Estimation of One-Repetition Maximum, Type, and Repetition of Resistance Band Exercise Using RGB Camera and Inertial Measurement Unit Sensors

Resistance bands are widely used nowadays to enhance muscle strength due to their high portability, but the relationship between resistance band workouts and conventional dumbbell weight training is still unclear. Thus, this study suggests a convolutional neural network model that identifies the typ...

Full description

Saved in:
Bibliographic Details
Published inSensors (Basel, Switzerland) Vol. 23; no. 2; p. 1003
Main Authors Hwang, Byunggon, Shim, Gyuseok, Choi, Woong, Kim, Jaehyo
Format Journal Article
LanguageEnglish
Published Switzerland MDPI AG 15.01.2023
MDPI
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Resistance bands are widely used nowadays to enhance muscle strength due to their high portability, but the relationship between resistance band workouts and conventional dumbbell weight training is still unclear. Thus, this study suggests a convolutional neural network model that identifies the type of band workout and counts the number of repetitions and a regression model that deduces the band force that corresponds to the one-repetition maximum. Thirty subjects performed five different exercises using resistance bands and dumbbells. Joint movements during each exercise were collected using a camera and an inertial measurement unit. By using different types of input data, several models were created and compared. As a result, the accuracy of the convolutional neural network model using inertial measurement units and joint position is 98.83%. The mean absolute error of the repetition counting algorithm ranges from 0.88 (seated row) to 3.21 (overhead triceps extension). Lastly, the values of adjusted r-square for the 5 exercises are 0.8415 (chest press), 0.9202 (shoulder press), 0.8429 (seated row), 0.8778 (biceps curl), and 0.9232 (overhead triceps extension). In conclusion, the model using 10-channel inertial measurement unit data and joint position data has the best accuracy. However, the model needs to improve the inaccuracies resulting from non-linear movements and one-time performance.
AbstractList Resistance bands are widely used nowadays to enhance muscle strength due to their high portability, but the relationship between resistance band workouts and conventional dumbbell weight training is still unclear. Thus, this study suggests a convolutional neural network model that identifies the type of band workout and counts the number of repetitions and a regression model that deduces the band force that corresponds to the one-repetition maximum. Thirty subjects performed five different exercises using resistance bands and dumbbells. Joint movements during each exercise were collected using a camera and an inertial measurement unit. By using different types of input data, several models were created and compared. As a result, the accuracy of the convolutional neural network model using inertial measurement units and joint position is 98.83%. The mean absolute error of the repetition counting algorithm ranges from 0.88 (seated row) to 3.21 (overhead triceps extension). Lastly, the values of adjusted r-square for the 5 exercises are 0.8415 (chest press), 0.9202 (shoulder press), 0.8429 (seated row), 0.8778 (biceps curl), and 0.9232 (overhead triceps extension). In conclusion, the model using 10-channel inertial measurement unit data and joint position data has the best accuracy. However, the model needs to improve the inaccuracies resulting from non-linear movements and one-time performance.
Resistance bands are widely used nowadays to enhance muscle strength due to their high portability, but the relationship between resistance band workouts and conventional dumbbell weight training is still unclear. Thus, this study suggests a convolutional neural network model that identifies the type of band workout and counts the number of repetitions and a regression model that deduces the band force that corresponds to the one-repetition maximum. Thirty subjects performed five different exercises using resistance bands and dumbbells. Joint movements during each exercise were collected using a camera and an inertial measurement unit. By using different types of input data, several models were created and compared. As a result, the accuracy of the convolutional neural network model using inertial measurement units and joint position is 98.83%. The mean absolute error of the repetition counting algorithm ranges from 0.88 (seated row) to 3.21 (overhead triceps extension). Lastly, the values of adjusted r-square for the 5 exercises are 0.8415 (chest press), 0.9202 (shoulder press), 0.8429 (seated row), 0.8778 (biceps curl), and 0.9232 (overhead triceps extension). In conclusion, the model using 10-channel inertial measurement unit data and joint position data has the best accuracy. However, the model needs to improve the inaccuracies resulting from non-linear movements and one-time performance.Resistance bands are widely used nowadays to enhance muscle strength due to their high portability, but the relationship between resistance band workouts and conventional dumbbell weight training is still unclear. Thus, this study suggests a convolutional neural network model that identifies the type of band workout and counts the number of repetitions and a regression model that deduces the band force that corresponds to the one-repetition maximum. Thirty subjects performed five different exercises using resistance bands and dumbbells. Joint movements during each exercise were collected using a camera and an inertial measurement unit. By using different types of input data, several models were created and compared. As a result, the accuracy of the convolutional neural network model using inertial measurement units and joint position is 98.83%. The mean absolute error of the repetition counting algorithm ranges from 0.88 (seated row) to 3.21 (overhead triceps extension). Lastly, the values of adjusted r-square for the 5 exercises are 0.8415 (chest press), 0.9202 (shoulder press), 0.8429 (seated row), 0.8778 (biceps curl), and 0.9232 (overhead triceps extension). In conclusion, the model using 10-channel inertial measurement unit data and joint position data has the best accuracy. However, the model needs to improve the inaccuracies resulting from non-linear movements and one-time performance.
Author Shim, Gyuseok
Kim, Jaehyo
Hwang, Byunggon
Choi, Woong
AuthorAffiliation 1 Department of Advanced Convergence, BK21 FOUR, Handong Global University, Pohang 37554, Republic of Korea
2 College of ICT Construction & Welfare Convergence, Kangnam University, 40, Yongin 16979, Republic of Korea
3 Department of Mechanical and Control Engineering, Handong Global University, Pohang 37554, Republic of Korea
AuthorAffiliation_xml – name: 3 Department of Mechanical and Control Engineering, Handong Global University, Pohang 37554, Republic of Korea
– name: 1 Department of Advanced Convergence, BK21 FOUR, Handong Global University, Pohang 37554, Republic of Korea
– name: 2 College of ICT Construction & Welfare Convergence, Kangnam University, 40, Yongin 16979, Republic of Korea
Author_xml – sequence: 1
  givenname: Byunggon
  surname: Hwang
  fullname: Hwang, Byunggon
– sequence: 2
  givenname: Gyuseok
  orcidid: 0000-0002-0187-1540
  surname: Shim
  fullname: Shim, Gyuseok
– sequence: 3
  givenname: Woong
  surname: Choi
  fullname: Choi, Woong
– sequence: 4
  givenname: Jaehyo
  orcidid: 0000-0002-0523-8304
  surname: Kim
  fullname: Kim, Jaehyo
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36679801$$D View this record in MEDLINE/PubMed
BookMark eNpdkttuEzEQhi1URA9wwQsgS9yA1IAPu17vDRKNQonUqlJorq3Z3dngaNcO9i5qH4J3xklKlHI11sznX_8czsmJ8w4JecvZJylL9jkKyQRnTL4gZzwT2UQLwU6O3qfkPMY1Y0JKqV-RU6lUUWrGz8ifWRxsD4P1jvqW3jmcLHCDg91lbuHB9mN_Se8fN3hJwTX0qJr4BUYbB3A10qttdfaAobYR6TJat6KL6ys6hR4D7P7OHYbBQkdvEeIYsEc30KWzA_2BLvoQX5OXLXQR3zzFC7L8Nruffp_c3F3Pp19vJnUmymEisKxyIbBVUqCoZIotk1BWqBgXQmqVN4BYqExnwKAqIG_aJuc8V5o1GZMXZL7XbTyszSakCYRH48GaXcKHlYHktO7QqLLJSyiaGnib5Ukvy5G3VYZV0eic66T1Za-1Gasemzr1FKB7Jvq84uxPs_K_TamVUGWWBD48CQT_a8Q4mN7GGrsOHPoxGlEonXriO9_v_0PXfgwujWpLFUJrpVSi3h07Olj5t_UEfNwDdfAxBmwPCGdme1HmcFHyL5nkvVA
Cites_doi 10.1371/journal.pone.0226274
10.1016/j.ptsp.2016.11.005
10.3390/sym13101859
10.3390/s22020698
10.1038/sc.2017.49
10.1007/978-3-030-20521-8_29
10.7717/peerj.8689
10.1016/j.ptsp.2020.06.008
10.3390/s19040887
10.1186/s40798-020-00260-z
10.1097/01893697-201533030-00007
10.31005/iajmh.v3i0.77
10.1109/CVPR.2017.143
10.1177/2050312119831116
10.1016/j.math.2016.07.010
10.1109/CVPR.2017.494
10.1093/ptj/81.8.1437
10.1007/s10522-015-9631-7
10.1093/ageing/afv080
10.1123/jsr.2020-0277
10.5604/20831862.1099047
10.1589/jpts.32.120
10.3389/fgene.2020.583810
10.3390/s19030714
10.3390/ijerph18052749
10.3390/sports9100142
10.1080/02640414.2019.1626071
10.1589/jpts.28.2238
10.1109/EMBC.2018.8513405
10.1080/09593985.2019.1685033
10.1109/SAS.2017.7894068
10.1111/sms.12695
ContentType Journal Article
Copyright 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
2023 by the authors. 2023
Copyright_xml – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: 2023 by the authors. 2023
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
3V.
7X7
7XB
88E
8FI
8FJ
8FK
ABUWG
AFKRA
AZQEC
BENPR
CCPQU
COVID
DWQXO
FYUFA
GHDGH
K9.
M0S
M1P
PHGZM
PHGZT
PIMPY
PJZUB
PKEHL
PPXIY
PQEST
PQQKQ
PQUKI
PRINS
7X8
5PM
DOA
DOI 10.3390/s23021003
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
ProQuest Central (Corporate)
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
ProQuest Central
ProQuest One Community College
Coronavirus Research Database
ProQuest Central Korea
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Health & Medical Complete (Alumni)
Health & Medical Collection (Alumni Edition)
Medical Database
ProQuest Central Premium
ProQuest One Academic
Publicly Available Content Database
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ (Directory of Open Access Journals)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Publicly Available Content Database
ProQuest One Academic Middle East (New)
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
ProQuest One Community College
ProQuest One Health & Nursing
ProQuest Central China
ProQuest Central
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
ProQuest Central Korea
Health & Medical Research Collection
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest One Academic Eastern Edition
Coronavirus Research Database
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList
CrossRef
MEDLINE
Publicly Available Content Database
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 4
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1424-8220
ExternalDocumentID oai_doaj_org_article_69d59a7dca1f4584a45e1fb4eb7d8518
PMC9862694
36679801
10_3390_s23021003
Genre Journal Article
GrantInformation_xml – fundername: Ministry of Health and Welfare
  grantid: #TRSRE-MD02
– fundername: National Research Foundation of Korea
  grantid: 2020R1I1A3A04038203
– fundername: Translational R&D Program on Smart Rehabilitation Exercises
  grantid: #TRSRE-MD02
GroupedDBID ---
123
2WC
53G
5VS
7X7
88E
8FE
8FG
8FI
8FJ
AADQD
AAHBH
AAYXX
ABDBF
ABUWG
ACUHS
ADBBV
ADMLS
AENEX
AFKRA
AFZYC
ALIPV
ALMA_UNASSIGNED_HOLDINGS
BENPR
BPHCQ
BVXVI
CCPQU
CITATION
CS3
D1I
DU5
E3Z
EBD
ESX
F5P
FYUFA
GROUPED_DOAJ
GX1
HH5
HMCUK
HYE
IAO
ITC
KQ8
L6V
M1P
M48
MODMG
M~E
OK1
OVT
P2P
P62
PHGZM
PHGZT
PIMPY
PQQKQ
PROAC
PSQYO
RNS
RPM
TUS
UKHRP
XSB
~8M
3V.
ABJCF
ARAPS
CGR
CUY
CVF
ECM
EIF
HCIFZ
KB.
M7S
NPM
PDBOC
7XB
8FK
AZQEC
COVID
DWQXO
K9.
PJZUB
PKEHL
PPXIY
PQEST
PQUKI
PRINS
7X8
5PM
PUEGO
ID FETCH-LOGICAL-c429t-2e9b522ef632e2b3f63f03a9be601223865daee76484a0ab7a5dfd5115680d403
IEDL.DBID M48
ISSN 1424-8220
IngestDate Wed Aug 27 01:26:46 EDT 2025
Thu Aug 21 18:39:06 EDT 2025
Thu Jul 10 23:30:31 EDT 2025
Fri Jul 25 20:03:21 EDT 2025
Wed Feb 19 02:26:17 EST 2025
Tue Jul 01 01:19:44 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Keywords weight training
fitness
prediction
resistance band
health
convolution neural network
one-repetition maximum
Language English
License https://creativecommons.org/licenses/by/4.0
Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-2e9b522ef632e2b3f63f03a9be601223865daee76484a0ab7a5dfd5115680d403
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
These authors contributed equally to this work.
ORCID 0000-0002-0523-8304
0000-0002-0187-1540
OpenAccessLink http://journals.scholarsportal.info/openUrl.xqy?doi=10.3390/s23021003
PMID 36679801
PQID 2767288666
PQPubID 2032333
ParticipantIDs doaj_primary_oai_doaj_org_article_69d59a7dca1f4584a45e1fb4eb7d8518
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9862694
proquest_miscellaneous_2768238140
proquest_journals_2767288666
pubmed_primary_36679801
crossref_primary_10_3390_s23021003
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20230115
PublicationDateYYYYMMDD 2023-01-15
PublicationDate_xml – month: 1
  year: 2023
  text: 20230115
  day: 15
PublicationDecade 2020
PublicationPlace Switzerland
PublicationPlace_xml – name: Switzerland
– name: Basel
PublicationTitle Sensors (Basel, Switzerland)
PublicationTitleAlternate Sensors (Basel)
PublicationYear 2023
Publisher MDPI AG
MDPI
Publisher_xml – name: MDPI AG
– name: MDPI
References Carnicero (ref_10) 2015; 44
Andersen (ref_19) 2017; 27
Kim (ref_15) 2016; 28
Croteau (ref_9) 2021; 30
ref_35
Richens (ref_37) 2014; 31
ref_33
(ref_12) 2020; 45
ref_32
McLeod (ref_2) 2016; 17
ref_31
ref_30
Lopes (ref_21) 2019; 7
ref_39
ref_16
ref_38
Roth (ref_11) 2017; 24
Guanais (ref_27) 2017; 55
Jackson (ref_14) 2017; 27
Wang (ref_34) 2022; 2022
Yang (ref_26) 2020; 8
ref_25
ref_24
Hirano (ref_8) 2020; 32
ref_23
Patterson (ref_36) 2001; 81
ref_22
Bye (ref_5) 2021; 37
ref_20
ref_40
Fisher (ref_13) 2015; 33
ref_3
Janicijevic (ref_18) 2019; 37
ref_29
Grgic (ref_17) 2020; 6
ref_28
Strasser (ref_1) 2020; 11
ref_4
ref_7
ref_6
References_xml – ident: ref_7
  doi: 10.1371/journal.pone.0226274
– ident: ref_28
– volume: 24
  start-page: 26
  year: 2017
  ident: ref_11
  article-title: Absolute and relative reliability of isokinetic and isometric trunk strength testing using the IsoMed-2000 dynamometer
  publication-title: Phys. Ther. Sport
  doi: 10.1016/j.ptsp.2016.11.005
– ident: ref_3
  doi: 10.3390/sym13101859
– ident: ref_24
– ident: ref_29
  doi: 10.3390/s22020698
– volume: 55
  start-page: 950
  year: 2017
  ident: ref_27
  article-title: Validity of one-repetition maximum predictive equations in men with spinal cord injury
  publication-title: Spinal Cord
  doi: 10.1038/sc.2017.49
– ident: ref_33
  doi: 10.1007/978-3-030-20521-8_29
– volume: 8
  start-page: e8689
  year: 2020
  ident: ref_26
  article-title: Monitoring the training dose and acute fatigue response during elbow flexor resistance training using a custom-made resistance band
  publication-title: PeerJ
  doi: 10.7717/peerj.8689
– ident: ref_16
– ident: ref_40
– volume: 45
  start-page: 93
  year: 2020
  ident: ref_12
  article-title: Evaluation isometric and isokinetic of trunk flexor and extensor muscles with isokinetic dynamometer: A systematic review
  publication-title: Phys. Ther. Sport
  doi: 10.1016/j.ptsp.2020.06.008
– ident: ref_30
  doi: 10.3390/s19040887
– volume: 6
  start-page: 31
  year: 2020
  ident: ref_17
  article-title: Test–retest reliability of the one-repetition maximum (1−RM) strength assessment: A systematic review
  publication-title: Sports Med. Open
  doi: 10.1186/s40798-020-00260-z
– ident: ref_35
– volume: 33
  start-page: 51
  year: 2015
  ident: ref_13
  article-title: Research round-up
  publication-title: Rehabil. Oncol.
  doi: 10.1097/01893697-201533030-00007
– ident: ref_23
  doi: 10.31005/iajmh.v3i0.77
– ident: ref_38
  doi: 10.1109/CVPR.2017.143
– volume: 7
  start-page: 2050312119831116
  year: 2019
  ident: ref_21
  article-title: Effects of training with elastic resistance versus conventional resistance on muscular strength: A systematic review and meta-analysis
  publication-title: SAGE Open Med.
  doi: 10.1177/2050312119831116
– volume: 27
  start-page: 137
  year: 2017
  ident: ref_14
  article-title: Intrarater reliability of hand held dynamometry in measuring lower extremity isometric strength using a portable stabilization device
  publication-title: Musculoskelet. Sci. Pract.
  doi: 10.1016/j.math.2016.07.010
– ident: ref_39
  doi: 10.1109/CVPR.2017.494
– volume: 81
  start-page: 1437
  year: 2001
  ident: ref_36
  article-title: Material properties of thera-band tubing
  publication-title: Phys. Ther.
  doi: 10.1093/ptj/81.8.1437
– ident: ref_6
– volume: 17
  start-page: 497
  year: 2016
  ident: ref_2
  article-title: Live strong and prosper: The importance of skeletal muscle strength for healthy ageing
  publication-title: Biogerontology
  doi: 10.1007/s10522-015-9631-7
– volume: 44
  start-page: 790
  year: 2015
  ident: ref_10
  article-title: Association of regional muscle strength with mortality and hospitalisation in older people
  publication-title: Age Ageing
  doi: 10.1093/ageing/afv080
– ident: ref_4
– volume: 30
  start-page: 1233
  year: 2021
  ident: ref_9
  article-title: Hand-held shoulder strength measures correlate with isokinetic dynamometry in elite water polo players
  publication-title: J. Sport Rehabil.
  doi: 10.1123/jsr.2020-0277
– volume: 31
  start-page: 157
  year: 2014
  ident: ref_37
  article-title: The relationship between the number of repetitions performed at given intensities is different in endurance and strength trained athletes
  publication-title: Biol. Sport
  doi: 10.5604/20831862.1099047
– volume: 32
  start-page: 120
  year: 2020
  ident: ref_8
  article-title: Validity and reliability of isometric knee extension muscle strength measurements using a belt-stabilized hand-held dynamometer: A comparison with the measurement using an isokinetic dynamometer in a sitting posture
  publication-title: J. Phys. Ther. Sci.
  doi: 10.1589/jpts.32.120
– volume: 11
  start-page: 583810
  year: 2020
  ident: ref_1
  article-title: Importance of assessing muscular fitness in secondary care
  publication-title: Front. Genet.
  doi: 10.3389/fgene.2020.583810
– ident: ref_32
  doi: 10.3390/s19030714
– ident: ref_20
  doi: 10.3390/ijerph18052749
– ident: ref_22
  doi: 10.3390/sports9100142
– volume: 2022
  start-page: 1826951
  year: 2022
  ident: ref_34
  article-title: Motion recognition based on deep learning and human joint points
  publication-title: Comp. Intell. Neurosci.
– volume: 37
  start-page: 2205
  year: 2019
  ident: ref_18
  article-title: Reliability and validity of different methods of estimating the one-repetition maximum during the free-weight prone bench pull exercise
  publication-title: J. Sport. Sci.
  doi: 10.1080/02640414.2019.1626071
– volume: 28
  start-page: 2238
  year: 2016
  ident: ref_15
  article-title: Analysis of the reliability of the make test in young adults by using a hand-held dynamometer
  publication-title: J. Phys. Ther. Sci.
  doi: 10.1589/jpts.28.2238
– ident: ref_25
  doi: 10.1109/EMBC.2018.8513405
– volume: 37
  start-page: 1126
  year: 2021
  ident: ref_5
  article-title: The inter-rater reliability of the 13-point manual muscle test in people with spinal cord injury
  publication-title: Physiother. Theory Pract.
  doi: 10.1080/09593985.2019.1685033
– ident: ref_31
  doi: 10.1109/SAS.2017.7894068
– volume: 27
  start-page: 887
  year: 2017
  ident: ref_19
  article-title: Validity and reliability of elastic resistance bands for measuring shoulder muscle strength
  publication-title: Scand. J. Med. Sci. Sports
  doi: 10.1111/sms.12695
SSID ssj0023338
Score 2.3830352
Snippet Resistance bands are widely used nowadays to enhance muscle strength due to their high portability, but the relationship between resistance band workouts and...
SourceID doaj
pubmedcentral
proquest
pubmed
crossref
SourceType Open Website
Open Access Repository
Aggregation Database
Index Database
StartPage 1003
SubjectTerms Cameras
convolution neural network
Exercise - physiology
Exercise Therapy
Experiments
fitness
health
Humans
Laboratories
Muscle strength
Muscle Strength - physiology
Muscle, Skeletal - physiology
one-repetition maximum
Posture
resistance band
Sensors
Transmitters
Weight Lifting - physiology
weight training
SummonAdditionalLinks – databaseName: DOAJ (Directory of Open Access Journals)
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3daxQxEB-kT_ogav1YrSWKj12a22ST20evXFuFU6gW-rbkY4J96F7p3YH_hP-zM9m9650IvggLy26yMJuZML9fJpkB-JC0lT4FLJOsXanrKpQOtSnRh6iCtNHmWgSzL-b8Un--qq-2Sn3xnrA-PXA_cMemiXXjbAxulDim53SNo-Q1ehsJLeRjvuTz1mRqoFqKmFefR0gRqT9eENAmbrOujDV4n5yk_2_I8s8Nklse5_QJPB6govjYi_gUHmD3DB5tJRDch19TmqH94UMxT-JrhyUhauwTEImZ-3l9s7o5Ekw2j4Trothqpf4XuGD4SHoXE26dDvWXRN5IIC7OJuLE8apV_vZTx3uwSaLZ_bqiYMwqvhEXnt8tnsPl6fT7yXk5FFgoA7mhZVlh4wl_YTKqwsoruiepXOPRcMSNy4FGh2iNpnGXzltXxxQJotVmLKOW6gXsdfMOX4GQ2tOziXQFrb1pKtMkAndBBZuM0wW8Xw98e9vn0WiJf7B22o12CpiwSjYdOPV1fkEG0Q4G0f7LIAo4WCu0Hebjoq2ssdV4TFytgHebZppJHB5xHc5Xuc-YAYyWBbzs9b-RRBmOVslRAXbHMnZE3W3prn_kbN0Nc8ZGv_4f__YGHnK5e14CGtUHsLe8W-FbAkVLf5jt_zcGzA2j
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1Lb9QwELagXOCAeBMolUEca9WbOHZyQmy1pSAtSIVKe4v8LD00KZtdiT_R_9wZx_tCFVKkKBlHGmXs-JtH5iPkYxCKm2A9C7zUTJS5ZdoLybyxrrBcORW5CKbf5em5-DYrZyng1qeyytU3MX6oXWcxRn6UK6nyqgK0_en6D0PWKMyuJgqN--QBti7Dki412zhcBfhfQzehAlz7ox7gNng4K36stAfFVv134ct_yyS39p2TJ-RxAoz082Dhp-Seb5-RR1ttBJ-Tmwms0-EXRNoF-qP1DHC1H9oQ0an-e3m1vDqk6HIeUt06uiWF8We-RxAJ1qdjlE4SCxON5QT07MuYHmuMXcVnv7ZYiQ0aTTfRRYrIlf4Ej7ib9y_I-cnk1_EpSzQLzMJmtGC5rw2gMB9kkfvcFHAOvNC18RLzbkgK6rT3SopKaK6N0qULDoBaKSvuBC9ekr22a_1rQrkwcC0dHFYII-tc1gEgni2sClKLjHxYvfjmeuim0YAXgtZp1tbJyBhNsh6ADbDjjW5-0aT11MjalbVWzupRwFSvFqUfBSO8UQ5AZJWR_ZVBm7Qq-2YzhzLyfi2G9YRJEt36bhnHVAhjBM_Iq8H-a00KiTkrPsqI2pkZO6ruStrL37Fnd42eYy3e_F-tt-Qh0tljiGdU7pO9xXzp3wHoWZiDOLNvAZoMBLA
  priority: 102
  providerName: ProQuest
Title Estimation of One-Repetition Maximum, Type, and Repetition of Resistance Band Exercise Using RGB Camera and Inertial Measurement Unit Sensors
URI https://www.ncbi.nlm.nih.gov/pubmed/36679801
https://www.proquest.com/docview/2767288666
https://www.proquest.com/docview/2768238140
https://pubmed.ncbi.nlm.nih.gov/PMC9862694
https://doaj.org/article/69d59a7dca1f4584a45e1fb4eb7d8518
Volume 23
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Lb9QwEB6V9gKHijeBsjKIYwPexLGTA0JstduCtAUtrLS3yI5tqESTsg-p_Aj-MzNJNmxQD0hRosS2ZHk8mu-bcWYAXnmhuPGFCz1PdCiSqAi1EzJ0prBxwZVVdS2C6bk8m4uPi2SxB9sam-0Crm6kdlRPar788fr65693qPBviXEiZX-zQhiNzIVyfh6gQVKkn1PRBROiOK4LWtM_XSHaQ94kGOoP7ZmlOnv_TZDz35OTO6ZochcOWwzJ3jdCvwd7rrwPd3YyCz6A32NU3eavRFZ59ql0IUJt12QmYlN9fXG5uTxmxEKPmS4t22nF_jO3IlyJG4KNqHXcFmZi9QkDNjsdsRNN7qx67IeSDmfjjKZ_HY6MwCz7giS5Wq4ewnwy_npyFraVF8IC7dM6jFxmEJg5L-PIRSbGp-exzoyTFIqjOqFWO6ekSIXm2iidWG8RuyUy5Vbw-BHsl1XpngDjwuC7tHgVQhiZRTLziPqKuFBeahHAy-3C51dNgo0ciQlJJ--kE8CIRNJ1oJzY9Ydq-S1vVSyXmU0yrWyhh56iv1okbuiNcEZZxJVpAEdbgebbfZZHSqooTZHEBfCia0YVo7iJLl21qfukhGwED-BxI_9uJrGkMBYfBqB6O6M31X5LefG9TuOdEZnMxNP_WYBncJvq3JPvZ5gcwf56uXHPEQ2tzQBuqYXCezo5HcDBaHz-eTaoPQuDWgv-AA3hDXU
linkProvider Scholars Portal
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiDeBAgbBrVG9iWMnB4TYsqVLu0UqrbS3YMc29NCk7EPAj-Cv8BuZyWMfCHGrFClK7ERW5uFvHpkBeOmF4sYXLvQ80aFIoiLUTsjQmcLGBVdW1b0IRkdy_1R8GCfjDfjd_QtDaZWdTqwVta0K8pHvREqqKE0Rbb-5-BZS1yiKrnYtNBq2OHA_v6PJNn09fIf0fRVFe4OT3f2w7SoQFqh7Z2HkMoOgw3kZRy4yMZ49j3VmnKQwE_XAtNo5JUUqNNdG6cR6i7gkkSm3gsf43itwFTdeThKlxksDL0Z7r6leFMcZ35kivEeLquvH1e55dWuAf-HZv9MyV_a5vVtwswWo7G3DUbdhw5V34MZK2cK78GuAeqH55ZFVnn0sXYg43jVlj9hI_zg7n59vMzJxt5kuLVsZxfnHbkqgFbmN9Wl00HZ9YnX6Ajt-32e7mnxl9bPDkjK_cUWjpTeTEVJmn9ACrybTe3B6KQS4D5tlVbqHwLgweC0tHoUQRmaRzDxCyiIulJdaBPCi-_D5RVO9I0erh6iTL6gTQJ9IsphABbfrG9XkS97Kby4zm2Ra2UL3PIWWtUhczxvhjLIIWtMAtjqC5q0WmOZLng3g-WIY5ZeCMrp01byekxJsEjyABw39FyuJJcXIeC8AtcYZa0tdHynPvtY1wjOyVDPx6P_LegbX9k9Gh_nh8OjgMVyPkIXJvdRLtmBzNpm7Jwi4ZuZpzeUMPl-2WP0Bx21A0w
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Jb9QwFLZKkRAcEDuBAgbBrdE4sWMnB4SYdoYOZQoqVJpbsGMbemhSZhHwI_hD_DreyzILQtwqRYoSO5GVt-R7i98j5LkXihlfuNCzRIciiYtQOyFDZwrLC6asqnsRjI_kwYl4O0kmW-R3txcG0yo7nVgralsV6CPvxUqqOE0Bbfd8mxbxYX_46vxbiB2kMNLatdNoWOTQ_fwO5tvs5WgfaP0ijoeDT3sHYdthICxAD8_D2GUGAIjzkscuNhzOnnGdGScx5IT9MK12TkmRCs20UTqx3gJGSWTKrGAc3nuJXFY8iVDG1GRl7HGw_ZpKRpxnrDcDqA_WVdebq_3_1W0C_oVt_07RXPvnDW-Q6y1Ypa8b7rpJtlx5i1xbK2F4m_wagI5otj_SytP3pQsB07umBBId6x-nZ4uzXYrm7i7VpaVrozD_2M0QwALn0T6ODtoOULROZaDHb_p0T6PfrH52VGIWOKxovPJsUkTN9CNY49V0doecXAgB7pLtsirdfUKZMHAtLRyFEEZmscw8wMuCF8pLLQLyrPvw-XlTySMHCwipky-pE5A-kmQ5AYtv1zeq6Ze8leVcZjbJtLKFjjyGmbVIXOSNcEZZALBpQHY6guatRpjlK_4NyNPlMMgyBmh06apFPSdFCCVYQO419F-uhEuMl7EoIGqDMzaWujlSnn6t64VnaLVm4sH_l_WEXAGByt-Njg4fkqsxcDB6mqJkh2zPpwv3CLDX3DyumZySzxctVX8Agl5FCQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Estimation+of+One-Repetition+Maximum%2C+Type%2C+and+Repetition+of+Resistance+Band+Exercise+Using+RGB+Camera+and+Inertial+Measurement+Unit+Sensors&rft.jtitle=Sensors+%28Basel%2C+Switzerland%29&rft.au=Hwang%2C+Byunggon&rft.au=Shim%2C+Gyuseok&rft.au=Choi%2C+Woong&rft.au=Kim%2C+Jaehyo&rft.date=2023-01-15&rft.issn=1424-8220&rft.eissn=1424-8220&rft.volume=23&rft.issue=2&rft.spage=1003&rft_id=info:doi/10.3390%2Fs23021003&rft.externalDBID=n%2Fa&rft.externalDocID=10_3390_s23021003
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1424-8220&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1424-8220&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1424-8220&client=summon