulation selection in SSVEP BCIsIEEE Signal Processing Letters201522674374710.1109/LSP.2014.2368952
Ramos, JLA., & Meggiolaro, MA. (2014) Use of surface electromyography for human amplification using an exoskeleton driven by artificial pneumatic muscles. In Biomedical robotics and biomechatronics, 2014 IEEE RAS & EMBS international conference, IEEE, pp. 585–590. https://doi.org/10.1109/BIOROB.2014.6913841.
LotteFGuanCRegularizing common spatial patterns to improve BCI designs: unified theory and new algorithmsIEEE Transactions on Biomedical Engineering201158235536210.1109/TBME.2010.2082539
Zajac, F, E, (1989) Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Critical reviews in Biomedical Engineering, 17(4), 359–411. http://e.guigon.free.fr/rsc/article/Zajac89.pdf.
Barachant, A., & Bonnet, S. (2011) Channel selection procedure using Riemannian distance for BCI applications. In 2011 International IEEE/EMBS conference Neural engineering (NER), IEEE, pp. 348–351. https://doi.org/10.1109/NER.2011.5910558,.
McFarlandDJMcCaneLMDavidSVWolpawJRSpatial filter selection for EEG-based communicationElectroencephalography and Clinical Neurophysiology1997103338639410.1016/S0013-4694(97)00022-2
Akinola, I., Chen, B., Koss, J., Patankar, A., Varley, J., & Allen, P. (2017) Task level hierarchical system for bci-enabled shared autonomy. In 2017 IEEE-RAS 17th international conference on humanoid robotics (Humanoids), IEEE, pp 219–225. https://doi.org/10.1109/HUMANOIDS.2017.8246878.
De Luca, CJ. (2002) Surface electromyography: Detection and recording. DelSys Incorporated. https://www.delsys.com/Attachments_pdf/WP_SEMGintro.pdf.
WolpawJRRamoserHMcFarlandDJPfurtschellerGEEG-based communication: improved accuracy by response verificationIEEE Transactions on Rehabilitation Engineering19986332633310.1109/86.712231
Sarasola-Sanz, A., Irastorza-Landa, N., López-Larraz, E., Bibián, C., Helmhold, F., Broetz, D., Birbaumer, N., & Ramos-Murguialday, A. (2017) A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients. In 2017 International conference on rehabilitation robotics (ICORR), IEEE, pp. 895–900. https://doi.org/10.1109/ICORR.2017.8009362.
KimBHKimMJoSQuadcopter flight control using a low-cost hybrid interface with EEG-based classification and eye trackingComputers in Biology and Medicine201451829210.1016/j.compbiomed.2014.04.020
ShenoyPMillerKJCrawfordBRaoRPOnline electromyographic control of a robotic prosthesisIEEE Transactions on Biomedical Engineering20085531128113510.1109/TBME.2007.909536
Crawford, B., Miller, K., Shenoy, P., & Rao, R. (2005) Real-time classification of electromyographic signals for robotic control. In Proceedings of AAAI (Vol .5, pp. 523–528). http://aaai.org/Papers/AAAI/2005/AAAI05-082.pdf.
GopuraRBandaraDGunasekaraJJayawardaneTRecent Trends in EMG-Based Control Methods for Assistive Robots2013IntechOpenElectrodiagnosis in new frontiers of clinical research10.5772/56174
DiCicco, M., Lucas, L., & Matsuoka, Y. (2004) Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand. In 2004 IEEE international conference on robotics and automation (ICRA) IEEE, Vol. 2, pp. 1622–1627. https://doi.org/10.1109/ROBOT.2004.1308056.
LleraAvan GervenMAGómezVJensenOKappenHJOn the use of interaction error potentials for adaptive brain computer interfacesNeural Networks201124101120112710.1016/j.neunet.2011.05.006
Cavallaro, E., Rosen, J., Perry, J.C., Burns, S., & Hannaford, B. (2005) Hill-based model as a myoprocessor for a neural controlled powered exoskeleton arm - parameters optimization. In Proceedings of the 2005 IEEE international conference on robotics and automation (ICRA), IEEE, pp. 4514–4519. https://doi.org/10.1109/ROBOT.2005.1570815.
IturrateIAntelisJMKublerAMinguezJA noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigationIEEE Transactions on Robotics200925361462710.1109/TRO.2009.2020347
LaFleurKCassadyKDoudAShadesKRoginEHeBQuadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interfaceJournal of Neural Engineering201310404600310.1088/1741-2560/10/4/046003
Behncke, J., Schirrmeister, RT., Burgard, W., & Ball, T. (2018) The signature of robot action success in eeg signals of a human observer: Decoding and visualization using deep convolutional neural networks. In 2018 6th international conference on brain-computer interface (BCI), IEEE, pp. 1–6. https://doi.org/10.1109/IWW-BCI.2018.8311531.
WeiszJAllenPKBarszapAGJoshiSSAssistive grasping with an augmented reality user interfaceThe International Journal of Robotics Research2017365–754356210.1177/0278364917707024
BirbaumerNGhanayimNHinterbergerTIversenIKotchoubeyBKüblerAA spelling device for the paralysedNature1999398672529729810.1038/18581
PerrinXChavarriagaRColasFSiegwartRMillánJdRBrain-coupled interaction for semi-autonomous navigation of an assistive robotRobotics and Autonomous Systems201058121246125510.1016/j.robot.2010.05.010
SpülerMBenschMKleihSRosenstielWBogdanMKüblerAOnline use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCIClinical Neurophysiology201212371328133710.1016/j.clinph.2011.11.082
LópezNMdi SciascioFSoriaCMValentinuzziMERobust EMG sensing system based on data fusion for myoelectric control of a robotic armBiomedical Engineering Online200981510.1186/1475-925X-8-5
MaJZhangYCichockiAMatsunoFA novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: Application to robot controlIEEE Transactions on Biomedical Engineering201562387688910.1109/TBME.2014.2369483
Artemiadis, P. K., & Kyriakopoulos, K. J. (2011) A switching regime model for the EMG-based control of a robot arm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)41(1), 53–63. https://doi.org/10.1109/TSMCB.2010.2045120.
Müller-PutzGRBreitwieserCCincottiFLeebRSchreuderMLeottaFTools for brain-computer interaction: a general concept for a hybrid bciFrontiers in Neuroinformatics201153010.3389/fninf.2011.00030
Gopura, R.A.R.C., Kiguchi, K., & Li, Y. (2009) SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. In 2009 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp. 1126–1131. https://doi.org/10.1109/IROS.2009.5353935.
IturrateIChavarriagaRMontesanoLMinguezJMillánJRTeaching brain-machine interfaces as an alternative paradigm to neuroprosthetics controlScientific Reports201551389310.1038/srep13893
DelPreto, J., & Rus, D. (2019) Sharing the load: Human-robot team lifting using muscle activity. In IEEE international conference on robotics and automation (ICRA). IEEE. https://doi.org/10.1109/ICRA.2019.8794414.
ManalKBuchananTSA one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyogramsJournal of Biomechanics20033681197120210.1016/S0021-9290(03)00152-0
Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991) Effects of crossmodal divided attention on late ERP components. ii. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology78(6), 447–455. https://doi.org/10.1016/0013-4694(91)90062-9.
AoDSongRGaoJMovement performance of human-robot cooperation control based on EMG-driven hill-type and proportional models for an ankle power-assist exoskeleton robotIEEE Transactions on Neural Systems and Rehabilitation Engineering20172581125113410.1109/TNSRE.2016.2583464
ArtemiadisP
9916_CR1
9916_CR2
YH Yin (9916_CR63) 2012; 16
9916_CR6
I Iturrate (9916_CR24) 2009; 25
X Perrin (9916_CR45) 2010; 58
9916_CR8
H Zhang (9916_CR66) 2015; 12
J Weisz (9916_CR60) 2017; 36
BH Kim (9916_CR29) 2014; 51
A Llera (9916_CR33) 2011; 24
JR Wolpaw (9916_CR61) 1998; 6
M Higger (9916_CR22) 2015; 22
9916_CR40
A Barachant (9916_CR7) 2013; 112
9916_CR41
9916_CR44
F Lotte (9916_CR36) 2011; 58
D Ao (9916_CR3) 2017; 25
K Manal (9916_CR38) 2003; 36
9916_CR47
9916_CR49
DJ McFarland (9916_CR39) 1997; 103
K LaFleur (9916_CR31) 2013; 10
R Ramli (9916_CR48) 2015; 42
C Vidaurre (9916_CR59) 2011; 8
JR Wolpaw (9916_CR62) 2002; 113
R Gopura (9916_CR20) 2013
T Kawase (9916_CR27) 2017; 14
9916_CR30
9916_CR32
M Spüler (9916_CR57) 2012; 123
N Hogan (9916_CR23) 1984; 29
NM López (9916_CR35) 2009; 8
G Schalk (9916_CR53) 2000; 111
L Peternel (9916_CR46) 2017; 25
A Buttfield (9916_CR12) 2006; 14
G Müller-Putz (9916_CR42) 2015; 103
B Rivet (9916_CR50) 2009; 56
9916_CR64
9916_CR21
9916_CR65
N Birbaumer (9916_CR9) 1999; 398
9916_CR25
9916_CR28
J Ma (9916_CR37) 2015; 62
9916_CR19
9916_CR18
M Spüler (9916_CR56) 2015; 9
PK Artemiadis (9916_CR4) 2010; 26
JS Brumberg (9916_CR11) 2010; 52
PK Artemiadis (9916_CR5) 2010; 14
I Iturrate (9916_CR26) 2015; 5
GR Müller-Putz (9916_CR43) 2011; 5
9916_CR51
9916_CR52
9916_CR10
9916_CR54
9916_CR13
JU Chu (9916_CR14) 2007; 12
9916_CR15
S Lloyd (9916_CR34) 1982; 28
P Shenoy (9916_CR55) 2008; 55
9916_CR58
9916_CR17
9916_CR16
References_xml – reference: WeiszJAllenPKBarszapAGJoshiSSAssistive grasping with an augmented reality user interfaceThe International Journal of Robotics Research2017365–754356210.1177/0278364917707024
– reference: De Luca, CJ. (2002) Surface electromyography: Detection and recording. DelSys Incorporated. https://www.delsys.com/Attachments_pdf/WP_SEMGintro.pdf.
– reference: RivetBSouloumiacAAttinaVGibertGxDAWN algorithm to enhance evoked potentials: application to brain-computer interfaceIEEE Transactions on Biomedical Engineering20095682035204310.1109/TBME.2009.2012869
– reference: Kiguchi, K., & Hayashi, Y. (2012) An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)42(4), 1064–1071. https://doi.org/10.1109/TSMCB.2012.2185843.
– reference: KawaseTSakuradaTKoikeYKansakuKA hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movementsJournal of Neural Engineering201714101601510.1088/1741-2552/aa525f
– reference: Behncke, J., Schirrmeister, RT., Burgard, W., & Ball, T. (2018) The signature of robot action success in eeg signals of a human observer: Decoding and visualization using deep convolutional neural networks. In 2018 6th international conference on brain-computer interface (BCI), IEEE, pp. 1–6. https://doi.org/10.1109/IWW-BCI.2018.8311531.
– reference: Menon, S., Migimatsu, T., & Khatib, O. (2016) A parameterized family of anatomically accurate human upper-body musculoskeletal models for dynamic simulation & control. In 2016 IEEE-RAS 16th international conference on humanoid robots (Humanoids), pp. 587–594. https://doi.org/10.1109/HUMANOIDS.2016.7803334.
– reference: YinYHFanYJXuLDEMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeletonIEEE Transactions on Information Technology in Biomedicine201216454254910.1109/TITB.2011.2178034
– reference: LaFleurKCassadyKDoudAShadesKRoginEHeBQuadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interfaceJournal of Neural Engineering201310404600310.1088/1741-2560/10/4/046003
– reference: Müller-PutzGRBreitwieserCCincottiFLeebRSchreuderMLeottaFTools for brain-computer interaction: a general concept for a hybrid bciFrontiers in Neuroinformatics201153010.3389/fninf.2011.00030
– reference: DiCicco, M., Lucas, L., & Matsuoka, Y. (2004) Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand. In 2004 IEEE international conference on robotics and automation (ICRA) IEEE, Vol. 2, pp. 1622–1627. https://doi.org/10.1109/ROBOT.2004.1308056.
– reference: Iturrate, I., Montesano, L., & Minguez, J. (2010) Single trial recognition of error-related potentials during observation of robot operation. In 2010 annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp. 4181–4184. https://doi.org/10.1109/IEMBS.2010.5627380.
– reference: Ramos, JLA., & Meggiolaro, MA. (2014) Use of surface electromyography for human amplification using an exoskeleton driven by artificial pneumatic muscles. In Biomedical robotics and biomechatronics, 2014 IEEE RAS & EMBS international conference, IEEE, pp. 585–590. https://doi.org/10.1109/BIOROB.2014.6913841.
– reference: LloydSLeast squares quantization in pcmIEEE Transactions on Information Theory198228212913765180710.1109/TIT.1982.10564890504.94015
– reference: HoganNAdaptive control of mechanical impedance by coactivation of antagonist musclesIEEE Transactions on Automatic Control198429868169010.1109/TAC.1984.11036440542.92005
– reference: ChuJUMoonILeeYJKimSKMunMSA supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand controlIEEE/ASME Transactions on Mechatronics200712328229010.1109/TMECH.2007.897262
– reference: Tonin, L., Carlson, T., Leeb, R., & Millán, JdR. (2011) Brain-controlled telepresence robot by motor-disabled people. In 2011 annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp. 4227–4230.https://doi.org/10.1109/IEMBS.2011.6091049.
– reference: Ying, R., Weisz, J., & Allen, PK. (2018) Grasping with your brain: A brain-computerinterface for fast grasp selection. In Robotics Research, SpringerInternational Publishing, pp. 325–340. https://doi.org/10.1007/978-3-319-51532-8_20.
– reference: ShenoyPMillerKJCrawfordBRaoRPOnline electromyographic control of a robotic prosthesisIEEE Transactions on Biomedical Engineering20085531128113510.1109/TBME.2007.909536
– reference: DelPreto, J., & Rus, D. (2019) Sharing the load: Human-robot team lifting using muscle activity. In IEEE international conference on robotics and automation (ICRA). IEEE. https://doi.org/10.1109/ICRA.2019.8794414.
– reference: ButtfieldAFerrezPWMillanJRTowards a robust BCI: error potentials and online learningIEEE Transactions on Neural Systems and Rehabilitation Engineering200614216416810.1109/TNSRE.2006.875555
– reference: Artemiadis, P. K., & Kyriakopoulos, K. J. (2011) A switching regime model for the EMG-based control of a robot arm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)41(1), 53–63. https://doi.org/10.1109/TSMCB.2010.2045120.
– reference: ManalKBuchananTSA one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyogramsJournal of Biomechanics20033681197120210.1016/S0021-9290(03)00152-0
– reference: McFarlandDJMcCaneLMDavidSVWolpawJRSpatial filter selection for EEG-based communicationElectroencephalography and Clinical Neurophysiology1997103338639410.1016/S0013-4694(97)00022-2
– reference: ArtemiadisPKKyriakopoulosKJEMG-based control of a robot arm using low-dimensional embeddingsIEEE Transactions on Robotics201026239339810.1109/TRO.2009.2039378
– reference: SchalkGWolpawJRMcFarlandDJPfurtschellerGEEG-based communication: presence of an error potentialClinical Neurophysiology2000111122138214410.1016/S1388-2457(00)00457-0
– reference: BrumbergJSNieto-CastanonAKennedyPRGuentherFHBrain-computer interfaces for speech communicationSpeech Communication201052436737910.1016/j.specom.2010.01.001
– reference: Akinola, I., Chen, B., Koss, J., Patankar, A., Varley, J., & Allen, P. (2017) Task level hierarchical system for bci-enabled shared autonomy. In 2017 IEEE-RAS 17th international conference on humanoid robotics (Humanoids), IEEE, pp 219–225. https://doi.org/10.1109/HUMANOIDS.2017.8246878.
– reference: Cavallaro, E., Rosen, J., Perry, J.C., Burns, S., & Hannaford, B. (2005) Hill-based model as a myoprocessor for a neural controlled powered exoskeleton arm - parameters optimization. In Proceedings of the 2005 IEEE international conference on robotics and automation (ICRA), IEEE, pp. 4514–4519. https://doi.org/10.1109/ROBOT.2005.1570815.
– reference: PerrinXChavarriagaRColasFSiegwartRMillánJdRBrain-coupled interaction for semi-autonomous navigation of an assistive robotRobotics and Autonomous Systems201058121246125510.1016/j.robot.2010.05.010
– reference: Salazar-Gomez, A.F., DelPreto, J., Gil, S., Guenther, F. H., & Rus, D. (2017) Correcting robot mistakes in real time using EEG signals. In 2017 IEEE international conference on robotics and automation (ICRA), IEEE, pp. 6570–6577. https://doi.org/10.1109/ICRA.2017.7989777.
– reference: IturrateIChavarriagaRMontesanoLMinguezJMillánJRTeaching brain-machine interfaces as an alternative paradigm to neuroprosthetics controlScientific Reports201551389310.1038/srep13893
– reference: Lenzi, T., De Rossi, S., Vitiello, N., & Carrozza, M. (2011) Proportional EMG control for upper-limb powered exoskeletons. In 2011 Annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp. 628–631. https://doi.org/10.1109/IEMBS.2011.6090139.
– reference: RamliRArofHIbrahimFMokhtarNIdrisMYIUsing finite state machine and a hybrid of EEG signal and EOG artifacts for an asynchronous wheelchair navigationExpert Systems with Applications20154252451246310.1016/j.eswa.2014.10.052
– reference: SpülerMBenschMKleihSRosenstielWBogdanMKüblerAOnline use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCIClinical Neurophysiology201212371328133710.1016/j.clinph.2011.11.082
– reference: Gopura, R.A.R.C., Kiguchi, K., & Li, Y. (2009) SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. In 2009 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp. 1126–1131. https://doi.org/10.1109/IROS.2009.5353935.
– reference: LópezNMdi SciascioFSoriaCMValentinuzziMERobust EMG sensing system based on data fusion for myoelectric control of a robotic armBiomedical Engineering Online200981510.1186/1475-925X-8-5
– reference: HiggerMAkcakayaMNezamfarHLaMountainGOrhanUErdogmusDA bayesian framework for intent detection and stimulation selection in SSVEP BCIsIEEE Signal Processing Letters201522674374710.1109/LSP.2014.2368952
– reference: PeternelLTsagarakisNAjoudaniAA human-robot co-manipulation approach based on human sensorimotor informationIEEE Transactions on Neural Systems and Rehabilitation Engineering201725781182210.1109/TNSRE.2017.2694553
– reference: BarachantABonnetSCongedoMJuttenCClassification of covariance matrices using a Riemannian-based kernel for BCI applicationsNeurocomputing201311217217810.1016/j.neucom.2012.12.039
– reference: ZhangHChavarriagaRKhaliliardaliZGheorgheLIturrateIMillanJEEG-based decoding of error-related brain activity in a real-world driving taskJournal of Neural Engineering201512606602810.1088/1741-2560/12/6/066028
– reference: LleraAvan GervenMAGómezVJensenOKappenHJOn the use of interaction error potentials for adaptive brain computer interfacesNeural Networks201124101120112710.1016/j.neunet.2011.05.006
– reference: AoDSongRGaoJMovement performance of human-robot cooperation control based on EMG-driven hill-type and proportional models for an ankle power-assist exoskeleton robotIEEE Transactions on Neural Systems and Rehabilitation Engineering20172581125113410.1109/TNSRE.2016.2583464
– reference: ArtemiadisPKKyriakopoulosKJAn EMG-based robot control scheme robust to time-varying EMG signal featuresIEEE Transactions on Information Technology in Biomedicine201014358258810.1109/TITB.2010.2040832
– reference: Blumberg, J., Rickert, J., Waldert, S., Schulze-Bonhage, A., Aertsen, A., & Mehring, C. (2007) Adaptive classification for brain computer interfaces. In 2007 Annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp. 2536–2539. https://doi.org/10.1109/IEMBS.2007.4352845.
– reference: MaJZhangYCichockiAMatsunoFA novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: Application to robot controlIEEE Transactions on Biomedical Engineering201562387688910.1109/TBME.2014.2369483
– reference: Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991) Effects of crossmodal divided attention on late ERP components. ii. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology78(6), 447–455. https://doi.org/10.1016/0013-4694(91)90062-9.
– reference: SpülerMNiethammerCError-related potentials during continuous feedback: using EEG to detect errors of different type and severityFrontiers in Human Neuroscience2015915510.3389/fnhum.2015.00155
– reference: LotteFGuanCRegularizing common spatial patterns to improve BCI designs: unified theory and new algorithmsIEEE Transactions on Biomedical Engineering201158235536210.1109/TBME.2010.2082539
– reference: KimBHKimMJoSQuadcopter flight control using a low-cost hybrid interface with EEG-based classification and eye trackingComputers in Biology and Medicine201451829210.1016/j.compbiomed.2014.04.020
– reference: Barachant, A., & Bonnet, S. (2011) Channel selection procedure using Riemannian distance for BCI applications. In 2011 International IEEE/EMBS conference Neural engineering (NER), IEEE, pp. 348–351. https://doi.org/10.1109/NER.2011.5910558,.
– reference: Mulas, M., Folgheraiter, M., & Gini, G. (2005) An EMG-controlled exoskeleton for hand rehabilitation. In 2005 International conference on rehabilitation robotics (ICORR), IEEE, pp 371–374. https://doi.org/10.1109/ICORR.2005.1501122.
– reference: Schröer, S., Killmann, I., Frank, B., Völker, M., Fiederer, L., Ball, T., & Burgard, W. (2015) An autonomous robotic assistant for drinking. In 2015 IEEE international conference on robotics and automation (ICRA), IEEE, pp. 6482–6487. https://doi.org/10.1109/ICRA.2015.7140110.
– reference: Müller-PutzGLeebRTangermannMHöhneJKüblerACincottiFTowards noninvasive hybrid brain-computer interfaces: framework, practice, clinical application, and beyondProceedings of the IEEE2015103692694310.1109/JPROC.2015.2411333
– reference: Crawford, B., Miller, K., Shenoy, P., & Rao, R. (2005) Real-time classification of electromyographic signals for robotic control. In Proceedings of AAAI (Vol .5, pp. 523–528). http://aaai.org/Papers/AAAI/2005/AAAI05-082.pdf.
– reference: GopuraRBandaraDGunasekaraJJayawardaneTRecent Trends in EMG-Based Control Methods for Assistive Robots2013IntechOpenElectrodiagnosis in new frontiers of clinical research10.5772/56174
– reference: Kim, J., Mastnik, S., & André, E. (2008) EMG-based hand gesture recognition for realtime biosignal interfacing. In Proceedings of the 13th international conference on intelligent user interfaces, ACM, pp. 30–39. https://doi.org/10.1145/1378773.1378778.
– reference: Sarasola-Sanz, A., Irastorza-Landa, N., López-Larraz, E., Bibián, C., Helmhold, F., Broetz, D., Birbaumer, N., & Ramos-Murguialday, A. (2017) A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients. In 2017 International conference on rehabilitation robotics (ICORR), IEEE, pp. 895–900. https://doi.org/10.1109/ICORR.2017.8009362.
– reference: VidaurreCSannelliCMüllerKRBlankertzBCo-adaptive calibration to improve BCI efficiencyJournal of Neural Engineering20118202500910.1088/1741-2560/8/2/0250091208.92016
– reference: BirbaumerNGhanayimNHinterbergerTIversenIKotchoubeyBKüblerAA spelling device for the paralysedNature1999398672529729810.1038/18581
– reference: Penaloza, CI., & Nishio, S. (2018) BMI control of a third arm for multitasking. Science Robotics, 3(20), eaat1228. https://doi.org/10.1126/scirobotics.aat1228,.
– reference: Qashqai, A., Ehsani, H., & Rostami, M. (2015) A hill-based emg-driven model to estimate elbow torque during flexion and extention. In 2015 22nd Iranian conference on biomedical engineering (ICBME), IEEE, pp. 166–171. https://doi.org/10.1109/ICBME.2015.7404136.
– reference: WolpawJRBirbaumerNMcFarlandDJPfurtschellerGVaughanTMBrain-computer interfaces for communication and controlClinical Neurophysiology2002113676779110.1016/S1388-2457(02)00057-3
– reference: WolpawJRRamoserHMcFarlandDJPfurtschellerGEEG-based communication: improved accuracy by response verificationIEEE Transactions on Rehabilitation Engineering19986332633310.1109/86.712231
– reference: IturrateIAntelisJMKublerAMinguezJA noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigationIEEE Transactions on Robotics200925361462710.1109/TRO.2009.2020347
– reference: Zajac, F, E, (1989) Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Critical reviews in Biomedical Engineering, 17(4), 359–411. http://e.guigon.free.fr/rsc/article/Zajac89.pdf.
– ident: 9916_CR65
– ident: 9916_CR13
  doi: 10.1109/ROBOT.2005.1570815
– volume: 113
  start-page: 767
  issue: 6
  year: 2002
  ident: 9916_CR62
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(02)00057-3
– ident: 9916_CR2
  doi: 10.1109/HUMANOIDS.2017.8246878
– volume: 58
  start-page: 355
  issue: 2
  year: 2011
  ident: 9916_CR36
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2010.2082539
– ident: 9916_CR1
  doi: 10.1109/TSMCB.2010.2045120
– ident: 9916_CR30
  doi: 10.1145/1378773.1378778
– volume: 103
  start-page: 926
  issue: 6
  year: 2015
  ident: 9916_CR42
  publication-title: Proceedings of the IEEE
  doi: 10.1109/JPROC.2015.2411333
– ident: 9916_CR49
  doi: 10.1109/BIOROB.2014.6913841
– volume: 16
  start-page: 542
  issue: 4
  year: 2012
  ident: 9916_CR63
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2011.2178034
– volume: 12
  start-page: 066028
  issue: 6
  year: 2015
  ident: 9916_CR66
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/12/6/066028
– volume: 26
  start-page: 393
  issue: 2
  year: 2010
  ident: 9916_CR4
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2009.2039378
– ident: 9916_CR16
– ident: 9916_CR21
  doi: 10.1109/IROS.2009.5353935
– ident: 9916_CR51
  doi: 10.1109/ICRA.2017.7989777
– volume: 8
  start-page: 025009
  issue: 2
  year: 2011
  ident: 9916_CR59
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/8/2/025009
– volume: 36
  start-page: 1197
  issue: 8
  year: 2003
  ident: 9916_CR38
  publication-title: Journal of Biomechanics
  doi: 10.1016/S0021-9290(03)00152-0
– volume: 5
  start-page: 13893
  year: 2015
  ident: 9916_CR26
  publication-title: Scientific Reports
  doi: 10.1038/srep13893
– volume: 6
  start-page: 326
  issue: 3
  year: 1998
  ident: 9916_CR61
  publication-title: IEEE Transactions on Rehabilitation Engineering
  doi: 10.1109/86.712231
– volume: 111
  start-page: 2138
  issue: 12
  year: 2000
  ident: 9916_CR53
  publication-title: Clinical Neurophysiology
  doi: 10.1016/S1388-2457(00)00457-0
– volume: 5
  start-page: 30
  year: 2011
  ident: 9916_CR43
  publication-title: Frontiers in Neuroinformatics
  doi: 10.3389/fninf.2011.00030
– ident: 9916_CR32
  doi: 10.1109/IEMBS.2011.6090139
– volume: 22
  start-page: 743
  issue: 6
  year: 2015
  ident: 9916_CR22
  publication-title: IEEE Signal Processing Letters
  doi: 10.1109/LSP.2014.2368952
– volume: 398
  start-page: 297
  issue: 6725
  year: 1999
  ident: 9916_CR9
  publication-title: Nature
  doi: 10.1038/18581
– ident: 9916_CR19
  doi: 10.1016/0013-4694(91)90062-9
– volume: 58
  start-page: 1246
  issue: 12
  year: 2010
  ident: 9916_CR45
  publication-title: Robotics and Autonomous Systems
  doi: 10.1016/j.robot.2010.05.010
– ident: 9916_CR44
  doi: 10.1126/scirobotics.aat1228,
– volume: 12
  start-page: 282
  issue: 3
  year: 2007
  ident: 9916_CR14
  publication-title: IEEE/ASME Transactions on Mechatronics
  doi: 10.1109/TMECH.2007.897262
– volume: 29
  start-page: 681
  issue: 8
  year: 1984
  ident: 9916_CR23
  publication-title: IEEE Transactions on Automatic Control
  doi: 10.1109/TAC.1984.1103644
– volume: 103
  start-page: 386
  issue: 3
  year: 1997
  ident: 9916_CR39
  publication-title: Electroencephalography and Clinical Neurophysiology
  doi: 10.1016/S0013-4694(97)00022-2
– volume: 36
  start-page: 543
  issue: 5–7
  year: 2017
  ident: 9916_CR60
  publication-title: The International Journal of Robotics Research
  doi: 10.1177/0278364917707024
– volume: 25
  start-page: 1125
  issue: 8
  year: 2017
  ident: 9916_CR3
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2016.2583464
– volume: 14
  start-page: 582
  issue: 3
  year: 2010
  ident: 9916_CR5
  publication-title: IEEE Transactions on Information Technology in Biomedicine
  doi: 10.1109/TITB.2010.2040832
– ident: 9916_CR15
– volume: 28
  start-page: 129
  issue: 2
  year: 1982
  ident: 9916_CR34
  publication-title: IEEE Transactions on Information Theory
  doi: 10.1109/TIT.1982.1056489
– ident: 9916_CR52
  doi: 10.1109/ICORR.2017.8009362
– volume: 112
  start-page: 172
  year: 2013
  ident: 9916_CR7
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2012.12.039
– ident: 9916_CR47
  doi: 10.1109/ICBME.2015.7404136
– volume: 62
  start-page: 876
  issue: 3
  year: 2015
  ident: 9916_CR37
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2014.2369483
– volume: 123
  start-page: 1328
  issue: 7
  year: 2012
  ident: 9916_CR57
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2011.11.082
– volume: 14
  start-page: 164
  issue: 2
  year: 2006
  ident: 9916_CR12
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2006.875555
– volume: 10
  start-page: 046003
  issue: 4
  year: 2013
  ident: 9916_CR31
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2560/10/4/046003
– ident: 9916_CR10
  doi: 10.1109/IEMBS.2007.4352845
– volume: 52
  start-page: 367
  issue: 4
  year: 2010
  ident: 9916_CR11
  publication-title: Speech Communication
  doi: 10.1016/j.specom.2010.01.001
– ident: 9916_CR28
  doi: 10.1109/TSMCB.2012.2185843
– ident: 9916_CR25
  doi: 10.1109/IEMBS.2010.5627380
– ident: 9916_CR40
  doi: 10.1109/HUMANOIDS.2016.7803334
– ident: 9916_CR8
  doi: 10.1109/IWW-BCI.2018.8311531
– volume: 14
  start-page: 016015
  issue: 1
  year: 2017
  ident: 9916_CR27
  publication-title: Journal of Neural Engineering
  doi: 10.1088/1741-2552/aa525f
– volume: 25
  start-page: 614
  issue: 3
  year: 2009
  ident: 9916_CR24
  publication-title: IEEE Transactions on Robotics
  doi: 10.1109/TRO.2009.2020347
– volume: 8
  start-page: 5
  issue: 1
  year: 2009
  ident: 9916_CR35
  publication-title: Biomedical Engineering Online
  doi: 10.1186/1475-925X-8-5
– volume-title: Recent Trends in EMG-Based Control Methods for Assistive Robots
  year: 2013
  ident: 9916_CR20
  doi: 10.5772/56174
– ident: 9916_CR54
  doi: 10.1109/ICRA.2015.7140110
– ident: 9916_CR41
  doi: 10.1109/ICORR.2005.1501122
– volume: 25
  start-page: 811
  issue: 7
  year: 2017
  ident: 9916_CR46
  publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering
  doi: 10.1109/TNSRE.2017.2694553
– ident: 9916_CR18
  doi: 10.1109/ROBOT.2004.1308056
– ident: 9916_CR17
  doi: 10.1109/ICRA.2019.8794414
– volume: 56
  start-page: 2035
  issue: 8
  year: 2009
  ident: 9916_CR50
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2009.2012869
– volume: 9
  start-page: 155
  year: 2015
  ident: 9916_CR56
  publication-title: Frontiers in Human Neuroscience
  doi: 10.3389/fnhum.2015.00155
– volume: 24
  start-page: 1120
  issue: 10
  year: 2011
  ident: 9916_CR33
  publication-title: Neural Networks
  doi: 10.1016/j.neunet.2011.05.006
– ident: 9916_CR64
  doi: 10.1007/978-3-319-51532-8_20
– volume: 55
  start-page: 1128
  issue: 3
  year: 2008
  ident: 9916_CR55
  publication-title: IEEE Transactions on Biomedical Engineering
  doi: 10.1109/TBME.2007.909536
– volume: 51
  start-page: 82
  year: 2014
  ident: 9916_CR29
  publication-title: Computers in Biology and Medicine
  doi: 10.1016/j.compbiomed.2014.04.020
– volume: 42
  start-page: 2451
  issue: 5
  year: 2015
  ident: 9916_CR48
  publication-title: Expert Systems with Applications
  doi: 10.1016/j.eswa.2014.10.052
– ident: 9916_CR6
  doi: 10.1109/NER.2011.5910558,
– ident: 9916_CR58
  doi: 10.1109/IEMBS.2011.6091049
SSID ssj0009700
Score 2.422315
Snippet Effective human supervision of robots can be key for ensuring correct robot operation in a variety of potentially safety-critical scenarios. This paper takes a...
SourceID proquest
crossref
springer
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1303
SubjectTerms Artificial Intelligence
Brain
Computer Imaging
Control
Control tasks
Engineering
Error correction
Error detection
Hybrid systems
Mechatronics
Multiple choice
Muscles
Pattern Recognition and Graphics
Plug & play
Robotics
Robotics and Automation
Robots
Safety critical
Signal classification
Special Issue: Robotics: Science and Systems 2018
Supervisory control
Vision
SummonAdditionalLinks – databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI54XOCAeIrxUg7cIKJZl649IUBMEweEEEi7VXl4k9DoSrtK27_HXjMKSHCt0xxsx_6c-MHYuYU4lh2rhGk7hwGKtELHNhEaNDhlJeAXyrZ4jPqvnYeBGvgLt9KnVS5t4sJQu4mlO_IrdEMBKh-a0-v8Q9DUKHpd9SM0Vtk6UTD4Wr-9f3x6btru-iIUBAECsXPoy2Z88RyCBUHhU0AgScx-uqYGb_56Il14nt422_KQkd_UMt5hK5Dtss1vjQT32NvTuBoJnTmRj_Wcl1VOJqCcFHPuc9E5JbiP-HtV4h4cV3JDwyE45W-gBnLErhzx41jQsHlOj05VUa-DokCag-kiaSvbZ6-9-5e7vvBTFIRFXzOl8mjTlSgKGSpnbdgFxFBWt4dJRymXDIMIIiOVxqg6dmAhsnEUg1EYRxmZ6DA8YGvZJINDxkERnJKu242gE9lhoowLnQmGyipox7rF5JKBqfUtxmnSxThtmiMT01NkerpgejprsYuvf_K6wca_q0-Wckn9YSvTRjVa7HIpq4b8925H_-92zDbatXqIQJ6wtWlRwSlCkKk583r2CX3H2jc
  priority: 102
  providerName: ProQuest
Title Plug-and-play supervisory control using muscle and brain signals for real-time gesture and error detection
URI https://link.springer.com/article/10.1007/s10514-020-09916-x
https://www.proquest.com/docview/2440322128
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBfGK1lj1404Vs0k2TYy1tRaEUsVBPYR_TgtS0JA3Yf-9smtgqKngK7E7mMDO78w07D0KuNQQBb2rBlGsMBihcMxnokEmQYITmgCs222Lg34-aD2MxLorC0jLbvXySzG_qrWI3dO7MhjuOBTUMkWNV2NgdrXjktjetdovCE3T8DPGyV5TK_MzjqzvaYMxvz6K5t-kdkoMCJtL2Wq9HZAfiY7K_1TzwhLwOZ9mUydiwxUyuaJot7LFP58mKFvnn1Ca1T-lbliIPipRU2YEQ1OZsoNVRxKsUMeOM2QHz1D40ZcmaDpIE9wws80St-JSMet3nzj0rJicwjf5laUuiVYuj-LknjNZeCxA3aelOwqYQJpw4PviKC4mRdGBAg68DPwAlMHZSPJSed0Yq8TyGc0JBWAjFTavlQ9PXk1Ao4xnlTIQW4AayRngpwEgXbcXtdItZtGmIbIUeodCjXOjRe43cfP6zWDfV-JO6XuolKg5YGiEqcfAuQu9aI7elrjbbv3O7-B_5Jdlz1-bCHF4nlWWSwRXCkKVqkN2g12-Qarv_8tjF7113MHzC1Y7faeQW-QFgudtL
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QE4ICggFgr4ACewiJM4mxwqhIDtlpaKQyv1FvyYrYSW7JJsRPdP9Td2Jg8Cldpbr_FD0fjz-Bt7HgCvHaapip2WNvSeDBTlpEldJg0a9NoppC_sbXGUTE_ir6f6dAMu-lgYdqvsdWKjqP3C8R35ezqGAgIfqdMPy9-Sq0bx62pfQqOFxQGu_5DJVu3uf6b1fROGky_Hn6ayqyogHeneFYcL27GiX1OR9s5FYyRO4Uw4y2KtfTYLEkys0oaszNSjw8SlSYpWk11hVWb4ApRU_lYcRRnvqHSyNyT57UJeiHJIYupRF6TTheoRNZFsrAVMyeT5_wfhwG6vPMg259zkAdzvCKr42CLqIWxgsQ33_klb-Ah-fp_XZ9IUXi7nZi2qeskKp1qUa9F5vgt2pz8Tv-qK5hDUU1guRSHYW4TwLogpC2Krc8ml7QU_cdVl2w_Lkto8rhoXseIxnNyKdJ_AZrEo8CkI1EzelB-PE4wTN8u09ZG3wUw7jWFqRqB6AeauS2jOdTXm-ZCKmYWek9DzRuj5-Qje_h2zbNN53Nh7p1-XvNvaVT4AcQTv-rUamq-f7dnNs72CO9Pjb4f54f7RwXO4G7ZQkYHagc1VWeMLIj8r-7JBnIAftw3xS68DFkw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAVEeYqEUH-AEVuPsOo8DQi3tqqVotUJU6i049qRStWSXZCO6f41fx8zGIYBEb73GjhWNv4y_8bwAXllMEjW2Wuahc2SgKCtNYlNp0KDTViE94WiLaXRyPv54oS-24GeXC8NhlZ1O3Chqt7B8R75Px1BA4CN1ul_4sIjZ0eT98rvkDlLsae3aabQQOcP1DzLf6nenR7TXr8Nwcvzlw4n0HQakJT284tThPFb0mWqknbWjGIlfWBMW6VhrlxZBhFGutCGLM3FoMbJJlGCuycbIVWr4MpTU_3ZMVlEwgO3D4-nsc1_y1yfAEAGRxNtHPmXHJ-4RUZFsugVM0OT138diz3X_cc9uTr3JA7jv6ao4aPG1A1tYPoR7fxQxfARXs3lzKU3p5HJu1qJulqx-6kW1Fj4OXnBw_aX41tS0hqCZIufGFIJjRwj9gnizIO46l9zoXrDDq6naeVhVNOZwtQkYKx_D-a3I9wkMykWJT0GgZiqnXBxHOI5skercjVweFNpqDBMzBNUJMLO-vDl32ZhnfWFmFnpGQs82Qs-uh_Dm9zvLtrjHjbN3u33J_I9eZz0sh_C226t--P-rPbt5tZdwh-CdfTqdnj2Hu2GLFBmoXRisqgZfEBNa5XsecgK-3jbKfwE9ZRve
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plug-and-play+supervisory+control+using+muscle+and+brain+signals+for+real-time+gesture+and+error+detection&rft.jtitle=Autonomous+robots&rft.au=DelPreto%2C+Joseph&rft.au=Salazar-Gomez%2C+Andres+F.&rft.au=Gil%2C+Stephanie&rft.au=Hasani%2C+Ramin&rft.date=2020-09-01&rft.pub=Springer+US&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=44&rft.issue=7&rft.spage=1303&rft.epage=1322&rft_id=info:doi/10.1007%2Fs10514-020-09916-x&rft.externalDocID=10_1007_s10514_020_09916_x
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon