Mean-square stability of Riemann–Liouville fractional Hopfield’s graded response neural networks with random impulses

In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state displacement at random times is considered. The model is set up and studied. The presence of random moments of impulses in the model leads to a change...

Full description

Saved in:
Bibliographic Details
Published inAdvances in difference equations Vol. 2021; no. 1; pp. 1 - 20
Main Authors Agarwal, R., Hristova, S., O’Regan, D., Kopanov, P.
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 04.02.2021
Springer Nature B.V
SpringerOpen
Subjects
Online AccessGet full text
ISSN1687-1847
1687-1839
1687-1847
DOI10.1186/s13662-021-03237-8

Cover

Loading…
Abstract In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state displacement at random times is considered. The model is set up and studied. The presence of random moments of impulses in the model leads to a change of the solutions to stochastic processes. Also, we use the Riemann–Liouville fractional derivative to model adequately the long-term memory and the nonlocality in the neural networks. We set up in an appropriate way both the initial conditions and the impulsive conditions at random moments. The application of the Riemann–Liouville fractional derivative leads to a new definition of the equilibrium point. We define mean-square Mittag-Leffler stability in time of the equilibrium point of the model and study this type of stability. Some sufficient conditions for this type of stability are obtained. The general case with time varying self-regulating parameters of all units and time varying functions of the connection between two neurons is studied.
AbstractList In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state displacement at random times is considered. The model is set up and studied. The presence of random moments of impulses in the model leads to a change of the solutions to stochastic processes. Also, we use the Riemann–Liouville fractional derivative to model adequately the long-term memory and the nonlocality in the neural networks. We set up in an appropriate way both the initial conditions and the impulsive conditions at random moments. The application of the Riemann–Liouville fractional derivative leads to a new definition of the equilibrium point. We define mean-square Mittag-Leffler stability in time of the equilibrium point of the model and study this type of stability. Some sufficient conditions for this type of stability are obtained. The general case with time varying self-regulating parameters of all units and time varying functions of the connection between two neurons is studied.
In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state displacement at random times is considered. The model is set up and studied. The presence of random moments of impulses in the model leads to a change of the solutions to stochastic processes. Also, we use the Riemann–Liouville fractional derivative to model adequately the long-term memory and the nonlocality in the neural networks. We set up in an appropriate way both the initial conditions and the impulsive conditions at random moments. The application of the Riemann–Liouville fractional derivative leads to a new definition of the equilibrium point. We define mean-square Mittag-Leffler stability in time of the equilibrium point of the model and study this type of stability. Some sufficient conditions for this type of stability are obtained. The general case with time varying self-regulating parameters of all units and time varying functions of the connection between two neurons is studied.
Abstract In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state displacement at random times is considered. The model is set up and studied. The presence of random moments of impulses in the model leads to a change of the solutions to stochastic processes. Also, we use the Riemann–Liouville fractional derivative to model adequately the long-term memory and the nonlocality in the neural networks. We set up in an appropriate way both the initial conditions and the impulsive conditions at random moments. The application of the Riemann–Liouville fractional derivative leads to a new definition of the equilibrium point. We define mean-square Mittag-Leffler stability in time of the equilibrium point of the model and study this type of stability. Some sufficient conditions for this type of stability are obtained. The general case with time varying self-regulating parameters of all units and time varying functions of the connection between two neurons is studied.
ArticleNumber 98
Author Agarwal, R.
O’Regan, D.
Hristova, S.
Kopanov, P.
Author_xml – sequence: 1
  givenname: R.
  surname: Agarwal
  fullname: Agarwal, R.
  organization: Department of Mathematics, Texas A&M University–Kingsville, Florida Institute of Technology
– sequence: 2
  givenname: S.
  surname: Hristova
  fullname: Hristova, S.
  email: snehri@gmail.com
  organization: Plovdiv University
– sequence: 3
  givenname: D.
  surname: O’Regan
  fullname: O’Regan, D.
  organization: School of Mathematics, Statistics and Applied Mathematics, National University of Ireland
– sequence: 4
  givenname: P.
  surname: Kopanov
  fullname: Kopanov, P.
  organization: Plovdiv University
BookMark eNp9kc1u1DAUhSNUJNrCC7CyxDrgv9jOElVAKw1CQrC2HPt68JCxU9uhml3foSter09CpgGBWHR1r67Od3R1zllzElOEpnlJ8GtClHhTCBOCtpiSFjPKZKueNKdEKNkSxeXJP_uz5qyUHca050qdNoePYGJbrmeTAZVqhjCGekDJo88B9ibG-9u7TUjzjzCOgHw2toYUzYgu0-QDjO7-9mdB22wcOJShTCkWQBHmvGgi1JuUvxd0E-o3lE10aY_CfprHAuV589SbZXnxe543X9-_-3Jx2W4-fbi6eLtpLad9bSmWviOUctMDYQN13Aqleum57KTopTFOMds5LKST3mMOHIsOC0sss4MFdt5crb4umZ2ectibfNDJBP1wSHmrTa7BjqBFt3jAMDgigBNjFfbKWUqtp2DAdovXq9Vryul6hlL1Ls15iaNoypVYMmVMLSq1qmxOpWTw2oZqjrnVbMKoCdbH0vRaml5K0w-l6SNK_0P_PPwoxFaoLOK4hfz3q0eoX7t-sH8
CitedBy_id crossref_primary_10_3390_e25081146
crossref_primary_10_61383_ejam_20242371
crossref_primary_10_3934_math_20231372
Cites_doi 10.1016/j.cam.2020.112984
10.1016/j.physa.2018.05.060
10.1002/asjc.1675
10.1007/978-3-642-20545-3
10.1016/j.nonrwa.2008.10.050
10.1016/j.neunet.2017.06.010
10.1007/978-3-642-14574-2
10.1007/s11063-019-10050-8
10.1186/1687-1847-2013-372
10.1109/TNNLS.2016.2582512
10.1002/mma.3515
10.1016/j.nonrwa.2007.08.019
10.1016/j.neucom.2014.11.068
10.1016/S0252-9602(17)30053-X
10.1016/j.jfranklin.2020.06.025
10.1016/j.neucom.2019.03.005
10.1515/fca-2016-0017
10.1155/2014/529358
10.1515/ijnsns-2017-0179
10.1002/widm.1200
10.3390/math8081379
10.1007/s12555-017-0371-0
10.1007/s11063-019-10154-1
10.1109/ICACI.2017.7974482
10.1155/2017/6875874
10.1073/pnas.79.8.2554
10.1109/TCSII.2005.849032
10.1016/S0096-3003(03)00750-1
ContentType Journal Article
Copyright The Author(s) 2021
The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: The Author(s) 2021
– notice: The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID C6C
AAYXX
CITATION
3V.
7SC
7TB
7XB
8AL
8FD
8FE
8FG
8FK
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
CCPQU
DWQXO
FR3
GNUQQ
HCIFZ
JQ2
K7-
KR7
L6V
L7M
L~C
L~D
M0N
M7S
P5Z
P62
PHGZM
PHGZT
PIMPY
PKEHL
PQEST
PQGLB
PQQKQ
PQUKI
PRINS
PTHSS
Q9U
DOA
DOI 10.1186/s13662-021-03237-8
DatabaseName Springer Nature OA Free Journals
CrossRef
ProQuest Central (Corporate)
Computer and Information Systems Abstracts
Mechanical & Transportation Engineering Abstracts
ProQuest Central (purchase pre-March 2016)
Computing Database (Alumni Edition)
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
ProQuest Central (Alumni) (purchase pre-March 2016)
ProQuest Materials Science & Engineering
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest One Community College
ProQuest Central Korea
Engineering Research Database
ProQuest Central Student
SciTech Premium Collection
ProQuest Computer Science Collection
Computer Science Database
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Computing Database
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Premium
ProQuest One Academic
ProQuest Publicly Available Content
ProQuest One Academic Middle East (New)
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
ProQuest Central Basic
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Computer Science Database
ProQuest Central Student
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest Central China
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Engineering Collection
ProQuest Central Korea
ProQuest Central (New)
Advanced Technologies Database with Aerospace
Engineering Collection
Advanced Technologies & Aerospace Collection
Civil Engineering Abstracts
ProQuest Computing
Engineering Database
ProQuest Central Basic
ProQuest Computing (Alumni Edition)
ProQuest One Academic Eastern Edition
ProQuest Technology Collection
ProQuest SciTech Collection
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
ProQuest One Academic UKI Edition
Materials Science & Engineering Collection
Engineering Research Database
ProQuest One Academic
ProQuest One Academic (New)
ProQuest Central (Alumni)
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: DOA
  name: DOAJ : directory of open access journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 3
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Mathematics
EISSN 1687-1847
EndPage 20
ExternalDocumentID oai_doaj_org_article_657d7ebbd16e41ac80f8dc22cf2eaec5
10_1186_s13662_021_03237_8
GrantInformation_xml – fundername: Bulgarian National Science Fund
  grantid: KP-06-N32/7
  funderid: http://dx.doi.org/10.13039/501100003336
GroupedDBID -A0
23M
2WC
3V.
4.4
40G
5GY
5VS
6J9
8FE
8FG
8R4
8R5
AAFWJ
AAYZJ
ABDBF
ABJCF
ABUWG
ACGFO
ACGFS
ACIPV
ACIWK
ACUHS
ADBBV
ADINQ
AEGXH
AENEX
AFKRA
AFPKN
AHBYD
AHYZX
AIAGR
ALMA_UNASSIGNED_HOLDINGS
AMKLP
AMTXH
ARAPS
AZQEC
BAPOH
BCNDV
BENPR
BGLVJ
BPHCQ
C24
C6C
CCPQU
CS3
DWQXO
EBS
ESX
GNUQQ
GROUPED_DOAJ
HCIFZ
J9A
K6V
K7-
KQ8
L6V
M0N
M7S
M~E
OK1
P2P
P62
PIMPY
PQQKQ
PROAC
PTHSS
Q2X
REM
RHU
RNS
RSV
SMT
SOJ
TUS
U2A
UPT
~8M
AAYXX
CITATION
OVT
PHGZM
PHGZT
7SC
7TB
7XB
8AL
8FD
8FK
FR3
JQ2
KR7
L7M
L~C
L~D
PKEHL
PQEST
PQGLB
PQUKI
PRINS
Q9U
PUEGO
ID FETCH-LOGICAL-c429t-207f51224a9e13b2d4c68897f4757697aad83c5d067d7ff04e406506c1c3cbce3
IEDL.DBID 40G
ISSN 1687-1847
1687-1839
IngestDate Wed Aug 27 01:12:40 EDT 2025
Fri Jul 25 18:55:09 EDT 2025
Tue Jul 01 00:35:44 EDT 2025
Thu Apr 24 23:10:12 EDT 2025
Fri Feb 21 02:48:59 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords 34F99
Lyapunov functions
34A37
Riemann–Liouville fractional derivative
34D20
Impulses at random times
Hopfield’s graded response neural network
92B20
Mean-square Mittag-Leffler stability in time
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c429t-207f51224a9e13b2d4c68897f4757697aad83c5d067d7ff04e406506c1c3cbce3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://link.springer.com/10.1186/s13662-021-03237-8
PQID 2486294338
PQPubID 237355
PageCount 20
ParticipantIDs doaj_primary_oai_doaj_org_article_657d7ebbd16e41ac80f8dc22cf2eaec5
proquest_journals_2486294338
crossref_citationtrail_10_1186_s13662_021_03237_8
crossref_primary_10_1186_s13662_021_03237_8
springer_journals_10_1186_s13662_021_03237_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-02-04
PublicationDateYYYYMMDD 2021-02-04
PublicationDate_xml – month: 02
  year: 2021
  text: 2021-02-04
  day: 04
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: New York
PublicationTitle Advances in difference equations
PublicationTitleAbbrev Adv Differ Equ
PublicationYear 2021
Publisher Springer International Publishing
Springer Nature B.V
SpringerOpen
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
– name: SpringerOpen
References Zhang, Ye, Cao, Alsaedi (CR28) 2017; 2017
Yang, Xu (CR26) 2015; 52
Diethelm (CR8) 2010
Wang, Yang, Hu (CR24) 2015; 154
Gopalsamy (CR9) 2004; 154
Zhang, Ye, Cao, Alsaedi, Li, Wang (CR30) 2018; 20
Agarwal, Hristova, O’Regan, Kopanov (CR3) 2017; 70
Pu, Yi, Zhou (CR18) 2017; 28
Wu, Li (CR25) 2017
Agarwal, Hristova, O’Regan (CR1) 2013; 2013
Scardapane, Wang (CR21) 2017; 7
Tavares, Santos, Lemes, Santos, Ferreira, Braga (CR23) 2021; 381
Zhou (CR33) 2009; 10
Hopfield (CR12) 1982; 79
Rifhat, Muhammadhaji, Teng (CR20) 2018; 19
Zhang, Qi, Wang (CR31) 2010
Agarwal, Hristova, O’Regan, Kopanov (CR5) 2020; 8
Kaslik, Sivasundaram (CR13) 2011
Zhang, Niu, Ma, Wei, Li (CR32) 2017; 94
Das (CR7) 2011
Gu, Wang, Yu (CR10) 2019; 340
Song, Zhao, Xing, Peng (CR22) 2016; 39
Agarwal, Hristova, O’Regan (CR2) 2016; 19
Gu, Wang, Yu (CR11) 2020
Zhang, Ye, Ye, Cao (CR27) 2018; 508
Kilbas, Srivastava, Trujillo (CR14) 2006
Pratap, Alzabut, Dianavinnarasi, Cao, Rajchakit (CR17) 2020; 51
Rakkiyappan, Balasubramaiam, Cao (CR19) 2010; 11
Alofi, Cao, Elaiw, Al-Mazrooei (CR6) 2014; 2014
Li, Wu, Huang (CR15) 2019
Podlubny (CR16) 1999
Agarwal, Hristova, O’Regan, Kopanov (CR4) 2017; 37
Zhang, Ye, Cao, Alsaedi (CR29) 2018; 16
H. Zhang (3237_CR29) 2018; 16
Sh. Das (3237_CR7) 2011
R. Rifhat (3237_CR20) 2018; 19
X. Zhang (3237_CR32) 2017; 94
R. Zhang (3237_CR31) 2010
A. Pratap (3237_CR17) 2020; 51
H. Zhang (3237_CR30) 2018; 20
S. Scardapane (3237_CR21) 2017; 7
Z. Yang (3237_CR26) 2015; 52
Q. Zhou (3237_CR33) 2009; 10
E. Kaslik (3237_CR13) 2011
Z. Wu (3237_CR25) 2017
R.P. Agarwal (3237_CR4) 2017; 37
A. Alofi (3237_CR6) 2014; 2014
Y. Gu (3237_CR10) 2019; 340
I. Podlubny (3237_CR16) 1999
Y.F. Pu (3237_CR18) 2017; 28
F. Wang (3237_CR24) 2015; 154
K. Gopalsamy (3237_CR9) 2004; 154
R. Agarwal (3237_CR1) 2013; 2013
J.D. Li (3237_CR15) 2019
A.A. Kilbas (3237_CR14) 2006
H. Zhang (3237_CR28) 2017; 2017
H. Zhang (3237_CR27) 2018; 508
X. Song (3237_CR22) 2016; 39
Y. Gu (3237_CR11) 2020
K. Diethelm (3237_CR8) 2010
R. Agarwal (3237_CR2) 2016; 19
J.J. Hopfield (3237_CR12) 1982; 79
R.P. Agarwal (3237_CR5) 2020; 8
R. Rakkiyappan (3237_CR19) 2010; 11
C.A. Tavares (3237_CR23) 2021; 381
R.P. Agarwal (3237_CR3) 2017; 70
References_xml – volume: 70
  start-page: 99
  year: 2017
  end-page: 106
  ident: CR3
  article-title: p-moment exponential stability of differential equations with random impulses and the Erlang distribution
  publication-title: Mem. Differ. Equ. Math. Phys.
– volume: 154
  start-page: 783
  year: 2004
  end-page: 813
  ident: CR9
  article-title: Stability of artificial neural networks with impulses
  publication-title: Appl. Math. Comput.
– volume: 381
  year: 2021
  ident: CR23
  article-title: Solving ill-posed problems faster using fractional-order Hopfield neural network
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2020.112984
– volume: 508
  start-page: 155
  year: 2018
  end-page: 165
  ident: CR27
  article-title: Synchronization stability of Riemann–Liouville fractional delay-coupled complex neural networks
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.05.060
– volume: 20
  start-page: 1938
  issue: 5
  year: 2018
  end-page: 1951
  ident: CR30
  article-title: Lyapunov functional approach to stability analysis of Riemann–Liouville fractional neural networks with time-varying delays
  publication-title: Asian J. Control
  doi: 10.1002/asjc.1675
– year: 2011
  ident: CR7
  publication-title: Functional Fractional Calculus
  doi: 10.1007/978-3-642-20545-3
– volume: 11
  start-page: 122
  year: 2010
  end-page: 130
  ident: CR19
  article-title: Global exponential stability of neutral-type impulsive neural networks
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2008.10.050
– volume: 94
  start-page: 67
  year: 2017
  end-page: 75
  ident: CR32
  article-title: Neural networks global Mittag-Leffler stability analysis of fractional-order impulsive neural networks with one-side Lipschitz condition
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.06.010
– year: 2010
  ident: CR8
  publication-title: The Analysis of Fractional Differential Equations
  doi: 10.1007/978-3-642-14574-2
– year: 2019
  ident: CR15
  article-title: Asymptotical stability of Riemann–Liouville fractional-order neutral-type delayed projective neural networks
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-019-10050-8
– volume: 2013
  year: 2013
  ident: CR1
  article-title: Exponential stability for differential equations with random impulses at random times
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/1687-1847-2013-372
– volume: 28
  start-page: 2319
  issue: 10
  year: 2017
  end-page: 2333
  ident: CR18
  article-title: Fractional Hopfield neural networks: fractional dynamic associative recurrent neural networks
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582512
– volume: 39
  start-page: 722
  year: 2016
  end-page: 733
  ident: CR22
  article-title: Global asymptotic stability of CNNs with impulses and multi-proportional delays
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3515
– volume: 10
  start-page: 144
  year: 2009
  end-page: 153
  ident: CR33
  article-title: Global exponential stability of BAM neural networks with distributed delays and impulses
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2007.08.019
– start-page: 611
  year: 2011
  end-page: 618
  ident: CR13
  article-title: Dynamics of fractional-order neural networks
  publication-title: Proc. Int. Joint Conf. Neural Netw
– volume: 154
  start-page: 239
  issue: 22
  year: 2015
  end-page: 244
  ident: CR24
  article-title: Asymptotic stability of delayed fractional-order neural networks with impulsive effects
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.068
– volume: 37
  start-page: 985
  issue: 4
  year: 2017
  end-page: 997
  ident: CR4
  article-title: Impulsive differential equations with gamma distributed moments of impulses and p-moment exponential stability
  publication-title: Acta Math. Sci.
  doi: 10.1016/S0252-9602(17)30053-X
– year: 2020
  ident: CR11
  article-title: Synchronization for commensurate Riemann–Liouville fractional-order memristor-based neural networks with unknown parameters
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2020.06.025
– volume: 340
  start-page: 270
  year: 2019
  end-page: 280
  ident: CR10
  article-title: Stability and synchronization for Riemann–Liouville fractional-order time-delayed inertial neural networks
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.005
– start-page: 3037
  year: 2010
  end-page: 3039
  ident: CR31
  article-title: Dynamics analysis of fractional order three-dimensional Hopfield neural network
  publication-title: Proc. 6th Int. Conf. Natural Comput.
– year: 1999
  ident: CR16
  publication-title: Fractional Differential Equations
– volume: 19
  start-page: 290
  issue: 2
  year: 2016
  end-page: 318
  ident: CR2
  article-title: A survey of Lyapunov functions, stability and impulsive Caputo fractional differential equations
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2016-0017
– volume: 2014
  year: 2014
  ident: CR6
  article-title: Delay-dependent stability criterion of Caputo fractional neural networks with distributed delay
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2014/529358
– volume: 19
  start-page: 205
  issue: 2
  year: 2018
  end-page: 213
  ident: CR20
  article-title: Global Mittag-Leffler synchronization for impulsive fractional-order neural networks with delays
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/ijnsns-2017-0179
– volume: 7
  year: 2017
  ident: CR21
  article-title: Randomness in neural networks: an overview
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1200
– volume: 8
  year: 2020
  ident: CR5
  article-title: p-moment Mittag-Leffler stability of Riemann–Liouville fractional differential equations with random impulses
  publication-title: Mathematics
  doi: 10.3390/math8081379
– year: 2006
  ident: CR14
  publication-title: Theory and Applications of Fractional Differential Equations
– volume: 16
  start-page: 1404
  issue: 3
  year: 2018
  end-page: 1414
  ident: CR29
  article-title: Synchronization control of Riemann–Liouville fractional competitive network systems with time-varying delay and different time scales
  publication-title: Int. J. Control. Autom. Syst.
  doi: 10.1007/s12555-017-0371-0
– volume: 51
  start-page: 1485
  year: 2020
  end-page: 1526
  ident: CR17
  article-title: Finite-time Mittag-Leffler stability of fractional-order quaternion-valued memristive neural networks with impulses
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-019-10154-1
– start-page: 37
  year: 2017
  end-page: 42
  ident: CR25
  article-title: Exponential stability analysis of delayed neural networks with impulsive time window
  publication-title: Advanced Computational Intelligence (ICACI), 2017 Ninth International Conference on
  doi: 10.1109/ICACI.2017.7974482
– volume: 2017
  year: 2017
  ident: CR28
  article-title: Existence and globally asymptotic stability of equilibrium solution for fractional-order hybrid BAM neural networks with distributed delays and impulses
  publication-title: Complexity
  doi: 10.1155/2017/6875874
– volume: 79
  start-page: 2554
  year: 1982
  end-page: 2558
  ident: CR12
  article-title: Neural networks and physical systems with emergent collective computational abilities
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2554
– volume: 52
  start-page: 517
  issue: 8
  year: 2015
  end-page: 521
  ident: CR26
  article-title: Stability analysis of delay neural networks with impulsive effects
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
  doi: 10.1109/TCSII.2005.849032
– volume: 2013
  year: 2013
  ident: 3237_CR1
  publication-title: Adv. Differ. Equ.
  doi: 10.1186/1687-1847-2013-372
– start-page: 37
  volume-title: Advanced Computational Intelligence (ICACI), 2017 Ninth International Conference on
  year: 2017
  ident: 3237_CR25
  doi: 10.1109/ICACI.2017.7974482
– volume: 20
  start-page: 1938
  issue: 5
  year: 2018
  ident: 3237_CR30
  publication-title: Asian J. Control
  doi: 10.1002/asjc.1675
– volume: 154
  start-page: 239
  issue: 22
  year: 2015
  ident: 3237_CR24
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.11.068
– volume: 19
  start-page: 290
  issue: 2
  year: 2016
  ident: 3237_CR2
  publication-title: Fract. Calc. Appl. Anal.
  doi: 10.1515/fca-2016-0017
– start-page: 611
  volume-title: Proc. Int. Joint Conf. Neural Netw
  year: 2011
  ident: 3237_CR13
– volume: 8
  year: 2020
  ident: 3237_CR5
  publication-title: Mathematics
  doi: 10.3390/math8081379
– volume: 19
  start-page: 205
  issue: 2
  year: 2018
  ident: 3237_CR20
  publication-title: Int. J. Nonlinear Sci. Numer. Simul.
  doi: 10.1515/ijnsns-2017-0179
– volume: 10
  start-page: 144
  year: 2009
  ident: 3237_CR33
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2007.08.019
– volume: 16
  start-page: 1404
  issue: 3
  year: 2018
  ident: 3237_CR29
  publication-title: Int. J. Control. Autom. Syst.
  doi: 10.1007/s12555-017-0371-0
– volume: 79
  start-page: 2554
  year: 1982
  ident: 3237_CR12
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.79.8.2554
– volume: 28
  start-page: 2319
  issue: 10
  year: 2017
  ident: 3237_CR18
  publication-title: IEEE Trans. Neural Netw. Learn. Syst.
  doi: 10.1109/TNNLS.2016.2582512
– volume: 39
  start-page: 722
  year: 2016
  ident: 3237_CR22
  publication-title: Math. Methods Appl. Sci.
  doi: 10.1002/mma.3515
– volume: 94
  start-page: 67
  year: 2017
  ident: 3237_CR32
  publication-title: Neural Netw.
  doi: 10.1016/j.neunet.2017.06.010
– volume-title: Functional Fractional Calculus
  year: 2011
  ident: 3237_CR7
  doi: 10.1007/978-3-642-20545-3
– volume: 381
  year: 2021
  ident: 3237_CR23
  publication-title: J. Comput. Appl. Math.
  doi: 10.1016/j.cam.2020.112984
– volume: 2014
  year: 2014
  ident: 3237_CR6
  publication-title: Discrete Dyn. Nat. Soc.
  doi: 10.1155/2014/529358
– volume: 154
  start-page: 783
  year: 2004
  ident: 3237_CR9
  publication-title: Appl. Math. Comput.
  doi: 10.1016/S0096-3003(03)00750-1
– volume: 37
  start-page: 985
  issue: 4
  year: 2017
  ident: 3237_CR4
  publication-title: Acta Math. Sci.
  doi: 10.1016/S0252-9602(17)30053-X
– volume: 51
  start-page: 1485
  year: 2020
  ident: 3237_CR17
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-019-10154-1
– volume-title: The Analysis of Fractional Differential Equations
  year: 2010
  ident: 3237_CR8
  doi: 10.1007/978-3-642-14574-2
– year: 2020
  ident: 3237_CR11
  publication-title: J. Franklin Inst.
  doi: 10.1016/j.jfranklin.2020.06.025
– volume-title: Theory and Applications of Fractional Differential Equations
  year: 2006
  ident: 3237_CR14
– volume: 7
  year: 2017
  ident: 3237_CR21
  publication-title: Wiley Interdiscip. Rev. Data Min. Knowl. Discov.
  doi: 10.1002/widm.1200
– volume: 508
  start-page: 155
  year: 2018
  ident: 3237_CR27
  publication-title: Physica A
  doi: 10.1016/j.physa.2018.05.060
– year: 2019
  ident: 3237_CR15
  publication-title: Neural Process. Lett.
  doi: 10.1007/s11063-019-10050-8
– volume: 2017
  year: 2017
  ident: 3237_CR28
  publication-title: Complexity
  doi: 10.1155/2017/6875874
– volume-title: Fractional Differential Equations
  year: 1999
  ident: 3237_CR16
– volume: 70
  start-page: 99
  year: 2017
  ident: 3237_CR3
  publication-title: Mem. Differ. Equ. Math. Phys.
– volume: 11
  start-page: 122
  year: 2010
  ident: 3237_CR19
  publication-title: Nonlinear Anal., Real World Appl.
  doi: 10.1016/j.nonrwa.2008.10.050
– start-page: 3037
  volume-title: Proc. 6th Int. Conf. Natural Comput.
  year: 2010
  ident: 3237_CR31
– volume: 52
  start-page: 517
  issue: 8
  year: 2015
  ident: 3237_CR26
  publication-title: IEEE Trans. Circuits Syst. II, Express Briefs
  doi: 10.1109/TCSII.2005.849032
– volume: 340
  start-page: 270
  year: 2019
  ident: 3237_CR10
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2019.03.005
SSID ssj0029488
Score 2.216629
Snippet In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state...
In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state...
Abstract In this paper a model of Hopfield’s graded response neural network is investigated. A network whose neurons are subject to a certain impulsive state...
SourceID doaj
proquest
crossref
springer
SourceType Open Website
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 1
SubjectTerms Analysis
Difference and Functional Equations
Functional Analysis
Hopfield’s graded response neural network
Impulses
Impulses at random times
Initial conditions
Lyapunov functions
Mathematics
Mathematics and Statistics
Mean-square Mittag-Leffler stability in time
Neural networks
Neurons
Ordinary Differential Equations
Partial Differential Equations
Riemann–Liouville fractional derivative
Stability
Stochastic processes
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Bb9MwFLbQTnBAbANR2CYfdhtRG9u1nSNDTBViO0xM6s1y7GdUiSalaSf11v-w0_7efgnPTjI2JNiFa-JEVr7P_t6Lnz8TcqzBlSgUImMqyExYDTgP6pBx61TunXTBxhXd8ws5uRJfpuPpg6O-Yk1Yaw_cfrihHCuvoCx9LkHk1ulR0N4x5gIDCy65l6Lm9clUl2oVyMt-i4yWwybnUrIsliOMOOM4Lz-SoeTW_yjE_GNVNInN2SvysosS6ce2d7vkGVR75MUD78B9sjkHW2XNT4QYKIZ4qch1Q-tAL2cwt1V1t735OqvX13GzHw3LdgMDvnRSL1LZ2t32tqHfl9aDp8u2UhZotLfENlVbHN7Q-JuWopz5ek5n88UahbR5Ta7OPn_7NMm6cxQyh2qzwoGgwjiuoNkCcl4yL5zUulBBKMw2CmWt19yNPQqXVyGMBIgYuEmXO-5KB_wN2anqCt4SWgYMMTCk4aEUAjyzmMciHqhwOFUEnw9I3n9W4zqT8XjWxQ-Tkg0tTQuFQShMgsLoATm5f2bRWmz8s_VpROu-ZbTHTheQNKYjjXmKNANy0GNtujHbGCYwuysE5uwD8qHH__ftv3fp3f_o0nvynCV-Ik3FAdlZLddwiPHOqjxK1P4FIrAA1Q
  priority: 102
  providerName: Directory of Open Access Journals
– databaseName: ProQuest Central
  dbid: BENPR
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3NbtQwELagvcAB8SsWCvKBG0Td2I7jnBBFrVaIVqiiUm-WY4-rldhkm-wi9dZ36Kmv1ydh7DhbikSviWMl-cYz33jGM4R8UGBrNBQiY6WXmTAKUA8qn3Fjy9xZab0JEd3DIzk7Ed9Oi9O04dantMpRJ0ZF7Vob9sh3mUDuXQn0qD4vz7PQNSpEV1MLjYdkG1WwQudre2__6MfxxuWqROw8mUtcSoELjMdmlNztcy4ly0KKwpQzjrr6jmmKFfzv0M5_IqXRAB08JU8Sc6RfBqifkQfQPCeP_6on-IJcHIJpsv4cYQeKtC8mvl7Q1tPjOSxM09xcXn2ft-vf4QAg9d1wqAEnnbXLmMp2c3nd07POOHC0G7JngYaSlzimGRLGexq2bimaONcu6HyxXKNx7V-Sk4P9n19nWeqtkFm0QCtcHKUvQlTNVJDzmjlhpVJV6UWJHkhVGuMUt4VDY-ZK76cCRCBz0uaW29oCf0W2mraB14TWHmkH0hzuayHAMYO-rVcOrR6qD-_yCcnH36ptKjwe-l_80tEBUVIPUGiEQkcotJqQj5tnlkPZjXtH7wW0NiNDyex4oe3OdFqBWhb4JVDXLpcgcmPVFF_SMmY9AwO2mJCdEWud1nGvb6VuQj6N-N_e_v8rvbl_trfkEYuShwIodsjWqlvDO2Q3q_p9EuE_E9b5sA
  priority: 102
  providerName: ProQuest
Title Mean-square stability of Riemann–Liouville fractional Hopfield’s graded response neural networks with random impulses
URI https://link.springer.com/article/10.1186/s13662-021-03237-8
https://www.proquest.com/docview/2486294338
https://doaj.org/article/657d7ebbd16e41ac80f8dc22cf2eaec5
Volume 2021
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlR1Nb9Mw1ILtAgfEpygbkw_cIKKxHcc5btVKheiEJirtZjn281SJJV3STtpt_4ETf2-_hGcnKQwBEhdLTl4UJ-_b78OEvFFgS1QUImG5l4kwClAOKp9wY_PUWWm9CRHd-YmcLcTHs-ysLwprh2z3ISQZJXVkayXftymXkiUhpWDMGUfZep_shnZiIZFLjD9s3awCaXIoj_njc3dUUOzUf8e8_C0iGhXN9DF51FuI9LBD6RNyD6qn5OEvfQNxNt82W22fkes5mCppLxHZQNHYi-mu17T29HSJQFV1e_Pt07LeXIWyP-qbrpQBXzGrVzGB7fbme0vPG-PA0abLmQUaGl0iTNWlibc0bNhSVGyuvqDLi9UGVWr7nCymx18ms6Q_USGxqHfWyBK5z0IszRSQ8pI5YaVSRe5Fjn5HkRvjFLeZQxXmcu_HAkQw4aRNLbelBf6C7FR1BS8JLT0aG2jccF8KAY4Z9Gi9cqjrUGh4l45IOvxkbft24-HUi686uh1K6g4xGhGjI2K0GpG322dWXbONf0IfBdxtIUOj7Hihbs51z3daZvglUJYulSBSY9UYF2kZs56BAZuNyP6Aed1zb6uZQD-vEOi9j8i7gRp-3v77kl79H_geecAiXSJ5in2ys2428BptnHV5EEkaRzXFcffo-OTzKc4mcnIQdw1wXLDDH4M6_Os
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3NbtQwELZKOQAHxK-6UMAHOEHUjeM4zgEh_pYt3e0BtVJvxrHH1Upssk12QXvrO3DiJXioPgljZ7OlSPTWa-JYjmc8843nj5DnEkyBioJHLHMi4loCykHpokSbLLZGGKe9R3e8L4aH_PNRerRBfne5MD6sspOJQVDbyvg78h3GEXvnHC2qN7OTyHeN8t7VroVGyxZ7sPyBJlvzevcD0vcFY4OPB--H0aqrQGRQ9s6RLTKXen-SziFOCma5EVLmmeMZYu8809rKxKQWxbjNnOtz4B7GCBObxBQGEpz3GrmOK8n9iZKDT2sDL-ehz2Us8OB65NEl6Uix08SJECzyARH9hCWoGS4owtAv4ALI_ccvG9Td4A65vcKp9G3LWHfJBpT3yK2_qhfeJ8sx6DJqTpDJgCLIDGG2S1o5-mUCU12WZ6c_R5Nq8d2nG1JXtykUOOmwmoXAubPTXw09rrUFS-s2VheoL7CJY8o2PL2h_qKYokK11ZROprMFqvLmATm8kj1_SDbLqoQtQguHIAdBVeIKzsEyjZa0kxZ1LAorZ-MeibttVWZV5tx32_imgrkjhWpJoZAUKpBCyR55uf5m1hb5uHT0O0-t9UhfoDs8qOpjtTrvSqT4J1AUNhbAY21kHxdpGDOOgQaT9sh2R2u1khqNOufxHnnV0f_89f-X9Ojy2Z6RG8OD8UiNdvf3HpObLHAhMiPfJpvzegFPEFfNi6eBmSn5etWn5w8npjRd
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9QwEB6VrYTgUPEUSwv4ACeIduN4HeeAEKVdbWm7qioq9WYcP6qV2GSb7IL21v_Aib_Cz-kvYZzHliLRW6-JYzme8cw3nhfAa2F1ioqCBTR2PGBKWJSDwgWR0nFoNNdOeY_u4ZiPTtjn08HpGvxuc2F8WGUrEytBbXLt78h7lCH2ThhaVD3XhEUc7Qw_zM4D30HKe1rbdho1i-zb5Q8038r3eztI6zeUDne_fBoFTYeBQKMcniOLxG7gfUsqsWGUUsM0FyKJHYsRhyexUkZEemBQpJvYuT6zzEMarkMd6VTbCOe9A-sxWkX9Dqxv746PjlfmXsKqrpchx2PscUibsiN4rwwjzmngwyP6EY1QT1xTi1X3gGuQ9x8vbaX8hg9go0Gt5GPNZg9hzWaP4P5ftQwfw_LQqiwoz5HlLEHIWQXdLknuyPHETlWWXV78PJjki-8--ZC4ok6owElH-awKo7u8-FWSs0IZa0hRR-5a4stt4pisDlYvib82JqheTT4lk-lsgYq9fAInt7LrT6GT5Zl9BiR1CHkQYkUuZcwaqtCudsKgxkXR5UzYhbDdVqmboue-98Y3WRk_gsuaFBJJIStSSNGFt6tvZnXJjxtHb3tqrUb6ct3Vg7w4k83pl3yAf2LT1ITcslBp0cdFakq1o1ZZPejCVktr2ciQUl5xfBfetfS_ev3_JT2_ebZXcBdPjjzYG-9vwj1aMSHyItuCzrxY2BcIsubpy4abCXy97QP0B6mXOe8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Mean-square+stability+of+Riemann%E2%80%93Liouville+fractional+Hopfield%E2%80%99s+graded+response+neural+networks+with+random+impulses&rft.jtitle=Advances+in+difference+equations&rft.au=Agarwal%2C+R.&rft.au=Hristova%2C+S.&rft.au=O%E2%80%99Regan%2C+D.&rft.au=Kopanov%2C+P.&rft.date=2021-02-04&rft.issn=1687-1847&rft.eissn=1687-1847&rft.volume=2021&rft.issue=1&rft_id=info:doi/10.1186%2Fs13662-021-03237-8&rft.externalDBID=n%2Fa&rft.externalDocID=10_1186_s13662_021_03237_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1687-1847&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1687-1847&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1687-1847&client=summon