Screening transition metal-based polar pentagonal monolayers with large piezoelectricity and shift current
Two-dimensional (2D) materials entirely composed of pentagon motifs are of interest for their wide applications. Here, we demonstrate that in-plane polar symmetry can exist in ternary pentagonal monolayers, where the induced electric polarization is not associated with specific conditions, such as f...
Saved in:
Published in | npj computational materials Vol. 8; no. 1; pp. 1 - 9 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
15.03.2022
Nature Publishing Group Nature Portfolio |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Two-dimensional (2D) materials entirely composed of pentagon motifs are of interest for their wide applications. Here, we demonstrate that in-plane polar symmetry can exist in ternary pentagonal monolayers, where the induced electric polarization is not associated with specific conditions, such as ferroelectric phase transition, strain gradient, and layer stacking, but is an intrinsic structural property coming from the orderly arranged polar bonds. Based on the high-throughput screening method and first-principles calculations, we find eight stable 2D polar transition metal compounds with a number of intriguing properties. In particular, their piezoelectric coefficients are three orders of magnitude larger than those of 2D elemental and binary pentagonal structures, and their bulk photovaltaic shift current can reach up to 300 μA V
−2
, superior to that of 2D conventional ferroelectric materials such as GeS. Our identified pentagonal monolayers not only expand the family of 2D pyroelectric materials, but also hold potential for energy conversions. |
---|---|
AbstractList | Abstract Two-dimensional (2D) materials entirely composed of pentagon motifs are of interest for their wide applications. Here, we demonstrate that in-plane polar symmetry can exist in ternary pentagonal monolayers, where the induced electric polarization is not associated with specific conditions, such as ferroelectric phase transition, strain gradient, and layer stacking, but is an intrinsic structural property coming from the orderly arranged polar bonds. Based on the high-throughput screening method and first-principles calculations, we find eight stable 2D polar transition metal compounds with a number of intriguing properties. In particular, their piezoelectric coefficients are three orders of magnitude larger than those of 2D elemental and binary pentagonal structures, and their bulk photovaltaic shift current can reach up to 300 μA V−2, superior to that of 2D conventional ferroelectric materials such as GeS. Our identified pentagonal monolayers not only expand the family of 2D pyroelectric materials, but also hold potential for energy conversions. Two-dimensional (2D) materials entirely composed of pentagon motifs are of interest for their wide applications. Here, we demonstrate that in-plane polar symmetry can exist in ternary pentagonal monolayers, where the induced electric polarization is not associated with specific conditions, such as ferroelectric phase transition, strain gradient, and layer stacking, but is an intrinsic structural property coming from the orderly arranged polar bonds. Based on the high-throughput screening method and first-principles calculations, we find eight stable 2D polar transition metal compounds with a number of intriguing properties. In particular, their piezoelectric coefficients are three orders of magnitude larger than those of 2D elemental and binary pentagonal structures, and their bulk photovaltaic shift current can reach up to 300 μA V −2 , superior to that of 2D conventional ferroelectric materials such as GeS. Our identified pentagonal monolayers not only expand the family of 2D pyroelectric materials, but also hold potential for energy conversions. Two-dimensional (2D) materials entirely composed of pentagon motifs are of interest for their wide applications. Here, we demonstrate that in-plane polar symmetry can exist in ternary pentagonal monolayers, where the induced electric polarization is not associated with specific conditions, such as ferroelectric phase transition, strain gradient, and layer stacking, but is an intrinsic structural property coming from the orderly arranged polar bonds. Based on the high-throughput screening method and first-principles calculations, we find eight stable 2D polar transition metal compounds with a number of intriguing properties. In particular, their piezoelectric coefficients are three orders of magnitude larger than those of 2D elemental and binary pentagonal structures, and their bulk photovaltaic shift current can reach up to 300 μA V−2, superior to that of 2D conventional ferroelectric materials such as GeS. Our identified pentagonal monolayers not only expand the family of 2D pyroelectric materials, but also hold potential for energy conversions. |
ArticleNumber | 40 |
Author | Guo, Yaguang Zhou, Jian Wang, Qian Xie, Huanhuan Chen, Yanyan |
Author_xml | – sequence: 1 givenname: Yaguang surname: Guo fullname: Guo, Yaguang organization: Department of Physics, School of Science, Beijing Jiaotong University – sequence: 2 givenname: Jian orcidid: 0000-0002-2606-4833 surname: Zhou fullname: Zhou, Jian organization: Center for Alloy Innovation and Design, State Key Laboratory for Mechanical Behavior of Materials, Xi’an Jiaotong University – sequence: 3 givenname: Huanhuan surname: Xie fullname: Xie, Huanhuan organization: CAPT, School of Materials Science and Engineering, Peking University – sequence: 4 givenname: Yanyan surname: Chen fullname: Chen, Yanyan organization: CAPT, School of Materials Science and Engineering, Peking University – sequence: 5 givenname: Qian orcidid: 0000-0002-9766-4617 surname: Wang fullname: Wang, Qian email: qianwang2@pku.edu.cn organization: CAPT, School of Materials Science and Engineering, Peking University |
BookMark | eNp9kU9rFTEUxUNpwdr2C7gKuB69-dOZZClFbaHgQl2HTOZmmse8ZJrkIc9Pb9pRFBddJdx7fofLOa_JaUwRCXnD4B0Dod4Xya657IDzDmDgqpMn5JzD9dAJ3cPpP_9X5KqUHQAwzRWXcE52X11GjCHOtGYbS6ghRbrHapdutAUnuqbFZrpirHZO0S50n2IbHTEX-iPUB9rWM9I14M-EC7qagwv1SG2caHkIvlJ3yLnhl-TM26Xg1e_3gnz_9PHbzW13_-Xz3c2H-85JrmvHhdb9IAHl6KQaleeWce2V94Pvp7EfwCk59c4pDeNgWwJ6EBIYWJCC4SQuyN3mOyW7M2sOe5uPJtlgngcpz8bmGtyCRk66R6dYP3KQzg_jNI7cWaGYVzjZoXm93bzWnB4PWKrZpUNuKRTDe6GZEEz3TaU2lcuplIzetATsU5It07AYBuapKLMVZVpR5rkoIxvK_0P_HPwiJDaoNHGcMf-96gXqF9CLqT8 |
CitedBy_id | crossref_primary_10_1007_s44275_024_00007_y crossref_primary_10_1063_5_0231608 crossref_primary_10_1021_acs_jpcc_4c01207 crossref_primary_10_1021_acs_jpclett_2c03383 crossref_primary_10_1021_acsanm_3c03976 crossref_primary_10_1021_acsomega_2c03567 crossref_primary_10_1021_acsnano_4c02994 crossref_primary_10_1016_j_nantod_2022_101501 crossref_primary_10_1103_PhysRevB_110_235428 crossref_primary_10_1016_j_nanoen_2024_109725 crossref_primary_10_1021_acsanm_4c03019 crossref_primary_10_1021_acsaelm_2c00265 crossref_primary_10_1039_D2TA05258J crossref_primary_10_1039_D4MH01275E crossref_primary_10_1021_acs_jpclett_3c00058 crossref_primary_10_1039_D3CP02997B crossref_primary_10_1016_j_mtphys_2023_101305 crossref_primary_10_1016_j_ijhydene_2024_07_157 crossref_primary_10_1002_adfm_202421311 crossref_primary_10_1038_s41563_024_01987_w crossref_primary_10_1103_PhysRevMaterials_7_074001 crossref_primary_10_1016_j_ijhydene_2024_02_338 crossref_primary_10_1016_j_cplett_2024_141066 crossref_primary_10_1039_D4MA00837E crossref_primary_10_1039_D2TA07589J |
Cites_doi | 10.1021/nl901754t 10.1103/PhysRevLett.117.246802 10.1021/nl035198a 10.1063/1.4996171 10.1021/acsnano.7b03313 10.1002/anie.201914886 10.1021/acs.nanolett.7b03003 10.1103/PhysRevB.61.5337 10.1103/PhysRev.110.1060 10.1021/jacs.7b04865 10.1002/adts.202000027 10.1038/nnano.2017.100 10.1021/jp407666m 10.1063/1.4746757 10.1016/j.jpcs.2020.109375 10.1103/PhysRevLett.117.097601 10.1016/j.commatsci.2019.04.040 10.1103/PhysRevB.13.5188 10.1038/s41524-021-00531-7 10.1021/acsnano.7b03186 10.1016/j.apsusc.2021.149499 10.1103/PhysRevB.47.1651 10.1103/PhysRevB.97.245143 10.1021/acs.nanolett.5b04613 10.1103/PhysRevLett.119.067402 10.1021/jz3012436 10.1016/j.cpc.2012.05.008 10.1103/PhysRevLett.115.126803 10.1021/acsami.8b17341 10.1021/acsnano.1c04325 10.1103/PhysRevB.82.094116 10.1103/PhysRevB.50.17953 10.1126/sciadv.aar7720 10.1103/PhysRevB.88.245436 10.1063/1.1564060 10.1021/acs.nanolett.7b04201 10.1016/j.cpc.2014.05.003 10.1021/acs.nanolett.6b04180 10.1016/j.mattod.2018.01.031 10.1007/s00542-013-2029-z 10.1063/1.447334 10.1103/PhysRevLett.109.116601 10.1063/1.4934750 10.1038/ncomms5727 10.1103/PhysRevB.100.085102 10.1103/PhysRevLett.77.3865 10.1063/1.1317244 10.1103/PhysRevB.103.235406 10.1126/science.aaz9146 10.1073/pnas.1416591112 10.1002/adfm.201707383 10.1021/acs.nanolett.6b03921 10.1103/PhysRevB.54.11169 10.1103/PhysRevApplied.14.014024 10.1021/acs.jpclett.0c00824 10.1080/08893110410001664882 10.1038/ncomms14956 10.1016/0022-3697(65)90140-X 10.1103/PhysRevB.78.134106 10.1039/C8CP04010A 10.1126/science.1098252 10.1126/science.aaa6442 10.1038/ncomms14176 10.1063/1.4812323 10.1103/PhysRevLett.120.207602 10.1021/acs.jpclett.0c03503 10.1021/acs.jpcc.5b12510 10.1038/s41524-016-0001-z 10.1038/s41699-017-0046-y |
ContentType | Journal Article |
Copyright | The Author(s) 2022 The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2022 – notice: The Author(s) 2022. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7X7 7XB 8FE 8FG 8FH 8FI 8FJ 8FK ABJCF ABUWG AFKRA AZQEC BBNVY BENPR BGLVJ BHPHI CCPQU D1I DWQXO FYUFA GHDGH GNUQQ HCIFZ K9. KB. LK8 M0S M7P PDBOC PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS DOA |
DOI | 10.1038/s41524-022-00728-4 |
DatabaseName | SpringerOpen Free (Free internet resource, activated by CARLI) CrossRef ProQuest Central (Corporate) Health & Medical Collection (ProQuest) ProQuest Central (purchase pre-March 2016) ProQuest SciTech Collection ProQuest Technology Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Materials Science & Engineering Collection ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Technology Collection Natural Science Collection ProQuest One ProQuest Materials Science Collection ProQuest Central Korea Proquest Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) Materials Science Database Biological Sciences ProQuest Health & Medical Collection Biological Science Database Materials Science Collection ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest Central Student Technology Collection ProQuest One Academic Middle East (New) ProQuest Central Essentials Materials Science Collection ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Natural Science Collection ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Biological Science Collection Materials Science Database ProQuest Central (New) ProQuest Materials Science Collection ProQuest Biological Science Collection ProQuest One Academic Eastern Edition ProQuest Hospital Collection ProQuest Technology Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest One Academic UKI Edition Materials Science & Engineering Collection ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | Publicly Available Content Database CrossRef |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2057-3960 |
EndPage | 9 |
ExternalDocumentID | oai_doaj_org_article_4d96ec816b204cf7bdbb2ca381f8eda7 10_1038_s41524_022_00728_4 |
GrantInformation_xml | – fundername: Fundamental Research Funds for the Central Universities – fundername: National Natural Science Foundation of China (National Science Foundation of China) grantid: 11974028; 12104037 funderid: https://doi.org/10.13039/501100001809 |
GroupedDBID | 0R~ 3V. 5VS 7X7 8FE 8FG 8FH 8FI 8FJ AAJSJ ABJCF ABUWG ACGFS ACSMW ADBBV ADMLS AFKRA AJTQC ALIPV ALMA_UNASSIGNED_HOLDINGS ARCSS BBNVY BCNDV BENPR BGLVJ BHPHI BPHCQ BVXVI C6C CCPQU D1I EBLON EBS FYUFA GROUPED_DOAJ HCIFZ HMCUK KB. KQ8 LK8 M7P M~E NAO NO~ OK1 PDBOC PIMPY PQQKQ PROAC RNT SNYQT UKHRP AASML AAYXX CITATION PHGZM PHGZT 7XB 8FK AARCD AZQEC DWQXO GNUQQ K9. PKEHL PQEST PQGLB PQUKI PRINS PUEGO |
ID | FETCH-LOGICAL-c429t-23996740e4bc48b8f2a129f8ff7f6db670c84d6cc890b7a1039734010a0431ed3 |
IEDL.DBID | 7X7 |
ISSN | 2057-3960 |
IngestDate | Wed Aug 27 01:24:29 EDT 2025 Wed Aug 13 06:43:24 EDT 2025 Thu Apr 24 23:03:52 EDT 2025 Tue Jul 01 01:41:28 EDT 2025 Fri Feb 21 02:40:24 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-23996740e4bc48b8f2a129f8ff7f6db670c84d6cc890b7a1039734010a0431ed3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-2606-4833 0000-0002-9766-4617 |
OpenAccessLink | https://www.proquest.com/docview/2639133196?pq-origsite=%requestingapplication% |
PQID | 2639133196 |
PQPubID | 2041924 |
PageCount | 9 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_4d96ec816b204cf7bdbb2ca381f8eda7 proquest_journals_2639133196 crossref_citationtrail_10_1038_s41524_022_00728_4 crossref_primary_10_1038_s41524_022_00728_4 springer_journals_10_1038_s41524_022_00728_4 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-03-15 |
PublicationDateYYYYMMDD | 2022-03-15 |
PublicationDate_xml | – month: 03 year: 2022 text: 2022-03-15 day: 15 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London |
PublicationTitle | npj computational materials |
PublicationTitleAbbrev | npj Comput Mater |
PublicationYear | 2022 |
Publisher | Nature Publishing Group UK Nature Publishing Group Nature Portfolio |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group – name: Nature Portfolio |
References | Nosé (CR29) 1984; 81 Togo, Oba, Tanaka (CR63) 2008; 78 Young, Rappe (CR54) 2012; 109 Sanders, Bayerl, Shi, Mengle, Kioupakis (CR45) 2017; 17 Rangel (CR11) 2017; 119 Zhang (CR20) 2015; 112 Monkhorst, Pack (CR61) 1976; 13 Mehboudi (CR32) 2016; 16 Oyedele (CR24) 2017; 139 Tan (CR53) 2016; 2 Pandey, Covaci, Milošević, Peeters (CR14) 2021; 103 Schankler, Gao, Rappe (CR13) 2021; 12 Cui, Xue, Hu, Li (CR5) 2018; 2 Lee (CR4) 2015; 349 Zhao (CR22) 2020; 11 Zheng (CR30) 2018; 4 Kou (CR41) 2016; 16 Hellenbrandt (CR26) 2004; 10 Hulliger (CR35) 1965; 26 Dong, Lou, Shenoy (CR18) 2017; 11 Liu, Zhuang (CR27) 2019; 166 Kresse, Furthmüller (CR57) 1996; 54 Mu, Pan, Zhou (CR71) 2021; 7 Hinchet, Khan, Falconi, Kim (CR6) 2018; 21 Guo, Zhu, Wang (CR46) 2018; 11 Sipe, Shkrebtii (CR67) 2000; 61 Cook, Fregoso, De Juan, Coh, Moore (CR55) 2017; 8 Wang, Lv, Zhu, Ma (CR65) 2012; 183 Wang, Lv, Zhu, Ma (CR64) 2010; 82 Kempt, Kuc, Heine (CR34) 2020; 59 Bykov (CR19) 2021; 15 Tan, Rappe (CR56) 2019; 100 Zhao, Wang, Mao (CR52) 2004; 4 Fong (CR1) 2004; 304 Fei, Kang, Yang (CR8) 2016; 117 Guo, Wang (CR47) 2020; 140 Lu (CR17) 2017; 12 Young, Kane (CR43) 2015; 115 Blöchl (CR58) 1994; 50 Liu, Pantelides (CR10) 2018; 120 Jung, Park, Ihm (CR36) 2018; 18 Shen, Guo, Wang (CR37) 2020; 3 Lv, Wang, Zhu, Ma (CR66) 2012; 137 Jia (CR48) 2018; 20 Perdew, Burke, Ernzerhof (CR59) 1996; 77 King-Smith, Vanderbilt (CR62) 1993; 47 Mostofi (CR70) 2014; 185 Hu, Wang, Yu, Wu (CR3) 2016; 7 Ding (CR38) 2017; 8 Sun, Shen, Guo, Chen, Wang (CR23) 2021; 554 Mehboudi (CR7) 2016; 117 Zhang (CR16) 2017; 11 Fei, Li, Li, Yang (CR9) 2015; 107 Duerloo, Ong, Reed (CR12) 2012; 3 Ding, Wang (CR28) 2013; 117 Jiang, Park (CR39) 2014; 5 Kośmider, González, Fernández-Rossier (CR42) 2013; 88 Heyd, Scuseria, Ernzerhof (CR60) 2003; 118 Wan, Liu, Xiao, Yao (CR33) 2017; 111 Fraga, Furlan, Pessoa, Massi (CR49) 2014; 20 Zhang, Zhou, Wang, Jena (CR44) 2016; 120 Gao, Dong, Li, Ren (CR40) 2017; 17 Akamatsu (CR15) 2021; 372 Lueng, Chan, Surya, Choy (CR51) 2000; 88 Bechmann (CR50) 1958; 110 CR21 Pan, Zhou (CR68) 2020; 14 Jain (CR25) 2013; 1 Xiao (CR31) 2018; 28 Gruverman (CR2) 2009; 9 Ibañez-Azpiroz, Tsirkin, Souza (CR69) 2018; 97 W Ding (728_CR38) 2017; 8 R Fei (728_CR9) 2015; 107 M Mehboudi (728_CR7) 2016; 117 L Kou (728_CR41) 2016; 16 LZ Tan (728_CR53) 2016; 2 AA Mostofi (728_CR70) 2014; 185 J-W Jiang (728_CR39) 2014; 5 C Zheng (728_CR30) 2018; 4 Y Wang (728_CR64) 2010; 82 D Lee (728_CR4) 2015; 349 K Kośmider (728_CR42) 2013; 88 S-D Guo (728_CR47) 2020; 140 W Sun (728_CR23) 2021; 554 J Liu (728_CR10) 2018; 120 A Togo (728_CR63) 2008; 78 Z Gao (728_CR40) 2017; 17 R King-Smith (728_CR62) 1993; 47 G Kresse (728_CR57) 1996; 54 J Zhang (728_CR16) 2017; 11 S Zhang (728_CR44) 2016; 120 SM Young (728_CR54) 2012; 109 J Heyd (728_CR60) 2003; 118 H-J Jia (728_CR48) 2018; 20 T Pandey (728_CR14) 2021; 103 A Jain (728_CR25) 2013; 1 X Mu (728_CR71) 2021; 7 K-AN Duerloo (728_CR12) 2012; 3 R Fei (728_CR8) 2016; 117 PE Blöchl (728_CR58) 1994; 50 HJ Monkhorst (728_CR61) 1976; 13 N Sanders (728_CR45) 2017; 17 R Hinchet (728_CR6) 2018; 21 C Lueng (728_CR51) 2000; 88 C Cui (728_CR5) 2018; 2 M Mehboudi (728_CR32) 2016; 16 L Liu (728_CR27) 2019; 166 R Bechmann (728_CR50) 1958; 110 L Dong (728_CR18) 2017; 11 Y Guo (728_CR46) 2018; 11 A-Y Lu (728_CR17) 2017; 12 DD Fong (728_CR1) 2004; 304 T Akamatsu (728_CR15) 2021; 372 S Nosé (728_CR29) 1984; 81 Y Pan (728_CR68) 2020; 14 WJ Hu (728_CR3) 2016; 7 M-H Zhao (728_CR52) 2004; 4 J Sipe (728_CR67) 2000; 61 A Gruverman (728_CR2) 2009; 9 R Kempt (728_CR34) 2020; 59 F Hulliger (728_CR35) 1965; 26 JP Perdew (728_CR59) 1996; 77 SM Young (728_CR43) 2015; 115 AD Oyedele (728_CR24) 2017; 139 J Lv (728_CR66) 2012; 137 S Zhang (728_CR20) 2015; 112 JH Jung (728_CR36) 2018; 18 AM Cook (728_CR55) 2017; 8 K Zhao (728_CR22) 2020; 11 AM Schankler (728_CR13) 2021; 12 MA Fraga (728_CR49) 2014; 20 Y Ding (728_CR28) 2013; 117 J Ibañez-Azpiroz (728_CR69) 2018; 97 C Xiao (728_CR31) 2018; 28 LZ Tan (728_CR56) 2019; 100 M Hellenbrandt (728_CR26) 2004; 10 728_CR21 W Wan (728_CR33) 2017; 111 Y Wang (728_CR65) 2012; 183 M Bykov (728_CR19) 2021; 15 T Rangel (728_CR11) 2017; 119 Y Shen (728_CR37) 2020; 3 |
References_xml | – volume: 9 start-page: 3539 year: 2009 end-page: 3543 ident: CR2 article-title: Tunneling electroresistance effect in ferroelectric tunnel junctions at the nanoscale publication-title: Nano Lett. doi: 10.1021/nl901754t – volume: 117 start-page: 246802 year: 2016 ident: CR7 article-title: Structural phase transition and material properties of few-layer monochalcogenides publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.246802 – volume: 4 start-page: 587 year: 2004 end-page: 590 ident: CR52 article-title: Piezoelectric characterization of individual zinc oxide nanobelt probed by piezoresponse force microscope publication-title: Nano Lett. doi: 10.1021/nl035198a – volume: 111 start-page: 132904 year: 2017 ident: CR33 article-title: Promising ferroelectricity in 2D group IV tellurides: A first-principles study publication-title: Appl. Phys. Lett. doi: 10.1063/1.4996171 – volume: 11 start-page: 8242 year: 2017 end-page: 8248 ident: CR18 article-title: Large in-plane and vertical piezoelectricity in Janus transition metal dichalchogenides publication-title: ACS Nano doi: 10.1021/acsnano.7b03313 – volume: 59 start-page: 9242 year: 2020 end-page: 9254 ident: CR34 article-title: Two‐dimensional noble-metal chalcogenides and phosphochalcogenides publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914886 – volume: 17 start-page: 7345 year: 2017 end-page: 7349 ident: CR45 article-title: Electronic and optical properties of two-dimensional GaN from first-principles publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03003 – volume: 61 start-page: 5337 year: 2000 ident: CR67 article-title: Second-order optical response in semiconductors publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.5337 – volume: 110 start-page: 1060 year: 1958 ident: CR50 article-title: Elastic and piezoelectric constants of alpha-quartz publication-title: Phys. Rev. doi: 10.1103/PhysRev.110.1060 – volume: 139 start-page: 14090 year: 2017 end-page: 14097 ident: CR24 article-title: PdSe : Pentagonal two-dimensional layers with high air stability for electronics publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04865 – volume: 3 start-page: 2000027 year: 2020 ident: CR37 article-title: Large out-of-plane second harmonic generation susceptibility in penta-ZnS sheet publication-title: Adv. Theor. Simul. doi: 10.1002/adts.202000027 – volume: 12 start-page: 744 year: 2017 end-page: 749 ident: CR17 article-title: Janus monolayers of transition metal dichalcogenides publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.100 – volume: 117 start-page: 18266 year: 2013 end-page: 18278 ident: CR28 article-title: Density functional theory study of the silicene-like SiX and XSi (X = B, C, N, Al, P) honeycomb lattices: The various buckled structures and versatile electronic properties publication-title: J. Phys. Chem. C doi: 10.1021/jp407666m – volume: 137 start-page: 084104 year: 2012 ident: CR66 article-title: Particle-swarm structure prediction on clusters publication-title: J. Chem. Phys. doi: 10.1063/1.4746757 – volume: 140 start-page: 109375 year: 2020 ident: CR47 article-title: Tuning pure out-of-plane piezoelectric effect of penta-graphene: A first-principle study publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2020.109375 – volume: 117 start-page: 097601 year: 2016 ident: CR8 article-title: Ferroelectricity and phase transitions in monolayer group-IV monochalcogenides publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.097601 – volume: 166 start-page: 105 year: 2019 end-page: 110 ident: CR27 article-title: Computational prediction and characterization of two-dimensional pentagonal arsenopyrite FeAsS publication-title: Comp. Mater. Sci. doi: 10.1016/j.commatsci.2019.04.040 – volume: 13 start-page: 5188 year: 1976 ident: CR61 article-title: Special points for Brillouin-zone integrations publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – ident: CR21 – volume: 7 start-page: 1 year: 2021 end-page: 10 ident: CR71 article-title: Pure bulk orbital and spin photocurrent in two-dimensional ferroelectric materials publication-title: NPJ Comput. Mater doi: 10.1038/s41524-021-00531-7 – volume: 11 start-page: 8192 year: 2017 end-page: 8198 ident: CR16 article-title: Janus monolayer transition-metal dichalcogenides publication-title: ACS Nano doi: 10.1021/acsnano.7b03186 – volume: 554 start-page: 149499 year: 2021 ident: CR23 article-title: 1, 2, 4-Azadiphosphole-based piezoelectric penta-CNP sheet with high spontaneous polarization publication-title: Appl. Sur. Sci. doi: 10.1016/j.apsusc.2021.149499 – volume: 47 start-page: 1651 year: 1993 ident: CR62 article-title: Theory of polarization of crystalline solids publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1651 – volume: 7 start-page: 1 year: 2016 end-page: 9 ident: CR3 article-title: Optically controlled electroresistance and electrically controlled photovoltage in ferroelectric tunnel junctions publication-title: Nat. Commun. – volume: 2 start-page: 1 year: 2016 end-page: 12 ident: CR53 article-title: Shift current bulk photovoltaic effect in polar materials-hybrid and oxide perovskites and beyond publication-title: NPJ Comp. Mater – volume: 97 start-page: 245143 year: 2018 ident: CR69 article-title: Ab initio calculation of the shift photocurrent by Wannier interpolation publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.245143 – volume: 16 start-page: 1704 year: 2016 end-page: 1712 ident: CR32 article-title: Two-dimensional disorder in black phosphorus and monochalcogenide monolayers publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04613 – volume: 119 start-page: 067402 year: 2017 ident: CR11 article-title: Large bulk photovoltaic effect and spontaneous polarization of single-layer monochalcogenides publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.067402 – volume: 3 start-page: 2871 year: 2012 end-page: 2876 ident: CR12 article-title: Intrinsic piezoelectricity in two-dimensional materials publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3012436 – volume: 183 start-page: 2063 year: 2012 end-page: 2070 ident: CR65 article-title: CALYPSO: A method for crystal structure prediction publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.05.008 – volume: 115 start-page: 126803 year: 2015 ident: CR43 article-title: Dirac semimetals in two dimensions publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.126803 – volume: 11 start-page: 1033 year: 2018 end-page: 1039 ident: CR46 article-title: Piezoelectric effects in surface-engineered two-dimensional group III nitrides publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17341 – volume: 15 start-page: 13539 year: 2021 end-page: 13546 ident: CR19 article-title: Realization of an ideal Cairo tessellation in nickel diazenide NiN : High-pressure route to pentagonal 2D materials publication-title: ACS Nano doi: 10.1021/acsnano.1c04325 – volume: 82 start-page: 094116 year: 2010 ident: CR64 article-title: Crystal structure prediction via particle-swarm optimization publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.094116 – volume: 50 start-page: 17953 year: 1994 ident: CR58 article-title: Projector augmented-wave method publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 4 start-page: eaar7720 year: 2018 ident: CR30 article-title: Room temperature in-plane ferroelectricity in van der Waals In Se publication-title: Sci. Adv. doi: 10.1126/sciadv.aar7720 – volume: 88 start-page: 245436 year: 2013 ident: CR42 article-title: Large spin splitting in the conduction band of transition metal dichalcogenide monolayers publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.245436 – volume: 118 start-page: 8207 year: 2003 end-page: 8215 ident: CR60 article-title: Hybrid functionals based on a screened Coulomb potential publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 18 start-page: 2759 year: 2018 end-page: 2765 ident: CR36 article-title: A rigorous method of calculating exfoliation energies from first principles publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04201 – volume: 185 start-page: 2309 year: 2014 end-page: 2310 ident: CR70 article-title: An updated version of wannier90: A tool for obtaining maximally-localised Wannier functions publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.05.003 – volume: 16 start-page: 7910 year: 2016 end-page: 7914 ident: CR41 article-title: Auxetic and ferroelastic borophane: A novel 2D material with negative Possion’s ratio and switchable Dirac transport channels publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04180 – volume: 21 start-page: 611 year: 2018 end-page: 630 ident: CR6 article-title: Piezoelectric properties in two-dimensional materials: Simulations and experiments publication-title: Mater. Today doi: 10.1016/j.mattod.2018.01.031 – volume: 20 start-page: 9 year: 2014 end-page: 21 ident: CR49 article-title: Wide bandgap semiconductor thin films for piezoelectric and piezoresistive MEMS sensors applied at high temperatures: an overview publication-title: Microsyst. Technol. doi: 10.1007/s00542-013-2029-z – volume: 81 start-page: 511 year: 1984 end-page: 519 ident: CR29 article-title: A unified formulation of the constant temperature molecular dynamics methods publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 109 start-page: 116601 year: 2012 ident: CR54 article-title: First principles calculation of the shift current photovoltaic effect in ferroelectrics publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.116601 – volume: 107 start-page: 173104 year: 2015 ident: CR9 article-title: Giant piezoelectricity of monolayer group IV monochalcogenides: SnSe, SnS, GeSe, and GeS publication-title: Appl. Phys. Lett. doi: 10.1063/1.4934750 – volume: 5 start-page: 1 year: 2014 end-page: 7 ident: CR39 article-title: Negative Poisson’s ratio in single-layer black phosphorus publication-title: Nat. Commun. doi: 10.1038/ncomms5727 – volume: 100 start-page: 085102 year: 2019 ident: CR56 article-title: Upper limit on shift current generation in extended systems publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.085102 – volume: 77 start-page: 3865 year: 1996 ident: CR59 article-title: Generalized gradient approximation made simple publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 88 start-page: 5360 year: 2000 end-page: 5363 ident: CR51 article-title: Piezoelectric coefficient of aluminum nitride and gallium nitride publication-title: J. Appl. Phys. doi: 10.1063/1.1317244 – volume: 103 start-page: 235406 year: 2021 ident: CR14 article-title: Flexoelectricity and transport properties of phosphorene nanoribbons under mechanical bending publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.235406 – volume: 372 start-page: 68 year: 2021 end-page: 72 ident: CR15 article-title: A van der Waals interface that creates in-plane polarization and a spontaneous photovoltaic effect publication-title: Science doi: 10.1126/science.aaz9146 – volume: 112 start-page: 2372 year: 2015 end-page: 2377 ident: CR20 article-title: Penta-graphene: A new carbon allotrope publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.1416591112 – volume: 28 start-page: 1707383 year: 2018 ident: CR31 article-title: Elemental ferroelectricity and antiferroelectricity in Group-V monolayer publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707383 – volume: 2 start-page: 1 year: 2018 end-page: 14 ident: CR5 article-title: Two-dimensional materials with piezoelectric and ferroelectric functionalities publication-title: NPJ 2D Mater. Appl – volume: 17 start-page: 772 year: 2017 end-page: 777 ident: CR40 article-title: Novel two-dimensional silicon dioxide with in-plane negative Poisson’s ratio publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03921 – volume: 54 start-page: 11169 year: 1996 ident: CR57 article-title: Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 14 start-page: 014024 year: 2020 ident: CR68 article-title: Toggling valley-spin locking and nonlinear optical properties of single-element multiferroic monolayers via light publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.014024 – volume: 11 start-page: 3501 year: 2020 end-page: 3506 ident: CR22 article-title: Penta-BCN: A new ternary pentagonal monolayer with intrinsic piezoelectricity publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c00824 – volume: 10 start-page: 17 year: 2004 end-page: 22 ident: CR26 article-title: The inorganic crystal structure database (ICSD)—present and future publication-title: Crystallogr. Rev. doi: 10.1080/08893110410001664882 – volume: 8 start-page: 1 year: 2017 end-page: 8 ident: CR38 article-title: Prediction of intrinsic two-dimensional ferroelectrics in In Se and other III –VI van der Waals materials publication-title: Nat. Commun. doi: 10.1038/ncomms14956 – volume: 26 start-page: 639 year: 1965 end-page: 645 ident: CR35 article-title: Electrical properties of some nickel-group chalcogenides publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(65)90140-X – volume: 78 start-page: 134106 year: 2008 ident: CR63 article-title: First-principles calculations of the ferroelastic transition between rutile-type and CaCl -type SiO at high pressures publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.134106 – volume: 20 start-page: 26288 year: 2018 end-page: 26296 ident: CR48 article-title: Piezoelectric and polarized enhancement by hydrofluorination of penta-graphene publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP04010A – volume: 304 start-page: 1650 year: 2004 end-page: 1653 ident: CR1 article-title: Ferroelectricity in ultrathin perovskite films publication-title: Science doi: 10.1126/science.1098252 – volume: 349 start-page: 1314 year: 2015 end-page: 1317 ident: CR4 article-title: Emergence of room-temperature ferroelectricity at reduced dimensions publication-title: Science doi: 10.1126/science.aaa6442 – volume: 8 start-page: 1 year: 2017 end-page: 9 ident: CR55 article-title: Design principles for shift current photovoltaics publication-title: Nat. Commun doi: 10.1038/ncomms14176 – volume: 1 start-page: 011002 year: 2013 ident: CR25 article-title: Commentary: The Materials Project: A materials genome approach to accelerating materials innovation publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 120 start-page: 207602 year: 2018 ident: CR10 article-title: Mechanisms of pyroelectricity in three-and two-dimensional materials publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.207602 – volume: 12 start-page: 1244 year: 2021 end-page: 1249 ident: CR13 article-title: Large bulk piezophotovoltaic effect of monolayer 2H-MoS publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c03503 – volume: 120 start-page: 3993 year: 2016 end-page: 3998 ident: CR44 article-title: Beyond graphitic carbon nitride: Nitrogen-rich penta-CN sheet publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b12510 – volume: 137 start-page: 084104 year: 2012 ident: 728_CR66 publication-title: J. Chem. Phys. doi: 10.1063/1.4746757 – volume: 117 start-page: 246802 year: 2016 ident: 728_CR7 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.246802 – volume: 554 start-page: 149499 year: 2021 ident: 728_CR23 publication-title: Appl. Sur. Sci. doi: 10.1016/j.apsusc.2021.149499 – volume: 18 start-page: 2759 year: 2018 ident: 728_CR36 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b04201 – volume: 11 start-page: 3501 year: 2020 ident: 728_CR22 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c00824 – volume: 109 start-page: 116601 year: 2012 ident: 728_CR54 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.116601 – volume: 8 start-page: 1 year: 2017 ident: 728_CR38 publication-title: Nat. Commun. doi: 10.1038/ncomms14956 – volume: 5 start-page: 1 year: 2014 ident: 728_CR39 publication-title: Nat. Commun. doi: 10.1038/ncomms5727 – volume: 77 start-page: 3865 year: 1996 ident: 728_CR59 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.77.3865 – volume: 107 start-page: 173104 year: 2015 ident: 728_CR9 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4934750 – volume: 28 start-page: 1707383 year: 2018 ident: 728_CR31 publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201707383 – volume: 8 start-page: 1 year: 2017 ident: 728_CR55 publication-title: Nat. Commun doi: 10.1038/ncomms14176 – volume: 372 start-page: 68 year: 2021 ident: 728_CR15 publication-title: Science doi: 10.1126/science.aaz9146 – volume: 112 start-page: 2372 year: 2015 ident: 728_CR20 publication-title: Proc. Nat. Acad. Sci. USA doi: 10.1073/pnas.1416591112 – volume: 17 start-page: 772 year: 2017 ident: 728_CR40 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b03921 – volume: 14 start-page: 014024 year: 2020 ident: 728_CR68 publication-title: Phys. Rev. Appl. doi: 10.1103/PhysRevApplied.14.014024 – volume: 54 start-page: 11169 year: 1996 ident: 728_CR57 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.54.11169 – volume: 117 start-page: 097601 year: 2016 ident: 728_CR8 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.117.097601 – volume: 183 start-page: 2063 year: 2012 ident: 728_CR65 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2012.05.008 – volume: 140 start-page: 109375 year: 2020 ident: 728_CR47 publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2020.109375 – volume: 349 start-page: 1314 year: 2015 ident: 728_CR4 publication-title: Science doi: 10.1126/science.aaa6442 – volume: 10 start-page: 17 year: 2004 ident: 728_CR26 publication-title: Crystallogr. Rev. doi: 10.1080/08893110410001664882 – volume: 88 start-page: 245436 year: 2013 ident: 728_CR42 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.245436 – volume: 47 start-page: 1651 year: 1993 ident: 728_CR62 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.47.1651 – volume: 16 start-page: 7910 year: 2016 ident: 728_CR41 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04180 – volume: 12 start-page: 744 year: 2017 ident: 728_CR17 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2017.100 – volume: 4 start-page: eaar7720 year: 2018 ident: 728_CR30 publication-title: Sci. Adv. doi: 10.1126/sciadv.aar7720 – ident: 728_CR21 – volume: 7 start-page: 1 year: 2021 ident: 728_CR71 publication-title: NPJ Comput. Mater doi: 10.1038/s41524-021-00531-7 – volume: 4 start-page: 587 year: 2004 ident: 728_CR52 publication-title: Nano Lett. doi: 10.1021/nl035198a – volume: 115 start-page: 126803 year: 2015 ident: 728_CR43 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.115.126803 – volume: 20 start-page: 9 year: 2014 ident: 728_CR49 publication-title: Microsyst. Technol. doi: 10.1007/s00542-013-2029-z – volume: 12 start-page: 1244 year: 2021 ident: 728_CR13 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c03503 – volume: 17 start-page: 7345 year: 2017 ident: 728_CR45 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.7b03003 – volume: 3 start-page: 2871 year: 2012 ident: 728_CR12 publication-title: J. Phys. Chem. Lett. doi: 10.1021/jz3012436 – volume: 139 start-page: 14090 year: 2017 ident: 728_CR24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b04865 – volume: 26 start-page: 639 year: 1965 ident: 728_CR35 publication-title: J. Phys. Chem. Solids doi: 10.1016/0022-3697(65)90140-X – volume: 2 start-page: 1 year: 2016 ident: 728_CR53 publication-title: NPJ Comp. Mater doi: 10.1038/s41524-016-0001-z – volume: 50 start-page: 17953 year: 1994 ident: 728_CR58 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.50.17953 – volume: 78 start-page: 134106 year: 2008 ident: 728_CR63 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.78.134106 – volume: 2 start-page: 1 year: 2018 ident: 728_CR5 publication-title: NPJ 2D Mater. Appl doi: 10.1038/s41699-017-0046-y – volume: 3 start-page: 2000027 year: 2020 ident: 728_CR37 publication-title: Adv. Theor. Simul. doi: 10.1002/adts.202000027 – volume: 11 start-page: 8242 year: 2017 ident: 728_CR18 publication-title: ACS Nano doi: 10.1021/acsnano.7b03313 – volume: 13 start-page: 5188 year: 1976 ident: 728_CR61 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.13.5188 – volume: 61 start-page: 5337 year: 2000 ident: 728_CR67 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.61.5337 – volume: 11 start-page: 8192 year: 2017 ident: 728_CR16 publication-title: ACS Nano doi: 10.1021/acsnano.7b03186 – volume: 118 start-page: 8207 year: 2003 ident: 728_CR60 publication-title: J. Chem. Phys. doi: 10.1063/1.1564060 – volume: 1 start-page: 011002 year: 2013 ident: 728_CR25 publication-title: APL Mater. doi: 10.1063/1.4812323 – volume: 111 start-page: 132904 year: 2017 ident: 728_CR33 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4996171 – volume: 120 start-page: 3993 year: 2016 ident: 728_CR44 publication-title: J. Phys. Chem. C doi: 10.1021/acs.jpcc.5b12510 – volume: 21 start-page: 611 year: 2018 ident: 728_CR6 publication-title: Mater. Today doi: 10.1016/j.mattod.2018.01.031 – volume: 119 start-page: 067402 year: 2017 ident: 728_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.119.067402 – volume: 97 start-page: 245143 year: 2018 ident: 728_CR69 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.97.245143 – volume: 7 start-page: 1 year: 2016 ident: 728_CR3 publication-title: Nat. Commun. – volume: 15 start-page: 13539 year: 2021 ident: 728_CR19 publication-title: ACS Nano doi: 10.1021/acsnano.1c04325 – volume: 304 start-page: 1650 year: 2004 ident: 728_CR1 publication-title: Science doi: 10.1126/science.1098252 – volume: 166 start-page: 105 year: 2019 ident: 728_CR27 publication-title: Comp. Mater. Sci. doi: 10.1016/j.commatsci.2019.04.040 – volume: 110 start-page: 1060 year: 1958 ident: 728_CR50 publication-title: Phys. Rev. doi: 10.1103/PhysRev.110.1060 – volume: 9 start-page: 3539 year: 2009 ident: 728_CR2 publication-title: Nano Lett. doi: 10.1021/nl901754t – volume: 185 start-page: 2309 year: 2014 ident: 728_CR70 publication-title: Comput. Phys. Commun. doi: 10.1016/j.cpc.2014.05.003 – volume: 117 start-page: 18266 year: 2013 ident: 728_CR28 publication-title: J. Phys. Chem. C doi: 10.1021/jp407666m – volume: 81 start-page: 511 year: 1984 ident: 728_CR29 publication-title: J. Chem. Phys. doi: 10.1063/1.447334 – volume: 82 start-page: 094116 year: 2010 ident: 728_CR64 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.82.094116 – volume: 100 start-page: 085102 year: 2019 ident: 728_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.085102 – volume: 11 start-page: 1033 year: 2018 ident: 728_CR46 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b17341 – volume: 20 start-page: 26288 year: 2018 ident: 728_CR48 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/C8CP04010A – volume: 88 start-page: 5360 year: 2000 ident: 728_CR51 publication-title: J. Appl. Phys. doi: 10.1063/1.1317244 – volume: 120 start-page: 207602 year: 2018 ident: 728_CR10 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.120.207602 – volume: 103 start-page: 235406 year: 2021 ident: 728_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.235406 – volume: 16 start-page: 1704 year: 2016 ident: 728_CR32 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.5b04613 – volume: 59 start-page: 9242 year: 2020 ident: 728_CR34 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201914886 |
SSID | ssj0001928240 |
Score | 2.3407311 |
Snippet | Two-dimensional (2D) materials entirely composed of pentagon motifs are of interest for their wide applications. Here, we demonstrate that in-plane polar... Abstract Two-dimensional (2D) materials entirely composed of pentagon motifs are of interest for their wide applications. Here, we demonstrate that in-plane... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | 639/301/119 639/301/357 Characterization and Evaluation of Materials Chemistry and Materials Science Computational Intelligence Electric polarization Ferroelectric materials Ferroelectricity First principles High-throughput screening Materials Science Mathematical and Computational Engineering Mathematical and Computational Physics Mathematical Modeling and Industrial Mathematics Metal compounds Monolayers Phase transitions Piezoelectricity Screening Theoretical Transition metal compounds Two dimensional materials |
SummonAdditionalLinks | – databaseName: Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELZQJxgQT1Fe8sAGFk7i2s4ICISQYAEkNit-QavSVjQs_HrunBQKErCwRY4jWXeXfN_F5-8IOVDKysyHklmtJRM2C6wqSs94ie0gYek64nnn6xt5eS-uHnoPc62-sCaskQduDHcsfCmD05m0ORcuKuutzV0FQBN18FU6Rw6YN5dMDRreogGr2lMyvNDHU0QqwbB4HdWyNRNfkCgJ9n9hmd82RhPeXKyQ5ZYo0pNmgatkIYzWyNKcfOA6Gdw6rJqBa1oj5KTqK_ocgE8zRCdPJ5i40gnWhz8i5aYQdDCENJviH1g6xEJwOumHt3HTEKfvgJbTauTp9Kkfa-oa_aYNcn9xfnd2ydreCcwBwtQMj6xKJXgQ1gltdcwrQPaoY1RReisVd1p46ZwuuVUVbgirAnItXqHaTvDFJumMxqOwRagSrrKQrwbhPCTT4MnSBatEL0bJLVddks3saFwrLI79LYYmbXAX2jS2N2B7k2xvRJccfjwzaWQ1fp19iu75mImS2GkAAsW0gWL-CpQu2Z0517Tv6dTkQNAgS4fPUJcczRz-efvnJW3_x5J2yGKeArJgWW-XdOqX17AHHKe2-ymc3wH8CPmQ priority: 102 providerName: Directory of Open Access Journals – databaseName: SpringerOpen Free (Free internet resource, activated by CARLI) dbid: C6C link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LT-MwELYKXOCAeK0oL_nAbdfCSVzbOUIFQkhwASRuVvxii6CtaLjw65lxkgKrBYlb5NjSaGbi-Sae-UzIoVJWZj6UzGotmbBZYFVResZLvA4SRNcR-50vr-T5rbi4G9z1SN71wqSi_URpmbbprjrsaIaBRjCsPUeya83EAllC6nb06qEcvv9XKSGJELztj-GF_s_STzEoUfV_wpf_HImmSHO2RlZbiEiPG6HWSS-MN8jKB-LATfJw7bBeBp5pjcEm1V3RpwBImmFc8nSKKSudYmX4PYJtCu4GQwiwKf57pY9YAk6no_A6aa7CGTkA5LQaezr7O4o1dQ1z0xa5PTu9GZ6z9tYE5iC21AybVaUSPAjrhLY65hXE9KhjVFF6KxV3WnjpnC65VRUeBasCsixeIc9O8MUvsjiejMM2oUq4ykKmGoTzkEaDDUsXrBKDGCW3XPVJ1unRuJZSHG-2eDTpaLvQptG9Ad2bpHsj-uT3fM20IdT4dvYJmmc-E8mw08Dk-d60zmGEL2VwOpM258JFZb21uasAi0QdfAVi7nXGNe0XOjM5QDPIz2ED6pM_ncHfX38t0s7Ppu-S5Ty5XsGywR5ZrJ9fwj7gmNoeJMd9A9-b7S8 priority: 102 providerName: Springer Nature |
Title | Screening transition metal-based polar pentagonal monolayers with large piezoelectricity and shift current |
URI | https://link.springer.com/article/10.1038/s41524-022-00728-4 https://www.proquest.com/docview/2639133196 https://doaj.org/article/4d96ec816b204cf7bdbb2ca381f8eda7 |
Volume | 8 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3Nb9MwFLdgu8BhGl-isFU-cANrTuLazmnqqpWpEhNiTOrNir9G0WjDml346_ee464MiV2SyHEi5z0779O_R8gHpawsfKiZ1VoyYYvAmqr2jNdYDhKGriPud_5yLs8uxWw-mmeH2zqnVW7-ielH7VcOfeRHJYhSsKdgwhy3vxlWjcLoai6h8ZTsInQZpnSpudr6WGowKATPe2V4pY_WKK8EwxR2xMzWTDyQRwm2_4Gu-U94NEmd6T7Zy-oiHff8fUGehOVL8vwvEMFX5OeFw9wZuKYdCp6Ug0V_BdCqGcooT1s0X2mLWeJXqHhT-BZoQmWboh-WXmM6OG0X4c-qL4uzcKCc02bp6frHInbU9ShOr8nl9PT75IzlCgrMgZzpGG5clUrwIKwT2upYNiDfo45RRemtVNxp4aVzuuZWNRgWVhVYXLxBzJ3gqzdkZ7lahreEKuEaC1ZrEM6DSQ38rF2wSoxilNxyNSDFho7GZXhxrHJxbVKYu9Kmp70B2ptEeyMG5OP9M20PrvFo7xNkz31PBMZODaubK5PXmRG-lsHpQtqSCxeV9daWrgG9JOrgGxjmwYa5Jq_WtdnOrQH5tGH49vb_h_Tu8be9J8_KNNUqVowOyE53cxsOQYfp7DBNVDjq6ech2R2PZxczOJ-cnn_9Bq0TORkm78AdWa_1XQ |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VcgAOiKdYKOADnMCqk3ht54AQr2VLHxdaqTcTv8qishu6QQh-FL-RmTy6FIneeoscJ7Jmxp75PC-AJ1o7lYVYcmeM4tJlkVdFGbgoqR0kLt0kynfe3VPTA_nhcHy4Br-HXBgKqxzOxPagDgtPd-SbOapSxFMoMC_rb5y6RpF3dWih0YnFdvz5AyHb8sXWW-Tv0zyfvNt_M-V9VwHu8extOCVzKi1FlM5L40zKK9R5yaSkkwpOaeGNDMp7UwqnK3KV6gJRiKioDk0MBf73ElyWRVHSjjKT96s7nRIBjBR9bo4ozOaS9KPkFDJPNboNl2f0X9sm4Ixt-487ttVykxtwvTdP2atOnm7CWpzfgmt_FS28DV8-eorVwWfWkKJrY77Y14hWPCedGFhNcJnVFJV-RIY-Q9rhEBn3jO592TGFn7N6Fn8tujY8M49ggFXzwJafZ6lhvqsadQcOLoS2d2F9vpjHe8C09JVDlBylDwjhUX5KH52W45SUcEKPIBvoaH1fzpy6ahzb1q1eGNvR3iLtbUt7K0fw7PSbuivmce7s18Se05lUiLsdWJwc2X5fWxlKFb3JlMuF9Em74FzuK7SDkomhwmVuDMy1_emwtCtZHsHzgeGr1_9f0v3z__YYrkz3d3fsztbe9gO4mrdiV_BsvAHrzcn3-BDtp8Y9aoWWwaeL3iV_AAK6KyQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR3LbtQwcFSKhOCAeIqFAj7ACax1Eq_tHBACyqqlUCFBpb2Z-FUWld3QDULwaXwdM3l0KRK99RY5TmTNezwvgEdaO5WFWHJnjOLSZZFXRRm4KGkcJB7dJKp3frevdg7km9lktgG_h1oYSqscZGIrqMPS0x35OEdViv4UEsw49WkR77enz-tvnCZIUaR1GKfRkche_PkD3bfVs91txPXjPJ--_vhqh_cTBrhHOdxwKuxUWooonZfGmZRXqP-SSUknFZzSwhsZlPemFE5XFDbVBXokoqKeNDEU-N8LcFEXk4x4TM_0-n6nRGdGir5ORxRmvCJdKTmlz1O_bsPlKV3Yjgw4Zef-E5ptNd70GlztTVX2oqOt67ARFzfgyl8NDG_Clw-e8nbwmTWk9Nr8L_Y1okXPST8GVpPrzGrKUD8ko58h7HCJDH1Gd8DsiFLRWT2Pv5bdSJ65R8eAVYvAVp_nqWG-6yB1Cw7OBba3YXOxXMQ7wLT0lUOPOUof0J1HWip9dFpOUlLCCT2CbICj9X1rc5qwcWTbEHthbAd7i7C3LeytHMGTk2_qrrHHmbtfEnpOdlJT7nZheXxoex63MpQqepMplwvpk3bBudxXaBMlE0OFx9wakGt7SbGya7oewdMB4evX_z_S3bP_9hAuIX_Yt7v7e_fgct5SXcGzyRZsNsff4300pRr3oKVZBp_Om0n-AM68L1E |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Screening+transition+metal-based+polar+pentagonal+monolayers+with+large+piezoelectricity+and+shift+current&rft.jtitle=npj+computational+materials&rft.au=Guo+Yaguang&rft.au=Zhou%2C+Jian&rft.au=Xie+Huanhuan&rft.au=Chen%2C+Yanyan&rft.date=2022-03-15&rft.pub=Nature+Publishing+Group&rft.eissn=2057-3960&rft.volume=8&rft.issue=1&rft_id=info:doi/10.1038%2Fs41524-022-00728-4&rft.externalDBID=HAS_PDF_LINK |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2057-3960&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2057-3960&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2057-3960&client=summon |