Mean-square stability of Riemann–Liouville fractional Hopfield’s graded response neural networks with random impulses
In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state displacement at random times is considered. The model is set up and studied. The presence of random moments of impulses in the model leads to a change...
Saved in:
Published in | Advances in difference equations Vol. 2021; no. 1; pp. 1 - 20 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Cham
Springer International Publishing
04.02.2021
Springer Nature B.V SpringerOpen |
Subjects | |
Online Access | Get full text |
ISSN | 1687-1847 1687-1839 1687-1847 |
DOI | 10.1186/s13662-021-03237-8 |
Cover
Loading…
Abstract | In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state displacement at random times is considered. The model is set up and studied. The presence of random moments of impulses in the model leads to a change of the solutions to stochastic processes. Also, we use the Riemann–Liouville fractional derivative to model adequately the long-term memory and the nonlocality in the neural networks. We set up in an appropriate way both the initial conditions and the impulsive conditions at random moments. The application of the Riemann–Liouville fractional derivative leads to a new definition of the equilibrium point. We define mean-square Mittag-Leffler stability in time of the equilibrium point of the model and study this type of stability. Some sufficient conditions for this type of stability are obtained. The general case with time varying self-regulating parameters of all units and time varying functions of the connection between two neurons is studied. |
---|---|
AbstractList | In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state displacement at random times is considered. The model is set up and studied. The presence of random moments of impulses in the model leads to a change of the solutions to stochastic processes. Also, we use the Riemann–Liouville fractional derivative to model adequately the long-term memory and the nonlocality in the neural networks. We set up in an appropriate way both the initial conditions and the impulsive conditions at random moments. The application of the Riemann–Liouville fractional derivative leads to a new definition of the equilibrium point. We define mean-square Mittag-Leffler stability in time of the equilibrium point of the model and study this type of stability. Some sufficient conditions for this type of stability are obtained. The general case with time varying self-regulating parameters of all units and time varying functions of the connection between two neurons is studied. In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state displacement at random times is considered. The model is set up and studied. The presence of random moments of impulses in the model leads to a change of the solutions to stochastic processes. Also, we use the Riemann–Liouville fractional derivative to model adequately the long-term memory and the nonlocality in the neural networks. We set up in an appropriate way both the initial conditions and the impulsive conditions at random moments. The application of the Riemann–Liouville fractional derivative leads to a new definition of the equilibrium point. We define mean-square Mittag-Leffler stability in time of the equilibrium point of the model and study this type of stability. Some sufficient conditions for this type of stability are obtained. The general case with time varying self-regulating parameters of all units and time varying functions of the connection between two neurons is studied. Abstract In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state displacement at random times is considered. The model is set up and studied. The presence of random moments of impulses in the model leads to a change of the solutions to stochastic processes. Also, we use the Riemann–Liouville fractional derivative to model adequately the long-term memory and the nonlocality in the neural networks. We set up in an appropriate way both the initial conditions and the impulsive conditions at random moments. The application of the Riemann–Liouville fractional derivative leads to a new definition of the equilibrium point. We define mean-square Mittag-Leffler stability in time of the equilibrium point of the model and study this type of stability. Some sufficient conditions for this type of stability are obtained. The general case with time varying self-regulating parameters of all units and time varying functions of the connection between two neurons is studied. |
ArticleNumber | 98 |
Author | Agarwal, R. O’Regan, D. Hristova, S. Kopanov, P. |
Author_xml | – sequence: 1 givenname: R. surname: Agarwal fullname: Agarwal, R. organization: Department of Mathematics, Texas A&M University–Kingsville, Florida Institute of Technology – sequence: 2 givenname: S. surname: Hristova fullname: Hristova, S. email: snehri@gmail.com organization: Plovdiv University – sequence: 3 givenname: D. surname: O’Regan fullname: O’Regan, D. organization: School of Mathematics, Statistics and Applied Mathematics, National University of Ireland – sequence: 4 givenname: P. surname: Kopanov fullname: Kopanov, P. organization: Plovdiv University |
BookMark | eNp9kc1u1DAUhSNUJNrCC7CyxDrgv9jOElVAKw1CQrC2HPt68JCxU9uhml3foSter09CpgGBWHR1r67Od3R1zllzElOEpnlJ8GtClHhTCBOCtpiSFjPKZKueNKdEKNkSxeXJP_uz5qyUHca050qdNoePYGJbrmeTAZVqhjCGekDJo88B9ibG-9u7TUjzjzCOgHw2toYUzYgu0-QDjO7-9mdB22wcOJShTCkWQBHmvGgi1JuUvxd0E-o3lE10aY_CfprHAuV589SbZXnxe543X9-_-3Jx2W4-fbi6eLtpLad9bSmWviOUctMDYQN13Aqleum57KTopTFOMds5LKST3mMOHIsOC0sss4MFdt5crb4umZ2ectibfNDJBP1wSHmrTa7BjqBFt3jAMDgigBNjFfbKWUqtp2DAdovXq9Vryul6hlL1Ls15iaNoypVYMmVMLSq1qmxOpWTw2oZqjrnVbMKoCdbH0vRaml5K0w-l6SNK_0P_PPwoxFaoLOK4hfz3q0eoX7t-sH8 |
CitedBy_id | crossref_primary_10_3390_e25081146 crossref_primary_10_61383_ejam_20242371 crossref_primary_10_3934_math_20231372 |
Cites_doi | 10.1016/j.cam.2020.112984 10.1016/j.physa.2018.05.060 10.1002/asjc.1675 10.1007/978-3-642-20545-3 10.1016/j.nonrwa.2008.10.050 10.1016/j.neunet.2017.06.010 10.1007/978-3-642-14574-2 10.1007/s11063-019-10050-8 10.1186/1687-1847-2013-372 10.1109/TNNLS.2016.2582512 10.1002/mma.3515 10.1016/j.nonrwa.2007.08.019 10.1016/j.neucom.2014.11.068 10.1016/S0252-9602(17)30053-X 10.1016/j.jfranklin.2020.06.025 10.1016/j.neucom.2019.03.005 10.1515/fca-2016-0017 10.1155/2014/529358 10.1515/ijnsns-2017-0179 10.1002/widm.1200 10.3390/math8081379 10.1007/s12555-017-0371-0 10.1007/s11063-019-10154-1 10.1109/ICACI.2017.7974482 10.1155/2017/6875874 10.1073/pnas.79.8.2554 10.1109/TCSII.2005.849032 10.1016/S0096-3003(03)00750-1 |
ContentType | Journal Article |
Copyright | The Author(s) 2021 The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: The Author(s) 2021 – notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | C6C AAYXX CITATION 3V. 7SC 7TB 7XB 8AL 8FD 8FE 8FG 8FK ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ CCPQU DWQXO FR3 GNUQQ HCIFZ JQ2 K7- KR7 L6V L7M L~C L~D M0N M7S P5Z P62 PHGZM PHGZT PIMPY PKEHL PQEST PQGLB PQQKQ PQUKI PRINS PTHSS Q9U DOA |
DOI | 10.1186/s13662-021-03237-8 |
DatabaseName | Springer Nature OA Free Journals CrossRef ProQuest Central (Corporate) Computer and Information Systems Abstracts Mechanical & Transportation Engineering Abstracts ProQuest Central (purchase pre-March 2016) Computing Database (Alumni Edition) Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Materials Science & Engineering ProQuest Central (Alumni) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest One Community College ProQuest Central Korea Engineering Research Database ProQuest Central Student SciTech Premium Collection ProQuest Computer Science Collection Computer Science Database Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Computing Database Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Premium ProQuest One Academic ProQuest Publicly Available Content ProQuest One Academic Middle East (New) ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection ProQuest Central Basic DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Computer Science Database ProQuest Central Student Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest Central China ProQuest Central ProQuest One Applied & Life Sciences ProQuest Engineering Collection ProQuest Central Korea ProQuest Central (New) Advanced Technologies Database with Aerospace Engineering Collection Advanced Technologies & Aerospace Collection Civil Engineering Abstracts ProQuest Computing Engineering Database ProQuest Central Basic ProQuest Computing (Alumni Edition) ProQuest One Academic Eastern Edition ProQuest Technology Collection ProQuest SciTech Collection Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database ProQuest One Academic UKI Edition Materials Science & Engineering Collection Engineering Research Database ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: DOA name: DOAJ : directory of open access journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 3 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Mathematics |
EISSN | 1687-1847 |
EndPage | 20 |
ExternalDocumentID | oai_doaj_org_article_657d7ebbd16e41ac80f8dc22cf2eaec5 10_1186_s13662_021_03237_8 |
GrantInformation_xml | – fundername: Bulgarian National Science Fund grantid: KP-06-N32/7 funderid: http://dx.doi.org/10.13039/501100003336 |
GroupedDBID | -A0 23M 2WC 3V. 4.4 40G 5GY 5VS 6J9 8FE 8FG 8R4 8R5 AAFWJ AAYZJ ABDBF ABJCF ABUWG ACGFO ACGFS ACIPV ACIWK ACUHS ADBBV ADINQ AEGXH AENEX AFKRA AFPKN AHBYD AHYZX AIAGR ALMA_UNASSIGNED_HOLDINGS AMKLP AMTXH ARAPS AZQEC BAPOH BCNDV BENPR BGLVJ BPHCQ C24 C6C CCPQU CS3 DWQXO EBS ESX GNUQQ GROUPED_DOAJ HCIFZ J9A K6V K7- KQ8 L6V M0N M7S M~E OK1 P2P P62 PIMPY PQQKQ PROAC PTHSS Q2X REM RHU RNS RSV SMT SOJ TUS U2A UPT ~8M AAYXX CITATION OVT PHGZM PHGZT 7SC 7TB 7XB 8AL 8FD 8FK FR3 JQ2 KR7 L7M L~C L~D PKEHL PQEST PQGLB PQUKI PRINS Q9U PUEGO |
ID | FETCH-LOGICAL-c429t-207f51224a9e13b2d4c68897f4757697aad83c5d067d7ff04e406506c1c3cbce3 |
IEDL.DBID | 40G |
ISSN | 1687-1847 1687-1839 |
IngestDate | Wed Aug 27 01:12:40 EDT 2025 Fri Jul 25 18:55:09 EDT 2025 Tue Jul 01 00:35:44 EDT 2025 Thu Apr 24 23:10:12 EDT 2025 Fri Feb 21 02:48:59 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | 34F99 Lyapunov functions 34A37 Riemann–Liouville fractional derivative 34D20 Impulses at random times Hopfield’s graded response neural network 92B20 Mean-square Mittag-Leffler stability in time |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c429t-207f51224a9e13b2d4c68897f4757697aad83c5d067d7ff04e406506c1c3cbce3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://link.springer.com/10.1186/s13662-021-03237-8 |
PQID | 2486294338 |
PQPubID | 237355 |
PageCount | 20 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_657d7ebbd16e41ac80f8dc22cf2eaec5 proquest_journals_2486294338 crossref_citationtrail_10_1186_s13662_021_03237_8 crossref_primary_10_1186_s13662_021_03237_8 springer_journals_10_1186_s13662_021_03237_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-02-04 |
PublicationDateYYYYMMDD | 2021-02-04 |
PublicationDate_xml | – month: 02 year: 2021 text: 2021-02-04 day: 04 |
PublicationDecade | 2020 |
PublicationPlace | Cham |
PublicationPlace_xml | – name: Cham – name: New York |
PublicationTitle | Advances in difference equations |
PublicationTitleAbbrev | Adv Differ Equ |
PublicationYear | 2021 |
Publisher | Springer International Publishing Springer Nature B.V SpringerOpen |
Publisher_xml | – name: Springer International Publishing – name: Springer Nature B.V – name: SpringerOpen |
References | Zhang, Ye, Cao, Alsaedi (CR28) 2017; 2017 Yang, Xu (CR26) 2015; 52 Diethelm (CR8) 2010 Wang, Yang, Hu (CR24) 2015; 154 Gopalsamy (CR9) 2004; 154 Zhang, Ye, Cao, Alsaedi, Li, Wang (CR30) 2018; 20 Agarwal, Hristova, O’Regan, Kopanov (CR3) 2017; 70 Pu, Yi, Zhou (CR18) 2017; 28 Wu, Li (CR25) 2017 Agarwal, Hristova, O’Regan (CR1) 2013; 2013 Scardapane, Wang (CR21) 2017; 7 Tavares, Santos, Lemes, Santos, Ferreira, Braga (CR23) 2021; 381 Zhou (CR33) 2009; 10 Hopfield (CR12) 1982; 79 Rifhat, Muhammadhaji, Teng (CR20) 2018; 19 Zhang, Qi, Wang (CR31) 2010 Agarwal, Hristova, O’Regan, Kopanov (CR5) 2020; 8 Kaslik, Sivasundaram (CR13) 2011 Zhang, Niu, Ma, Wei, Li (CR32) 2017; 94 Das (CR7) 2011 Gu, Wang, Yu (CR10) 2019; 340 Song, Zhao, Xing, Peng (CR22) 2016; 39 Agarwal, Hristova, O’Regan (CR2) 2016; 19 Gu, Wang, Yu (CR11) 2020 Zhang, Ye, Ye, Cao (CR27) 2018; 508 Kilbas, Srivastava, Trujillo (CR14) 2006 Pratap, Alzabut, Dianavinnarasi, Cao, Rajchakit (CR17) 2020; 51 Rakkiyappan, Balasubramaiam, Cao (CR19) 2010; 11 Alofi, Cao, Elaiw, Al-Mazrooei (CR6) 2014; 2014 Li, Wu, Huang (CR15) 2019 Podlubny (CR16) 1999 Agarwal, Hristova, O’Regan, Kopanov (CR4) 2017; 37 Zhang, Ye, Cao, Alsaedi (CR29) 2018; 16 H. Zhang (3237_CR29) 2018; 16 Sh. Das (3237_CR7) 2011 R. Rifhat (3237_CR20) 2018; 19 X. Zhang (3237_CR32) 2017; 94 R. Zhang (3237_CR31) 2010 A. Pratap (3237_CR17) 2020; 51 H. Zhang (3237_CR30) 2018; 20 S. Scardapane (3237_CR21) 2017; 7 Z. Yang (3237_CR26) 2015; 52 Q. Zhou (3237_CR33) 2009; 10 E. Kaslik (3237_CR13) 2011 Z. Wu (3237_CR25) 2017 R.P. Agarwal (3237_CR4) 2017; 37 A. Alofi (3237_CR6) 2014; 2014 Y. Gu (3237_CR10) 2019; 340 I. Podlubny (3237_CR16) 1999 Y.F. Pu (3237_CR18) 2017; 28 F. Wang (3237_CR24) 2015; 154 K. Gopalsamy (3237_CR9) 2004; 154 R. Agarwal (3237_CR1) 2013; 2013 J.D. Li (3237_CR15) 2019 A.A. Kilbas (3237_CR14) 2006 H. Zhang (3237_CR28) 2017; 2017 H. Zhang (3237_CR27) 2018; 508 X. Song (3237_CR22) 2016; 39 Y. Gu (3237_CR11) 2020 K. Diethelm (3237_CR8) 2010 R. Agarwal (3237_CR2) 2016; 19 J.J. Hopfield (3237_CR12) 1982; 79 R.P. Agarwal (3237_CR5) 2020; 8 R. Rakkiyappan (3237_CR19) 2010; 11 C.A. Tavares (3237_CR23) 2021; 381 R.P. Agarwal (3237_CR3) 2017; 70 |
References_xml | – volume: 70 start-page: 99 year: 2017 end-page: 106 ident: CR3 article-title: p-moment exponential stability of differential equations with random impulses and the Erlang distribution publication-title: Mem. Differ. Equ. Math. Phys. – volume: 154 start-page: 783 year: 2004 end-page: 813 ident: CR9 article-title: Stability of artificial neural networks with impulses publication-title: Appl. Math. Comput. – volume: 381 year: 2021 ident: CR23 article-title: Solving ill-posed problems faster using fractional-order Hopfield neural network publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2020.112984 – volume: 508 start-page: 155 year: 2018 end-page: 165 ident: CR27 article-title: Synchronization stability of Riemann–Liouville fractional delay-coupled complex neural networks publication-title: Physica A doi: 10.1016/j.physa.2018.05.060 – volume: 20 start-page: 1938 issue: 5 year: 2018 end-page: 1951 ident: CR30 article-title: Lyapunov functional approach to stability analysis of Riemann–Liouville fractional neural networks with time-varying delays publication-title: Asian J. Control doi: 10.1002/asjc.1675 – year: 2011 ident: CR7 publication-title: Functional Fractional Calculus doi: 10.1007/978-3-642-20545-3 – volume: 11 start-page: 122 year: 2010 end-page: 130 ident: CR19 article-title: Global exponential stability of neutral-type impulsive neural networks publication-title: Nonlinear Anal., Real World Appl. doi: 10.1016/j.nonrwa.2008.10.050 – volume: 94 start-page: 67 year: 2017 end-page: 75 ident: CR32 article-title: Neural networks global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.06.010 – year: 2010 ident: CR8 publication-title: The Analysis of Fractional Differential Equations doi: 10.1007/978-3-642-14574-2 – year: 2019 ident: CR15 article-title: Asymptotical stability of Riemann–Liouville fractional-order neutral-type delayed projective neural networks publication-title: Neural Process. Lett. doi: 10.1007/s11063-019-10050-8 – volume: 2013 year: 2013 ident: CR1 article-title: Exponential stability for differential equations with random impulses at random times publication-title: Adv. Differ. Equ. doi: 10.1186/1687-1847-2013-372 – volume: 28 start-page: 2319 issue: 10 year: 2017 end-page: 2333 ident: CR18 article-title: Fractional Hopfield neural networks: fractional dynamic associative recurrent neural networks publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582512 – volume: 39 start-page: 722 year: 2016 end-page: 733 ident: CR22 article-title: Global asymptotic stability of CNNs with impulses and multi-proportional delays publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.3515 – volume: 10 start-page: 144 year: 2009 end-page: 153 ident: CR33 article-title: Global exponential stability of BAM neural networks with distributed delays and impulses publication-title: Nonlinear Anal., Real World Appl. doi: 10.1016/j.nonrwa.2007.08.019 – start-page: 611 year: 2011 end-page: 618 ident: CR13 article-title: Dynamics of fractional-order neural networks publication-title: Proc. Int. Joint Conf. Neural Netw – volume: 154 start-page: 239 issue: 22 year: 2015 end-page: 244 ident: CR24 article-title: Asymptotic stability of delayed fractional-order neural networks with impulsive effects publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.11.068 – volume: 37 start-page: 985 issue: 4 year: 2017 end-page: 997 ident: CR4 article-title: Impulsive differential equations with gamma distributed moments of impulses and p-moment exponential stability publication-title: Acta Math. Sci. doi: 10.1016/S0252-9602(17)30053-X – year: 2020 ident: CR11 article-title: Synchronization for commensurate Riemann–Liouville fractional-order memristor-based neural networks with unknown parameters publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.06.025 – volume: 340 start-page: 270 year: 2019 end-page: 280 ident: CR10 article-title: Stability and synchronization for Riemann–Liouville fractional-order time-delayed inertial neural networks publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.03.005 – start-page: 3037 year: 2010 end-page: 3039 ident: CR31 article-title: Dynamics analysis of fractional order three-dimensional Hopfield neural network publication-title: Proc. 6th Int. Conf. Natural Comput. – year: 1999 ident: CR16 publication-title: Fractional Differential Equations – volume: 19 start-page: 290 issue: 2 year: 2016 end-page: 318 ident: CR2 article-title: A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2016-0017 – volume: 2014 year: 2014 ident: CR6 article-title: Delay-dependent stability criterion of Caputo fractional neural networks with distributed delay publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2014/529358 – volume: 19 start-page: 205 issue: 2 year: 2018 end-page: 213 ident: CR20 article-title: Global Mittag-Leffler synchronization for impulsive fractional-order neural networks with delays publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/ijnsns-2017-0179 – volume: 7 year: 2017 ident: CR21 article-title: Randomness in neural networks: an overview publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1200 – volume: 8 year: 2020 ident: CR5 article-title: p-moment Mittag-Leffler stability of Riemann–Liouville fractional differential equations with random impulses publication-title: Mathematics doi: 10.3390/math8081379 – year: 2006 ident: CR14 publication-title: Theory and Applications of Fractional Differential Equations – volume: 16 start-page: 1404 issue: 3 year: 2018 end-page: 1414 ident: CR29 article-title: Synchronization control of Riemann–Liouville fractional competitive network systems with time-varying delay and different time scales publication-title: Int. J. Control. Autom. Syst. doi: 10.1007/s12555-017-0371-0 – volume: 51 start-page: 1485 year: 2020 end-page: 1526 ident: CR17 article-title: Finite-time Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with impulses publication-title: Neural Process. Lett. doi: 10.1007/s11063-019-10154-1 – start-page: 37 year: 2017 end-page: 42 ident: CR25 article-title: Exponential stability analysis of delayed neural networks with impulsive time window publication-title: Advanced Computational Intelligence (ICACI), 2017 Ninth International Conference on doi: 10.1109/ICACI.2017.7974482 – volume: 2017 year: 2017 ident: CR28 article-title: Existence and globally asymptotic stability of equilibrium solution for fractional-order hybrid BAM neural networks with distributed delays and impulses publication-title: Complexity doi: 10.1155/2017/6875874 – volume: 79 start-page: 2554 year: 1982 end-page: 2558 ident: CR12 article-title: Neural networks and physical systems with emergent collective computational abilities publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.79.8.2554 – volume: 52 start-page: 517 issue: 8 year: 2015 end-page: 521 ident: CR26 article-title: Stability analysis of delay neural networks with impulsive effects publication-title: IEEE Trans. Circuits Syst. II, Express Briefs doi: 10.1109/TCSII.2005.849032 – volume: 2013 year: 2013 ident: 3237_CR1 publication-title: Adv. Differ. Equ. doi: 10.1186/1687-1847-2013-372 – start-page: 37 volume-title: Advanced Computational Intelligence (ICACI), 2017 Ninth International Conference on year: 2017 ident: 3237_CR25 doi: 10.1109/ICACI.2017.7974482 – volume: 20 start-page: 1938 issue: 5 year: 2018 ident: 3237_CR30 publication-title: Asian J. Control doi: 10.1002/asjc.1675 – volume: 154 start-page: 239 issue: 22 year: 2015 ident: 3237_CR24 publication-title: Neurocomputing doi: 10.1016/j.neucom.2014.11.068 – volume: 19 start-page: 290 issue: 2 year: 2016 ident: 3237_CR2 publication-title: Fract. Calc. Appl. Anal. doi: 10.1515/fca-2016-0017 – start-page: 611 volume-title: Proc. Int. Joint Conf. Neural Netw year: 2011 ident: 3237_CR13 – volume: 8 year: 2020 ident: 3237_CR5 publication-title: Mathematics doi: 10.3390/math8081379 – volume: 19 start-page: 205 issue: 2 year: 2018 ident: 3237_CR20 publication-title: Int. J. Nonlinear Sci. Numer. Simul. doi: 10.1515/ijnsns-2017-0179 – volume: 10 start-page: 144 year: 2009 ident: 3237_CR33 publication-title: Nonlinear Anal., Real World Appl. doi: 10.1016/j.nonrwa.2007.08.019 – volume: 16 start-page: 1404 issue: 3 year: 2018 ident: 3237_CR29 publication-title: Int. J. Control. Autom. Syst. doi: 10.1007/s12555-017-0371-0 – volume: 79 start-page: 2554 year: 1982 ident: 3237_CR12 publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.79.8.2554 – volume: 28 start-page: 2319 issue: 10 year: 2017 ident: 3237_CR18 publication-title: IEEE Trans. Neural Netw. Learn. Syst. doi: 10.1109/TNNLS.2016.2582512 – volume: 39 start-page: 722 year: 2016 ident: 3237_CR22 publication-title: Math. Methods Appl. Sci. doi: 10.1002/mma.3515 – volume: 94 start-page: 67 year: 2017 ident: 3237_CR32 publication-title: Neural Netw. doi: 10.1016/j.neunet.2017.06.010 – volume-title: Functional Fractional Calculus year: 2011 ident: 3237_CR7 doi: 10.1007/978-3-642-20545-3 – volume: 381 year: 2021 ident: 3237_CR23 publication-title: J. Comput. Appl. Math. doi: 10.1016/j.cam.2020.112984 – volume: 2014 year: 2014 ident: 3237_CR6 publication-title: Discrete Dyn. Nat. Soc. doi: 10.1155/2014/529358 – volume: 154 start-page: 783 year: 2004 ident: 3237_CR9 publication-title: Appl. Math. Comput. doi: 10.1016/S0096-3003(03)00750-1 – volume: 37 start-page: 985 issue: 4 year: 2017 ident: 3237_CR4 publication-title: Acta Math. Sci. doi: 10.1016/S0252-9602(17)30053-X – volume: 51 start-page: 1485 year: 2020 ident: 3237_CR17 publication-title: Neural Process. Lett. doi: 10.1007/s11063-019-10154-1 – volume-title: The Analysis of Fractional Differential Equations year: 2010 ident: 3237_CR8 doi: 10.1007/978-3-642-14574-2 – year: 2020 ident: 3237_CR11 publication-title: J. Franklin Inst. doi: 10.1016/j.jfranklin.2020.06.025 – volume-title: Theory and Applications of Fractional Differential Equations year: 2006 ident: 3237_CR14 – volume: 7 year: 2017 ident: 3237_CR21 publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov. doi: 10.1002/widm.1200 – volume: 508 start-page: 155 year: 2018 ident: 3237_CR27 publication-title: Physica A doi: 10.1016/j.physa.2018.05.060 – year: 2019 ident: 3237_CR15 publication-title: Neural Process. Lett. doi: 10.1007/s11063-019-10050-8 – volume: 2017 year: 2017 ident: 3237_CR28 publication-title: Complexity doi: 10.1155/2017/6875874 – volume-title: Fractional Differential Equations year: 1999 ident: 3237_CR16 – volume: 70 start-page: 99 year: 2017 ident: 3237_CR3 publication-title: Mem. Differ. Equ. Math. Phys. – volume: 11 start-page: 122 year: 2010 ident: 3237_CR19 publication-title: Nonlinear Anal., Real World Appl. doi: 10.1016/j.nonrwa.2008.10.050 – start-page: 3037 volume-title: Proc. 6th Int. Conf. Natural Comput. year: 2010 ident: 3237_CR31 – volume: 52 start-page: 517 issue: 8 year: 2015 ident: 3237_CR26 publication-title: IEEE Trans. Circuits Syst. II, Express Briefs doi: 10.1109/TCSII.2005.849032 – volume: 340 start-page: 270 year: 2019 ident: 3237_CR10 publication-title: Neurocomputing doi: 10.1016/j.neucom.2019.03.005 |
SSID | ssj0029488 |
Score | 2.216629 |
Snippet | In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state... In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state... Abstract In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state... |
SourceID | doaj proquest crossref springer |
SourceType | Open Website Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 1 |
SubjectTerms | Analysis Difference and Functional Equations Functional Analysis Hopfield’s graded response neural network Impulses Impulses at random times Initial conditions Lyapunov functions Mathematics Mathematics and Statistics Mean-square Mittag-Leffler stability in time Neural networks Neurons Ordinary Differential Equations Partial Differential Equations Riemann–Liouville fractional derivative Stability Stochastic processes |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFLbQTnBAbANR2CYfdhtRG9u1nSNDTBViO0xM6s1y7GdUiSalaSf11v-w0_7efgnPTjI2JNiFa-JEVr7P_t6Lnz8TcqzBlSgUImMqyExYDTgP6pBx61TunXTBxhXd8ws5uRJfpuPpg6O-Yk1Yaw_cfrihHCuvoCx9LkHk1ulR0N4x5gIDCy65l6Lm9clUl2oVyMt-i4yWwybnUrIsliOMOOM4Lz-SoeTW_yjE_GNVNInN2SvysosS6ce2d7vkGVR75MUD78B9sjkHW2XNT4QYKIZ4qch1Q-tAL2cwt1V1t735OqvX13GzHw3LdgMDvnRSL1LZ2t32tqHfl9aDp8u2UhZotLfENlVbHN7Q-JuWopz5ek5n88UahbR5Ta7OPn_7NMm6cxQyh2qzwoGgwjiuoNkCcl4yL5zUulBBKMw2CmWt19yNPQqXVyGMBIgYuEmXO-5KB_wN2anqCt4SWgYMMTCk4aEUAjyzmMciHqhwOFUEnw9I3n9W4zqT8XjWxQ-Tkg0tTQuFQShMgsLoATm5f2bRWmz8s_VpROu-ZbTHTheQNKYjjXmKNANy0GNtujHbGCYwuysE5uwD8qHH__ftv3fp3f_o0nvynCV-Ik3FAdlZLddwiPHOqjxK1P4FIrAA1Q priority: 102 providerName: Directory of Open Access Journals – databaseName: ProQuest Central dbid: BENPR link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagvcAB8SsWCvKBG0Td2I7jnBBFrVaIVqiiUm-WY4-rldhkm-wi9dZ36Kmv1ydh7DhbikSviWMl-cYz33jGM4R8UGBrNBQiY6WXmTAKUA8qn3Fjy9xZab0JEd3DIzk7Ed9Oi9O04dantMpRJ0ZF7Vob9sh3mUDuXQn0qD4vz7PQNSpEV1MLjYdkG1WwQudre2__6MfxxuWqROw8mUtcSoELjMdmlNztcy4ly0KKwpQzjrr6jmmKFfzv0M5_IqXRAB08JU8Sc6RfBqifkQfQPCeP_6on-IJcHIJpsv4cYQeKtC8mvl7Q1tPjOSxM09xcXn2ft-vf4QAg9d1wqAEnnbXLmMp2c3nd07POOHC0G7JngYaSlzimGRLGexq2bimaONcu6HyxXKNx7V-Sk4P9n19nWeqtkFm0QCtcHKUvQlTNVJDzmjlhpVJV6UWJHkhVGuMUt4VDY-ZK76cCRCBz0uaW29oCf0W2mraB14TWHmkH0hzuayHAMYO-rVcOrR6qD-_yCcnH36ptKjwe-l_80tEBUVIPUGiEQkcotJqQj5tnlkPZjXtH7wW0NiNDyex4oe3OdFqBWhb4JVDXLpcgcmPVFF_SMmY9AwO2mJCdEWud1nGvb6VuQj6N-N_e_v8rvbl_trfkEYuShwIodsjWqlvDO2Q3q_p9EuE_E9b5sA priority: 102 providerName: ProQuest |
Title | Mean-square stability of Riemann–Liouville fractional Hopfield’s graded response neural networks with random impulses |
URI | https://link.springer.com/article/10.1186/s13662-021-03237-8 https://www.proquest.com/docview/2486294338 https://doaj.org/article/657d7ebbd16e41ac80f8dc22cf2eaec5 |
Volume | 2021 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1Nb9Mw1ILtAgfEpygbkw_cIKKxHcc5btVKheiEJirtZjn281SJJV3STtpt_4ETf2-_hGcnKQwBEhdLTl4UJ-_b78OEvFFgS1QUImG5l4kwClAOKp9wY_PUWWm9CRHd-YmcLcTHs-ysLwprh2z3ISQZJXVkayXftymXkiUhpWDMGUfZep_shnZiIZFLjD9s3awCaXIoj_njc3dUUOzUf8e8_C0iGhXN9DF51FuI9LBD6RNyD6qn5OEvfQNxNt82W22fkes5mCppLxHZQNHYi-mu17T29HSJQFV1e_Pt07LeXIWyP-qbrpQBXzGrVzGB7fbme0vPG-PA0abLmQUaGl0iTNWlibc0bNhSVGyuvqDLi9UGVWr7nCymx18ms6Q_USGxqHfWyBK5z0IszRSQ8pI5YaVSRe5Fjn5HkRvjFLeZQxXmcu_HAkQw4aRNLbelBf6C7FR1BS8JLT0aG2jccF8KAY4Z9Gi9cqjrUGh4l45IOvxkbft24-HUi686uh1K6g4xGhGjI2K0GpG322dWXbONf0IfBdxtIUOj7Hihbs51z3daZvglUJYulSBSY9UYF2kZs56BAZuNyP6Aed1zb6uZQD-vEOi9j8i7gRp-3v77kl79H_geecAiXSJ5in2ys2428BptnHV5EEkaRzXFcffo-OTzKc4mcnIQdw1wXLDDH4M6_Os |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxK-6UMAHOEHUjeM4zgEh_pYt3e0BtVJvxrHH1Upssk12QXvrO3DiJXioPgljZ7OlSPTWa-JYjmc8843nj5DnEkyBioJHLHMi4loCykHpokSbLLZGGKe9R3e8L4aH_PNRerRBfne5MD6sspOJQVDbyvg78h3GEXvnHC2qN7OTyHeN8t7VroVGyxZ7sPyBJlvzevcD0vcFY4OPB--H0aqrQGRQ9s6RLTKXen-SziFOCma5EVLmmeMZYu8809rKxKQWxbjNnOtz4B7GCBObxBQGEpz3GrmOK8n9iZKDT2sDL-ehz2Us8OB65NEl6Uix08SJECzyARH9hCWoGS4owtAv4ALI_ccvG9Td4A65vcKp9G3LWHfJBpT3yK2_qhfeJ8sx6DJqTpDJgCLIDGG2S1o5-mUCU12WZ6c_R5Nq8d2nG1JXtykUOOmwmoXAubPTXw09rrUFS-s2VheoL7CJY8o2PL2h_qKYokK11ZROprMFqvLmATm8kj1_SDbLqoQtQguHIAdBVeIKzsEyjZa0kxZ1LAorZ-MeibttVWZV5tx32_imgrkjhWpJoZAUKpBCyR55uf5m1hb5uHT0O0-t9UhfoDs8qOpjtTrvSqT4J1AUNhbAY21kHxdpGDOOgQaT9sh2R2u1khqNOufxHnnV0f_89f-X9Ojy2Z6RG8OD8UiNdvf3HpObLHAhMiPfJpvzegFPEFfNi6eBmSn5etWn5w8npjRd |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgUPEUSwv4ACeIduN4HeeAEKVdbWm7qioq9WYcP6qV2GSb7IL21v_Aib_Cz-kvYZzHliLRW6-JYzme8cw3nhfAa2F1ioqCBTR2PGBKWJSDwgWR0nFoNNdOeY_u4ZiPTtjn08HpGvxuc2F8WGUrEytBbXLt78h7lCH2ThhaVD3XhEUc7Qw_zM4D30HKe1rbdho1i-zb5Q8038r3eztI6zeUDne_fBoFTYeBQKMcniOLxG7gfUsqsWGUUsM0FyKJHYsRhyexUkZEemBQpJvYuT6zzEMarkMd6VTbCOe9A-sxWkX9Dqxv746PjlfmXsKqrpchx2PscUibsiN4rwwjzmngwyP6EY1QT1xTi1X3gGuQ9x8vbaX8hg9go0Gt5GPNZg9hzWaP4P5ftQwfw_LQqiwoz5HlLEHIWQXdLknuyPHETlWWXV78PJjki-8--ZC4ok6owElH-awKo7u8-FWSs0IZa0hRR-5a4stt4pisDlYvib82JqheTT4lk-lsgYq9fAInt7LrT6GT5Zl9BiR1CHkQYkUuZcwaqtCudsKgxkXR5UzYhbDdVqmboue-98Y3WRk_gsuaFBJJIStSSNGFt6tvZnXJjxtHb3tqrUb6ct3Vg7w4k83pl3yAf2LT1ITcslBp0cdFakq1o1ZZPejCVktr2ciQUl5xfBfetfS_ev3_JT2_ebZXcBdPjjzYG-9vwj1aMSHyItuCzrxY2BcIsubpy4abCXy97QP0B6mXOe8 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mean-square+stability+of+Riemann%E2%80%93Liouville+fractional+Hopfield%E2%80%99s+graded+response+neural+networks+with+random+impulses&rft.jtitle=Advances+in+difference+equations&rft.au=Agarwal%2C+R.&rft.au=Hristova%2C+S.&rft.au=O%E2%80%99Regan%2C+D.&rft.au=Kopanov%2C+P.&rft.date=2021-02-04&rft.issn=1687-1847&rft.eissn=1687-1847&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-021-03237-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13662_021_03237_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon |