Modulating the electronic structure of atomically dispersed Fe-Pt dual-site catalysts for efficient oxygen reduction reactions

Atomically dispersed catalysts, with a high atomic dispersion of active sites, are efficient electrocatalysts. However, their unique catalytic sites make it challenging to improve their catalytic activity further. In this study, an atomically dispersed Fe-Pt dual-site catalyst (FePtNC) has been desi...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 14; no. 12; pp. 3277 - 3285
Main Authors Song, Wei-Shen, Wang, Mei, Zhan, Xiao, Wang, Yan-Jie, Cao, Dong-Xu, Song, Xian-Meng, Nan, Zi-Ang, Zhang, Li, Fan, Feng Ru
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 22.03.2023
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:Atomically dispersed catalysts, with a high atomic dispersion of active sites, are efficient electrocatalysts. However, their unique catalytic sites make it challenging to improve their catalytic activity further. In this study, an atomically dispersed Fe-Pt dual-site catalyst (FePtNC) has been designed as a high-activity catalyst by modulating the electronic structure between adjacent metal sites. The FePtNC catalyst showed significantly better catalytic activity than the corresponding single-atom catalysts and metal-alloy nanocatalysts, with a half-wave potential of 0.90 V for the oxygen reduction reaction. Moreover, metal-air battery systems fabricated with the FePtNC catalyst showed peak power density values of 90.33 mW cm −2 (Al-air) and 191.83 mW cm −2 (Zn-air). By combining experiments and theoretical simulations, we demonstrate that the enhanced catalytic activity of the FePtNC catalyst can be attributed to the electronic modulation effect between adjacent metal sites. Thus, this study presents an efficient strategy for the rational design and optimization of atomically dispersed catalysts. This work reports a strategy to design atomically dispersed Fe and Pt dual-site catalysts to improve the catalytic activity by the electronic modulation effect between adjacent metal sites.
Bibliography:https://doi.org/10.1039/d3sc00250k
Electronic supplementary information (ESI) available. See DOI
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ISSN:2041-6520
2041-6539
DOI:10.1039/d3sc00250k