Supercurrent diode effect and finite-momentum superconductors

SignificanceOur work shows a fascinating application of finite-momentum superconductivity, the supercurrent diode effect, which is being reported in a growing number of experiments. We show that, under external magnetic field, Cooper pairs can acquire finite momentum so that critical currents in the...

Full description

Saved in:
Bibliographic Details
Published inProceedings of the National Academy of Sciences - PNAS Vol. 119; no. 15; p. e2119548119
Main Authors Yuan, Noah F Q, Fu, Liang
Format Journal Article
LanguageEnglish
Published United States National Academy of Sciences 12.04.2022
Subjects
Online AccessGet full text

Cover

Loading…
Abstract SignificanceOur work shows a fascinating application of finite-momentum superconductivity, the supercurrent diode effect, which is being reported in a growing number of experiments. We show that, under external magnetic field, Cooper pairs can acquire finite momentum so that critical currents in the direction parallel and antiparallel to the Cooper pair momentum become unequal.
AbstractList When both inversion and time-reversal symmetries are broken, the critical current of a superconductor can be nonreciprocal. In this work, we show that, in certain classes of two-dimensional superconductors with antisymmetric spin–orbit coupling, Cooper pairs acquire a finite momentum upon the application of an in-plane magnetic field, and, as a result, critical currents in the direction parallel and antiparallel to the Cooper pair momentum become unequal. This supercurrent diode effect is also manifested in the polarity dependence of in-plane critical fields induced by a supercurrent. These nonreciprocal effects may be found in polar SrTiO3 film, few-layer MoTe2 in the Td phase, and twisted bilayer graphene in which the valley degree of freedom plays a role analogous to spin.
Our work shows a fascinating application of finite-momentum superconductivity, the supercurrent diode effect, which is being reported in a growing number of experiments. We show that, under external magnetic field, Cooper pairs can acquire finite momentum so that critical currents in the direction parallel and antiparallel to the Cooper pair momentum become unequal. When both inversion and time-reversal symmetries are broken, the critical current of a superconductor can be nonreciprocal. In this work, we show that, in certain classes of two-dimensional superconductors with antisymmetric spin–orbit coupling, Cooper pairs acquire a finite momentum upon the application of an in-plane magnetic field, and, as a result, critical currents in the direction parallel and antiparallel to the Cooper pair momentum become unequal. This supercurrent diode effect is also manifested in the polarity dependence of in-plane critical fields induced by a supercurrent. These nonreciprocal effects may be found in polar SrTiO 3 film, few-layer MoTe 2 in the T d phase, and twisted bilayer graphene in which the valley degree of freedom plays a role analogous to spin.
SignificanceOur work shows a fascinating application of finite-momentum superconductivity, the supercurrent diode effect, which is being reported in a growing number of experiments. We show that, under external magnetic field, Cooper pairs can acquire finite momentum so that critical currents in the direction parallel and antiparallel to the Cooper pair momentum become unequal.
Significance Our work shows a fascinating application of finite-momentum superconductivity, the supercurrent diode effect, which is being reported in a growing number of experiments. We show that, under external magnetic field, Cooper pairs can acquire finite momentum so that critical currents in the direction parallel and antiparallel to the Cooper pair momentum become unequal. When both inversion and time-reversal symmetries are broken, the critical current of a superconductor can be nonreciprocal. In this work, we show that, in certain classes of two-dimensional superconductors with antisymmetric spin–orbit coupling, Cooper pairs acquire a finite momentum upon the application of an in-plane magnetic field, and, as a result, critical currents in the direction parallel and antiparallel to the Cooper pair momentum become unequal. This supercurrent diode effect is also manifested in the polarity dependence of in-plane critical fields induced by a supercurrent. These nonreciprocal effects may be found in polar SrTiO 3 film, few-layer MoTe 2 in the T d phase, and twisted bilayer graphene in which the valley degree of freedom plays a role analogous to spin.
Author Yuan, Noah F Q
Fu, Liang
Author_xml – sequence: 1
  givenname: Noah F Q
  orcidid: 0000-0001-7546-8095
  surname: Yuan
  fullname: Yuan, Noah F Q
  organization: Shenzhen JL Computational Science and Applied Research Institute, Shenzhen, 518109 China
– sequence: 2
  givenname: Liang
  surname: Fu
  fullname: Fu, Liang
  organization: Department of Physics, Massachusetts Institute of Technology, Cambridge, MA 02139
BackLink https://www.ncbi.nlm.nih.gov/pubmed/35377813$$D View this record in MEDLINE/PubMed
https://www.osti.gov/servlets/purl/1904377$$D View this record in Osti.gov
BookMark eNpdkUFP3DAQha0KVBbac29VBBcugRnbieMDSBWiLRISB9qz5XXGELSxt3ZSiX-PYSkFLuPDfH4zb94u2woxEGNfEI4QlDheB5uPOKJuZFfqB7ZA0Fi3UsMWWwBwVXeSyx22m_MdAOimg49sRzRCqQ7Fgp1cz2tKbk6JwlT1Q-ypIu_JTZUNfeWHMExUj3Es7Xms8hMdQz-7Kab8iW17u8r0-fndY7-_n_86-1lfXv24OPt2WTvJta61RytbxAYsQg8NeKlcR1q5VhEpgS06gZy4xF5zwSWnpUfwfIlCcPRij51udNfzcqTelWWSXZl1Gkab7k20g3nbCcOtuYl_jcZWK9BFYH8jEPM0mOyKKXdbfIRi1KAGWe5RoMPnKSn-mSlPZhyyo9XKBopzNryViiMHgQU9eIfexTmFcoNCNUKIhjdQqOMN5VLMOZF_2RjBPOZnHvMz__MrP76-NvrC_wtMPACSvJdq
CitedBy_id crossref_primary_10_1103_PhysRevB_109_L081405
crossref_primary_10_34133_adi_0035
crossref_primary_10_7498_aps_72_20230397
crossref_primary_10_1134_S0021364023603792
crossref_primary_10_1146_annurev_conmatphys_032822_033734
crossref_primary_10_1103_PhysRevApplied_21_064029
crossref_primary_10_1103_PhysRevB_105_214508
crossref_primary_10_3390_nano12234114
crossref_primary_10_1103_PhysRevLett_130_266003
crossref_primary_10_1103_PhysRevLett_130_177002
crossref_primary_10_1103_PhysRevLett_131_016001
crossref_primary_10_1103_PhysRevB_106_125114
crossref_primary_10_1038_s42005_024_01618_5
crossref_primary_10_1103_PhysRevB_106_165419
crossref_primary_10_1016_j_jre_2023_12_016
crossref_primary_10_1103_PhysRevResearch_5_L032033
crossref_primary_10_1103_PhysRevB_109_094518
crossref_primary_10_1103_PhysRevB_108_214519
crossref_primary_10_1103_PhysRevB_108_174516
crossref_primary_10_1038_s41467_024_48741_z
crossref_primary_10_21468_SciPostPhys_16_5_115
crossref_primary_10_1103_PhysRevLett_129_267702
crossref_primary_10_1103_PhysRevApplied_21_054057
crossref_primary_10_1063_5_0210660
crossref_primary_10_1038_s42005_023_01458_9
crossref_primary_10_1103_PhysRevApplied_20_014055
crossref_primary_10_1103_PhysRevB_107_L201405
crossref_primary_10_1103_PhysRevLett_132_216001
crossref_primary_10_1038_s41565_023_01451_x
crossref_primary_10_7566_JPSJ_92_072001
crossref_primary_10_1103_PhysRevB_107_024513
crossref_primary_10_1002_qute_202300378
crossref_primary_10_1038_s41567_022_01700_1
crossref_primary_10_1103_PhysRevB_109_014510
crossref_primary_10_1103_PhysRevB_109_094501
crossref_primary_10_1103_PhysRevResearch_6_023011
crossref_primary_10_1103_PhysRevApplied_21_054040
crossref_primary_10_1038_s41565_022_01159_4
crossref_primary_10_1103_PhysRevApplied_20_034033
crossref_primary_10_1038_s41567_023_02229_7
crossref_primary_10_1103_PhysRevX_12_041013
crossref_primary_10_1038_s41467_022_31954_5
crossref_primary_10_1063_5_0211562
crossref_primary_10_1021_acs_nanolett_2c04485
crossref_primary_10_1103_PhysRevB_109_184513
crossref_primary_10_1038_s41563_024_01804_4
crossref_primary_10_1038_s42005_023_01409_4
crossref_primary_10_1103_PhysRevB_108_214520
crossref_primary_10_1103_PhysRevB_107_214512
crossref_primary_10_1021_acsnano_4c01642
crossref_primary_10_1103_PhysRevB_106_134514
crossref_primary_10_1103_PhysRevResearch_5_L022064
crossref_primary_10_1103_PhysRevB_107_064503
crossref_primary_10_1103_PhysRevB_107_035126
crossref_primary_10_1103_RevModPhys_96_021003
crossref_primary_10_1038_s41467_023_42447_4
crossref_primary_10_1103_PhysRevB_109_054508
crossref_primary_10_1103_PhysRevB_109_L220501
crossref_primary_10_1103_PhysRevB_109_L220503
crossref_primary_10_1103_PhysRevB_106_224509
crossref_primary_10_1103_PhysRevB_109_064511
crossref_primary_10_1021_acs_nanolett_4c00371
crossref_primary_10_1103_PRXQuantum_5_010341
crossref_primary_10_1103_PhysRevLett_131_096001
crossref_primary_10_1038_s41467_024_48882_1
crossref_primary_10_1103_PhysRevB_107_L041101
crossref_primary_10_1103_PhysRevB_107_224510
crossref_primary_10_1103_PhysRevB_109_075412
crossref_primary_10_1103_PhysRevB_108_224517
crossref_primary_10_1103_PhysRevB_107_224518
crossref_primary_10_1103_PhysRevApplied_21_034011
crossref_primary_10_1038_s41567_022_01699_5
crossref_primary_10_1088_1367_2630_ac6766
crossref_primary_10_1038_s41467_023_39083_3
crossref_primary_10_1088_1361_648X_ad1bf6
crossref_primary_10_35848_1882_0786_acc8b5
crossref_primary_10_21468_SciPostPhys_15_5_204
crossref_primary_10_1038_s41467_023_38856_0
crossref_primary_10_1103_PhysRevApplied_21_064058
crossref_primary_10_3390_condmat8020036
crossref_primary_10_1103_PhysRevB_109_024502
crossref_primary_10_1103_PhysRevApplied_18_034064
crossref_primary_10_1103_PhysRevB_109_024504
crossref_primary_10_1103_PhysRevB_110_024503
crossref_primary_10_1103_PhysRevResearch_4_033167
crossref_primary_10_1103_PhysRevB_106_205206
crossref_primary_10_1103_PhysRevLett_132_046003
crossref_primary_10_1103_PhysRevB_106_L140505
crossref_primary_10_1103_PhysRevLett_132_046002
crossref_primary_10_1038_s41586_024_07625_4
crossref_primary_10_1103_PhysRevB_106_104501
crossref_primary_10_1038_s41467_024_47875_4
crossref_primary_10_1103_PhysRevB_106_184508
crossref_primary_10_1103_PhysRevB_109_144503
crossref_primary_10_21468_SciPostPhys_16_2_055
crossref_primary_10_1103_PhysRevB_106_214524
crossref_primary_10_1103_PhysRevB_108_064211
crossref_primary_10_1103_PhysRevLett_131_027001
crossref_primary_10_1103_PhysRevLett_131_196301
crossref_primary_10_1103_PhysRevResearch_6_L022002
crossref_primary_10_1038_s41467_024_48738_8
crossref_primary_10_1103_PhysRevB_107_L100504
crossref_primary_10_1103_PhysRevB_109_024516
crossref_primary_10_7566_JPSJ_92_081002
crossref_primary_10_1002_adfm_202311229
crossref_primary_10_1016_j_aop_2023_169232
crossref_primary_10_1103_PhysRevResearch_6_L022009
crossref_primary_10_1103_PhysRevResearch_5_033131
crossref_primary_10_1103_PhysRevB_107_184511
crossref_primary_10_1063_5_0109753
crossref_primary_10_1103_PhysRevB_109_L020501
crossref_primary_10_1103_PhysRevB_108_165119
crossref_primary_10_1103_PhysRevB_108_094513
crossref_primary_10_1103_PhysRevB_109_174511
crossref_primary_10_1063_5_0141576
crossref_primary_10_1103_PhysRevB_107_045122
crossref_primary_10_1103_PhysRevB_109_174513
crossref_primary_10_1103_PhysRevB_108_094517
crossref_primary_10_1088_1402_4896_ad1376
crossref_primary_10_1103_PhysRevB_108_155310
crossref_primary_10_1088_1361_6668_ace5e8
crossref_primary_10_1103_PhysRevResearch_6_023190
crossref_primary_10_1103_PhysRevB_108_054521
crossref_primary_10_1103_PhysRevB_108_054522
crossref_primary_10_1038_s41535_022_00514_x
crossref_primary_10_1021_acs_nanolett_3c01276
crossref_primary_10_1021_acs_nanolett_2c02899
crossref_primary_10_1103_PhysRevApplied_18_L031001
crossref_primary_10_1103_PhysRevB_106_014508
crossref_primary_10_1103_PhysRevB_107_054506
Cites_doi 10.1103/PhysRevLett.108.117003
10.1073/pnas.2019063118
10.1103/PhysRevLett.119.217002
10.1103/PhysRevLett.89.227002
10.1103/PhysRevB.96.174512
10.1103/PhysRevLett.121.157004
10.1103/PhysRevLett.103.147004
10.1021/acs.nanolett.0c04935
10.1038/nnano.2016.159
10.1038/nature01842
10.1103/PhysRevLett.119.187003
10.1016/S0375-9601(96)00894-8
10.1126/sciadv.aao4513
10.1038/ncomms11038
10.1103/PhysRevLett.115.026401
10.1103/PhysRevB.98.054510
10.1103/PhysRevB.101.100503
10.1088/0953-8984/26/9/095702
10.1038/natrevmats.2016.94
10.1126/science.abc2836
10.1126/science.aaw9270
10.1103/PhysRevB.103.L060503
10.1143/JPSJ.76.051005
10.1103/PhysRevLett.94.027004
10.1038/s41586-020-2590-4
10.1103/PhysRevB.98.075430
10.1103/PhysRevB.87.184504
10.1103/PhysRevLett.124.107001
10.1103/PhysRevLett.103.107002
10.1016/j.ssc.2013.12.010
10.1038/nature26160
10.1007/s10909-018-1976-2
10.1103/PhysRevB.76.014522
10.1103/PhysRevLett.101.107001
10.1103/PhysRevLett.91.187004
10.1103/PhysRev.135.A550
10.1016/S0921-4534(03)00634-8
10.1038/s41598-020-69284-5
10.1103/PhysRevLett.99.187002
10.1134/1.1644308
10.7566/JPSJ.86.083701
10.35848/1882-0786/ac03c0
10.1038/nphys3121
10.1103/PhysRevLett.94.137002
10.1103/PhysRevLett.101.107005
10.1038/s41467-019-09995-0
10.1103/PhysRevLett.121.026601
10.1103/PhysRevLett.109.237007
10.1126/science.aaz6643
10.1088/0953-8984/8/3/012
10.1103/PhysRevB.70.024510
10.1103/PhysRevLett.118.267001
10.1103/PhysRevB.78.224520
ContentType Journal Article
Copyright Copyright National Academy of Sciences Apr 12, 2022
Copyright © 2022 the Author(s). Published by PNAS. 2022
Copyright_xml – notice: Copyright National Academy of Sciences Apr 12, 2022
– notice: Copyright © 2022 the Author(s). Published by PNAS. 2022
CorporateAuthor Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
CorporateAuthor_xml – name: Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)
DBID NPM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
OIOZB
OTOTI
5PM
DOI 10.1073/pnas.2119548119
DatabaseName PubMed
CrossRef
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Immunology Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
Algology Mycology and Protozoology Abstracts (Microbiology C)
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
MEDLINE - Academic
OSTI.GOV - Hybrid
OSTI.GOV
PubMed Central (Full Participant titles)
DatabaseTitle PubMed
CrossRef
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
MEDLINE - Academic
DatabaseTitleList Virology and AIDS Abstracts


PubMed
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
EISSN 1091-6490
EndPage e2119548119
ExternalDocumentID 1904377
10_1073_pnas_2119548119
35377813
Genre Journal Article
GroupedDBID ---
-DZ
-~X
.55
0R~
123
29P
2FS
2WC
4.4
53G
5RE
5VS
85S
AACGO
AAFWJ
AANCE
ABOCM
ABPLY
ABPPZ
ABTLG
ABZEH
ACGOD
ACIWK
ACNCT
ACPRK
AENEX
AFFNX
AFOSN
AFRAH
ALMA_UNASSIGNED_HOLDINGS
BKOMP
CS3
D0L
DIK
DU5
E3Z
EBS
F5P
FRP
GX1
H13
HH5
HYE
JLS
JSG
JST
KQ8
L7B
LU7
N9A
NPM
N~3
O9-
OK1
PNE
PQQKQ
R.V
RHF
RHI
RNA
RNS
RPM
RXW
SJN
TAE
TN5
UKR
VQA
W8F
WH7
WOQ
WOW
X7M
XSW
Y6R
YBH
YKV
YSK
ZCA
~02
~KM
AAYXX
CITATION
7QG
7QL
7QP
7QR
7SN
7SS
7T5
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
M7N
P64
RC3
7X8
79B
AAPBV
ABPTK
ASUFR
OIOZB
OTOTI
ZA5
5PM
ID FETCH-LOGICAL-c4299-9f1a461150a10d050f47c8e97c67ee73161c312e241d923242ebf10f2b13321f3
IEDL.DBID RPM
ISSN 0027-8424
IngestDate Tue Sep 17 21:30:35 EDT 2024
Mon Nov 13 04:20:36 EST 2023
Fri Aug 16 21:45:39 EDT 2024
Thu Oct 10 15:57:03 EDT 2024
Fri Aug 23 01:32:11 EDT 2024
Sat Sep 28 08:20:33 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 15
Keywords superconductivity
nonreciprocal transport
electromagnetic responses
Language English
License This article is distributed under Creative Commons Attribution-NonCommercial-NoDerivatives License 4.0 (CC BY-NC-ND).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4299-9f1a461150a10d050f47c8e97c67ee73161c312e241d923242ebf10f2b13321f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
USDOE Office of Science (SC), Basic Energy Sciences (BES). Materials Sciences & Engineering Division (MSE)
SC0018945
Author contributions: N.F.Q.Y. and L.F. designed research, performed research, contributed new reagents/analytic tools, analyzed data, and wrote the paper.
Edited by J. C. Davis, University of Oxford, Oxford, United Kingdom; received October 29, 2021; accepted March 8, 2022
ORCID 0000-0001-7546-8095
0000000175468095
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9169709/
PMID 35377813
PQID 2653335250
PQPubID 42026
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9169709
osti_scitechconnect_1904377
proquest_miscellaneous_2647212031
proquest_journals_2653335250
crossref_primary_10_1073_pnas_2119548119
pubmed_primary_35377813
PublicationCentury 2000
PublicationDate 2022-04-12
PublicationDateYYYYMMDD 2022-04-12
PublicationDate_xml – month: 04
  year: 2022
  text: 2022-04-12
  day: 12
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Proceedings of the National Academy of Sciences - PNAS
PublicationTitleAlternate Proc Natl Acad Sci U S A
PublicationYear 2022
Publisher National Academy of Sciences
Publisher_xml – name: National Academy of Sciences
References e_1_3_5_27_2
e_1_3_5_25_2
e_1_3_5_23_2
e_1_3_5_21_2
e_1_3_5_44_2
e_1_3_5_46_2
e_1_3_5_48_2
e_1_3_5_29_2
e_1_3_5_1_2
e_1_3_5_40_2
e_1_3_5_42_2
Daido A. (e_1_3_5_58_2) 2021
e_1_3_5_7_2
e_1_3_5_9_2
e_1_3_5_3_2
e_1_3_5_5_2
e_1_3_5_39_2
e_1_3_5_16_2
e_1_3_5_37_2
e_1_3_5_14_2
e_1_3_5_12_2
e_1_3_5_35_2
e_1_3_5_10_2
Edelstein J. (e_1_3_5_13_2) 1989; 68
e_1_3_5_33_2
Larkin A. I. (e_1_3_5_2_2) 1965; 20
e_1_3_5_54_2
e_1_3_5_56_2
e_1_3_5_18_2
e_1_3_5_50_2
e_1_3_5_52_2
e_1_3_5_28_2
Fu L. (e_1_3_5_31_2) 2021
e_1_3_5_26_2
e_1_3_5_24_2
e_1_3_5_22_2
e_1_3_5_43_2
e_1_3_5_45_2
e_1_3_5_47_2
e_1_3_5_49_2
He J. J. (e_1_3_5_57_2) 2021
e_1_3_5_41_2
e_1_3_5_8_2
e_1_3_5_20_2
e_1_3_5_4_2
e_1_3_5_6_2
e_1_3_5_17_2
e_1_3_5_38_2
e_1_3_5_15_2
e_1_3_5_36_2
e_1_3_5_34_2
e_1_3_5_11_2
e_1_3_5_32_2
e_1_3_5_55_2
e_1_3_5_19_2
e_1_3_5_51_2
e_1_3_5_53_2
e_1_3_5_30_2
References_xml – ident: e_1_3_5_24_2
  doi: 10.1103/PhysRevLett.108.117003
– ident: e_1_3_5_27_2
  doi: 10.1073/pnas.2019063118
– ident: e_1_3_5_10_2
  doi: 10.1103/PhysRevLett.119.217002
– ident: e_1_3_5_18_2
  doi: 10.1103/PhysRevLett.89.227002
– ident: e_1_3_5_29_2
  doi: 10.1103/PhysRevB.96.174512
– start-page: 10.36471/JCCM_A
  year: 2021
  ident: e_1_3_5_31_2
  article-title: Commentary on “One-way supercurrent controlled by magnetic field.”
  publication-title: J. Club Condensed Matter Phys.
  contributor:
    fullname: Fu L.
– ident: e_1_3_5_6_2
  doi: 10.1103/PhysRevLett.121.157004
– ident: e_1_3_5_39_2
  doi: 10.1103/PhysRevLett.103.147004
– ident: e_1_3_5_49_2
  doi: 10.1021/acs.nanolett.0c04935
– ident: e_1_3_5_35_2
  doi: 10.1038/nnano.2016.159
– ident: e_1_3_5_4_2
  doi: 10.1038/nature01842
– ident: e_1_3_5_44_2
  doi: 10.1103/PhysRevLett.119.187003
– ident: e_1_3_5_17_2
  doi: 10.1016/S0375-9601(96)00894-8
– ident: e_1_3_5_53_2
  doi: 10.1126/sciadv.aao4513
– ident: e_1_3_5_48_2
  doi: 10.1038/ncomms11038
– ident: e_1_3_5_28_2
  doi: 10.1103/PhysRevLett.115.026401
– ident: e_1_3_5_32_2
  doi: 10.1103/PhysRevB.98.054510
– ident: e_1_3_5_47_2
  doi: 10.1103/PhysRevB.101.100503
– ident: e_1_3_5_42_2
  doi: 10.1088/0953-8984/26/9/095702
– ident: e_1_3_5_43_2
  doi: 10.1038/natrevmats.2016.94
– ident: e_1_3_5_56_2
  doi: 10.1126/science.abc2836
– ident: e_1_3_5_36_2
  doi: 10.1126/science.aaw9270
– ident: e_1_3_5_41_2
  doi: 10.1103/PhysRevB.103.L060503
– ident: e_1_3_5_5_2
  doi: 10.1143/JPSJ.76.051005
– ident: e_1_3_5_19_2
  doi: 10.1103/PhysRevLett.94.027004
– year: 2021
  ident: e_1_3_5_57_2
  publication-title: A phenomenological theory of superconductor diodes. arXiv [Preprint
  contributor:
    fullname: He J. J.
– ident: e_1_3_5_30_2
  doi: 10.1038/s41586-020-2590-4
– ident: e_1_3_5_34_2
  doi: 10.1103/PhysRevB.98.075430
– ident: e_1_3_5_51_2
  doi: 10.1103/PhysRevB.87.184504
– ident: e_1_3_5_11_2
  doi: 10.1103/PhysRevLett.124.107001
– ident: e_1_3_5_40_2
  doi: 10.1103/PhysRevLett.103.107002
– ident: e_1_3_5_52_2
  doi: 10.1016/j.ssc.2013.12.010
– ident: e_1_3_5_55_2
  doi: 10.1038/nature26160
– ident: e_1_3_5_26_2
  doi: 10.1007/s10909-018-1976-2
– ident: e_1_3_5_22_2
  doi: 10.1103/PhysRevB.76.014522
– ident: e_1_3_5_38_2
  doi: 10.1103/PhysRevLett.101.107001
– year: 2021
  ident: e_1_3_5_58_2
  article-title: Intrinsic superconducting diode effect
  publication-title: arXiv [Preprint
  contributor:
    fullname: Daido A.
– ident: e_1_3_5_3_2
  doi: 10.1103/PhysRevLett.91.187004
– ident: e_1_3_5_1_2
  doi: 10.1103/PhysRev.135.A550
– volume: 20
  start-page: 762
  year: 1965
  ident: e_1_3_5_2_2
  article-title: Nonuniform state of superconductors
  publication-title: Sov. Phys. JETP
  contributor:
    fullname: Larkin A. I.
– ident: e_1_3_5_15_2
  doi: 10.1016/S0921-4534(03)00634-8
– ident: e_1_3_5_54_2
  doi: 10.1038/s41598-020-69284-5
– ident: e_1_3_5_7_2
  doi: 10.1103/PhysRevLett.99.187002
– ident: e_1_3_5_21_2
  doi: 10.1134/1.1644308
– ident: e_1_3_5_25_2
  doi: 10.7566/JPSJ.86.083701
– ident: e_1_3_5_46_2
  doi: 10.35848/1882-0786/ac03c0
– ident: e_1_3_5_8_2
  doi: 10.1038/nphys3121
– ident: e_1_3_5_16_2
  doi: 10.1103/PhysRevLett.94.137002
– ident: e_1_3_5_37_2
  doi: 10.1103/PhysRevLett.101.107005
– ident: e_1_3_5_50_2
  doi: 10.1038/s41467-019-09995-0
– ident: e_1_3_5_33_2
  doi: 10.1103/PhysRevLett.121.026601
– ident: e_1_3_5_23_2
  doi: 10.1103/PhysRevLett.109.237007
– ident: e_1_3_5_12_2
  doi: 10.1126/science.aaz6643
– ident: e_1_3_5_14_2
  doi: 10.1088/0953-8984/8/3/012
– ident: e_1_3_5_45_2
  doi: 10.1103/PhysRevB.70.024510
– volume: 68
  start-page: 1244
  year: 1989
  ident: e_1_3_5_13_2
  article-title: Characteristics of the Cooper pairing in two-dimensional noncentrosymmetric electron systems
  publication-title: JETP
  contributor:
    fullname: Edelstein J.
– ident: e_1_3_5_9_2
  doi: 10.1103/PhysRevLett.118.267001
– ident: e_1_3_5_20_2
  doi: 10.1103/PhysRevB.78.224520
SSID ssj0009580
Score 2.7209263
Snippet SignificanceOur work shows a fascinating application of finite-momentum superconductivity, the supercurrent diode effect, which is being reported in a growing...
Significance Our work shows a fascinating application of finite-momentum superconductivity, the supercurrent diode effect, which is being reported in a growing...
When both inversion and time-reversal symmetries are broken, the critical current of a superconductor can be nonreciprocal. In this work, we show that, in...
Our work shows a fascinating application of finite-momentum superconductivity, the supercurrent diode effect, which is being reported in a growing number of...
SourceID pubmedcentral
osti
proquest
crossref
pubmed
SourceType Open Access Repository
Aggregation Database
Index Database
StartPage e2119548119
SubjectTerms Bilayers
CONDENSED MATTER PHYSICS, SUPERCONDUCTIVITY AND SUPERFLUIDITY
Cooper pairs
Critical current (superconductivity)
electromagnetic responses
Graphene
Magnetic fields
Momentum
nonreciprocal transport
Physical Sciences
Polarity
Spin-orbit interactions
superconductivity
Superconductors
Title Supercurrent diode effect and finite-momentum superconductors
URI https://www.ncbi.nlm.nih.gov/pubmed/35377813
https://www.proquest.com/docview/2653335250
https://search.proquest.com/docview/2647212031
https://www.osti.gov/servlets/purl/1904377
https://pubmed.ncbi.nlm.nih.gov/PMC9169709
Volume 119
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwEB6VHhCXFe_N8lCQOLCHtPEjcXLggBCogEBILBK3KLEdbaWtU_Xx_5nJo1C0Jy65eCxZM2PPN_HMZ4DzFFG4USYMwpLHgWSqDBKTyACDSxLnQiKKoF8Dj0_x6FXev0VvPYi6Xpi6aF8X44H7Nxm48d-6tnI60cOuTmz4_HiNkCZVYTrcgA0lRJeir5h2k6bvhOPxK7ns-HyUGE5dPh_whuQMv1uwKSKhVMLEWlTqV7i7_oc4vxZOfopEt9vwo4WQ_lWz1B3oWbcLO-0mnfsXLZP07z24fFlO7Uw3FEy-GVfG-k0Bh58745djApzBhEgYFsuJP6-lK0cUsNVsvg-vtzd_rkdB-15CoCmqBGnJchkTxMtZaMIoLKXSiU2VjpW19EQV04Jxi0HbpDWSskXJ0EgFJqqcleIA-q5y9if4KbMsVYXgBaZQtsjzhOwWhbrgpeRGe3DR6SubNrQYWX2drURGWs4-tOzBEekzw4hOtLSa6nf0IkMgIlH3Hhx3as7a3YOTYwShxNMaenC2Gka_p8uM3NlqSTISk1eOZ5IHh41VVivprOqBWrPXSoA4tddH0NVqbu3WtX59e-YRbHHqkKjpII-hv5gt7QnilkVxioj97uG09tZ3tK3rLg
link.rule.ids 230,315,733,786,790,891,27955,27956,53825,53827
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3LbtQwFL0qUwm6oS1QSF8EiUVZJBM_EicLFqhqNUCnQqJF3UXxI2IE44xmkg1fz3UeA1OxoZtsbEuxjq_vucnxMcDbDFm4FjoKopImASeiDFKd8gCTS5oUjCOLcJ8GptfJ5JZ_uovvtiAezsK0on0lZ6H9OQ_t7HurrVzM1XjQiY2_TM-R0mQiysaPYBvjlcZDkb722k27kycUN2BO-eDoI9h4YYtVSDubM3zuwGMWMyFSwjby0qjC-PoX57wvnfwrF13uwrdhFp0E5UfY1DJUv-4ZPP73NPfgac9O_Q9d8z5sGfsM9vv4X_lnvUn1u-fw_muzMEvVuTv5elZp43faEL-w2i9njssGc-fvUDdzf9X2rqxzl62Wqxdwe3lxcz4J-qsYAuUSVpCVpOCJY48FiXQURyUXKjWZUIkwxt1-RRQj1CAf0FlL0owsCeIvsQampGQHMLKVNa_Az4ghmZCMSqzOjCyK1C2JOFKSlpxq5cHZAES-6Bw38vZPuWC5gy__A58HRw6oHMmCc7xVThqk6hw5DkdQPTge8Mv7wMTBCfJbZwEbefBm3Ywh5f6TFNZUjevDsS6muN158LKDe_0mw3LxQGwshHUHZ9e92YLwtrbdPZyHDx75Gp5MbqZX-dXH689HsEPdQYzWdfIYRvWyMSdIj2p52gbDbxVqDEM
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB7BIlW90JZHCS0QJA7lkIcfGycHDlVhVR6tKkGlikuU-KGuyjrRbnLpr2ecx9KtOPWSi8dSrG_G800y_gzwIUMWroSKg9jQJOBEmCBVKQ8wuaRJwTiyCPdp4Ow8Ob3k366mV3eu-uqa9mU5D-2fRWjn111vZb2Q0dgnFl2cnSClyUScRbUy0WN4gjFLxVior_V20_70CcVNmFM-qvoIFtW2WIW0lzrD5zZssSkTIiVsIzdNKoyx__HO--2Td_LRbAd-jyvp21BuwrYpQ3l7T-TxQUvdhacDS_WPe5M9eKTtM9gb9oGVfzSIVX98Dp9-trVeyl7lyVfzSmm_7xHxC6t8M3ecNlg4nYemXfirzrqyTmW2Wq5ewOXsy6-T02C4kiGQLnEFmSEFTxyLLEis4mlsuJCpzoRMhNbuFiwiGaEaeYHKOrKmS0PQD0qshSkx7CVMbGX1K_AzokkmSkZLrNJ0WRSpc41pLEtqOFXSg6MRjLzulTfy7o-5YLmDMP8HoQcHDqwcSYNTvpWuRUg2OXIdjsB6cDhimA8BipMT5LlOCjb24P16GEPL_S8prK5aZ8OxPqa47Xmw30O-fpPRZTwQG86wNnCy3ZsjCHEn3z1A-vrBM9_B1sXnWf7j6_n3A9im7jxGJz55CJNm2eo3yJKa8m0XD38BjwwOww
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Supercurrent+diode+effect+and+finite-momentum+superconductors&rft.jtitle=Proceedings+of+the+National+Academy+of+Sciences+-+PNAS&rft.au=Yuan%2C+Noah+F.+Q.&rft.au=Fu%2C+Liang&rft.date=2022-04-12&rft.pub=National+Academy+of+Sciences&rft.issn=0027-8424&rft.eissn=1091-6490&rft.volume=119&rft.issue=15&rft_id=info:doi/10.1073%2Fpnas.2119548119&rft.externalDocID=1904377
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0027-8424&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0027-8424&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0027-8424&client=summon