Plug-and-play supervisory control using muscle and brain signals for real-time gesture and error detection
Effective human supervision of robots can be key for ensuring correct robot operation in a variety of potentially safety-critical scenarios. This paper takes a step towards fast and reliable human intervention in supervisory control tasks by combining two streams of human biosignals: muscle and brai...
Saved in:
Published in | Autonomous robots Vol. 44; no. 7; pp. 1303 - 1322 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
New York
Springer US
01.09.2020
Springer Nature B.V |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Effective human supervision of robots can be key for ensuring correct robot operation in a variety of potentially safety-critical scenarios. This paper takes a step towards fast and reliable human intervention in supervisory control tasks by combining two streams of human biosignals: muscle and brain activity acquired via EMG and EEG, respectively. It presents continuous classification of left and right hand-gestures using muscle signals, time-locked classification of error-related potentials using brain signals (unconsciously produced when observing an error), and a framework that combines these pipelines to detect and correct robot mistakes during multiple-choice tasks. The resulting hybrid system is evaluated in a “plug-and-play” fashion with 7 untrained subjects supervising an autonomous robot performing a target selection task. Offline analysis further explores the EMG classification performance, and investigates methods to select subsets of training data that may facilitate generalizable plug-and-play classifiers. |
---|---|
AbstractList | Effective human supervision of robots can be key for ensuring correct robot operation in a variety of potentially safety-critical scenarios. This paper takes a step towards fast and reliable human intervention in supervisory control tasks by combining two streams of human biosignals: muscle and brain activity acquired via EMG and EEG, respectively. It presents continuous classification of left and right hand-gestures using muscle signals, time-locked classification of error-related potentials using brain signals (unconsciously produced when observing an error), and a framework that combines these pipelines to detect and correct robot mistakes during multiple-choice tasks. The resulting hybrid system is evaluated in a “plug-and-play” fashion with 7 untrained subjects supervising an autonomous robot performing a target selection task. Offline analysis further explores the EMG classification performance, and investigates methods to select subsets of training data that may facilitate generalizable plug-and-play classifiers. |
Author | Gil, Stephanie DelPreto, Joseph Hasani, Ramin Salazar-Gomez, Andres F. Rus, Daniela Guenther, Frank H. |
Author_xml | – sequence: 1 givenname: Joseph orcidid: 0000-0001-8162-5317 surname: DelPreto fullname: DelPreto, Joseph email: delpreto@csail.mit.edu organization: Massachusetts Institute of Technology, Distributed Robotics Lab – sequence: 2 givenname: Andres F. surname: Salazar-Gomez fullname: Salazar-Gomez, Andres F. organization: Massachusetts Institute of Technology, Distributed Robotics Lab, Massachusetts Institute of Technology, Open Learning – sequence: 3 givenname: Stephanie surname: Gil fullname: Gil, Stephanie organization: Massachusetts Institute of Technology, Distributed Robotics Lab, Harvard University, REACT Lab – sequence: 4 givenname: Ramin surname: Hasani fullname: Hasani, Ramin organization: Massachusetts Institute of Technology, Distributed Robotics Lab, Technische Universität Wien, Cyber-Physical Systems Group – sequence: 5 givenname: Frank H. surname: Guenther fullname: Guenther, Frank H. organization: Boston University, Guenther – sequence: 6 givenname: Daniela surname: Rus fullname: Rus, Daniela organization: Massachusetts Institute of Technology, Distributed Robotics Lab |
BookMark | eNp9kMtOwzAQRS1UJNrCD7CyxNrgR5zES1TxkirBAtaW40yiVKld7AS1f49LkJBYdDUL3-O5cxZo5rwDhK4ZvWWUFneRUckyQjklVCmWk_0ZmjNZCFJIXszQnCquiJRKXKBFjBtKqSoonaPNWz-2xLia7HpzwHHcQfjqog8HbL0bgu_xGDvX4u0YbQ84JXEVTOdw7Fpn-ogbH3AA05Oh2wJuIQ5jmHIQQnqrYQA7dN5dovMmAXD1O5fo4_HhffVM1q9PL6v7NbEZVwMRrKwKVvGaCVlbKwoQPLOGNyqTslYNzSGvmDRQibIGC7kt8xIqyfKsYsoIsUQ307-74D_H1Edv_BiOXTXPMio4Z7xMKT6lbPAxBmj0LnRbEw6aUX10qienOjnVP071PkHlP8h2gzkeNyQn_WlUTGhMe1wL4a_VCeob8paQLg |
CitedBy_id | crossref_primary_10_1155_2021_5539793 crossref_primary_10_1038_s41598_024_64458_x crossref_primary_10_1146_annurev_control_070122_102501 crossref_primary_10_1186_s12984_022_01098_0 crossref_primary_10_3390_ma13245815 crossref_primary_10_3390_s22176319 crossref_primary_10_1016_j_jneumeth_2023_109982 crossref_primary_10_1016_j_rcim_2021_102304 crossref_primary_10_1016_j_rcim_2023_102626 crossref_primary_10_1038_s42256_022_00556_7 crossref_primary_10_1371_journal_pone_0287958 crossref_primary_10_1002_aisy_202300359 crossref_primary_10_1109_JSEN_2024_3455334 crossref_primary_10_1109_JSEN_2020_3035169 crossref_primary_10_1007_s00170_024_14959_w crossref_primary_10_1088_2632_2153_ad200c crossref_primary_10_1007_s00170_023_10804_8 crossref_primary_10_1109_ACCESS_2022_3227049 |
Cites_doi | 10.1109/ROBOT.2005.1570815 10.1016/S1388-2457(02)00057-3 10.1109/HUMANOIDS.2017.8246878 10.1109/TBME.2010.2082539 10.1109/TSMCB.2010.2045120 10.1145/1378773.1378778 10.1109/JPROC.2015.2411333 10.1109/BIOROB.2014.6913841 10.1109/TITB.2011.2178034 10.1088/1741-2560/12/6/066028 10.1109/TRO.2009.2039378 10.1109/IROS.2009.5353935 10.1109/ICRA.2017.7989777 10.1088/1741-2560/8/2/025009 10.1016/S0021-9290(03)00152-0 10.1038/srep13893 10.1109/86.712231 10.1016/S1388-2457(00)00457-0 10.3389/fninf.2011.00030 10.1109/IEMBS.2011.6090139 10.1109/LSP.2014.2368952 10.1038/18581 10.1016/0013-4694(91)90062-9 10.1016/j.robot.2010.05.010 10.1126/scirobotics.aat1228, 10.1109/TMECH.2007.897262 10.1109/TAC.1984.1103644 10.1016/S0013-4694(97)00022-2 10.1177/0278364917707024 10.1109/TNSRE.2016.2583464 10.1109/TITB.2010.2040832 10.1109/TIT.1982.1056489 10.1109/ICORR.2017.8009362 10.1016/j.neucom.2012.12.039 10.1109/ICBME.2015.7404136 10.1109/TBME.2014.2369483 10.1016/j.clinph.2011.11.082 10.1109/TNSRE.2006.875555 10.1088/1741-2560/10/4/046003 10.1109/IEMBS.2007.4352845 10.1016/j.specom.2010.01.001 10.1109/TSMCB.2012.2185843 10.1109/IEMBS.2010.5627380 10.1109/HUMANOIDS.2016.7803334 10.1109/IWW-BCI.2018.8311531 10.1088/1741-2552/aa525f 10.1109/TRO.2009.2020347 10.1186/1475-925X-8-5 10.5772/56174 10.1109/ICRA.2015.7140110 10.1109/ICORR.2005.1501122 10.1109/TNSRE.2017.2694553 10.1109/ROBOT.2004.1308056 10.1109/ICRA.2019.8794414 10.1109/TBME.2009.2012869 10.3389/fnhum.2015.00155 10.1016/j.neunet.2011.05.006 10.1007/978-3-319-51532-8_20 10.1109/TBME.2007.909536 10.1016/j.compbiomed.2014.04.020 10.1016/j.eswa.2014.10.052 10.1109/NER.2011.5910558, 10.1109/IEMBS.2011.6091049 |
ContentType | Journal Article |
Copyright | The Author(s) 2020 The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2020 – notice: The Author(s) 2020. This work is published under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 7SC 7SP 7TB 8FD 8FE 8FG ABJCF AFKRA ARAPS BENPR BGLVJ CCPQU DWQXO F28 FR3 HCIFZ JQ2 L6V L7M L~C L~D M7S P5Z P62 PHGZM PHGZT PKEHL PQEST PQGLB PQQKQ PQUKI PTHSS S0W |
DOI | 10.1007/s10514-020-09916-x |
DatabaseName | Springer Nature OA Free Journals CrossRef Computer and Information Systems Abstracts Electronics & Communications Abstracts Mechanical & Transportation Engineering Abstracts Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection SciTech Premium Collection ProQuest Central UK/Ireland ProQuest Advanced Technologies & Aerospace Database ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea ANTE: Abstracts in New Technology & Engineering Engineering Research Database SciTech Premium Collection (UHCL Subscription) ProQuest Computer Science Collection ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition Engineering Collection DELNET Engineering & Technology Collection |
DatabaseTitle | CrossRef Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest One Community College ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database ProQuest One Academic Eastern Edition Electronics & Communications Abstracts ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition ProQuest DELNET Engineering and Technology Collection Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | Technology Collection CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1573-7527 |
EndPage | 1322 |
ExternalDocumentID | 10_1007_s10514_020_09916_x |
GrantInformation_xml | – fundername: Boeing funderid: http://dx.doi.org/10.13039/100000003http://dx.doi.org/10.13039/100000003 |
GroupedDBID | -59 -5G -BR -EM -Y2 -~C -~X .86 .DC .VR 06D 0R~ 0VY 199 1N0 1SB 2.D 203 23N 28- 29~ 2J2 2JN 2JY 2KG 2KM 2LR 2P1 2VQ 2~H 30V 4.4 406 408 409 40D 40E 5GY 5QI 5VS 67Z 6NX 6TJ 78A 8FE 8FG 8TC 8UJ 95- 95. 95~ 96X AAAVM AABHQ AACDK AAHNG AAIAL AAJBT AAJKR AANZL AARHV AARTL AASML AATNV AATVU AAUYE AAWCG AAYIU AAYQN AAYTO AAYZH ABAKF ABBBX ABBXA ABDZT ABECU ABFTD ABFTV ABHLI ABHQN ABJCF ABJNI ABJOX ABKCH ABKTR ABMNI ABMQK ABNWP ABQBU ABQSL ABSXP ABTEG ABTHY ABTKH ABTMW ABULA ABWNU ABXPI ACAOD ACBXY ACDTI ACGFS ACHSB ACHXU ACIWK ACKNC ACMDZ ACMLO ACOKC ACOMO ACPIV ACSNA ACZOJ ADHHG ADHIR ADIMF ADINQ ADKNI ADKPE ADRFC ADTPH ADURQ ADYFF ADZKW AEBTG AEFIE AEFQL AEGAL AEGNC AEJHL AEJRE AEKMD AEMSY AENEX AEOHA AEPYU AESKC AETLH AEVLU AEXYK AFBBN AFEXP AFGCZ AFKRA AFLOW AFQWF AFWTZ AFZKB AGAYW AGDGC AGGDS AGJBK AGMZJ AGQEE AGQMX AGRTI AGWIL AGWZB AGYKE AHAVH AHBYD AHKAY AHSBF AHYZX AIAKS AIGIU AIIXL AILAN AITGF AJBLW AJRNO AJZVZ ALMA_UNASSIGNED_HOLDINGS ALWAN AMKLP AMXSW AMYLF AMYQR AOCGG ARAPS ARCEE ARMRJ ASPBG AVWKF AXYYD AYJHY AZFZN B-. BA0 BBWZM BDATZ BENPR BGLVJ BGNMA BSONS C6C CAG CCPQU COF CS3 CSCUP DDRTE DL5 DNIVK DPUIP EBLON EBS EIOEI EJD ESBYG F5P FEDTE FERAY FFXSO FIGPU FINBP FNLPD FRRFC FSGXE FWDCC GGCAI GGRSB GJIRD GNWQR GQ6 GQ7 GQ8 GXS H13 HCIFZ HF~ HG5 HG6 HMJXF HQYDN HRMNR HVGLF HZ~ I09 IHE IJ- IKXTQ ITM IWAJR IXC IZIGR IZQ I~X I~Z J-C J0Z JBSCW JCJTX JZLTJ KDC KOV KOW L6V LAK LLZTM M4Y M7S MA- N2Q NB0 NDZJH NPVJJ NQJWS NU0 O9- O93 O9G O9I O9J OAM OVD P19 P2P P62 P9O PF0 PT4 PT5 PTHSS Q2X QOK QOS R4E R89 R9I RHV RNI RNS ROL RPX RSV RZC RZE RZK S0W S16 S1Z S26 S27 S28 S3B SAP SCLPG SCO SCV SDH SDM SHX SISQX SJYHP SNE SNPRN SNX SOHCF SOJ SPISZ SRMVM SSLCW STPWE SZN T13 T16 TEORI TSG TSK TSV TUC U2A UG4 UOJIU UTJUX UZXMN VC2 VFIZW W23 W48 WK8 YLTOR Z45 Z7R Z7S Z7X Z7Z Z83 Z86 Z88 Z8M Z8N Z8T Z8W Z92 ZMTXR _50 ~02 ~EX AAPKM AAYXX ABBRH ABDBE ABFSG ACSTC ADHKG AEZWR AFDZB AFHIU AFOHR AGQPQ AHPBZ AHWEU AIXLP ATHPR AYFIA CITATION PHGZM PHGZT 7SC 7SP 7TB 8FD ABRTQ DWQXO F28 FR3 JQ2 L7M L~C L~D PKEHL PQEST PQGLB PQQKQ PQUKI PUEGO |
ID | FETCH-LOGICAL-c429t-318b71b2d135dcc37e324ca2f9455d9f06e6b15aeb38dece6c868eb5164b19a33 |
IEDL.DBID | U2A |
ISSN | 0929-5593 |
IngestDate | Thu Aug 28 05:10:41 EDT 2025 Thu Apr 24 23:11:23 EDT 2025 Tue Jul 01 01:26:00 EDT 2025 Fri Feb 21 02:33:45 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 7 |
Keywords | Error-related potentials EEG control Hybrid control Gesture detection Human–robot interaction EMG control Plug-and-play supervisory control |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-318b71b2d135dcc37e324ca2f9455d9f06e6b15aeb38dece6c868eb5164b19a33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8162-5317 |
OpenAccessLink | https://link.springer.com/10.1007/s10514-020-09916-x |
PQID | 2440322128 |
PQPubID | 326361 |
PageCount | 20 |
ParticipantIDs | proquest_journals_2440322128 crossref_primary_10_1007_s10514_020_09916_x crossref_citationtrail_10_1007_s10514_020_09916_x springer_journals_10_1007_s10514_020_09916_x |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2020-09-01 |
PublicationDateYYYYMMDD | 2020-09-01 |
PublicationDate_xml | – month: 09 year: 2020 text: 2020-09-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | New York |
PublicationPlace_xml | – name: New York – name: Dordrecht |
PublicationTitle | Autonomous robots |
PublicationTitleAbbrev | Auton Robot |
PublicationYear | 2020 |
Publisher | Springer US Springer Nature B.V |
Publisher_xml | – name: Springer US – name: Springer Nature B.V |
References | ButtfieldAFerrezPWMillanJRTowards a robust BCI: error potentials and online learningIEEE Transactions on Neural Systems and Rehabilitation Engineering200614216416810.1109/TNSRE.2006.875555 WolpawJRBirbaumerNMcFarlandDJPfurtschellerGVaughanTMBrain-computer interfaces for communication and controlClinical Neurophysiology2002113676779110.1016/S1388-2457(02)00057-3 SpülerMNiethammerCError-related potentials during continuous feedback: using EEG to detect errors of different type and severityFrontiers in Human Neuroscience2015915510.3389/fnhum.2015.00155 YinYHFanYJXuLDEMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeletonIEEE Transactions on Information Technology in Biomedicine201216454254910.1109/TITB.2011.2178034 Mulas, M., Folgheraiter, M., & Gini, G. (2005) An EMG-controlled exoskeleton for hand rehabilitation. In 2005 International conference on rehabilitation robotics (ICORR), IEEE, pp 371–374. https://doi.org/10.1109/ICORR.2005.1501122. SchalkGWolpawJRMcFarlandDJPfurtschellerGEEG-based communication: presence of an error potentialClinical Neurophysiology2000111122138214410.1016/S1388-2457(00)00457-0 RamliRArofHIbrahimFMokhtarNIdrisMYIUsing finite state machine and a hybrid of EEG signal and EOG artifacts for an asynchronous wheelchair navigationExpert Systems with Applications20154252451246310.1016/j.eswa.2014.10.052 ChuJUMoonILeeYJKimSKMunMSA supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand controlIEEE/ASME Transactions on Mechatronics200712328229010.1109/TMECH.2007.897262 HoganNAdaptive control of mechanical impedance by coactivation of antagonist musclesIEEE Transactions on Automatic Control198429868169010.1109/TAC.1984.11036440542.92005 Tonin, L., Carlson, T., Leeb, R., & Millán, JdR. (2011) Brain-controlled telepresence robot by motor-disabled people. In 2011 annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp. 4227–4230.https://doi.org/10.1109/IEMBS.2011.6091049. Kim, J., Mastnik, S., & André, E. (2008) EMG-based hand gesture recognition for realtime biosignal interfacing. In Proceedings of the 13th international conference on intelligent user interfaces, ACM, pp. 30–39. https://doi.org/10.1145/1378773.1378778. HiggerMAkcakayaMNezamfarHLaMountainGOrhanUErdogmusDA bayesian framework for intent detection and stimulation selection in SSVEP BCIsIEEE Signal Processing Letters201522674374710.1109/LSP.2014.2368952 Ramos, JLA., & Meggiolaro, MA. (2014) Use of surface electromyography for human amplification using an exoskeleton driven by artificial pneumatic muscles. In Biomedical robotics and biomechatronics, 2014 IEEE RAS & EMBS international conference, IEEE, pp. 585–590. https://doi.org/10.1109/BIOROB.2014.6913841. LotteFGuanCRegularizing common spatial patterns to improve BCI designs: unified theory and new algorithmsIEEE Transactions on Biomedical Engineering201158235536210.1109/TBME.2010.2082539 Zajac, F, E, (1989) Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Critical reviews in Biomedical Engineering, 17(4), 359–411. http://e.guigon.free.fr/rsc/article/Zajac89.pdf. Barachant, A., & Bonnet, S. (2011) Channel selection procedure using Riemannian distance for BCI applications. In 2011 International IEEE/EMBS conference Neural engineering (NER), IEEE, pp. 348–351. https://doi.org/10.1109/NER.2011.5910558,. McFarlandDJMcCaneLMDavidSVWolpawJRSpatial filter selection for EEG-based communicationElectroencephalography and Clinical Neurophysiology1997103338639410.1016/S0013-4694(97)00022-2 Akinola, I., Chen, B., Koss, J., Patankar, A., Varley, J., & Allen, P. (2017) Task level hierarchical system for bci-enabled shared autonomy. In 2017 IEEE-RAS 17th international conference on humanoid robotics (Humanoids), IEEE, pp 219–225. https://doi.org/10.1109/HUMANOIDS.2017.8246878. De Luca, CJ. (2002) Surface electromyography: Detection and recording. DelSys Incorporated. https://www.delsys.com/Attachments_pdf/WP_SEMGintro.pdf. WolpawJRRamoserHMcFarlandDJPfurtschellerGEEG-based communication: improved accuracy by response verificationIEEE Transactions on Rehabilitation Engineering19986332633310.1109/86.712231 Sarasola-Sanz, A., Irastorza-Landa, N., López-Larraz, E., Bibián, C., Helmhold, F., Broetz, D., Birbaumer, N., & Ramos-Murguialday, A. (2017) A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients. In 2017 International conference on rehabilitation robotics (ICORR), IEEE, pp. 895–900. https://doi.org/10.1109/ICORR.2017.8009362. KimBHKimMJoSQuadcopter flight control using a low-cost hybrid interface with EEG-based classification and eye trackingComputers in Biology and Medicine201451829210.1016/j.compbiomed.2014.04.020 ShenoyPMillerKJCrawfordBRaoRPOnline electromyographic control of a robotic prosthesisIEEE Transactions on Biomedical Engineering20085531128113510.1109/TBME.2007.909536 Crawford, B., Miller, K., Shenoy, P., & Rao, R. (2005) Real-time classification of electromyographic signals for robotic control. In Proceedings of AAAI (Vol .5, pp. 523–528). http://aaai.org/Papers/AAAI/2005/AAAI05-082.pdf. GopuraRBandaraDGunasekaraJJayawardaneTRecent Trends in EMG-Based Control Methods for Assistive Robots2013IntechOpenElectrodiagnosis in new frontiers of clinical research10.5772/56174 DiCicco, M., Lucas, L., & Matsuoka, Y. (2004) Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand. In 2004 IEEE international conference on robotics and automation (ICRA) IEEE, Vol. 2, pp. 1622–1627. https://doi.org/10.1109/ROBOT.2004.1308056. LleraAvan GervenMAGómezVJensenOKappenHJOn the use of interaction error potentials for adaptive brain computer interfacesNeural Networks201124101120112710.1016/j.neunet.2011.05.006 Cavallaro, E., Rosen, J., Perry, J.C., Burns, S., & Hannaford, B. (2005) Hill-based model as a myoprocessor for a neural controlled powered exoskeleton arm - parameters optimization. In Proceedings of the 2005 IEEE international conference on robotics and automation (ICRA), IEEE, pp. 4514–4519. https://doi.org/10.1109/ROBOT.2005.1570815. IturrateIAntelisJMKublerAMinguezJA noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigationIEEE Transactions on Robotics200925361462710.1109/TRO.2009.2020347 LaFleurKCassadyKDoudAShadesKRoginEHeBQuadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interfaceJournal of Neural Engineering201310404600310.1088/1741-2560/10/4/046003 Behncke, J., Schirrmeister, RT., Burgard, W., & Ball, T. (2018) The signature of robot action success in eeg signals of a human observer: Decoding and visualization using deep convolutional neural networks. In 2018 6th international conference on brain-computer interface (BCI), IEEE, pp. 1–6. https://doi.org/10.1109/IWW-BCI.2018.8311531. WeiszJAllenPKBarszapAGJoshiSSAssistive grasping with an augmented reality user interfaceThe International Journal of Robotics Research2017365–754356210.1177/0278364917707024 BirbaumerNGhanayimNHinterbergerTIversenIKotchoubeyBKüblerAA spelling device for the paralysedNature1999398672529729810.1038/18581 PerrinXChavarriagaRColasFSiegwartRMillánJdRBrain-coupled interaction for semi-autonomous navigation of an assistive robotRobotics and Autonomous Systems201058121246125510.1016/j.robot.2010.05.010 SpülerMBenschMKleihSRosenstielWBogdanMKüblerAOnline use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCIClinical Neurophysiology201212371328133710.1016/j.clinph.2011.11.082 LópezNMdi SciascioFSoriaCMValentinuzziMERobust EMG sensing system based on data fusion for myoelectric control of a robotic armBiomedical Engineering Online200981510.1186/1475-925X-8-5 MaJZhangYCichockiAMatsunoFA novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: Application to robot controlIEEE Transactions on Biomedical Engineering201562387688910.1109/TBME.2014.2369483 Artemiadis, P. K., & Kyriakopoulos, K. J. (2011) A switching regime model for the EMG-based control of a robot arm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)41(1), 53–63. https://doi.org/10.1109/TSMCB.2010.2045120. Müller-PutzGRBreitwieserCCincottiFLeebRSchreuderMLeottaFTools for brain-computer interaction: a general concept for a hybrid bciFrontiers in Neuroinformatics201153010.3389/fninf.2011.00030 Gopura, R.A.R.C., Kiguchi, K., & Li, Y. (2009) SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. In 2009 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp. 1126–1131. https://doi.org/10.1109/IROS.2009.5353935. IturrateIChavarriagaRMontesanoLMinguezJMillánJRTeaching brain-machine interfaces as an alternative paradigm to neuroprosthetics controlScientific Reports201551389310.1038/srep13893 DelPreto, J., & Rus, D. (2019) Sharing the load: Human-robot team lifting using muscle activity. In IEEE international conference on robotics and automation (ICRA). IEEE. https://doi.org/10.1109/ICRA.2019.8794414. ManalKBuchananTSA one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyogramsJournal of Biomechanics20033681197120210.1016/S0021-9290(03)00152-0 Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991) Effects of crossmodal divided attention on late ERP components. ii. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology78(6), 447–455. https://doi.org/10.1016/0013-4694(91)90062-9. AoDSongRGaoJMovement performance of human-robot cooperation control based on EMG-driven hill-type and proportional models for an ankle power-assist exoskeleton robotIEEE Transactions on Neural Systems and Rehabilitation Engineering20172581125113410.1109/TNSRE.2016.2583464 ArtemiadisP 9916_CR1 9916_CR2 YH Yin (9916_CR63) 2012; 16 9916_CR6 I Iturrate (9916_CR24) 2009; 25 X Perrin (9916_CR45) 2010; 58 9916_CR8 H Zhang (9916_CR66) 2015; 12 J Weisz (9916_CR60) 2017; 36 BH Kim (9916_CR29) 2014; 51 A Llera (9916_CR33) 2011; 24 JR Wolpaw (9916_CR61) 1998; 6 M Higger (9916_CR22) 2015; 22 9916_CR40 A Barachant (9916_CR7) 2013; 112 9916_CR41 9916_CR44 F Lotte (9916_CR36) 2011; 58 D Ao (9916_CR3) 2017; 25 K Manal (9916_CR38) 2003; 36 9916_CR47 9916_CR49 DJ McFarland (9916_CR39) 1997; 103 K LaFleur (9916_CR31) 2013; 10 R Ramli (9916_CR48) 2015; 42 C Vidaurre (9916_CR59) 2011; 8 JR Wolpaw (9916_CR62) 2002; 113 R Gopura (9916_CR20) 2013 T Kawase (9916_CR27) 2017; 14 9916_CR30 9916_CR32 M Spüler (9916_CR57) 2012; 123 N Hogan (9916_CR23) 1984; 29 NM López (9916_CR35) 2009; 8 G Schalk (9916_CR53) 2000; 111 L Peternel (9916_CR46) 2017; 25 A Buttfield (9916_CR12) 2006; 14 G Müller-Putz (9916_CR42) 2015; 103 B Rivet (9916_CR50) 2009; 56 9916_CR64 9916_CR21 9916_CR65 N Birbaumer (9916_CR9) 1999; 398 9916_CR25 9916_CR28 J Ma (9916_CR37) 2015; 62 9916_CR19 9916_CR18 M Spüler (9916_CR56) 2015; 9 PK Artemiadis (9916_CR4) 2010; 26 JS Brumberg (9916_CR11) 2010; 52 PK Artemiadis (9916_CR5) 2010; 14 I Iturrate (9916_CR26) 2015; 5 GR Müller-Putz (9916_CR43) 2011; 5 9916_CR51 9916_CR52 9916_CR10 9916_CR54 9916_CR13 JU Chu (9916_CR14) 2007; 12 9916_CR15 S Lloyd (9916_CR34) 1982; 28 P Shenoy (9916_CR55) 2008; 55 9916_CR58 9916_CR17 9916_CR16 |
References_xml | – reference: WeiszJAllenPKBarszapAGJoshiSSAssistive grasping with an augmented reality user interfaceThe International Journal of Robotics Research2017365–754356210.1177/0278364917707024 – reference: De Luca, CJ. (2002) Surface electromyography: Detection and recording. DelSys Incorporated. https://www.delsys.com/Attachments_pdf/WP_SEMGintro.pdf. – reference: RivetBSouloumiacAAttinaVGibertGxDAWN algorithm to enhance evoked potentials: application to brain-computer interfaceIEEE Transactions on Biomedical Engineering20095682035204310.1109/TBME.2009.2012869 – reference: Kiguchi, K., & Hayashi, Y. (2012) An EMG-based control for an upper-limb power-assist exoskeleton robot. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)42(4), 1064–1071. https://doi.org/10.1109/TSMCB.2012.2185843. – reference: KawaseTSakuradaTKoikeYKansakuKA hybrid BMI-based exoskeleton for paresis: EMG control for assisting arm movementsJournal of Neural Engineering201714101601510.1088/1741-2552/aa525f – reference: Behncke, J., Schirrmeister, RT., Burgard, W., & Ball, T. (2018) The signature of robot action success in eeg signals of a human observer: Decoding and visualization using deep convolutional neural networks. In 2018 6th international conference on brain-computer interface (BCI), IEEE, pp. 1–6. https://doi.org/10.1109/IWW-BCI.2018.8311531. – reference: Menon, S., Migimatsu, T., & Khatib, O. (2016) A parameterized family of anatomically accurate human upper-body musculoskeletal models for dynamic simulation & control. In 2016 IEEE-RAS 16th international conference on humanoid robots (Humanoids), pp. 587–594. https://doi.org/10.1109/HUMANOIDS.2016.7803334. – reference: YinYHFanYJXuLDEMG and EPP-integrated human-machine interface between the paralyzed and rehabilitation exoskeletonIEEE Transactions on Information Technology in Biomedicine201216454254910.1109/TITB.2011.2178034 – reference: LaFleurKCassadyKDoudAShadesKRoginEHeBQuadcopter control in three-dimensional space using a noninvasive motor imagery-based brain-computer interfaceJournal of Neural Engineering201310404600310.1088/1741-2560/10/4/046003 – reference: Müller-PutzGRBreitwieserCCincottiFLeebRSchreuderMLeottaFTools for brain-computer interaction: a general concept for a hybrid bciFrontiers in Neuroinformatics201153010.3389/fninf.2011.00030 – reference: DiCicco, M., Lucas, L., & Matsuoka, Y. (2004) Comparison of control strategies for an EMG controlled orthotic exoskeleton for the hand. In 2004 IEEE international conference on robotics and automation (ICRA) IEEE, Vol. 2, pp. 1622–1627. https://doi.org/10.1109/ROBOT.2004.1308056. – reference: Iturrate, I., Montesano, L., & Minguez, J. (2010) Single trial recognition of error-related potentials during observation of robot operation. In 2010 annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp. 4181–4184. https://doi.org/10.1109/IEMBS.2010.5627380. – reference: Ramos, JLA., & Meggiolaro, MA. (2014) Use of surface electromyography for human amplification using an exoskeleton driven by artificial pneumatic muscles. In Biomedical robotics and biomechatronics, 2014 IEEE RAS & EMBS international conference, IEEE, pp. 585–590. https://doi.org/10.1109/BIOROB.2014.6913841. – reference: LloydSLeast squares quantization in pcmIEEE Transactions on Information Theory198228212913765180710.1109/TIT.1982.10564890504.94015 – reference: HoganNAdaptive control of mechanical impedance by coactivation of antagonist musclesIEEE Transactions on Automatic Control198429868169010.1109/TAC.1984.11036440542.92005 – reference: ChuJUMoonILeeYJKimSKMunMSA supervised feature-projection-based real-time EMG pattern recognition for multifunction myoelectric hand controlIEEE/ASME Transactions on Mechatronics200712328229010.1109/TMECH.2007.897262 – reference: Tonin, L., Carlson, T., Leeb, R., & Millán, JdR. (2011) Brain-controlled telepresence robot by motor-disabled people. In 2011 annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp. 4227–4230.https://doi.org/10.1109/IEMBS.2011.6091049. – reference: Ying, R., Weisz, J., & Allen, PK. (2018) Grasping with your brain: A brain-computerinterface for fast grasp selection. In Robotics Research, SpringerInternational Publishing, pp. 325–340. https://doi.org/10.1007/978-3-319-51532-8_20. – reference: ShenoyPMillerKJCrawfordBRaoRPOnline electromyographic control of a robotic prosthesisIEEE Transactions on Biomedical Engineering20085531128113510.1109/TBME.2007.909536 – reference: DelPreto, J., & Rus, D. (2019) Sharing the load: Human-robot team lifting using muscle activity. In IEEE international conference on robotics and automation (ICRA). IEEE. https://doi.org/10.1109/ICRA.2019.8794414. – reference: ButtfieldAFerrezPWMillanJRTowards a robust BCI: error potentials and online learningIEEE Transactions on Neural Systems and Rehabilitation Engineering200614216416810.1109/TNSRE.2006.875555 – reference: Artemiadis, P. K., & Kyriakopoulos, K. J. (2011) A switching regime model for the EMG-based control of a robot arm. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics)41(1), 53–63. https://doi.org/10.1109/TSMCB.2010.2045120. – reference: ManalKBuchananTSA one-parameter neural activation to muscle activation model: estimating isometric joint moments from electromyogramsJournal of Biomechanics20033681197120210.1016/S0021-9290(03)00152-0 – reference: McFarlandDJMcCaneLMDavidSVWolpawJRSpatial filter selection for EEG-based communicationElectroencephalography and Clinical Neurophysiology1997103338639410.1016/S0013-4694(97)00022-2 – reference: ArtemiadisPKKyriakopoulosKJEMG-based control of a robot arm using low-dimensional embeddingsIEEE Transactions on Robotics201026239339810.1109/TRO.2009.2039378 – reference: SchalkGWolpawJRMcFarlandDJPfurtschellerGEEG-based communication: presence of an error potentialClinical Neurophysiology2000111122138214410.1016/S1388-2457(00)00457-0 – reference: BrumbergJSNieto-CastanonAKennedyPRGuentherFHBrain-computer interfaces for speech communicationSpeech Communication201052436737910.1016/j.specom.2010.01.001 – reference: Akinola, I., Chen, B., Koss, J., Patankar, A., Varley, J., & Allen, P. (2017) Task level hierarchical system for bci-enabled shared autonomy. In 2017 IEEE-RAS 17th international conference on humanoid robotics (Humanoids), IEEE, pp 219–225. https://doi.org/10.1109/HUMANOIDS.2017.8246878. – reference: Cavallaro, E., Rosen, J., Perry, J.C., Burns, S., & Hannaford, B. (2005) Hill-based model as a myoprocessor for a neural controlled powered exoskeleton arm - parameters optimization. In Proceedings of the 2005 IEEE international conference on robotics and automation (ICRA), IEEE, pp. 4514–4519. https://doi.org/10.1109/ROBOT.2005.1570815. – reference: PerrinXChavarriagaRColasFSiegwartRMillánJdRBrain-coupled interaction for semi-autonomous navigation of an assistive robotRobotics and Autonomous Systems201058121246125510.1016/j.robot.2010.05.010 – reference: Salazar-Gomez, A.F., DelPreto, J., Gil, S., Guenther, F. H., & Rus, D. (2017) Correcting robot mistakes in real time using EEG signals. In 2017 IEEE international conference on robotics and automation (ICRA), IEEE, pp. 6570–6577. https://doi.org/10.1109/ICRA.2017.7989777. – reference: IturrateIChavarriagaRMontesanoLMinguezJMillánJRTeaching brain-machine interfaces as an alternative paradigm to neuroprosthetics controlScientific Reports201551389310.1038/srep13893 – reference: Lenzi, T., De Rossi, S., Vitiello, N., & Carrozza, M. (2011) Proportional EMG control for upper-limb powered exoskeletons. In 2011 Annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp. 628–631. https://doi.org/10.1109/IEMBS.2011.6090139. – reference: RamliRArofHIbrahimFMokhtarNIdrisMYIUsing finite state machine and a hybrid of EEG signal and EOG artifacts for an asynchronous wheelchair navigationExpert Systems with Applications20154252451246310.1016/j.eswa.2014.10.052 – reference: SpülerMBenschMKleihSRosenstielWBogdanMKüblerAOnline use of error-related potentials in healthy users and people with severe motor impairment increases performance of a P300-BCIClinical Neurophysiology201212371328133710.1016/j.clinph.2011.11.082 – reference: Gopura, R.A.R.C., Kiguchi, K., & Li, Y. (2009) SUEFUL-7: a 7DOF upper-limb exoskeleton robot with muscle-model-oriented EMG-based control. In 2009 IEEE/RSJ international conference on intelligent robots and systems (IROS), IEEE, pp. 1126–1131. https://doi.org/10.1109/IROS.2009.5353935. – reference: LópezNMdi SciascioFSoriaCMValentinuzziMERobust EMG sensing system based on data fusion for myoelectric control of a robotic armBiomedical Engineering Online200981510.1186/1475-925X-8-5 – reference: HiggerMAkcakayaMNezamfarHLaMountainGOrhanUErdogmusDA bayesian framework for intent detection and stimulation selection in SSVEP BCIsIEEE Signal Processing Letters201522674374710.1109/LSP.2014.2368952 – reference: PeternelLTsagarakisNAjoudaniAA human-robot co-manipulation approach based on human sensorimotor informationIEEE Transactions on Neural Systems and Rehabilitation Engineering201725781182210.1109/TNSRE.2017.2694553 – reference: BarachantABonnetSCongedoMJuttenCClassification of covariance matrices using a Riemannian-based kernel for BCI applicationsNeurocomputing201311217217810.1016/j.neucom.2012.12.039 – reference: ZhangHChavarriagaRKhaliliardaliZGheorgheLIturrateIMillanJEEG-based decoding of error-related brain activity in a real-world driving taskJournal of Neural Engineering201512606602810.1088/1741-2560/12/6/066028 – reference: LleraAvan GervenMAGómezVJensenOKappenHJOn the use of interaction error potentials for adaptive brain computer interfacesNeural Networks201124101120112710.1016/j.neunet.2011.05.006 – reference: AoDSongRGaoJMovement performance of human-robot cooperation control based on EMG-driven hill-type and proportional models for an ankle power-assist exoskeleton robotIEEE Transactions on Neural Systems and Rehabilitation Engineering20172581125113410.1109/TNSRE.2016.2583464 – reference: ArtemiadisPKKyriakopoulosKJAn EMG-based robot control scheme robust to time-varying EMG signal featuresIEEE Transactions on Information Technology in Biomedicine201014358258810.1109/TITB.2010.2040832 – reference: Blumberg, J., Rickert, J., Waldert, S., Schulze-Bonhage, A., Aertsen, A., & Mehring, C. (2007) Adaptive classification for brain computer interfaces. In 2007 Annual international conference of the IEEE engineering in medicine and biology society (EMBC), IEEE, pp. 2536–2539. https://doi.org/10.1109/IEMBS.2007.4352845. – reference: MaJZhangYCichockiAMatsunoFA novel EOG/EEG hybrid human-machine interface adopting eye movements and ERPs: Application to robot controlIEEE Transactions on Biomedical Engineering201562387688910.1109/TBME.2014.2369483 – reference: Falkenstein, M., Hohnsbein, J., Hoormann, J., & Blanke, L. (1991) Effects of crossmodal divided attention on late ERP components. ii. Error processing in choice reaction tasks. Electroencephalography and Clinical Neurophysiology78(6), 447–455. https://doi.org/10.1016/0013-4694(91)90062-9. – reference: SpülerMNiethammerCError-related potentials during continuous feedback: using EEG to detect errors of different type and severityFrontiers in Human Neuroscience2015915510.3389/fnhum.2015.00155 – reference: LotteFGuanCRegularizing common spatial patterns to improve BCI designs: unified theory and new algorithmsIEEE Transactions on Biomedical Engineering201158235536210.1109/TBME.2010.2082539 – reference: KimBHKimMJoSQuadcopter flight control using a low-cost hybrid interface with EEG-based classification and eye trackingComputers in Biology and Medicine201451829210.1016/j.compbiomed.2014.04.020 – reference: Barachant, A., & Bonnet, S. (2011) Channel selection procedure using Riemannian distance for BCI applications. In 2011 International IEEE/EMBS conference Neural engineering (NER), IEEE, pp. 348–351. https://doi.org/10.1109/NER.2011.5910558,. – reference: Mulas, M., Folgheraiter, M., & Gini, G. (2005) An EMG-controlled exoskeleton for hand rehabilitation. In 2005 International conference on rehabilitation robotics (ICORR), IEEE, pp 371–374. https://doi.org/10.1109/ICORR.2005.1501122. – reference: Schröer, S., Killmann, I., Frank, B., Völker, M., Fiederer, L., Ball, T., & Burgard, W. (2015) An autonomous robotic assistant for drinking. In 2015 IEEE international conference on robotics and automation (ICRA), IEEE, pp. 6482–6487. https://doi.org/10.1109/ICRA.2015.7140110. – reference: Müller-PutzGLeebRTangermannMHöhneJKüblerACincottiFTowards noninvasive hybrid brain-computer interfaces: framework, practice, clinical application, and beyondProceedings of the IEEE2015103692694310.1109/JPROC.2015.2411333 – reference: Crawford, B., Miller, K., Shenoy, P., & Rao, R. (2005) Real-time classification of electromyographic signals for robotic control. In Proceedings of AAAI (Vol .5, pp. 523–528). http://aaai.org/Papers/AAAI/2005/AAAI05-082.pdf. – reference: GopuraRBandaraDGunasekaraJJayawardaneTRecent Trends in EMG-Based Control Methods for Assistive Robots2013IntechOpenElectrodiagnosis in new frontiers of clinical research10.5772/56174 – reference: Kim, J., Mastnik, S., & André, E. (2008) EMG-based hand gesture recognition for realtime biosignal interfacing. In Proceedings of the 13th international conference on intelligent user interfaces, ACM, pp. 30–39. https://doi.org/10.1145/1378773.1378778. – reference: Sarasola-Sanz, A., Irastorza-Landa, N., López-Larraz, E., Bibián, C., Helmhold, F., Broetz, D., Birbaumer, N., & Ramos-Murguialday, A. (2017) A hybrid brain-machine interface based on EEG and EMG activity for the motor rehabilitation of stroke patients. In 2017 International conference on rehabilitation robotics (ICORR), IEEE, pp. 895–900. https://doi.org/10.1109/ICORR.2017.8009362. – reference: VidaurreCSannelliCMüllerKRBlankertzBCo-adaptive calibration to improve BCI efficiencyJournal of Neural Engineering20118202500910.1088/1741-2560/8/2/0250091208.92016 – reference: BirbaumerNGhanayimNHinterbergerTIversenIKotchoubeyBKüblerAA spelling device for the paralysedNature1999398672529729810.1038/18581 – reference: Penaloza, CI., & Nishio, S. (2018) BMI control of a third arm for multitasking. Science Robotics, 3(20), eaat1228. https://doi.org/10.1126/scirobotics.aat1228,. – reference: Qashqai, A., Ehsani, H., & Rostami, M. (2015) A hill-based emg-driven model to estimate elbow torque during flexion and extention. In 2015 22nd Iranian conference on biomedical engineering (ICBME), IEEE, pp. 166–171. https://doi.org/10.1109/ICBME.2015.7404136. – reference: WolpawJRBirbaumerNMcFarlandDJPfurtschellerGVaughanTMBrain-computer interfaces for communication and controlClinical Neurophysiology2002113676779110.1016/S1388-2457(02)00057-3 – reference: WolpawJRRamoserHMcFarlandDJPfurtschellerGEEG-based communication: improved accuracy by response verificationIEEE Transactions on Rehabilitation Engineering19986332633310.1109/86.712231 – reference: IturrateIAntelisJMKublerAMinguezJA noninvasive brain-actuated wheelchair based on a P300 neurophysiological protocol and automated navigationIEEE Transactions on Robotics200925361462710.1109/TRO.2009.2020347 – reference: Zajac, F, E, (1989) Muscle and tendon: Properties, models, scaling, and application to biomechanics and motor control. Critical reviews in Biomedical Engineering, 17(4), 359–411. http://e.guigon.free.fr/rsc/article/Zajac89.pdf. – ident: 9916_CR65 – ident: 9916_CR13 doi: 10.1109/ROBOT.2005.1570815 – volume: 113 start-page: 767 issue: 6 year: 2002 ident: 9916_CR62 publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(02)00057-3 – ident: 9916_CR2 doi: 10.1109/HUMANOIDS.2017.8246878 – volume: 58 start-page: 355 issue: 2 year: 2011 ident: 9916_CR36 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2010.2082539 – ident: 9916_CR1 doi: 10.1109/TSMCB.2010.2045120 – ident: 9916_CR30 doi: 10.1145/1378773.1378778 – volume: 103 start-page: 926 issue: 6 year: 2015 ident: 9916_CR42 publication-title: Proceedings of the IEEE doi: 10.1109/JPROC.2015.2411333 – ident: 9916_CR49 doi: 10.1109/BIOROB.2014.6913841 – volume: 16 start-page: 542 issue: 4 year: 2012 ident: 9916_CR63 publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2011.2178034 – volume: 12 start-page: 066028 issue: 6 year: 2015 ident: 9916_CR66 publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/12/6/066028 – volume: 26 start-page: 393 issue: 2 year: 2010 ident: 9916_CR4 publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2009.2039378 – ident: 9916_CR16 – ident: 9916_CR21 doi: 10.1109/IROS.2009.5353935 – ident: 9916_CR51 doi: 10.1109/ICRA.2017.7989777 – volume: 8 start-page: 025009 issue: 2 year: 2011 ident: 9916_CR59 publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/8/2/025009 – volume: 36 start-page: 1197 issue: 8 year: 2003 ident: 9916_CR38 publication-title: Journal of Biomechanics doi: 10.1016/S0021-9290(03)00152-0 – volume: 5 start-page: 13893 year: 2015 ident: 9916_CR26 publication-title: Scientific Reports doi: 10.1038/srep13893 – volume: 6 start-page: 326 issue: 3 year: 1998 ident: 9916_CR61 publication-title: IEEE Transactions on Rehabilitation Engineering doi: 10.1109/86.712231 – volume: 111 start-page: 2138 issue: 12 year: 2000 ident: 9916_CR53 publication-title: Clinical Neurophysiology doi: 10.1016/S1388-2457(00)00457-0 – volume: 5 start-page: 30 year: 2011 ident: 9916_CR43 publication-title: Frontiers in Neuroinformatics doi: 10.3389/fninf.2011.00030 – ident: 9916_CR32 doi: 10.1109/IEMBS.2011.6090139 – volume: 22 start-page: 743 issue: 6 year: 2015 ident: 9916_CR22 publication-title: IEEE Signal Processing Letters doi: 10.1109/LSP.2014.2368952 – volume: 398 start-page: 297 issue: 6725 year: 1999 ident: 9916_CR9 publication-title: Nature doi: 10.1038/18581 – ident: 9916_CR19 doi: 10.1016/0013-4694(91)90062-9 – volume: 58 start-page: 1246 issue: 12 year: 2010 ident: 9916_CR45 publication-title: Robotics and Autonomous Systems doi: 10.1016/j.robot.2010.05.010 – ident: 9916_CR44 doi: 10.1126/scirobotics.aat1228, – volume: 12 start-page: 282 issue: 3 year: 2007 ident: 9916_CR14 publication-title: IEEE/ASME Transactions on Mechatronics doi: 10.1109/TMECH.2007.897262 – volume: 29 start-page: 681 issue: 8 year: 1984 ident: 9916_CR23 publication-title: IEEE Transactions on Automatic Control doi: 10.1109/TAC.1984.1103644 – volume: 103 start-page: 386 issue: 3 year: 1997 ident: 9916_CR39 publication-title: Electroencephalography and Clinical Neurophysiology doi: 10.1016/S0013-4694(97)00022-2 – volume: 36 start-page: 543 issue: 5–7 year: 2017 ident: 9916_CR60 publication-title: The International Journal of Robotics Research doi: 10.1177/0278364917707024 – volume: 25 start-page: 1125 issue: 8 year: 2017 ident: 9916_CR3 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2016.2583464 – volume: 14 start-page: 582 issue: 3 year: 2010 ident: 9916_CR5 publication-title: IEEE Transactions on Information Technology in Biomedicine doi: 10.1109/TITB.2010.2040832 – ident: 9916_CR15 – volume: 28 start-page: 129 issue: 2 year: 1982 ident: 9916_CR34 publication-title: IEEE Transactions on Information Theory doi: 10.1109/TIT.1982.1056489 – ident: 9916_CR52 doi: 10.1109/ICORR.2017.8009362 – volume: 112 start-page: 172 year: 2013 ident: 9916_CR7 publication-title: Neurocomputing doi: 10.1016/j.neucom.2012.12.039 – ident: 9916_CR47 doi: 10.1109/ICBME.2015.7404136 – volume: 62 start-page: 876 issue: 3 year: 2015 ident: 9916_CR37 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2014.2369483 – volume: 123 start-page: 1328 issue: 7 year: 2012 ident: 9916_CR57 publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2011.11.082 – volume: 14 start-page: 164 issue: 2 year: 2006 ident: 9916_CR12 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2006.875555 – volume: 10 start-page: 046003 issue: 4 year: 2013 ident: 9916_CR31 publication-title: Journal of Neural Engineering doi: 10.1088/1741-2560/10/4/046003 – ident: 9916_CR10 doi: 10.1109/IEMBS.2007.4352845 – volume: 52 start-page: 367 issue: 4 year: 2010 ident: 9916_CR11 publication-title: Speech Communication doi: 10.1016/j.specom.2010.01.001 – ident: 9916_CR28 doi: 10.1109/TSMCB.2012.2185843 – ident: 9916_CR25 doi: 10.1109/IEMBS.2010.5627380 – ident: 9916_CR40 doi: 10.1109/HUMANOIDS.2016.7803334 – ident: 9916_CR8 doi: 10.1109/IWW-BCI.2018.8311531 – volume: 14 start-page: 016015 issue: 1 year: 2017 ident: 9916_CR27 publication-title: Journal of Neural Engineering doi: 10.1088/1741-2552/aa525f – volume: 25 start-page: 614 issue: 3 year: 2009 ident: 9916_CR24 publication-title: IEEE Transactions on Robotics doi: 10.1109/TRO.2009.2020347 – volume: 8 start-page: 5 issue: 1 year: 2009 ident: 9916_CR35 publication-title: Biomedical Engineering Online doi: 10.1186/1475-925X-8-5 – volume-title: Recent Trends in EMG-Based Control Methods for Assistive Robots year: 2013 ident: 9916_CR20 doi: 10.5772/56174 – ident: 9916_CR54 doi: 10.1109/ICRA.2015.7140110 – ident: 9916_CR41 doi: 10.1109/ICORR.2005.1501122 – volume: 25 start-page: 811 issue: 7 year: 2017 ident: 9916_CR46 publication-title: IEEE Transactions on Neural Systems and Rehabilitation Engineering doi: 10.1109/TNSRE.2017.2694553 – ident: 9916_CR18 doi: 10.1109/ROBOT.2004.1308056 – ident: 9916_CR17 doi: 10.1109/ICRA.2019.8794414 – volume: 56 start-page: 2035 issue: 8 year: 2009 ident: 9916_CR50 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2009.2012869 – volume: 9 start-page: 155 year: 2015 ident: 9916_CR56 publication-title: Frontiers in Human Neuroscience doi: 10.3389/fnhum.2015.00155 – volume: 24 start-page: 1120 issue: 10 year: 2011 ident: 9916_CR33 publication-title: Neural Networks doi: 10.1016/j.neunet.2011.05.006 – ident: 9916_CR64 doi: 10.1007/978-3-319-51532-8_20 – volume: 55 start-page: 1128 issue: 3 year: 2008 ident: 9916_CR55 publication-title: IEEE Transactions on Biomedical Engineering doi: 10.1109/TBME.2007.909536 – volume: 51 start-page: 82 year: 2014 ident: 9916_CR29 publication-title: Computers in Biology and Medicine doi: 10.1016/j.compbiomed.2014.04.020 – volume: 42 start-page: 2451 issue: 5 year: 2015 ident: 9916_CR48 publication-title: Expert Systems with Applications doi: 10.1016/j.eswa.2014.10.052 – ident: 9916_CR6 doi: 10.1109/NER.2011.5910558, – ident: 9916_CR58 doi: 10.1109/IEMBS.2011.6091049 |
SSID | ssj0009700 |
Score | 2.422315 |
Snippet | Effective human supervision of robots can be key for ensuring correct robot operation in a variety of potentially safety-critical scenarios. This paper takes a... |
SourceID | proquest crossref springer |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1303 |
SubjectTerms | Artificial Intelligence Brain Computer Imaging Control Control tasks Engineering Error correction Error detection Hybrid systems Mechatronics Multiple choice Muscles Pattern Recognition and Graphics Plug & play Robotics Robotics and Automation Robots Safety critical Signal classification Special Issue: Robotics: Science and Systems 2018 Supervisory control Vision |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LT8MwDI54XOCAeIrxUg7cIKJZl649IUBMEweEEEi7VXl4k9DoSrtK27_HXjMKSHCt0xxsx_6c-MHYuYU4lh2rhGk7hwGKtELHNhEaNDhlJeAXyrZ4jPqvnYeBGvgLt9KnVS5t4sJQu4mlO_IrdEMBKh-a0-v8Q9DUKHpd9SM0Vtk6UTD4Wr-9f3x6btru-iIUBAECsXPoy2Z88RyCBUHhU0AgScx-uqYGb_56Il14nt422_KQkd_UMt5hK5Dtss1vjQT32NvTuBoJnTmRj_Wcl1VOJqCcFHPuc9E5JbiP-HtV4h4cV3JDwyE45W-gBnLErhzx41jQsHlOj05VUa-DokCag-kiaSvbZ6-9-5e7vvBTFIRFXzOl8mjTlSgKGSpnbdgFxFBWt4dJRymXDIMIIiOVxqg6dmAhsnEUg1EYRxmZ6DA8YGvZJINDxkERnJKu242gE9lhoowLnQmGyipox7rF5JKBqfUtxmnSxThtmiMT01NkerpgejprsYuvf_K6wca_q0-Wckn9YSvTRjVa7HIpq4b8925H_-92zDbatXqIQJ6wtWlRwSlCkKk583r2CX3H2jc priority: 102 providerName: ProQuest |
Title | Plug-and-play supervisory control using muscle and brain signals for real-time gesture and error detection |
URI | https://link.springer.com/article/10.1007/s10514-020-09916-x https://www.proquest.com/docview/2440322128 |
Volume | 44 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF60vehBfGK1lj1404Vs0k2TYy1tRaEUsVBPYR_TgtS0JA3Yf-9smtgqKngK7E7mMDO78w07D0KuNQQBb2rBlGsMBihcMxnokEmQYITmgCs222Lg34-aD2MxLorC0jLbvXySzG_qrWI3dO7MhjuOBTUMkWNV2NgdrXjktjetdovCE3T8DPGyV5TK_MzjqzvaYMxvz6K5t-kdkoMCJtL2Wq9HZAfiY7K_1TzwhLwOZ9mUydiwxUyuaJot7LFP58mKFvnn1Ca1T-lbliIPipRU2YEQ1OZsoNVRxKsUMeOM2QHz1D40ZcmaDpIE9wws80St-JSMet3nzj0rJicwjf5laUuiVYuj-LknjNZeCxA3aelOwqYQJpw4PviKC4mRdGBAg68DPwAlMHZSPJSed0Yq8TyGc0JBWAjFTavlQ9PXk1Ao4xnlTIQW4AayRngpwEgXbcXtdItZtGmIbIUeodCjXOjRe43cfP6zWDfV-JO6XuolKg5YGiEqcfAuQu9aI7elrjbbv3O7-B_5Jdlz1-bCHF4nlWWSwRXCkKVqkN2g12-Qarv_8tjF7113MHzC1Y7faeQW-QFgudtL |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5V7QE4ICggFgr4ACewiJM4mxwqhIDtlpaKQyv1FvyYrYSW7JJsRPdP9Td2Jg8Cldpbr_FD0fjz-Bt7HgCvHaapip2WNvSeDBTlpEldJg0a9NoppC_sbXGUTE_ir6f6dAMu-lgYdqvsdWKjqP3C8R35ezqGAgIfqdMPy9-Sq0bx62pfQqOFxQGu_5DJVu3uf6b1fROGky_Hn6ayqyogHeneFYcL27GiX1OR9s5FYyRO4Uw4y2KtfTYLEkys0oaszNSjw8SlSYpWk11hVWb4ApRU_lYcRRnvqHSyNyT57UJeiHJIYupRF6TTheoRNZFsrAVMyeT5_wfhwG6vPMg259zkAdzvCKr42CLqIWxgsQ33_klb-Ah-fp_XZ9IUXi7nZi2qeskKp1qUa9F5vgt2pz8Tv-qK5hDUU1guRSHYW4TwLogpC2Krc8ml7QU_cdVl2w_Lkto8rhoXseIxnNyKdJ_AZrEo8CkI1EzelB-PE4wTN8u09ZG3wUw7jWFqRqB6AeauS2jOdTXm-ZCKmYWek9DzRuj5-Qje_h2zbNN53Nh7p1-XvNvaVT4AcQTv-rUamq-f7dnNs72CO9Pjb4f54f7RwXO4G7ZQkYHagc1VWeMLIj8r-7JBnIAftw3xS68DFkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB5VWwnBAVEeYqEUH-AEVuPsOo8DQi3tqqVotUJU6i049qRStWSXZCO6f41fx8zGIYBEb73GjhWNv4y_8bwAXllMEjW2Wuahc2SgKCtNYlNp0KDTViE94WiLaXRyPv54oS-24GeXC8NhlZ1O3Chqt7B8R75Px1BA4CN1ul_4sIjZ0eT98rvkDlLsae3aabQQOcP1DzLf6nenR7TXr8Nwcvzlw4n0HQakJT284tThPFb0mWqknbWjGIlfWBMW6VhrlxZBhFGutCGLM3FoMbJJlGCuycbIVWr4MpTU_3ZMVlEwgO3D4-nsc1_y1yfAEAGRxNtHPmXHJ-4RUZFsugVM0OT138diz3X_cc9uTr3JA7jv6ao4aPG1A1tYPoR7fxQxfARXs3lzKU3p5HJu1qJulqx-6kW1Fj4OXnBw_aX41tS0hqCZIufGFIJjRwj9gnizIO46l9zoXrDDq6naeVhVNOZwtQkYKx_D-a3I9wkMykWJT0GgZiqnXBxHOI5skercjVweFNpqDBMzBNUJMLO-vDl32ZhnfWFmFnpGQs82Qs-uh_Dm9zvLtrjHjbN3u33J_I9eZz0sh_C226t--P-rPbt5tZdwh-CdfTqdnj2Hu2GLFBmoXRisqgZfEBNa5XsecgK-3jbKfwE9ZRve |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Plug-and-play+supervisory+control+using+muscle+and+brain+signals+for+real-time+gesture+and+error+detection&rft.jtitle=Autonomous+robots&rft.au=DelPreto%2C+Joseph&rft.au=Salazar-Gomez%2C+Andres+F.&rft.au=Gil%2C+Stephanie&rft.au=Hasani%2C+Ramin&rft.date=2020-09-01&rft.pub=Springer+US&rft.issn=0929-5593&rft.eissn=1573-7527&rft.volume=44&rft.issue=7&rft.spage=1303&rft.epage=1322&rft_id=info:doi/10.1007%2Fs10514-020-09916-x&rft.externalDocID=10_1007_s10514_020_09916_x |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0929-5593&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0929-5593&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0929-5593&client=summon |