The resurrection of tellurium as an elemental two-dimensional semiconductor
The graphene boom has triggered a widespread search for novel elemental van der Waals materials thanks to their simplicity for theoretical modeling and easy access for material growth. Group VI element tellurium is an unintentionally p-type doped narrow bandgap semiconductor featuring a one-dimensio...
Saved in:
Published in | NPJ 2D materials and applications Vol. 6; no. 1; pp. 1 - 10 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
14.03.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The graphene boom has triggered a widespread search for novel elemental van der Waals materials thanks to their simplicity for theoretical modeling and easy access for material growth. Group VI element tellurium is an unintentionally p-type doped narrow bandgap semiconductor featuring a one-dimensional chiral atomic structure which holds great promise for next-generation electronic, optoelectronic, and piezoelectric applications. In this paper, we first review recent progress in synthesizing atomically thin Te two-dimensional (2D) films and one-dimensional (1D) nanowires. Its applications in field-effect transistors and potential for building ultra-scaled Complementary metal–oxide–semiconductor (CMOS) circuits are discussed. We will also overview the recent study on its quantum transport in the 2D limit and progress in exploring its topological features and chiral-related physics. We envision that the breakthrough in obtaining high-quality 2D Te films will inspire a revisit of the fundamental properties of this long-forgotten material in the near future. |
---|---|
AbstractList | Abstract The graphene boom has triggered a widespread search for novel elemental van der Waals materials thanks to their simplicity for theoretical modeling and easy access for material growth. Group VI element tellurium is an unintentionally p-type doped narrow bandgap semiconductor featuring a one-dimensional chiral atomic structure which holds great promise for next-generation electronic, optoelectronic, and piezoelectric applications. In this paper, we first review recent progress in synthesizing atomically thin Te two-dimensional (2D) films and one-dimensional (1D) nanowires. Its applications in field-effect transistors and potential for building ultra-scaled Complementary metal–oxide–semiconductor (CMOS) circuits are discussed. We will also overview the recent study on its quantum transport in the 2D limit and progress in exploring its topological features and chiral-related physics. We envision that the breakthrough in obtaining high-quality 2D Te films will inspire a revisit of the fundamental properties of this long-forgotten material in the near future. The graphene boom has triggered a widespread search for novel elemental van der Waals materials thanks to their simplicity for theoretical modeling and easy access for material growth. Group VI element tellurium is an unintentionally p-type doped narrow bandgap semiconductor featuring a one-dimensional chiral atomic structure which holds great promise for next-generation electronic, optoelectronic, and piezoelectric applications. In this paper, we first review recent progress in synthesizing atomically thin Te two-dimensional (2D) films and one-dimensional (1D) nanowires. Its applications in field-effect transistors and potential for building ultra-scaled Complementary metal–oxide–semiconductor (CMOS) circuits are discussed. We will also overview the recent study on its quantum transport in the 2D limit and progress in exploring its topological features and chiral-related physics. We envision that the breakthrough in obtaining high-quality 2D Te films will inspire a revisit of the fundamental properties of this long-forgotten material in the near future. |
ArticleNumber | 17 |
Author | Qiu, Gang Charnas, Adam Wu, Wenzhuo Niu, Chang Wang, Yixiu Ye, Peide D. |
Author_xml | – sequence: 1 givenname: Gang surname: Qiu fullname: Qiu, Gang organization: Elmore Family School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Center, Purdue University – sequence: 2 givenname: Adam orcidid: 0000-0002-2282-4428 surname: Charnas fullname: Charnas, Adam organization: Elmore Family School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Center, Purdue University – sequence: 3 givenname: Chang orcidid: 0000-0003-3175-7164 surname: Niu fullname: Niu, Chang organization: Elmore Family School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Center, Purdue University – sequence: 4 givenname: Yixiu surname: Wang fullname: Wang, Yixiu organization: School of Industrial Engineering, Purdue University – sequence: 5 givenname: Wenzhuo surname: Wu fullname: Wu, Wenzhuo organization: School of Industrial Engineering, Purdue University – sequence: 6 givenname: Peide D. orcidid: 0000-0001-8466-9745 surname: Ye fullname: Ye, Peide D. email: yep@purdue.edu organization: Elmore Family School of Electrical and Computer Engineering, Purdue University, Birck Nanotechnology Center, Purdue University |
BookMark | eNp9kUtLxDAUhYMo-Jo_4KrguppXm2Yp4gsFN-M6pOnNmKHTaJIy-O9Np4riwlVyL-c7nOQco_3BD4DQGcEXBLPmMnJSS1liSkuMqWTldg8dUSZFKQij-7_uh2gR4xpjTCSpeUWO0OPyFYoAcQwBTHJ-KLwtEvT9GNy4KXQs9FBADxsYku6LtPVl5_IQszTPETbO-KEbTfLhFB1Y3UdYfJ0n6OX2Znl9Xz493z1cXz2VhlOZSspMRSHHIZJjLioiKG8wsy3jjayrWlNLWiF1y0C0Jm8rjg0YoQm1AK1gJ-hh9u28Xqu34DY6fCivndotfFgpHZIzPSgqZddaI6hoLbctlwCSgwTCamxsPXmdz15vwb-PEJNa-zHkp0VFa9Y0NSPVpGpmlQk-xgBWGZf09F0paNcrgtXUhJqbULkJtWtCbTNK_6Dfgf-F2AzFLB5WEH5S_UN9AtzbngQ |
CitedBy_id | crossref_primary_10_1007_s11432_023_3938_y crossref_primary_10_1021_acs_cgd_3c00703 crossref_primary_10_1063_5_0184391 crossref_primary_10_1021_acsanm_4c00551 crossref_primary_10_1002_smll_202311317 crossref_primary_10_1007_s13204_023_02942_y crossref_primary_10_1016_j_inoche_2024_112739 crossref_primary_10_1002_adma_202210446 crossref_primary_10_1021_acsami_4c14865 crossref_primary_10_1063_5_0215304 crossref_primary_10_1021_accountsmr_2c00146 crossref_primary_10_1021_acs_inorgchem_4c03647 crossref_primary_10_1002_smll_202309953 crossref_primary_10_1088_1402_4896_ad7240 crossref_primary_10_1021_acsnano_4c10489 crossref_primary_10_1039_D4NR05266H crossref_primary_10_1016_j_nanoms_2023_05_003 crossref_primary_10_1021_acs_nanolett_4c05279 crossref_primary_10_1039_D2RA06356E crossref_primary_10_1063_5_0115784 crossref_primary_10_1002_adfm_202423333 crossref_primary_10_1364_OE_489029 crossref_primary_10_1038_s41467_024_52062_6 crossref_primary_10_1039_D4TA01730G crossref_primary_10_1002_aelm_202400210 crossref_primary_10_1021_acs_langmuir_4c02225 crossref_primary_10_1021_acsnano_2c10762 crossref_primary_10_1063_5_0104652 crossref_primary_10_1039_D3QI01485A crossref_primary_10_1002_adma_202211522 crossref_primary_10_1016_j_apsusc_2023_157801 crossref_primary_10_1002_adma_202309023 crossref_primary_10_1063_5_0243792 crossref_primary_10_1088_1674_4926_24090020 crossref_primary_10_3390_nano12234137 crossref_primary_10_1103_PhysRevMaterials_7_014204 crossref_primary_10_1039_D2CS00657J crossref_primary_10_1103_PhysRevB_110_115421 crossref_primary_10_1002_adfm_202307005 crossref_primary_10_1021_acs_jpcc_3c03882 crossref_primary_10_3390_nano13050789 crossref_primary_10_1039_D3TC04333A crossref_primary_10_1002_adma_202412210 crossref_primary_10_1021_acsaelm_4c01804 crossref_primary_10_1021_acsaem_3c00110 crossref_primary_10_1002_adfm_202310372 crossref_primary_10_1016_j_device_2023_100069 crossref_primary_10_1038_s41467_022_34119_6 crossref_primary_10_1007_s12274_022_5190_9 crossref_primary_10_1007_s11467_022_1231_9 crossref_primary_10_1021_acsami_3c19471 crossref_primary_10_1126_sciadv_adm9322 crossref_primary_10_1021_acsaelm_3c00620 crossref_primary_10_1016_j_sse_2024_108859 crossref_primary_10_1016_j_electacta_2022_141674 crossref_primary_10_1016_j_jhazmat_2023_133161 crossref_primary_10_1063_5_0090179 crossref_primary_10_1016_j_cap_2023_01_009 crossref_primary_10_1021_acs_jpcc_4c05915 crossref_primary_10_1002_adma_202400729 |
Cites_doi | 10.1103/PhysRevB.101.205414 10.1038/35098012 10.1143/JJAP.11.1113 10.1039/D0NR01251C 10.1088/0957-4484/24/18/185705 10.1038/nphys4174 10.1038/nnano.2014.35 10.1016/0040-6090(73)90199-5 10.1021/ja910871s 10.1109/PROC.1964.3435 10.1103/PhysRevB.89.195206 10.1103/PhysRevLett.124.136402 10.1103/PhysRevB.99.245153 10.1103/PhysRevB.93.045207 10.1039/C7NR04085G 10.1143/JJAP.28.770 10.1103/PhysRevB.97.205206 10.1515/nanoph-2019-0539 10.1021/nn5028104 10.1103/RevModPhys.81.109 10.1088/0953-8984/26/44/442001 10.1063/1.1736090 10.1126/science.1102896 10.1103/PhysRevLett.114.206401 10.1038/natrevmats.2016.52 10.1126/science.aax8156 10.1038/s41467-017-01093-3 10.1039/C8NR07501H 10.1002/adfm.201906585 10.1016/0038-1098(70)90393-5 10.1002/adma.200600527 10.1143/JJAP.16.1571 10.1021/acs.nanolett.8b02368 10.1016/0038-1098(92)90093-O 10.1039/C8CP04069A 10.1038/s41563-018-0169-3 10.1126/science.1237240 10.1088/0957-4484/14/9/309 10.1126/science.aac9439 10.1002/adma.201300657 10.1134/S1063783412120281 10.1038/nature26160 10.1021/acsnano.8b03424 10.1143/JJAP.11.1753 10.1038/s41467-020-15388-5 10.1103/PhysRevB.101.245111 10.1021/acs.nanolett.7b01717 10.1038/nmat2987 10.1038/s41699-020-0143-1 10.1103/PhysRevB.101.174104 10.1088/1367-2630/16/9/095002 10.1021/acsami.0c18767 10.1016/0040-6090(72)90048-X 10.1021/acs.nanolett.7b01029 10.1063/1.5109899 10.1103/PhysRevLett.124.136404 10.1088/1367-2630/16/9/095004 10.1038/s41467-020-17766-5 10.1021/acsnano.9b04507 10.1002/pssb.19690320220 10.1039/C8NR01649F 10.1038/s41565-019-0585-9 10.1021/acsaem.8b00032 10.1021/acs.nanolett.8b05144 10.1002/aelm.201900226 10.1021/la053021l 10.1051/jphysrad:019520013011058701 10.1088/2053-1583/aae7f6 10.1038/nnano.2013.129 10.1103/PhysRevB.95.125204 10.1038/s41467-020-16125-8 10.1063/1.321786 10.1186/s11671-017-2255-x 10.1016/0038-1098(75)90002-2 10.1002/adfm.201705833 10.1038/srep12024 10.1073/pnas.1905524116 10.1109/PROC.1964.3003 10.1016/0039-6028(78)90536-8 10.1016/0038-1098(71)90630-2 10.1109/PROC.1971.8463 10.1038/s41565-017-0035-5 10.1088/2399-1984/aaf76f 10.1002/adma.201803109 10.1143/JJAP.15.1881 10.1103/PhysRevLett.119.106101 10.1002/pssb.19700400125 10.1063/1.326485 10.1038/181834a0 10.1039/b309097c 10.1038/d41586-017-07159-y 10.1039/b201058e 10.1126/science.1137201 10.1021/nn501226z 10.1038/s41565-020-0715-4 10.1038/nature04235 10.1103/PhysRevLett.23.14 10.1038/nature04233 10.1016/0022-3697(61)90057-9 10.1016/j.susc.2019.121498 10.1016/0375-9601(69)90773-7 10.1016/j.scib.2018.01.010 10.1016/0040-6090(77)90066-9 10.1088/2053-1591/aa8ae3 10.1002/1521-4095(20021118)14:22<1658::AID-ADMA1658>3.0.CO;2-2 10.1038/s41563-019-0573-3 10.1016/0040-6090(77)90408-4 10.1038/ncomms10287 10.1038/s41928-018-0058-4 10.1063/1.322247 10.1103/PhysRevLett.110.176401 10.1002/pssb.19700380214 10.1073/pnas.2002913117 10.1016/0038-1098(68)90132-4 10.1103/PhysRevB.97.035158 10.1038/nature26154 10.1103/PhysRevLett.45.494 10.1126/science.aai8142 10.1038/s41928-020-0365-4 10.1039/C8NR07978A 10.1021/acs.nanolett.8b04865 10.1038/nature12385 10.1016/j.apsusc.2016.09.157 10.1088/2053-1583/aa9ea0 10.1109/DRC.2018.8442253 |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 8FE 8FG ABJCF ABUWG AFKRA AZQEC BENPR BGLVJ CCPQU D1I DWQXO HCIFZ KB. L6V M7S PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.1038/s41699-022-00293-w |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea SciTech Premium Collection Materials Science Database (Proquest) ProQuest Engineering Collection Engineering Database Materials Science Collection ProQuest Central Premium ProQuest One Academic Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering collection DOAJ - Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea Materials Science Database ProQuest Central (New) Engineering Collection ProQuest Materials Science Collection Engineering Database ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: Directory of Open Access Journals (DOAJ) url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2397-7132 |
EndPage | 10 |
ExternalDocumentID | oai_doaj_org_article_299dbfc727bf4fb49ee94e9e1360cf67 10_1038_s41699_022_00293_w |
GrantInformation_xml | – fundername: United States Department of Defense | United States Army | U.S. Army Research, Development and Engineering Command | Army Research Office (ARO) funderid: https://doi.org/10.13039/100000183 |
GroupedDBID | 0R~ AAFWJ AAJSJ AAKAB ABJCF ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALMA_UNASSIGNED_HOLDINGS ARCSS BCNDV BENPR BGLVJ C6C CCPQU EBLON EBS GROUPED_DOAJ HCIFZ KB. M7S M~E NAO NO~ OK1 PDBOC PIMPY PTHSS RNT SNYQT AASML AAYXX AFPKN CITATION PHGZM PHGZT 8FE 8FG AARCD ABUWG AZQEC D1I DWQXO L6V PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c429t-23c52e71319404751724803fb3489656a2f1b79ab3e7bcb34540cec7a12feeb73 |
IEDL.DBID | DOA |
ISSN | 2397-7132 |
IngestDate | Wed Aug 27 01:15:42 EDT 2025 Wed Aug 13 04:12:03 EDT 2025 Thu Apr 24 23:12:49 EDT 2025 Tue Jul 01 02:21:17 EDT 2025 Fri Feb 21 02:39:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-23c52e71319404751724803fb3489656a2f1b79ab3e7bcb34540cec7a12feeb73 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-8466-9745 0000-0002-2282-4428 0000-0003-3175-7164 |
OpenAccessLink | https://doaj.org/article/299dbfc727bf4fb49ee94e9e1360cf67 |
PQID | 2638863157 |
PQPubID | 4669722 |
PageCount | 10 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_299dbfc727bf4fb49ee94e9e1360cf67 proquest_journals_2638863157 crossref_citationtrail_10_1038_s41699_022_00293_w crossref_primary_10_1038_s41699_022_00293_w springer_journals_10_1038_s41699_022_00293_w |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-14 |
PublicationDateYYYYMMDD | 2022-03-14 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-14 day: 14 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | NPJ 2D materials and applications |
PublicationTitleAbbrev | npj 2D Mater Appl |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Royer, Dieulesaint (CR83) 1979; 50 Hirayama, Okugawa, Ishibashi, Murakami, Miyake (CR108) 2015; 114 Shen (CR80) 2020; 14 Şahin, Rou, Ma, Pesin (CR124) 2018; 97 Mo (CR39) 2002; 14 Qiao (CR27) 2018; 63 Zhou (CR72) 2018; 30 Chen (CR30) 2017; 9 Zhang, Tan, Stormer, Kim (CR5) 2005; 438 Novoselov (CR6) 2007; 315 Liu (CR18) 2014; 8 Qiu (CR106) 2018; 18 Weimer, Borkan, Sadasiv, Meray-Horvath, Shallcross (CR77) 1964; 52 Furuta, Wada (CR42) 1972; 11 Qiu (CR97) 2019; 19 Apte (CR54) 2018; 6 Bianco (CR55) 2020; 12 Gopalan, Litvin (CR118) 2011; 10 Tsirkin, Puente, Souza (CR115) 2018; 97 Tang (CR12) 2017; 13 Novoselov (CR7) 2005; 438 Wang (CR85) 2019; 3 Rui (CR78) 2020; 9 Zhang (CR67) 2019; 29 Geim, Grigorieva (CR3) 2013; 499 Sharma, Singh, Schwingenschlögl (CR96) 2018; 1 Deng (CR13) 2020; 367 Blakemore, Nomura (CR120) 1961; 32 Rodriguez (CR112) 2020; 101 Sakano (CR34) 2020; 124 Churchill (CR47) 2017; 12 Jnawali (CR82) 2020; 11 Dong, Ma (CR121) 2020; 11 Rikken, Avarvari (CR125) 2019; B99 Chhowalla, Jena, Zhang (CR1) 2016; 1 Akiba (CR110) 2020; 101 Weimer (CR51) 1964; 52 Phahle (CR52) 1977; 41 Hunt (CR11) 2013; 340 Okuyama, Kudo (CR63) 1989; 28 Bampoulis (CR20) 2014; 26 Shalygin, Moldavskaya, Danilov, Farbshtein, Golub (CR36) 2016; 93 Furuta, Itinose, Maruyama, Ohasi (CR43) 1972; 11 Huang (CR33) 2017; 17 Bouat, Thuillier (CR105) 1978; 73 Sone, Yamagami, Aoki, Nakatsuji, Hirayama (CR21) 2014; 16 Aigrain, Lagrenaudie, Liandrat (CR49) 1952; 13 Reis (CR24) 2017; 357 Yin (CR71) 2021; 13 Qiu (CR76) 2020; 15 Bresler, Farbstein, Mashovets, Kosichkin, Veselago (CR100) 1969; 29 Nakayama (CR114) 2017; 95 Guthmann, Thuillier (CR98) 1968; 6 Dutton, Muller (CR57) 1971; 59 Yoda, Yokoyama, Murakami (CR122) 2015; 5 Lin, Cheng, Chai, Zhang (CR95) 2018; 20 Wang (CR32) 2018; 1 Lee (CR86) 2013; 25 Safdar (CR45) 2013; 24 Qin (CR48) 2020; 3 Heremans, Dresselhaus, Bell, Morelli (CR93) 2013; 8 Cao (CR10) 2018; 556 Wright (CR90) 1958; 181 Amani (CR69) 2018; 12 Geng, Lin, Peng, Meng, Zhang (CR44) 2003; 14 Li (CR17) 2014; 9 Okuyama, Yamashita, Chiba, Kumagai (CR61) 1977; 16 Liu (CR14) 2020; 19 Kramer, Van de Put, Hinkle, Vandenberghe (CR37) 2020; 4 Dresselhaus (CR92) 2007; 19 Gao, Tao, Ren (CR94) 2018; 10 Shalygin, Sofronov, Vorob’ev, Farbshtein (CR35) 2012; 54 Liu, Zhu, Zhang, Liang, Yu (CR41) 2010; 132 CR73 Ahmed, Nakagawa, Mizuno (CR22) 2020; 691 Lin (CR89) 2016; 7 Wang (CR28) 2018; 10 Arlt, Quadflieg (CR84) 1969; 32 Zhu (CR25) 2017; 119 Koma, Tanaka (CR119) 1970; 40 Wang (CR31) 2014; 8 Anzin (CR102) 1970; 8 Ideue (CR109) 2019; 116 Capers, White (CR53) 1973; 15 Reed (CR29) 2017; 552 Xie (CR56) 2018; 28 Du (CR68) 2017; 17 Akahama, Kobayashi, Kawamura (CR111) 1992; 84 Ghosh (CR50) 1961; 19 Silbermann, Landwehr (CR104) 1975; 16 Niu (CR75) 2020; 101 Furukawa, Shimokawa, Kobayashi, Itou (CR123) 2017; 8 Von Klitzing, Landwehr (CR103) 1971; 9 Okuyama, Watanabe (CR60) 1976; 15 Zhao (CR65) 2020; 15 Berweger (CR74) 2019; 19 Li, Cao, Feng, Li (CR46) 2004; 14 Okuyama, Yamamoto, Kumagai (CR59) 1975; 46 Tong (CR81) 2020; 11 Guthmann, Thuillier (CR99) 1970; 38 Venkatasubramanian, Siivola, Colpitts, O’quinn (CR91) 2001; 413 Button, Landwehr, Bradley, Grosse, Lax (CR101) 1969; 23 Zhang (CR117) 2020; 117 Sapkota, Lu, Medlin, Wang (CR66) 2019; 7 Novoselov, Mishchenko, Carvalho, Castro Neto (CR2) 2016; 353 Dávila, Xian, Cahangirov, Rubio, Le Lay (CR19) 2014; 16 Kang (CR79) 2019; 11 Novoselov (CR16) 2004; 306 Agapito, Kioussis, Goddard, Ong (CR107) 2013; 110 Chang (CR116) 2018; 17 Yan (CR70) 2019; 5 Klitzing, Dorda, Pepper (CR4) 1980; 45 Qian, Yu, Gong, Luo, Fei (CR40) 2006; 22 Okuyama, Kumagai (CR64) 1975; 46 Cao (CR9) 2018; 556 Dutton, Muller (CR58) 1972; 11 Mounet (CR15) 2018; 13 Castro Neto, Guinea, Peres, Novoselov, Geim (CR8) 2009; 81 CR23 De Vos, Aerts (CR62) 1977; 46 Peng, Kioussis, Snyder (CR88) 2014; 89 He (CR87) 2017; 392 Rodriguez (CR113) 2020; 124 Mayers, Xia (CR38) 2002; 12 Wu, Liu, Yin, Lee (CR26) 2017; 4 R Silbermann (293_CR104) 1975; 16 D Wright (293_CR90) 1958; 181 V Shalygin (293_CR36) 2016; 93 J-W Liu (293_CR41) 2010; 132 KS Novoselov (293_CR16) 2004; 306 E Bianco (293_CR55) 2020; 12 B Geng (293_CR44) 2003; 14 Y Cao (293_CR9) 2018; 556 B Wu (293_CR26) 2017; 4 C Şahin (293_CR124) 2018; 97 TI Lee (293_CR86) 2013; 25 C Rui (293_CR78) 2020; 9 Y Cao (293_CR10) 2018; 556 293_CR23 KS Novoselov (293_CR7) 2005; 438 LA Agapito (293_CR107) 2013; 110 T Yoda (293_CR122) 2015; 5 G Jnawali (293_CR82) 2020; 11 R Dutton (293_CR58) 1972; 11 AM Phahle (293_CR52) 1977; 41 KJ Button (293_CR101) 1969; 23 V Gopalan (293_CR118) 2011; 10 Z Zhu (293_CR25) 2017; 119 K Nakayama (293_CR114) 2017; 95 G Qiu (293_CR106) 2018; 18 K Okuyama (293_CR61) 1977; 16 SS Tsirkin (293_CR115) 2018; 97 P Bampoulis (293_CR20) 2014; 26 C Lin (293_CR95) 2018; 20 A Apte (293_CR54) 2018; 6 C Guthmann (293_CR98) 1968; 6 K Akiba (293_CR110) 2020; 101 S Berweger (293_CR74) 2019; 19 B Hunt (293_CR11) 2013; 340 R Venkatasubramanian (293_CR91) 2001; 413 S Tang (293_CR12) 2017; 13 GLJA Rikken (293_CR125) 2019; B99 MS Dresselhaus (293_CR92) 2007; 19 D Rodriguez (293_CR113) 2020; 124 ME Dávila (293_CR19) 2014; 16 M Hirayama (293_CR108) 2015; 114 X Huang (293_CR33) 2017; 17 J Blakemore (293_CR120) 1961; 32 M Sakano (293_CR34) 2020; 124 V Anzin (293_CR102) 1970; 8 J Sone (293_CR21) 2014; 16 PK Weimer (293_CR51) 1964; 52 S Sharma (293_CR96) 2018; 1 T Furukawa (293_CR123) 2017; 8 A Koma (293_CR119) 1970; 40 N Furuta (293_CR42) 1972; 11 J-K Qin (293_CR48) 2020; 3 Y Akahama (293_CR111) 1992; 84 AK Geim (293_CR3) 2013; 499 S Kang (293_CR79) 2019; 11 H Peng (293_CR88) 2014; 89 P Aigrain (293_CR49) 1952; 13 293_CR73 W He (293_CR87) 2017; 392 K Okuyama (293_CR63) 1989; 28 S Ghosh (293_CR50) 1961; 19 J Chen (293_CR30) 2017; 9 S Lin (293_CR89) 2016; 7 Y Du (293_CR68) 2017; 17 EJ Reed (293_CR29) 2017; 552 J Yan (293_CR70) 2019; 5 HOH Churchill (293_CR47) 2017; 12 Z Dong (293_CR121) 2020; 11 K Okuyama (293_CR60) 1976; 15 Q Wang (293_CR31) 2014; 8 X Zhang (293_CR67) 2019; 29 M Chhowalla (293_CR1) 2016; 1 Y Wang (293_CR85) 2019; 3 G Chang (293_CR116) 2018; 17 L Li (293_CR17) 2014; 9 B Mayers (293_CR38) 2002; 12 G Zhou (293_CR72) 2018; 30 P Weimer (293_CR77) 1964; 52 K Okuyama (293_CR59) 1975; 46 M Bresler (293_CR100) 1969; 29 R Ahmed (293_CR22) 2020; 691 C Zhao (293_CR65) 2020; 15 C Guthmann (293_CR99) 1970; 38 KV Klitzing (293_CR4) 1980; 45 RW Dutton (293_CR57) 1971; 59 A De Vos (293_CR62) 1977; 46 M Amani (293_CR69) 2018; 12 Y Yin (293_CR71) 2021; 13 G Qiu (293_CR76) 2020; 15 F Reis (293_CR24) 2017; 357 T Ideue (293_CR109) 2019; 116 X-L Li (293_CR46) 2004; 14 H Liu (293_CR18) 2014; 8 J Bouat (293_CR105) 1978; 73 MJ Capers (293_CR53) 1973; 15 KS Novoselov (293_CR6) 2007; 315 Y Deng (293_CR13) 2020; 367 G Qiu (293_CR97) 2019; 19 Y Wang (293_CR32) 2018; 1 C Niu (293_CR75) 2020; 101 H-S Qian (293_CR40) 2006; 22 N Furuta (293_CR43) 1972; 11 L Tong (293_CR81) 2020; 11 M Mo (293_CR39) 2002; 14 KR Sapkota (293_CR66) 2019; 7 D Royer (293_CR83) 1979; 50 Y Zhang (293_CR5) 2005; 438 JP Heremans (293_CR93) 2013; 8 N Zhang (293_CR117) 2020; 117 AH Castro Neto (293_CR8) 2009; 81 K Okuyama (293_CR64) 1975; 46 V Shalygin (293_CR35) 2012; 54 C Shen (293_CR80) 2020; 14 K Von Klitzing (293_CR103) 1971; 9 Z Gao (293_CR94) 2018; 10 N Mounet (293_CR15) 2018; 13 G Arlt (293_CR84) 1969; 32 D Rodriguez (293_CR112) 2020; 101 C Liu (293_CR14) 2020; 19 A Kramer (293_CR37) 2020; 4 C Wang (293_CR28) 2018; 10 J Qiao (293_CR27) 2018; 63 M Safdar (293_CR45) 2013; 24 KS Novoselov (293_CR2) 2016; 353 Z Xie (293_CR56) 2018; 28 |
References_xml | – volume: 101 start-page: 205414 year: 2020 ident: CR75 article-title: Gate-tunable strong spin-orbit interaction in two-dimensional tellurium probed by weak antilocalization publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.205414 – volume: 413 start-page: 597 year: 2001 end-page: 602 ident: CR91 article-title: Thin-film thermoelectric devices with high room-temperature figures of merit publication-title: Nature doi: 10.1038/35098012 – volume: 11 start-page: 1113 year: 1972 ident: CR43 article-title: Morphology and dislocation structure of tellurium whiskers grown from the vapor publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.11.1113 – volume: 12 start-page: 12613 year: 2020 end-page: 12622 ident: CR55 article-title: Large-area ultrathin Te films with substrate-tunable orientation publication-title: Nanoscale doi: 10.1039/D0NR01251C – volume: 24 start-page: 185705 year: 2013 ident: CR45 article-title: Site-specific nucleation and controlled growth of a vertical tellurium nanowire array for high performance field emitters publication-title: Nanotechnology doi: 10.1088/0957-4484/24/18/185705 – volume: 13 start-page: 683 year: 2017 end-page: 687 ident: CR12 article-title: Quantum spin Hall state in monolayer 1T’-WTe 2 publication-title: Nat. Phys. doi: 10.1038/nphys4174 – volume: 9 start-page: 372 year: 2014 ident: CR17 article-title: Black phosphorus field-effect transistors publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.35 – volume: 15 start-page: 5 year: 1973 end-page: 14 ident: CR53 article-title: The electrical properties of vacuum deposited tellurium films publication-title: Thin solid films doi: 10.1016/0040-6090(73)90199-5 – volume: 132 start-page: 8945 year: 2010 end-page: 8952 ident: CR41 article-title: Mesostructured assemblies of ultrathin superlong tellurium nanowires and their photoconductivity publication-title: J. Am. Chem. Soc. doi: 10.1021/ja910871s – volume: 52 start-page: 1479 year: 1964 end-page: 1486 ident: CR77 article-title: Integrated circuits incorporating thin-film active and passive elements publication-title: Proc. IEEE doi: 10.1109/PROC.1964.3435 – volume: 89 start-page: 195206 year: 2014 ident: CR88 article-title: Elemental tellurium as a chiral p-type thermoelectric material publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.195206 – volume: 124 start-page: 136402 year: 2020 ident: CR113 article-title: Two linear regimes in optical conductivity of a type-I weyl semimetal: the case of elemental tellurium publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.136402 – volume: B99 start-page: 245153 year: 2019 ident: CR125 article-title: Strong electrical magnetochiral anisotropy in tellurium publication-title: Phys. Rev. doi: 10.1103/PhysRevB.99.245153 – volume: 93 start-page: 045207 year: 2016 ident: CR36 article-title: Circular photon drag effect in bulk tellurium publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.045207 – volume: 9 start-page: 15945 year: 2017 end-page: 15948 ident: CR30 article-title: Ultrathin β-tellurium layers grown on highly oriented pyrolytic graphite by molecular-beam epitaxy publication-title: Nanoscale doi: 10.1039/C7NR04085G – volume: 28 start-page: 770 year: 1989 ident: CR63 article-title: Improved tellurium films by partially ionized vapor deposition as the semiconductor layer of a TFT and a hydrogen sensor publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.28.770 – volume: 97 start-page: 205206 year: 2018 ident: CR124 article-title: Pancharatnam-Berry phase and kinetic magnetoelectric effect in trigonal tellurium publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.205206 – volume: 9 start-page: 2459 year: 2020 end-page: 2466 ident: CR78 article-title: Solar-blind deep-ultraviolet photodetectors based on solution-synthesized quasi-2D Te nanosheets publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0539 – volume: 8 start-page: 7497 year: 2014 end-page: 7505 ident: CR31 article-title: Van der Waals epitaxy and photoresponse of hexagonal tellurium nanoplates on flexible mica sheets publication-title: ACS Nano doi: 10.1021/nn5028104 – volume: 81 start-page: 109 year: 2009 end-page: 162 ident: CR8 article-title: The electronic properties of graphene publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 26 start-page: 442001 year: 2014 ident: CR20 article-title: Germanene termination of Ge2Pt crystals on Ge(110) publication-title: J. Condens. Matter Phys. doi: 10.1088/0953-8984/26/44/442001 – volume: 32 start-page: 745 year: 1961 end-page: 746 ident: CR120 article-title: Enantiomorphous character of etch pits in tellurium publication-title: J. Appl. Phys. doi: 10.1063/1.1736090 – volume: 306 start-page: 666 year: 2004 end-page: 669 ident: CR16 article-title: Electric field effect in atomically thin carbon films publication-title: Science doi: 10.1126/science.1102896 – volume: 114 start-page: 206401 year: 2015 ident: CR108 article-title: Weyl node and spin texture in trigonal tellurium and selenium publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.206401 – volume: 1 start-page: 16052 year: 2016 ident: CR1 article-title: Two-dimensional semiconductors for transistors publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.52 – volume: 367 start-page: 895 year: 2020 end-page: Te900 ident: CR13 article-title: Quantum anomalous Hall effect in intrinsic magnetic topological insulator MnBi </sub>Te publication-title: Science doi: 10.1126/science.aax8156 – volume: 8 year: 2017 ident: CR123 article-title: Observation of current-induced bulk magnetization in elemental tellurium publication-title: Nat. Commun. doi: 10.1038/s41467-017-01093-3 – volume: 10 start-page: 22263 year: 2018 end-page: 22269 ident: CR28 article-title: Charge-governed phase manipulation of few-layer tellurium publication-title: Nanoscale doi: 10.1039/C8NR07501H – volume: 29 start-page: 1906585 year: 2019 ident: CR67 article-title: Hydrogen-assisted growth of ultrathin Te flakes with giant gate-dependent photoresponse publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906585 – volume: 8 start-page: 1773 year: 1970 end-page: 1777 ident: CR102 article-title: Inversion asymmetry splitting of Landau levels in tellurium publication-title: Solid State Commun. doi: 10.1016/0038-1098(70)90393-5 – volume: 19 start-page: 1043 year: 2007 end-page: 1053 ident: CR92 article-title: New directions for low‐dimensional thermoelectric materials publication-title: Adv. Mater. doi: 10.1002/adma.200600527 – volume: 16 start-page: 1571 year: 1977 ident: CR61 article-title: Annealing effect in tellurium films publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.16.1571 – volume: 18 start-page: 5760 year: 2018 end-page: 5767 ident: CR106 article-title: Quantum transport and band structure evolution under high magnetic field in few-layer tellurene publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02368 – volume: 84 start-page: 803 year: 1992 end-page: 806 ident: CR111 article-title: Pressure-induced superconductivity and phase transition in selenium and tellurium publication-title: Solid State Commun. doi: 10.1016/0038-1098(92)90093-O – volume: 20 start-page: 24250 year: 2018 end-page: 24256 ident: CR95 article-title: Thermoelectric properties of two-dimensional selenene and tellurene from group-VI elements publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP04069A – volume: 17 start-page: 978 year: 2018 end-page: 985 ident: CR116 article-title: Topological quantum properties of chiral crystals publication-title: Nat. Mater. doi: 10.1038/s41563-018-0169-3 – volume: 340 start-page: 1427 year: 2013 end-page: 1430 ident: CR11 article-title: Massive Dirac fermions and Hofstadter butterfly in a van der Waals heterostructure publication-title: Science doi: 10.1126/science.1237240 – volume: 14 start-page: 983 year: 2003 ident: CR44 article-title: Large-scale synthesis of single-crystalline Te nanobelts by a low-temperature chemical vapour deposition route publication-title: Nanotechnology doi: 10.1088/0957-4484/14/9/309 – volume: 353 start-page: aac9439 year: 2016 ident: CR2 article-title: 2D materials and van der Waals heterostructures publication-title: Science doi: 10.1126/science.aac9439 – volume: 25 start-page: 2920 year: 2013 end-page: 2925 ident: CR86 article-title: High-power density piezoelectric energy harvesting using radially strained ultrathin trigonal tellurium nanowire assembly publication-title: Adv. Mater. doi: 10.1002/adma.201300657 – volume: 54 start-page: 2362 year: 2012 end-page: 2373 ident: CR35 article-title: Current-induced spin polarization of holes in tellurium publication-title: Phys. Solid State doi: 10.1134/S1063783412120281 – volume: 556 start-page: 43 year: 2018 end-page: 50 ident: CR10 article-title: Unconventional superconductivity in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26160 – volume: 12 start-page: 7253 year: 2018 end-page: 7263 ident: CR69 article-title: Solution-synthesized high-mobility tellurium nanoflakes for short-wave infrared photodetectors publication-title: ACS Nano doi: 10.1021/acsnano.8b03424 – volume: 11 start-page: 1753 year: 1972 end-page: 1754 ident: CR42 article-title: Tellurium and thallium-telluride whiskers grown by the vapor-liquid-solid (VLS) process. Jpn publication-title: J. Appl. Phys. doi: 10.1143/JJAP.11.1753 – volume: 11 year: 2020 ident: CR121 article-title: Atomic-level handedness determination of chiral crystals using aberration-corrected scanning transmission electron microscopy publication-title: Nat. Commun. doi: 10.1038/s41467-020-15388-5 – volume: 101 start-page: 245111 year: 2020 ident: CR110 article-title: Magnetotransport properties of tellurium under extreme conditions publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.245111 – volume: 17 start-page: 3965 year: 2017 end-page: 3973 ident: CR68 article-title: One-dimensional van der waals material tellurium: raman spectroscopy under strain and magneto-transport publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01717 – volume: 10 start-page: 376 year: 2011 end-page: 381 ident: CR118 article-title: Rotation-reversal symmetries in crystals and handed structures publication-title: Nat. Mater. doi: 10.1038/nmat2987 – volume: 4 year: 2020 ident: CR37 article-title: Tellurium as a successor of silicon for extremely scaled nanowires: a first-principles study publication-title: NPJ 2D Mater. Appl doi: 10.1038/s41699-020-0143-1 – volume: 101 start-page: 174104 year: 2020 ident: CR112 article-title: Optical signatures of phase transitions and structural modulation in elemental tellurium under pressure publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.174104 – volume: 16 start-page: 095002 year: 2014 ident: CR19 article-title: Germanene: a novel two-dimensional germanium allotrope akin to graphene and silicene publication-title: N. J. Phys. doi: 10.1088/1367-2630/16/9/095002 – volume: 13 start-page: 3387 year: 2021 end-page: 3396 ident: CR71 article-title: Tellurium nanowire gate-all-around MOSFETs for sub-5 nm applications publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c18767 – volume: 11 start-page: 229 year: 1972 end-page: 236 ident: CR58 article-title: Large grain tellurium thin films publication-title: Thin Solid Films doi: 10.1016/0040-6090(72)90048-X – volume: 17 start-page: 4619 year: 2017 end-page: 4623 ident: CR33 article-title: Epitaxial Growth and Band Structure of Te Film on Graphene publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01029 – volume: 7 start-page: 081103 year: 2019 ident: CR66 article-title: High temperature synthesis and characterization of ultrathin tellurium nanostructures publication-title: APL Mater. doi: 10.1063/1.5109899 – volume: 124 start-page: 136404 year: 2020 ident: CR34 article-title: Radial spin texture in elemental tellurium with chiral crystal structure publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.136404 – volume: 16 start-page: 095004 year: 2014 ident: CR21 article-title: Epitaxial growth of silicene on ultra-thin Ag(111) films publication-title: N. J. Phys. doi: 10.1088/1367-2630/16/9/095004 – volume: 11 start-page: 1 year: 2020 end-page: 10 ident: CR82 article-title: Ultrafast photoinduced band splitting and carrier dynamics in chiral tellurium nanosheets publication-title: Nat. Commun. doi: 10.1038/s41467-020-17766-5 – volume: 14 start-page: 303 year: 2020 end-page: 310 ident: CR80 article-title: Tellurene photodetector with high gain and wide bandwidth publication-title: ACS Nano doi: 10.1021/acsnano.9b04507 – volume: 32 start-page: 687 year: 1969 end-page: 689 ident: CR84 article-title: Electronic displacement in tellurium by mechanical strain publication-title: Phys. Status Solidi (b) doi: 10.1002/pssb.19690320220 – volume: 10 start-page: 12997 year: 2018 end-page: 13003 ident: CR94 article-title: Unusually low thermal conductivity of atomically thin 2D tellurium publication-title: Nanoscale doi: 10.1039/C8NR01649F – volume: 15 start-page: 53 year: 2020 end-page: 58 ident: CR65 article-title: Evaporated tellurium thin films for p-type field-effect transistors and circuits publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0585-9 – volume: 1 start-page: 1950 year: 2018 end-page: 1954 ident: CR96 article-title: Two-dimensional tellurene as excellent thermoelectric material publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00032 – volume: 19 start-page: 1955 year: 2019 end-page: 1962 ident: CR97 article-title: Thermoelectric performance of 2D tellurium with accumulation contacts publication-title: Nano lett. doi: 10.1021/acs.nanolett.8b05144 – volume: 5 start-page: 1900226 year: 2019 ident: CR70 article-title: Excellent device performance of sub-5-nm monolayer tellurene transistors publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201900226 – volume: 22 start-page: 3830 year: 2006 end-page: 3835 ident: CR40 article-title: High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process publication-title: Langmuir doi: 10.1021/la053021l – volume: 13 start-page: 587 year: 1952 end-page: 588 ident: CR49 article-title: Modulation de la conductance d’un semi-conducteur par un champ électrique publication-title: J. Phys. Radium doi: 10.1051/jphysrad:019520013011058701 – volume: 6 start-page: 015013 year: 2018 ident: CR54 article-title: Polytypism in ultrathin tellurium publication-title: 2d Mater. doi: 10.1088/2053-1583/aae7f6 – volume: 8 start-page: 471 year: 2013 end-page: 473 ident: CR93 article-title: When thermoelectrics reached the nanoscale publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.129 – volume: 95 start-page: 125204 year: 2017 ident: CR114 article-title: Band splitting and Weyl nodes in trigonal tellurium studied by angle-resolved photoemission spectroscopy and density functional theory publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.125204 – volume: 11 year: 2020 ident: CR81 article-title: Stable mid-infrared polarization imaging based on quasi-2D tellurium at room temperature publication-title: Nat. Commun. doi: 10.1038/s41467-020-16125-8 – volume: 46 start-page: 1473 year: 1975 end-page: 1477 ident: CR64 article-title: Grain growth of evaporated Te films on a heated and cooled substrate publication-title: J. Appl. Phys doi: 10.1063/1.321786 – volume: 12 year: 2017 ident: CR47 article-title: Toward single atom chains with exfoliated tellurium publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-2255-x – volume: 16 start-page: 1055 year: 1975 end-page: 1058 ident: CR104 article-title: Surface quantum oscillations in accumulation and inversion layers on tellurium publication-title: Solid State Commun. doi: 10.1016/0038-1098(75)90002-2 – volume: 28 start-page: 1705833 year: 2018 ident: CR56 article-title: Ultrathin 2D nonlayered tellurium nanosheets: facile liquid-phase exfoliation, characterization, and photoresponse with high performance and enhanced stability publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705833 – volume: 5 year: 2015 ident: CR122 article-title: Current-induced orbital and spin magnetizations in crystals with helical structure publication-title: Sci. Rep. doi: 10.1038/srep12024 – volume: 116 start-page: 25530 year: 2019 end-page: 25534 ident: CR109 article-title: Pressure-induced topological phase transition in noncentrosymmetric elemental tellurium publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1905524116 – volume: 52 start-page: 608 year: 1964 end-page: 609 ident: CR51 article-title: A p-type tellurium thin-film transistor publication-title: Proc. IEEE doi: 10.1109/PROC.1964.3003 – volume: 73 start-page: 528 year: 1978 end-page: 536 ident: CR105 article-title: Surface quantum transport in tellurium inversion layers publication-title: Surf. Sci. doi: 10.1016/0039-6028(78)90536-8 – volume: 9 start-page: 2201 year: 1971 end-page: 2205 ident: CR103 article-title: Surface quantum states in tellurium publication-title: Solid State Commun. doi: 10.1016/0038-1098(71)90630-2 – volume: 59 start-page: 1511 year: 1971 end-page: 1517 ident: CR57 article-title: Electrical properties of tellurium thin films publication-title: Proc. IEEE doi: 10.1109/PROC.1971.8463 – volume: 13 start-page: 246 year: 2018 end-page: 252 ident: CR15 article-title: Two-dimensional materials from high-throughput computational exfoliation of experimentally known compounds publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0035-5 – volume: 3 start-page: 011001 year: 2019 ident: CR85 article-title: Scalable nanomanufacturing and assembly of chiral-chain piezoelectric tellurium nanowires for wearable self-powered cardiovascular monitoring publication-title: Nano Futures doi: 10.1088/2399-1984/aaf76f – volume: 30 start-page: 1803109 year: 2018 ident: CR72 article-title: High-mobility helical tellurium field-effect transistors enabled by transfer-free, low-temperature direct growth publication-title: Adv. Mater doi: 10.1002/adma.201803109 – volume: 15 start-page: 1881 year: 1976 ident: CR60 article-title: Effect of predeposited Ag, Sn, Bi, Al and Se nucleation centers on the grain growth of evaporated Te films publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.15.1881 – volume: 119 start-page: 106101 year: 2017 ident: CR25 article-title: Multivalency-driven formation of Te-based monolayer materials: a combined first-principles and experimental study publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.106101 – volume: 40 start-page: 239 year: 1970 end-page: 248 ident: CR119 article-title: Etch pits and crystal structure of tellurium publication-title: Phys. Status Solidi (b) doi: 10.1002/pssb.19700400125 – volume: 50 start-page: 4042 year: 1979 end-page: 4045 ident: CR83 article-title: Elastic and piezoelectric constants of trigonal selenium and tellurium crystals publication-title: J. Appl. Phys. doi: 10.1063/1.326485 – volume: 181 start-page: 834 year: 1958 end-page: 834 ident: CR90 article-title: Thermoelectric properties of bismuth telluride and its alloys publication-title: Nature doi: 10.1038/181834a0 – volume: 14 start-page: 244 year: 2004 end-page: 247 ident: CR46 article-title: Synthesis and magnetoresistance measurement of tellurium microtubes publication-title: J. Mater. Chem. doi: 10.1039/b309097c – volume: 552 start-page: 40 year: 2017 end-page: 41 ident: CR29 article-title: Two-dimensional tellurium publication-title: Nature doi: 10.1038/d41586-017-07159-y – volume: 12 start-page: 1875 year: 2002 end-page: 1881 ident: CR38 article-title: One-dimensional nanostructures of trigonal tellurium with various morphologies can be synthesized using a solution-phase approach publication-title: J. Mater. Chem. doi: 10.1039/b201058e – volume: 315 start-page: 1379 year: 2007 end-page: 1379 ident: CR6 article-title: Room-temperature quantum Hall effect in graphene publication-title: Science doi: 10.1126/science.1137201 – volume: 8 start-page: 4033 year: 2014 end-page: 4041 ident: CR18 article-title: Phosphorene: an unexplored 2D semiconductor with a high hole mobility publication-title: ACS Nano doi: 10.1021/nn501226z – volume: 15 start-page: 585 year: 2020 end-page: 591 ident: CR76 article-title: Quantum Hall effect of Weyl fermions in n-type semiconducting tellurene publication-title: Nat. Nanotechnol. J. Abbr. doi: 10.1038/s41565-020-0715-4 – volume: 438 start-page: 201 year: 2005 end-page: 204 ident: CR5 article-title: Experimental observation of the quantum Hall effect and Berry’s phase in graphene publication-title: Nature doi: 10.1038/nature04235 – volume: 23 start-page: 14 year: 1969 ident: CR101 article-title: Quantum effects in cyclotron resonance in p-type tellurium publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.23.14 – volume: 438 start-page: 197 year: 2005 end-page: 200 ident: CR7 article-title: Two-dimensional gas of massless Dirac fermions in graphene publication-title: Nature doi: 10.1038/nature04233 – volume: 19 start-page: 61 year: 1961 end-page: 65 ident: CR50 article-title: Variation of field effect mobility and Hall effect mobility with the thickness of the deposited films of tellurium publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(61)90057-9 – volume: 691 start-page: 121498 year: 2020 ident: CR22 article-title: Structure determination of ultra-flat stanene on Cu(111) using low energy electron diffraction publication-title: Surf. Sci. doi: 10.1016/j.susc.2019.121498 – volume: 29 start-page: 23 year: 1969 end-page: 24 ident: CR100 article-title: Experimental determination of the shape of the hole Fermi surface in tellurium publication-title: Phys. Lett. A doi: 10.1016/0375-9601(69)90773-7 – volume: 63 start-page: 159 year: 2018 end-page: 168 ident: CR27 article-title: Few-layer tellurium: one-dimensional-like layered elementary semiconductor with striking physical properties publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.01.010 – volume: 46 start-page: 223 year: 1977 end-page: 228 ident: CR62 article-title: The influence of deposition rate on the electrical properties of thin tellurium films publication-title: Thin Solid Films doi: 10.1016/0040-6090(77)90066-9 – volume: 4 start-page: 095902 year: 2017 ident: CR26 article-title: Bulkβ-Te to few layeredβ-tellurenes: indirect to direct band-Gap transitions showing semiconducting property publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aa8ae3 – volume: 14 start-page: 1658 year: 2002 end-page: 1662 ident: CR39 article-title: Controlled hydrothermal synthesis of thin single‐crystal tellurium nanobelts and nanotubes publication-title: Adv. Mater. doi: 10.1002/1521-4095(20021118)14:22<1658::AID-ADMA1658>3.0.CO;2-2 – volume: 19 start-page: 522 year: 2020 end-page: 527 ident: CR14 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0573-3 – volume: 41 start-page: 235 year: 1977 end-page: 241 ident: CR52 article-title: Electrical properties of thermally evaporated tellurium films publication-title: Thin solid films doi: 10.1016/0040-6090(77)90408-4 – volume: 7 year: 2016 ident: CR89 article-title: Tellurium as a high-performance elemental thermoelectric publication-title: Nat. Commun. doi: 10.1038/ncomms10287 – volume: 1 start-page: 228 year: 2018 end-page: 236 ident: CR32 article-title: Field-effect transistors made from solution-grown two-dimensional tellurene publication-title: Nat. Electron. doi: 10.1038/s41928-018-0058-4 – volume: 46 start-page: 105 year: 1975 end-page: 111 ident: CR59 article-title: Effect of Au nucleation centers and deposition rate on crystallinity and electronic properties of evaporated Te films publication-title: J. Appl. Phys. doi: 10.1063/1.322247 – ident: CR23 – volume: 110 start-page: 176401 year: 2013 ident: CR107 article-title: Novel family of chiral-based topological insulators: elemental tellurium under strain publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.176401 – volume: 38 start-page: 635 year: 1970 end-page: 642 ident: CR99 article-title: Fermi Surface of Tellurium publication-title: Phys. Status Solidi (b) doi: 10.1002/pssb.19700380214 – volume: 117 start-page: 11337 year: 2020 end-page: 11343 ident: CR117 article-title: Magnetotransport signatures of Weyl physics and discrete scale invariance in the elemental semiconductor tellurium publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2002913117 – volume: 6 start-page: 835 year: 1968 end-page: 838 ident: CR98 article-title: Shubnikov de Haas effect in tellurium publication-title: Solid State Commun. doi: 10.1016/0038-1098(68)90132-4 – volume: 97 start-page: 035158 year: 2018 ident: CR115 article-title: Gyrotropic effects in trigonal tellurium studied from first principles publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.035158 – ident: CR73 – volume: 556 start-page: 80 year: 2018 end-page: 84 ident: CR9 article-title: Correlated insulator behaviour at half-filling in magic-angle graphene superlattices publication-title: Nature doi: 10.1038/nature26154 – volume: 45 start-page: 494 year: 1980 end-page: 497 ident: CR4 article-title: New method for high-accuracy determination of the fine-structure constant based on quantized Hall resistance publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.494 – volume: 357 start-page: 287 year: 2017 end-page: 290 ident: CR24 article-title: Bismuthene on a SiC substrate: a candidate for a high-temperature quantum spin Hall material publication-title: Science doi: 10.1126/science.aai8142 – volume: 3 start-page: 141 year: 2020 end-page: 147 ident: CR48 article-title: Raman response and transport properties of tellurium atomic chains encapsulated in nanotubes publication-title: Nat. Electron. doi: 10.1038/s41928-020-0365-4 – volume: 11 start-page: 1879 year: 2019 end-page: 1886 ident: CR79 article-title: Broad spectral response of an individual tellurium nanobelt grown by molecular beam epitaxy publication-title: Nanoscale doi: 10.1039/C8NR07978A – volume: 19 start-page: 1289 year: 2019 end-page: 1294 ident: CR74 article-title: Imaging carrier inhomogeneities in ambipolar tellurene field effect transistors publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04865 – volume: 499 start-page: 419 year: 2013 end-page: 425 ident: CR3 article-title: Van der Waals heterostructures publication-title: Nature doi: 10.1038/nature12385 – volume: 392 start-page: 1055 year: 2017 end-page: 1061 ident: CR87 article-title: Synthesis of ultra-thin tellurium nanoflakes on textiles for high-performance flexible and wearable nanogenerators publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.09.157 – volume: 499 start-page: 419 year: 2013 ident: 293_CR3 publication-title: Nature doi: 10.1038/nature12385 – volume: 32 start-page: 687 year: 1969 ident: 293_CR84 publication-title: Phys. Status Solidi (b) doi: 10.1002/pssb.19690320220 – volume: 15 start-page: 5 year: 1973 ident: 293_CR53 publication-title: Thin solid films doi: 10.1016/0040-6090(73)90199-5 – volume: 101 start-page: 174104 year: 2020 ident: 293_CR112 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.174104 – volume: 306 start-page: 666 year: 2004 ident: 293_CR16 publication-title: Science doi: 10.1126/science.1102896 – volume: 10 start-page: 22263 year: 2018 ident: 293_CR28 publication-title: Nanoscale doi: 10.1039/C8NR07501H – volume: 17 start-page: 4619 year: 2017 ident: 293_CR33 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01029 – volume: 6 start-page: 015013 year: 2018 ident: 293_CR54 publication-title: 2d Mater. doi: 10.1088/2053-1583/aae7f6 – volume: 8 start-page: 471 year: 2013 ident: 293_CR93 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2013.129 – volume: 14 start-page: 1658 year: 2002 ident: 293_CR39 publication-title: Adv. Mater. doi: 10.1002/1521-4095(20021118)14:22<1658::AID-ADMA1658>3.0.CO;2-2 – volume: 32 start-page: 745 year: 1961 ident: 293_CR120 publication-title: J. Appl. Phys. doi: 10.1063/1.1736090 – volume: 15 start-page: 53 year: 2020 ident: 293_CR65 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-019-0585-9 – volume: 13 start-page: 3387 year: 2021 ident: 293_CR71 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.0c18767 – volume: 97 start-page: 035158 year: 2018 ident: 293_CR115 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.035158 – volume: 8 start-page: 1773 year: 1970 ident: 293_CR102 publication-title: Solid State Commun. doi: 10.1016/0038-1098(70)90393-5 – volume: 54 start-page: 2362 year: 2012 ident: 293_CR35 publication-title: Phys. Solid State doi: 10.1134/S1063783412120281 – volume: 132 start-page: 8945 year: 2010 ident: 293_CR41 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja910871s – volume: 46 start-page: 223 year: 1977 ident: 293_CR62 publication-title: Thin Solid Films doi: 10.1016/0040-6090(77)90066-9 – volume: 29 start-page: 23 year: 1969 ident: 293_CR100 publication-title: Phys. Lett. A doi: 10.1016/0375-9601(69)90773-7 – volume: 63 start-page: 159 year: 2018 ident: 293_CR27 publication-title: Sci. Bull. doi: 10.1016/j.scib.2018.01.010 – volume: 8 year: 2017 ident: 293_CR123 publication-title: Nat. Commun. doi: 10.1038/s41467-017-01093-3 – volume: 315 start-page: 1379 year: 2007 ident: 293_CR6 publication-title: Science doi: 10.1126/science.1137201 – volume: 73 start-page: 528 year: 1978 ident: 293_CR105 publication-title: Surf. Sci. doi: 10.1016/0039-6028(78)90536-8 – volume: 14 start-page: 244 year: 2004 ident: 293_CR46 publication-title: J. Mater. Chem. doi: 10.1039/b309097c – volume: 413 start-page: 597 year: 2001 ident: 293_CR91 publication-title: Nature doi: 10.1038/35098012 – volume: 95 start-page: 125204 year: 2017 ident: 293_CR114 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.125204 – volume: 1 start-page: 16052 year: 2016 ident: 293_CR1 publication-title: Nat. Rev. Mater. doi: 10.1038/natrevmats.2016.52 – volume: 556 start-page: 43 year: 2018 ident: 293_CR10 publication-title: Nature doi: 10.1038/nature26160 – volume: 357 start-page: 287 year: 2017 ident: 293_CR24 publication-title: Science doi: 10.1126/science.aai8142 – volume: 14 start-page: 303 year: 2020 ident: 293_CR80 publication-title: ACS Nano doi: 10.1021/acsnano.9b04507 – volume: 19 start-page: 1043 year: 2007 ident: 293_CR92 publication-title: Adv. Mater. doi: 10.1002/adma.200600527 – volume: 117 start-page: 11337 year: 2020 ident: 293_CR117 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.2002913117 – volume: 438 start-page: 197 year: 2005 ident: 293_CR7 publication-title: Nature doi: 10.1038/nature04233 – volume: 556 start-page: 80 year: 2018 ident: 293_CR9 publication-title: Nature doi: 10.1038/nature26154 – volume: 101 start-page: 245111 year: 2020 ident: 293_CR110 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.245111 – volume: 19 start-page: 1289 year: 2019 ident: 293_CR74 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b04865 – volume: 15 start-page: 585 year: 2020 ident: 293_CR76 publication-title: Nat. Nanotechnol. J. Abbr. doi: 10.1038/s41565-020-0715-4 – volume: 11 start-page: 1879 year: 2019 ident: 293_CR79 publication-title: Nanoscale doi: 10.1039/C8NR07978A – volume: 16 start-page: 095004 year: 2014 ident: 293_CR21 publication-title: N. J. Phys. doi: 10.1088/1367-2630/16/9/095004 – volume: 52 start-page: 1479 year: 1964 ident: 293_CR77 publication-title: Proc. IEEE doi: 10.1109/PROC.1964.3435 – ident: 293_CR23 doi: 10.1088/2053-1583/aa9ea0 – volume: 59 start-page: 1511 year: 1971 ident: 293_CR57 publication-title: Proc. IEEE doi: 10.1109/PROC.1971.8463 – volume: 124 start-page: 136404 year: 2020 ident: 293_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.136404 – volume: 40 start-page: 239 year: 1970 ident: 293_CR119 publication-title: Phys. Status Solidi (b) doi: 10.1002/pssb.19700400125 – volume: 89 start-page: 195206 year: 2014 ident: 293_CR88 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.89.195206 – volume: 4 year: 2020 ident: 293_CR37 publication-title: NPJ 2D Mater. Appl doi: 10.1038/s41699-020-0143-1 – volume: 8 start-page: 7497 year: 2014 ident: 293_CR31 publication-title: ACS Nano doi: 10.1021/nn5028104 – volume: 22 start-page: 3830 year: 2006 ident: 293_CR40 publication-title: Langmuir doi: 10.1021/la053021l – volume: 7 year: 2016 ident: 293_CR89 publication-title: Nat. Commun. doi: 10.1038/ncomms10287 – volume: 20 start-page: 24250 year: 2018 ident: 293_CR95 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP04069A – volume: B99 start-page: 245153 year: 2019 ident: 293_CR125 publication-title: Phys. Rev. doi: 10.1103/PhysRevB.99.245153 – volume: 3 start-page: 141 year: 2020 ident: 293_CR48 publication-title: Nat. Electron. doi: 10.1038/s41928-020-0365-4 – volume: 110 start-page: 176401 year: 2013 ident: 293_CR107 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.110.176401 – volume: 52 start-page: 608 year: 1964 ident: 293_CR51 publication-title: Proc. IEEE doi: 10.1109/PROC.1964.3003 – volume: 3 start-page: 011001 year: 2019 ident: 293_CR85 publication-title: Nano Futures doi: 10.1088/2399-1984/aaf76f – volume: 12 start-page: 12613 year: 2020 ident: 293_CR55 publication-title: Nanoscale doi: 10.1039/D0NR01251C – volume: 4 start-page: 095902 year: 2017 ident: 293_CR26 publication-title: Mater. Res. Express doi: 10.1088/2053-1591/aa8ae3 – volume: 46 start-page: 105 year: 1975 ident: 293_CR59 publication-title: J. Appl. Phys. doi: 10.1063/1.322247 – volume: 30 start-page: 1803109 year: 2018 ident: 293_CR72 publication-title: Adv. Mater doi: 10.1002/adma.201803109 – volume: 19 start-page: 61 year: 1961 ident: 293_CR50 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(61)90057-9 – volume: 11 start-page: 229 year: 1972 ident: 293_CR58 publication-title: Thin Solid Films doi: 10.1016/0040-6090(72)90048-X – volume: 10 start-page: 12997 year: 2018 ident: 293_CR94 publication-title: Nanoscale doi: 10.1039/C8NR01649F – ident: 293_CR73 doi: 10.1109/DRC.2018.8442253 – volume: 392 start-page: 1055 year: 2017 ident: 293_CR87 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2016.09.157 – volume: 11 start-page: 1753 year: 1972 ident: 293_CR42 publication-title: J. Appl. Phys. doi: 10.1143/JJAP.11.1753 – volume: 9 start-page: 15945 year: 2017 ident: 293_CR30 publication-title: Nanoscale doi: 10.1039/C7NR04085G – volume: 18 start-page: 5760 year: 2018 ident: 293_CR106 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.8b02368 – volume: 114 start-page: 206401 year: 2015 ident: 293_CR108 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.114.206401 – volume: 19 start-page: 1955 year: 2019 ident: 293_CR97 publication-title: Nano lett. doi: 10.1021/acs.nanolett.8b05144 – volume: 28 start-page: 770 year: 1989 ident: 293_CR63 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.28.770 – volume: 17 start-page: 3965 year: 2017 ident: 293_CR68 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b01717 – volume: 11 year: 2020 ident: 293_CR121 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15388-5 – volume: 14 start-page: 983 year: 2003 ident: 293_CR44 publication-title: Nanotechnology doi: 10.1088/0957-4484/14/9/309 – volume: 84 start-page: 803 year: 1992 ident: 293_CR111 publication-title: Solid State Commun. doi: 10.1016/0038-1098(92)90093-O – volume: 7 start-page: 081103 year: 2019 ident: 293_CR66 publication-title: APL Mater. doi: 10.1063/1.5109899 – volume: 9 start-page: 2459 year: 2020 ident: 293_CR78 publication-title: Nanophotonics doi: 10.1515/nanoph-2019-0539 – volume: 5 year: 2015 ident: 293_CR122 publication-title: Sci. Rep. doi: 10.1038/srep12024 – volume: 11 start-page: 1 year: 2020 ident: 293_CR82 publication-title: Nat. Commun. doi: 10.1038/s41467-020-17766-5 – volume: 353 start-page: aac9439 year: 2016 ident: 293_CR2 publication-title: Science doi: 10.1126/science.aac9439 – volume: 12 year: 2017 ident: 293_CR47 publication-title: Nanoscale Res. Lett. doi: 10.1186/s11671-017-2255-x – volume: 16 start-page: 1571 year: 1977 ident: 293_CR61 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.16.1571 – volume: 24 start-page: 185705 year: 2013 ident: 293_CR45 publication-title: Nanotechnology doi: 10.1088/0957-4484/24/18/185705 – volume: 41 start-page: 235 year: 1977 ident: 293_CR52 publication-title: Thin solid films doi: 10.1016/0040-6090(77)90408-4 – volume: 13 start-page: 587 year: 1952 ident: 293_CR49 publication-title: J. Phys. Radium doi: 10.1051/jphysrad:019520013011058701 – volume: 25 start-page: 2920 year: 2013 ident: 293_CR86 publication-title: Adv. Mater. doi: 10.1002/adma.201300657 – volume: 1 start-page: 228 year: 2018 ident: 293_CR32 publication-title: Nat. Electron. doi: 10.1038/s41928-018-0058-4 – volume: 119 start-page: 106101 year: 2017 ident: 293_CR25 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.106101 – volume: 17 start-page: 978 year: 2018 ident: 293_CR116 publication-title: Nat. Mater. doi: 10.1038/s41563-018-0169-3 – volume: 6 start-page: 835 year: 1968 ident: 293_CR98 publication-title: Solid State Commun. doi: 10.1016/0038-1098(68)90132-4 – volume: 1 start-page: 1950 year: 2018 ident: 293_CR96 publication-title: ACS Appl. Energy Mater. doi: 10.1021/acsaem.8b00032 – volume: 116 start-page: 25530 year: 2019 ident: 293_CR109 publication-title: Proc. Natl Acad. Sci. USA doi: 10.1073/pnas.1905524116 – volume: 81 start-page: 109 year: 2009 ident: 293_CR8 publication-title: Rev. Mod. Phys. doi: 10.1103/RevModPhys.81.109 – volume: 10 start-page: 376 year: 2011 ident: 293_CR118 publication-title: Nat. Mater. doi: 10.1038/nmat2987 – volume: 9 start-page: 372 year: 2014 ident: 293_CR17 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2014.35 – volume: 97 start-page: 205206 year: 2018 ident: 293_CR124 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.205206 – volume: 181 start-page: 834 year: 1958 ident: 293_CR90 publication-title: Nature doi: 10.1038/181834a0 – volume: 8 start-page: 4033 year: 2014 ident: 293_CR18 publication-title: ACS Nano doi: 10.1021/nn501226z – volume: 16 start-page: 095002 year: 2014 ident: 293_CR19 publication-title: N. J. Phys. doi: 10.1088/1367-2630/16/9/095002 – volume: 367 start-page: 895 year: 2020 ident: 293_CR13 publication-title: Science doi: 10.1126/science.aax8156 – volume: 19 start-page: 522 year: 2020 ident: 293_CR14 publication-title: Nat. Mater. doi: 10.1038/s41563-019-0573-3 – volume: 552 start-page: 40 year: 2017 ident: 293_CR29 publication-title: Nature doi: 10.1038/d41586-017-07159-y – volume: 13 start-page: 246 year: 2018 ident: 293_CR15 publication-title: Nat. Nanotechnol. doi: 10.1038/s41565-017-0035-5 – volume: 11 year: 2020 ident: 293_CR81 publication-title: Nat. Commun. doi: 10.1038/s41467-020-16125-8 – volume: 340 start-page: 1427 year: 2013 ident: 293_CR11 publication-title: Science doi: 10.1126/science.1237240 – volume: 16 start-page: 1055 year: 1975 ident: 293_CR104 publication-title: Solid State Commun. doi: 10.1016/0038-1098(75)90002-2 – volume: 46 start-page: 1473 year: 1975 ident: 293_CR64 publication-title: J. Appl. Phys doi: 10.1063/1.321786 – volume: 5 start-page: 1900226 year: 2019 ident: 293_CR70 publication-title: Adv. Electron. Mater. doi: 10.1002/aelm.201900226 – volume: 101 start-page: 205414 year: 2020 ident: 293_CR75 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.205414 – volume: 124 start-page: 136402 year: 2020 ident: 293_CR113 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.136402 – volume: 438 start-page: 201 year: 2005 ident: 293_CR5 publication-title: Nature doi: 10.1038/nature04235 – volume: 13 start-page: 683 year: 2017 ident: 293_CR12 publication-title: Nat. Phys. doi: 10.1038/nphys4174 – volume: 50 start-page: 4042 year: 1979 ident: 293_CR83 publication-title: J. Appl. Phys. doi: 10.1063/1.326485 – volume: 11 start-page: 1113 year: 1972 ident: 293_CR43 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.11.1113 – volume: 93 start-page: 045207 year: 2016 ident: 293_CR36 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.93.045207 – volume: 26 start-page: 442001 year: 2014 ident: 293_CR20 publication-title: J. Condens. Matter Phys. doi: 10.1088/0953-8984/26/44/442001 – volume: 29 start-page: 1906585 year: 2019 ident: 293_CR67 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201906585 – volume: 38 start-page: 635 year: 1970 ident: 293_CR99 publication-title: Phys. Status Solidi (b) doi: 10.1002/pssb.19700380214 – volume: 12 start-page: 1875 year: 2002 ident: 293_CR38 publication-title: J. Mater. Chem. doi: 10.1039/b201058e – volume: 45 start-page: 494 year: 1980 ident: 293_CR4 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.45.494 – volume: 23 start-page: 14 year: 1969 ident: 293_CR101 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.23.14 – volume: 9 start-page: 2201 year: 1971 ident: 293_CR103 publication-title: Solid State Commun. doi: 10.1016/0038-1098(71)90630-2 – volume: 691 start-page: 121498 year: 2020 ident: 293_CR22 publication-title: Surf. Sci. doi: 10.1016/j.susc.2019.121498 – volume: 28 start-page: 1705833 year: 2018 ident: 293_CR56 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201705833 – volume: 12 start-page: 7253 year: 2018 ident: 293_CR69 publication-title: ACS Nano doi: 10.1021/acsnano.8b03424 – volume: 15 start-page: 1881 year: 1976 ident: 293_CR60 publication-title: Jpn. J. Appl. Phys. doi: 10.1143/JJAP.15.1881 |
SSID | ssj0001916451 |
Score | 2.484991 |
SecondaryResourceType | review_article |
Snippet | The graphene boom has triggered a widespread search for novel elemental van der Waals materials thanks to their simplicity for theoretical modeling and easy... Abstract The graphene boom has triggered a widespread search for novel elemental van der Waals materials thanks to their simplicity for theoretical modeling... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 639/301/1005/1007 639/925/927/1007 Atomic properties Atomic structure Chemistry and Materials Science CMOS Crystal structure Field effect transistors Graphene Materials Science Molecular beam epitaxy Nanotechnology Nanowires Optoelectronics P-type semiconductors Phase transitions Physical properties Piezoelectricity Quantum transport Review Article Semiconductor devices Surfaces and Interfaces Tellurium Thin Films Transistors |
SummonAdditionalLinks | – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1LTxsxEB614UIPqLSghpd86A0s1o9de09VqUCIqqhCIHGz1o6NKsFuyCbK32fsOKQgwdX7kDUz9nz2zHwD8J0FtFylA0ULFlTaWlAruKWxpYBkzqkmJWP-uazOb-TFbXmbL9z6nFa53BPTRj3qXLwjP-ZoKLoSrFQ_xo80do2K0dXcQuMjrOEWrPUA1k5OL_9erW5ZEP3IkuVqmULo4x4RSCy8xzNYjEgJOn_hkRJx_wu0-SpAmvzO2WfYyICR_FxoeBM--PYLfPqPRvAr_EZdEzw2R6qlVKZAukBidchs8m_2QJqeNC3xOU_8nkznHR1FUv8FIQfpY35810bi126yBTdnp9e_zmlukkAdupIp5cKV3ONRk9WykKpEQCJ1IYIVUtcI1hoemFV1Y4VX1uEoQjTnUQeMB--tEtswaLvWfwOiq-BqlGMVz3xlhYoLwSmHENJz1YyKIbCloIzLDOKxkcW9SZFsoc1CuAaFa5JwzXwIh8_fjBf8Ge--fRLl__xm5L5OA93kzuSlZNCBjixOjCsbZLCy9r6WvvZMVIULlRrC3lJ7Ji_I3qzMZwhHS42uHr89pZ33_7YL6zzZkqBM7sFgOpn5fYQpU3uQbfEJkLvkJQ priority: 102 providerName: ProQuest – databaseName: Springer Nature HAS Fully OA dbid: AAJSJ link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT8MwDI4Gu8AB8RTjpRy4QUTzaNMeBwJNQ3ABpN2iJksQ0mjR1ml_HydtgSFA4pqHZNlu_LmxvyB0Sh14rkwdAQ_mROiME82ZJv5JAUGNkXkoxry7TwZPYjiKRx3E2l6YULQfKC3DMd1Wh13MADj4fnlInfxFEieLFdT1VO3g291-f_gw_PyzAohHxLTpkIl4-sPmpSgUyPqXEOa3S9EQa2420UYDEnG_FmsLdWyxjda_UAfuoFuwL4ZU2dMrhdYEXDrsO0Lm05f5K85nOC-wbWrDJ7halGTsifxrEg488zXxZeHJXsvpLnq6uX68GpDmYQRiIHxUhHETMwvpJc1EJGQMIESkEXeaizQDgJYzR7XMcs2t1AZGAZYZC3qnzFmrJd9Dq0VZ2H2E08SZDMJX4vO8OAFjOWekAdhomczHUQ_RVlHKNKzh_vGKiQq31zxVtXIVKFcF5apFD5197HmrOTP-XH3p9f-x0vNdh4Fy-qwa-ysImmMNgjGpnXBaZNZmwmaW8iQyLpE9dNRaTzUf4UwxOFvShNMYps9bi35O_y7Swf-WH6I1FnyLEyqO0Go1ndtjgCqVPml88x0L1eJc priority: 102 providerName: Springer Nature |
Title | The resurrection of tellurium as an elemental two-dimensional semiconductor |
URI | https://link.springer.com/article/10.1038/s41699-022-00293-w https://www.proquest.com/docview/2638863157 https://doaj.org/article/299dbfc727bf4fb49ee94e9e1360cf67 |
Volume | 6 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LSwMxEA5aL3oQn1itJQdvGrrZZF_HtrSWikXUQm9hkyYg1F3pg_59J9ltbQX14mkhyUKYmc18s5n5BqEbasByo9gQsGBGuEwYkcyXxLYU4FSpKHXJmI-DsDfk_VEw2mj1ZXPCCnrgQnANOC7H0ihws9JwI3midcJ1oikLPWVCV0cOPm8jmHJ_VwD18ICWVTIeixszQB624B5iL3sTxchyyxM5wv4tlPntYtT5m-4ROiyBIm4WGzxGOzo7QQcb9IGn6AF0jCFcthRLrjwB5wbbqpDF9G3xjtMZTjOsy_zwCZ4vczK2ZP4FEQee2bz4PLOEr_n0DA27ndd2j5TNEYgCFzInPlOBryHEpAn3eBQAEOGxx4xkPE4ApKW-oTJKUsl0JBWMAjRTGmRPfaO1jNg5qmR5pi8QjkOjEnBhoY31ghAUZkDgCqCj9qN07FURXQlKqJI53DawmAh3g81iUQhXgHCFE65YVtHt-p2Pgjfj19UtK__1Sst57QbAEkRpCeIvS6ii2kp7ovwQZ8KH8yUOGQ1g-m6l0a_pn7d0-R9bukL7vrM4Riivocp8utDXAGLmso524-59He01m_2XPjxbncHTM4y2w3bd2fInfS7xKg |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6V9gAcKspDLPThQzmB1fiRODkgVEq3W7btqZV6M7HXRkglKZtdrfqn-I2MnaRLkeitV8exrPFnzzf2PAB2mUfkqtxTRLCg0hSCGsENDSUFJLNWldEZ8_QsG13Ir5fp5Qr87mNhgltlfybGg3pS23BHvscRKHkmWKo-Xf-ioWpUeF3tS2i0sBi7mwWabM3H4y-4vu84Hx6eH4xoV1WAWjx7Z5QLm3KHthma74lUKWpwmSfCGyHzAtlNyT0zqiiNcMpYbEVOYx1OmnHvnFECx30Ea1KgJg-R6cOj5Z0Oci2Zsi42JxH5XoN8J4T5o8UX3r8EXdzRf7FMwB1u-89zbNRyw2ew3tFTst_iaQNWXPUcnv6VtPAFjBFZBI30kNgpBkWQ2pMQizKf_pj_JGVDyoq4ziv9iswWNZ2EEgJt-g_SBG_8ugppZuvpS7h4EOG9gtWqrtxrIHnmbYGKMwsWZpohTLy3yiJhdVyVk2QArBeUtl2-8lA240rHd3OR61a4GoWro3D1YgDvb_-5brN13Nv7c5D_bc-QaTs21NPvutu4GtX1xODEuDJeeiML5wrpCsdEllifqQFs9qunu-3f6CVYB_ChX9Hl5_9P6c39o-3A49H56Yk-OT4bv4UnPOJKUCY3YXU2nbstJEgzsx1RSeDbQ2-DP1RPHkw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT9wwEB7BIiE4IFqKWB6tD70Vl_iRODku0BUsFFVqkbhZsddGSEuC9qH9-4y9CY-qReJqO5E1M_F8k5n5DPCVebRclXuKFiyoNIWgRnBDw5UCklmryliM-fMqO7uWg5v0ZgmythcmFu1HSst4TLfVYUcTBA6hXx5Dp5BIEnT-_WHol2EF8TaTHVjp9Qa_B89_VxD1yJQ1XTKJyP_xgleeKBL2v0KZfyVGo7_pb8JGAxRJb7G1D7Dkqo-w_oI-cAsuUMcEw-VAsRTbE0jtSegKmY3vZveknJCyIq6pDx-R6bymw0DmvyDiIJNQF19XgfC1Hn-C6_6PPydntLkcgVp0IVPKhU25wxCTFTKRKATFZZ4Ib4TMCwRpJffMqKI0wiljcRShmXUoe8a9c0aJbehUdeV2gOSZtwW6sCzEemmGCvPeKovQ0XFVDpMusFZQ2jbM4eECi5GOGWyR64VwNQpXR-HqeRe-PT3zsODNeHP1cZD_08rAeR0H6vGtbmxAo-McGtwYV8ZLb2ThXCFd4ZjIEusz1YX9Vnu6-RAnmuP5kmeCpTh92Gr0efr_W9p93_IvsPrrtK8vz68u9mCNRzMTlMl96EzHM3eAyGVqPjdm-ggpIeZU |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=The+resurrection+of+tellurium+as+an+elemental+two-dimensional+semiconductor&rft.jtitle=NPJ+2D+materials+and+applications&rft.au=Gang+Qiu&rft.au=Adam+Charnas&rft.au=Chang+Niu&rft.au=Yixiu+Wang&rft.date=2022-03-14&rft.pub=Nature+Portfolio&rft.eissn=2397-7132&rft.volume=6&rft.issue=1&rft.spage=1&rft.epage=10&rft_id=info:doi/10.1038%2Fs41699-022-00293-w&rft.externalDBID=DOA&rft.externalDocID=oai_doaj_org_article_299dbfc727bf4fb49ee94e9e1360cf67 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2397-7132&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2397-7132&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2397-7132&client=summon |