Increased growth factor production in a human prostatic stromal cell culture model caused by hypoxia

BACKGROUND Local hypoxia may be one of the triggers of embryonic reawakening of the stroma and subsequent hyperplastic growth in the prostate. Using a cell culture model of human prostatic stromal cells, we investigated the effects of hypoxia on activation of hypoxia‐inducible factor 1 (HIF 1) and o...

Full description

Saved in:
Bibliographic Details
Published inThe Prostate Vol. 57; no. 1; pp. 57 - 65
Main Authors Berger, Andreas P., Kofler, Kurt, Bektic, Jasmin, Rogatsch, Hermann, Steiner, Hannes, Bartsch, Georg, Klocker, Helmut
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 15.09.2003
Subjects
Online AccessGet full text

Cover

Loading…
Abstract BACKGROUND Local hypoxia may be one of the triggers of embryonic reawakening of the stroma and subsequent hyperplastic growth in the prostate. Using a cell culture model of human prostatic stromal cells, we investigated the effects of hypoxia on activation of hypoxia‐inducible factor 1 (HIF 1) and on the production of growth factors. METHODS Primary prostatic stromal cells were grown in normal and hypoxic (1% O2) atmosphere. Activation of HIF 1 was evaluated after different time intervals by Western blot. Induced secretion of growth factors VEGF, FGF‐7, TGF‐β, IL 8, and FGF‐2 were analyzed by ELISA. To confirm the in vitro findings we also performed immunohistochemistry of HIF 1α as well as pro‐collagen I, collagens I, III, and IV in the benign tissue of radical prostatectomy specimens. RESULTS HIF 1 is activated in a time‐dependent manner, already starting 1 hr after exposure of stromal cells to hypoxic conditions. Secretion of VEGF, FGF‐7, TGF‐β, FGF‐2, and IL 8 is increased under hypoxic in vitro conditions in comparison to normoxia. Levels of TGF‐β, VEGF, and IL 8 were rapidly and statistically significantly increased in the supernatant of hypoxic cells. Consistent with the in vitro findings, immunohistochemistry of HIF 1α in (benign prostatic hyperplasia) BPH tissue revealed strong HIF 1α nuclear staining in hyperplastic areas. No difference was observed in the collagen pattern between hyperplastic and normal prostate tissue. CONCLUSIONS Prostatic stromal cells respond to hypoxia by upregulation of secretion of several growth factors suggesting that hypoxia can trigger prostatic growth. Therefore, hypoxia might be a key factor contributing to the pathogenesis of BPH. Prostate 57: 57–65, 2003. © 2003 Wiley‐Liss, Inc.
AbstractList Abstract BACKGROUND Local hypoxia may be one of the triggers of embryonic reawakening of the stroma and subsequent hyperplastic growth in the prostate. Using a cell culture model of human prostatic stromal cells, we investigated the effects of hypoxia on activation of hypoxia‐inducible factor 1 (HIF 1) and on the production of growth factors. METHODS Primary prostatic stromal cells were grown in normal and hypoxic (1% O 2 ) atmosphere. Activation of HIF 1 was evaluated after different time intervals by Western blot. Induced secretion of growth factors VEGF, FGF‐7, TGF‐β, IL 8, and FGF‐2 were analyzed by ELISA. To confirm the in vitro findings we also performed immunohistochemistry of HIF 1α as well as pro‐collagen I, collagens I, III, and IV in the benign tissue of radical prostatectomy specimens. RESULTS HIF 1 is activated in a time‐dependent manner, already starting 1 hr after exposure of stromal cells to hypoxic conditions. Secretion of VEGF, FGF‐7, TGF‐β, FGF‐2, and IL 8 is increased under hypoxic in vitro conditions in comparison to normoxia. Levels of TGF‐β, VEGF, and IL 8 were rapidly and statistically significantly increased in the supernatant of hypoxic cells. Consistent with the in vitro findings, immunohistochemistry of HIF 1α in (benign prostatic hyperplasia) BPH tissue revealed strong HIF 1α nuclear staining in hyperplastic areas. No difference was observed in the collagen pattern between hyperplastic and normal prostate tissue. CONCLUSIONS Prostatic stromal cells respond to hypoxia by upregulation of secretion of several growth factors suggesting that hypoxia can trigger prostatic growth. Therefore, hypoxia might be a key factor contributing to the pathogenesis of BPH. Prostate 57: 57–65, 2003. © 2003 Wiley‐Liss, Inc.
BACKGROUND Local hypoxia may be one of the triggers of embryonic reawakening of the stroma and subsequent hyperplastic growth in the prostate. Using a cell culture model of human prostatic stromal cells, we investigated the effects of hypoxia on activation of hypoxia‐inducible factor 1 (HIF 1) and on the production of growth factors. METHODS Primary prostatic stromal cells were grown in normal and hypoxic (1% O2) atmosphere. Activation of HIF 1 was evaluated after different time intervals by Western blot. Induced secretion of growth factors VEGF, FGF‐7, TGF‐β, IL 8, and FGF‐2 were analyzed by ELISA. To confirm the in vitro findings we also performed immunohistochemistry of HIF 1α as well as pro‐collagen I, collagens I, III, and IV in the benign tissue of radical prostatectomy specimens. RESULTS HIF 1 is activated in a time‐dependent manner, already starting 1 hr after exposure of stromal cells to hypoxic conditions. Secretion of VEGF, FGF‐7, TGF‐β, FGF‐2, and IL 8 is increased under hypoxic in vitro conditions in comparison to normoxia. Levels of TGF‐β, VEGF, and IL 8 were rapidly and statistically significantly increased in the supernatant of hypoxic cells. Consistent with the in vitro findings, immunohistochemistry of HIF 1α in (benign prostatic hyperplasia) BPH tissue revealed strong HIF 1α nuclear staining in hyperplastic areas. No difference was observed in the collagen pattern between hyperplastic and normal prostate tissue. CONCLUSIONS Prostatic stromal cells respond to hypoxia by upregulation of secretion of several growth factors suggesting that hypoxia can trigger prostatic growth. Therefore, hypoxia might be a key factor contributing to the pathogenesis of BPH. Prostate 57: 57–65, 2003. © 2003 Wiley‐Liss, Inc.
Local hypoxia may be one of the triggers of embryonic reawakening of the stroma and subsequent hyperplastic growth in the prostate. Using a cell culture model of human prostatic stromal cells, we investigated the effects of hypoxia on activation of hypoxia-inducible factor 1 (HIF 1) and on the production of growth factors. Primary prostatic stromal cells were grown in normal and hypoxic (1% O(2)) atmosphere. Activation of HIF 1 was evaluated after different time intervals by Western blot. Induced secretion of growth factors VEGF, FGF-7, TGF-beta, IL 8, and FGF-2 were analyzed by ELISA. To confirm the in vitro findings we also performed immunohistochemistry of HIF 1alpha as well as pro-collagen I, collagens I, III, and IV in the benign tissue of radical prostatectomy specimens. HIF 1 is activated in a time-dependent manner, already starting 1 hr after exposure of stromal cells to hypoxic conditions. Secretion of VEGF, FGF-7, TGF-beta, FGF-2, and IL 8 is increased under hypoxic in vitro conditions in comparison to normoxia. Levels of TGF-beta, VEGF, and IL 8 were rapidly and statistically significantly increased in the supernatant of hypoxic cells. Consistent with the in vitro findings, immunohistochemistry of HIF 1alpha in (benign prostatic hyperplasia) BPH tissue revealed strong HIF 1alpha nuclear staining in hyperplastic areas. No difference was observed in the collagen pattern between hyperplastic and normal prostate tissue. Prostatic stromal cells respond to hypoxia by upregulation of secretion of several growth factors suggesting that hypoxia can trigger prostatic growth. Therefore, hypoxia might be a key factor contributing to the pathogenesis of BPH.
BACKGROUNDLocal hypoxia may be one of the triggers of embryonic reawakening of the stroma and subsequent hyperplastic growth in the prostate. Using a cell culture model of human prostatic stromal cells, we investigated the effects of hypoxia on activation of hypoxia-inducible factor 1 (HIF 1) and on the production of growth factors.METHODSPrimary prostatic stromal cells were grown in normal and hypoxic (1% O(2)) atmosphere. Activation of HIF 1 was evaluated after different time intervals by Western blot. Induced secretion of growth factors VEGF, FGF-7, TGF-beta, IL 8, and FGF-2 were analyzed by ELISA. To confirm the in vitro findings we also performed immunohistochemistry of HIF 1alpha as well as pro-collagen I, collagens I, III, and IV in the benign tissue of radical prostatectomy specimens.RESULTSHIF 1 is activated in a time-dependent manner, already starting 1 hr after exposure of stromal cells to hypoxic conditions. Secretion of VEGF, FGF-7, TGF-beta, FGF-2, and IL 8 is increased under hypoxic in vitro conditions in comparison to normoxia. Levels of TGF-beta, VEGF, and IL 8 were rapidly and statistically significantly increased in the supernatant of hypoxic cells. Consistent with the in vitro findings, immunohistochemistry of HIF 1alpha in (benign prostatic hyperplasia) BPH tissue revealed strong HIF 1alpha nuclear staining in hyperplastic areas. No difference was observed in the collagen pattern between hyperplastic and normal prostate tissue.CONCLUSIONSProstatic stromal cells respond to hypoxia by upregulation of secretion of several growth factors suggesting that hypoxia can trigger prostatic growth. Therefore, hypoxia might be a key factor contributing to the pathogenesis of BPH.
Author Rogatsch, Hermann
Bektic, Jasmin
Kofler, Kurt
Steiner, Hannes
Klocker, Helmut
Berger, Andreas P.
Bartsch, Georg
Author_xml – sequence: 1
  givenname: Andreas P.
  surname: Berger
  fullname: Berger, Andreas P.
  email: andreas.p.berger@uibk.ac.at
  organization: Department of Urology, University of Innsbruck, Austria
– sequence: 2
  givenname: Kurt
  surname: Kofler
  fullname: Kofler, Kurt
  organization: Department of Urology, University of Innsbruck, Austria
– sequence: 3
  givenname: Jasmin
  surname: Bektic
  fullname: Bektic, Jasmin
  organization: Department of Urology, University of Innsbruck, Austria
– sequence: 4
  givenname: Hermann
  surname: Rogatsch
  fullname: Rogatsch, Hermann
  organization: Department of Pathology, University of Innsbruck, Austria
– sequence: 5
  givenname: Hannes
  surname: Steiner
  fullname: Steiner, Hannes
  organization: Department of Urology, University of Innsbruck, Austria
– sequence: 6
  givenname: Georg
  surname: Bartsch
  fullname: Bartsch, Georg
  organization: Department of Urology, University of Innsbruck, Austria
– sequence: 7
  givenname: Helmut
  surname: Klocker
  fullname: Klocker, Helmut
  organization: Department of Urology, University of Innsbruck, Austria
BackLink https://www.ncbi.nlm.nih.gov/pubmed/12886524$$D View this record in MEDLINE/PubMed
BookMark eNp9kElP5DAQRi3ECLqBCz8A-cQBKYyXOE6OCLGN2MQijlbFcehAEje2I-h_Pw7dwI2Ll9Krp6pvitZ72xuEdik5pISwv3NnfXwxWayhCSWFTAhJxTqaxBJJUsrlJpp6_0JIxAnbQJuU5XkmWDpB1UWvnQFvKvzs7HuY4Rp0sA5HaTXo0NgeNz0GPBs66MeqDxAajX1wtoMWa9PGY2jD4AzubGXiD4bRVy7wbDG3Hw1soz81tN7srO4t9Hh68nB8nlzenF0cH10mOmVFkUjOihwIp1qUlKWGyoyQrE5rnhZckgqqssiEKBmjhpYi45BXmuq8AKgjmfMttL_0xjHfBuOD6ho_Dgi9sYNXkgsqc5FG8GAJ6riPd6ZWc9d04BaKEjVmqsZF1WemEd5bWYeyM9UPugoxAnQJvDetWfyiUrd3N_df0mTZ0_hgPr57wL2qTHIp1NP1mfp3Kq_OH4RQgv8Hum2TNw
CitedBy_id crossref_primary_10_5483_BMBRep_2019_52_9_113
crossref_primary_10_1016_j_jnutbio_2019_04_006
crossref_primary_10_3109_21681805_2012_762038
crossref_primary_10_1002_cncr_24303
crossref_primary_10_1007_s00210_024_03092_w
crossref_primary_10_1158_1078_0432_CCR_11_2094
crossref_primary_10_1007_s11255_008_9333_z
crossref_primary_10_1097_MOU_0b013e32835abd18
crossref_primary_10_1016_j_urology_2011_09_039
crossref_primary_10_1016_j_lfs_2022_120504
crossref_primary_10_1111_andr_12775
crossref_primary_10_1111_j_1464_410X_2005_05777_x
crossref_primary_10_1111_j_1464_410X_2006_06306_x
crossref_primary_10_1038_ncpuro0836
crossref_primary_10_1016_j_jddst_2024_105647
crossref_primary_10_1172_jci_insight_129749
crossref_primary_10_5483_BMBRep_2007_40_3_439
crossref_primary_10_1002_pros_22633
crossref_primary_10_1111_j_1464_410X_2007_07339_x
crossref_primary_10_1042_BJ20081610
crossref_primary_10_1590_S1677_55382008000500003
crossref_primary_10_12968_jowc_2010_19_1_46093
crossref_primary_10_1002_path_1734
crossref_primary_10_1016_j_intimp_2004_11_009
crossref_primary_10_1002_nau_20999
crossref_primary_10_1007_s11934_004_0048_0
crossref_primary_10_1016_j_urology_2010_04_065
crossref_primary_10_3390_ijms21239178
crossref_primary_10_1097_MOU_0000000000000126
crossref_primary_10_1097_CU9_0000000000000233
crossref_primary_10_1158_0008_5472_CAN_04_0842
crossref_primary_10_1186_1471_2407_13_518
crossref_primary_10_1007_s10585_006_9021_2
crossref_primary_10_1016_j_urology_2015_02_031
crossref_primary_10_1097_01_ju_0000133655_71782_14
crossref_primary_10_1292_jvms_70_115
crossref_primary_10_1002_nau_21192
crossref_primary_10_1038_nrurol_2010_207
crossref_primary_10_1002_ijc_22178
crossref_primary_10_3389_fonc_2023_1212585
crossref_primary_10_1080_15419060600734153
crossref_primary_10_1002_iub_355
crossref_primary_10_1016_j_molimm_2004_09_029
crossref_primary_10_1111_j_1600_0714_2007_00625_x
crossref_primary_10_18632_oncotarget_7641
crossref_primary_10_1007_s00210_014_1040_y
crossref_primary_10_1002_pros_22934
crossref_primary_10_1016_j_mehy_2014_05_011
crossref_primary_10_1073_pnas_1620884114
crossref_primary_10_1182_blood_2005_09_3541
crossref_primary_10_1038_labinvest_2010_90
crossref_primary_10_1038_sj_bjp_0706635
crossref_primary_10_1111_j_1464_410X_2007_06910_x
crossref_primary_10_17709_2409_2231_2020_7_2_7
crossref_primary_10_1111_j_1464_410X_2008_07914_x
crossref_primary_10_1002_pros_20051
crossref_primary_10_2139_ssrn_4046777
crossref_primary_10_30841_2307_5090_1_2_2022_263896
crossref_primary_10_1002_cncr_20973
crossref_primary_10_1038_srep03822
crossref_primary_10_1074_jbc_M313776200
crossref_primary_10_1007_s00125_005_1678_6
crossref_primary_10_1146_annurev_med_063014_123902
crossref_primary_10_1152_physrev_00005_2020
crossref_primary_10_18632_oncotarget_7493
crossref_primary_10_1111_j_1464_410X_2006_06400_x
crossref_primary_10_1016_j_febslet_2007_01_040
crossref_primary_10_1002_pros_22829
crossref_primary_10_1155_2013_408734
crossref_primary_10_7314_APJCP_2016_17_1_1
crossref_primary_10_1124_mol_108_053066
crossref_primary_10_1016_j_kjms_2014_12_008
crossref_primary_10_1002_pros_23759
crossref_primary_10_1371_journal_pone_0159912
crossref_primary_10_1007_s11918_004_0005_x
crossref_primary_10_1073_pnas_1018086108
crossref_primary_10_1002_mc_20454
Cites_doi 10.3109/08977199409010993
10.1038/sj.pcan.4500575
10.1016/S0002-9440(10)64554-3
10.1016/S0006-2952(00)00423-8
10.1056/NEJM199101033240101
10.1002/(SICI)1097-0045(19970601)31:4<223::AID-PROS3>3.0.CO;2-L
10.1038/sj.onc.1204972
10.1210/en.130.5.2955
10.1002/(SICI)1097-0045(19971101)33:3<177::AID-PROS5>3.0.CO;2-G
10.1016/S0021-9258(17)36699-1
10.1016/S0002-9440(10)61681-1
10.1002/pros.2990040509
10.1093/jnci/93.4.266
10.1152/ajpcell.1996.271.4.C1172
10.1002/(SICI)1097-0045(19991001)41:2<110::AID-PROS5>3.0.CO;2-X
10.1002/(SICI)1097-0045(19990601)39:4<285::AID-PROS9>3.0.CO;2-7
10.1159/000463872
10.1016/S0022-5347(05)66297-0
10.1016/S0022-5347(01)65376-X
10.1002/(SICI)1097-0045(19980501)35:2<125::AID-PROS6>3.0.CO;2-I
10.1002/path.1029
10.1016/S0002-9440(10)65516-2
10.1038/sj.onc.1204228
10.1210/endo-127-6-2963
10.1007/s11934-002-0051-2
10.1182/blood.V95.1.189
10.1111/j.1442-2042.1997.tb00316.x
10.1016/S0022-5347(17)54051-3
10.1016/S0046-8177(96)90396-2
10.1016/S0022-5347(05)68632-6
10.1002/pros.10025
10.1046/j.1464-410x.2000.00322.x
10.1016/S0022-5347(17)37546-8
10.1677/joe.0.1640215
10.1038/nrc704
10.1128/MCB.16.9.4604
10.1096/fsb2fj000350com
10.1006/excr.1997.3525
ContentType Journal Article
Copyright Copyright © 2003 Wiley‐Liss, Inc.
Copyright 2003 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2003 Wiley‐Liss, Inc.
– notice: Copyright 2003 Wiley-Liss, Inc.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
DOI 10.1002/pros.10279
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
MEDLINE - Academic
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
MEDLINE - Academic
DatabaseTitleList CrossRef

MEDLINE
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1097-0045
EndPage 65
ExternalDocumentID 10_1002_pros_10279
12886524
PROS10279
ark_67375_WNG_JF7MHT55_5
Genre article
Journal Article
GroupedDBID ---
.3N
.GA
.GJ
.Y3
05W
0R~
10A
123
1L6
1OB
1OC
1ZS
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAVGM
AAXRX
AAZKR
ABCQN
ABCUV
ABHUG
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABWRO
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFS
ACGOF
ACMXC
ACPOU
ACPRK
ACXBN
ACXME
ACXQS
ADAWD
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFVGU
AFZJQ
AGJLS
AHBTC
AHMBA
AIACR
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBS
EJD
F00
F01
F04
F5P
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HHY
HHZ
HVGLF
HZ~
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
P2P
P2W
P2X
P2Z
P4B
P4D
PQQKQ
Q.N
Q11
QB0
QRW
R.K
ROL
RWI
RX1
SUPJJ
UB1
V2E
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WWO
WXI
WXSBR
XG1
XV2
ZA5
ZZTAW
~IA
~WT
AITYG
HGLYW
OIG
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
7X8
ID FETCH-LOGICAL-c4299-73298a031c5b124e176006f4f349370dadb9655b221e1b563a8dc1c89aaf60083
IEDL.DBID DR2
ISSN 0270-4137
IngestDate Fri Aug 16 06:20:05 EDT 2024
Fri Aug 23 00:10:50 EDT 2024
Sat Sep 28 07:41:05 EDT 2024
Sat Aug 24 01:04:32 EDT 2024
Wed Jan 17 05:02:28 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License Copyright 2003 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4299-73298a031c5b124e176006f4f349370dadb9655b221e1b563a8dc1c89aaf60083
Notes ArticleID:PROS10279
istex:91CC624D5362E5BC3C3E2C2AB53737BDA8D082A9
ark:/67375/WNG-JF7MHT55-5
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
PMID 12886524
PQID 73517854
PQPubID 23479
PageCount 9
ParticipantIDs proquest_miscellaneous_73517854
crossref_primary_10_1002_pros_10279
pubmed_primary_12886524
wiley_primary_10_1002_pros_10279_PROS10279
istex_primary_ark_67375_WNG_JF7MHT55_5
PublicationCentury 2000
PublicationDate 15 September 2003
PublicationDateYYYYMMDD 2003-09-15
PublicationDate_xml – month: 09
  year: 2003
  text: 15 September 2003
  day: 15
PublicationDecade 2000
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle The Prostate
PublicationTitleAlternate Prostate
PublicationYear 2003
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Fukabori Y, Nakano K, Ohyama A, Yamanaka H. Stimulative effect of transforming growth factor-beta on collagen synthesis by human prostatic stromal cells in vitro. Int J Urol 1997; 4: 597-602.
Ghafar MA, Puchner PJ, Anastasiadis AG, Cabelin MA, Buttyan R. Does the prostatic vascular system contribute to the development of benign prostate hyperplasia? Curr Urol Rep 2002; 3: 292-296.
Mariotti A, Donovan MP, Mawhinney M. Collagen and cellular proliferation in spontaneous canine benign prostatic hypertrophy. J Urol 1982; 127: 795-797.
Wartenberg M, Doenmez F, Ling FC, Acker H, Hescheler J, Sauer H. Tumor-induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryonic bodies grown from pluripotent embryonic stem cells. FASEB J 2001; 15: 995-1005.
Story M, Hopp K, Molter M, Meier D. Characteristics of FGF-receptors expressed by stromal and epithelial cells cultured from normal and hyperplastic prostates. Growth Factors 1994; 10: 269-280.
Ittmann M, Mansukhani A. Expression of fibroblast growth factors (FGFs) and FGF receptors in human prostate. J Urol 1997; 157: 351-356.
Bartsch G, Brüngger A, Schweikert U, Hintner H, Höpfl R, Rohr H. Benign prostatic hyperplasia: Morphometric studies in relation to the pathogenesis. New Dev Biosci 1989; 5: 34-53.
Shapiro E, Hartanto V, Perlman E, Tang R, Wang B, Lepor H. Morphometric analysis of pediatric and nonhyperplastic glands: Evidence that BPH is not a unique stromal process. Prostate 1997; 33: 177-182.
Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL. The expression and distribution of the hypoxia-inducible factors hif 1-alpha and hif 2-alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 2000; 157: 411-421.
Doll J, Reiher FK, Crawford SE, Pins MR, Campbell SC, Bouck NP. Thrombospondin-I, vascular endothelial growth factor and fibroblast growth factor-2 are key functional regulators of angiogenesis in the prostate. Prostate 2001; 49: 293-305.
Hockel M, Schlenger K, Hockel S, Vaupel P. Hypoxic cervical cancers with low apoptotic index are highly aggressive. Cancer Res 1999; 59: 4525-4528.
Cohen P, Nunn SE, Peehl DM. Transforming growth factor-β induces growth inhibition and IGF-binding protein-3 production in prostatic stromal cells: Abnormalities in cells cultured from benign prostatic hyperplasia tissues. J Endocrinol 2000; 164: 215-223.
Bartsch G, Brüngger A, Schweikert U, Hintner H, Höpfl R, Rohr HP. Benign prostatic hyperplasia: A stromal disease. Urologe A 1989; 28: 321-328.
Hockel M, Vaupel P. Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects. J Natl Cancer Inst 2001; 93: 266-276.
Peehl DM, Sellers RG. Basic FGF, EGF, and PDGF modify TGF-β-induction of smooth muscle cell phenotype in human prostatic stromal cells. Prostate 1998; 35: 125-134.
Kimura H, Weisz A, Kurashima Y, Hashimoto K, Ogura TF, Addeo R, Makuuchi M, Esumi H. Hypoxia respone element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: Control of hypoxia-inducible factor-1 activity by nitric oxide. Blood 2000; 95: 189-197.
Tuxhorn JA, McAlhany SJ, Yang F, Dang TD, Rowley DR. Inhibition of transforming growth factor-β activity decreases angiogenesis in a human prostate cancer-reactive stroma xenograft model. Cancer Res 2002; 62: 6021-6025.
Forsythe JA, Jiang BH, Iyer NV, Agani F, Leung SW, Koos RD, Semenza GL. Activation of vascular endothelial growth factor gene transcription by hypoxia-inducible factor 1. Mol Cell Biol 1996; 16: 4604-4613.
Inagaki Y, Truter S, Ramirez F. Transforming growth factor-β stimulates alpha 2(1) collagen gene expression through a cis-acting element that contains an Sp1-binding site. J Biol Chem 1994; 269: 14828-14833.
Luo JC, Shibuya M. A variant of nuclear localization signal of bipartite-type is required for the nuclear translocation of hypoxia inducible factors (1 alpha, 2 alpha, 3 alpha). Oncogene 2001; 20: 1435-1444.
Martikainen P, Kyprianou N, Isaacs JT. Effect of transforming growth factor-β1 on proliferation and death of rat prostatic cells. Endocrinology 1990; 127: 2963-2968.
Klingler HC, Bretland AJ, Reid SV, Chapple CR, Eaton CL. Regulation of prostatic stromal cell growth and function by transforming growth factor beta (TGFβ). Prostate 1999; 41: 110-120.
Walsh K, Sriprasad D, Hopster D, Codd J, Mulvin D. Distribution of vascular endothelial growth factor (VEGF) in prostate disease. Prost Cancer Prost Diseases 2002; 5: 119-122.
Berra E, Milanini J, Richard DE, Gall ML, Vinals F, Gothie E, Roux D, Pages G, Pouyssegur J. Signaling angiogenesis via p42/p44 MAP kinase and hypoxia. Biochem Pharmacol 2000; 60: 1171-1178.
Cronauer MV, Hittmair A, Eder IE, Hobisch A, Culig Z, Ramoner R, Zhang J, Bartsch G, Reissigl A, Radmayr C, Thurnher M, Klocker H. Basic fibroblast growth factor levels in cancer cells and in sera of patients suffering from proliferative disorders of the prostate. Prostate 1997; 31: 223-233.
Peehl DM, Seller RG. Induction of smooth muscle cell phenotypes in cultured human prostatic stromal cells. Exp Cell Res 1997; 232: 208-215.
Kyprianou N, Tu H, Jacobs S. Apoptotic versus proliferative activities in human benign prostatic hyperplasia. Hum Pathol 1996; 27: 668-675.
McNeil JE. Origin and evolution of benign prostatic enlargement. Invest Urol 1978; 15: 340-345.
Burke B, Tang N, Corke KP, Tazzyman D, Ameri K, Wells M, Lewis CE. Expression of HIF-1 alpha by human macrophages: Implications for the use of macrophages in hypoxia-regulated cancer gene therapy. J Pathol 2002; 196: 204-212.
Palmer LA, Semenza GL, Stoler MH, Johns RA. Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF-1. Am J Physiol 1998; 274: 212-219.
Chung LWK, Cunha GR. Stromal-epithelial interactions. 2. Regulation of prostatic growth by embryonic urogenital sinus mesenchyme. Prostate 1983; 4: 503-511.
Reiher FK, Ivanovich M, Huang H, Smith ND, Bouck NP, Campbell SC. The role of hypoxia and p53 in the regulation of angiogenesis in bladder cancer. J Urol 2001; 165: 2075-2081.
Weidner N, Semple JP, Welch WR, Folkman J. Tumor angiogenesis and metastasis-Correlation in invasive breast carcinoma. N Engl J Med 1991; 324: 1-8.
Lee C, Sintich SM, Mathews EP, Shah AH, Kundu SD, Perry KT, Cho JS, Ilio KY, Cronauer MV, Janulis L, Sensibar JA. Transforming growth factor-β in benign and malignant prostate. Prostate 1999; 39: 285-290.
Harris AL. Hypoxia-A key regulatory factor in tumour growth. Nat Rev Cancer 2001; 2: 38-47.
Giri D, Ittmann M. Interleukin-8 as a paracrine inducer of fibroblast growth factor 2, a stromal and epithelial growth factor in benign prostatic hyperplasia. Am J Pathol 2001; 159: 139-147.
Jiang BH, Semenza GL, Bauer C, Marti HH. Hypoxia-inducible factor 1 levels vary exponentially over a physiologically relevant range of O2 tension. Am J Physiol 1996; 271: 1172-1180.
Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW. Overexpression of hypoxia-inducible factor-1 alpha in common human cancersand their metastases. Cancer Res 1999; 59: 5830-5835.
Shapiro E, Becich MJ, Hartanto V, Lepor H. The relative proportion of stromal end epithelial hyperplasia is related to the development of symptomatic benign prostate hyperplasia. J Urol 1992; 147: 1293-1297.
Siegel Y, Zaidel L, Hanmel I. Morphometric evaluation of benign prostatic hyperplasia. Eur Urol 1990; 18: 71-73.
Foley SJ, Bailey DM. Microvessel density in prostatic hyperplasia. Br J Urol 2000; 85: 70-73.
Ropiquet F, Giri D, Lamb DJ, Ittmann M. FGF7 and FGF2 are increased in benign prostatic hyperplasia and are associated with increased proliferation. J Urol 1999; 162: 595-599.
Cronauer MV, Stadlmann S, Klocker H, Abendstein B, Eder IE, Rogatsch H, Zeimet AG, Marth C, Offner FA. Basic fibroblast growth factor synthesis by human peritoneal mesothelial cells. Am J Pathol 1999; 155: 1977-1984.
Sherwood E, Fong C, Lee C, Kozlowski J. Basic fibroblast growth factor: A potential mediator of stromal growth in the human prostate. Endocrinology 1992; 130: 2955-2963.
Sheta EA, Trout H, Gildea JJ, Harding MA, Theodorescu D. Cell density mediated pericellular hypoxia leads to induction of HIF-1alpha via nitric oxide and Ras/MAP kinase mediated signaling pathways. Oncogene 2001; 20: 7624-7634.
Richier JC, Kaplan EP, Chermansky CJ, Ewalt DH, Lin VK, McConnell JD. Analysis of type III collagen mRNA expression in human benign prostatic hyperplasia. J Urol 1995; 153: 344A.
1997; 157
2001; 165
1989; 5
2001; 93
1990; 127
2000; 157
2002; 196
1990; 18
2002; 5
1992; 147
1997; 232
1983; 4
2000; 85
2000; 95
2002; 3
1999; 162
1978; 15
2001; 49
1999; 41
1982; 127
1995; 153
1996; 16
1997; 4
1998; 274
2001; 20
1989; 28
1994; 269
1992; 130
1997; 33
1997; 31
2002; 62
1999; 39
1999; 59
1996; 271
2000; 60
2001; 15
2000; 164
2001; 2
1999; 155
1996; 27
1991; 324
2001; 159
1994; 10
1998; 35
Ittmann M (e_1_2_1_19_2) 1997; 157
Bartsch G (e_1_2_1_2_2) 1989; 5
Richier JC (e_1_2_1_42_2) 1995; 153
e_1_2_1_40_2
Palmer LA (e_1_2_1_12_2) 1998; 274
e_1_2_1_22_2
e_1_2_1_45_2
e_1_2_1_23_2
e_1_2_1_44_2
e_1_2_1_20_2
e_1_2_1_43_2
Tuxhorn JA (e_1_2_1_47_2) 2002; 62
e_1_2_1_21_2
e_1_2_1_26_2
e_1_2_1_27_2
e_1_2_1_24_2
Kimura H (e_1_2_1_30_2) 2000; 95
e_1_2_1_25_2
e_1_2_1_46_2
e_1_2_1_28_2
e_1_2_1_29_2
Bartsch G (e_1_2_1_41_2) 1989; 28
Zhong H (e_1_2_1_11_2) 1999; 59
Hockel M (e_1_2_1_5_2) 1999; 59
e_1_2_1_6_2
e_1_2_1_7_2
e_1_2_1_34_2
e_1_2_1_3_2
e_1_2_1_33_2
Inagaki Y (e_1_2_1_39_2) 1994; 269
e_1_2_1_32_2
McNeil JE (e_1_2_1_4_2) 1978; 15
e_1_2_1_10_2
e_1_2_1_31_2
e_1_2_1_15_2
e_1_2_1_38_2
e_1_2_1_16_2
e_1_2_1_37_2
e_1_2_1_13_2
e_1_2_1_36_2
e_1_2_1_14_2
e_1_2_1_35_2
e_1_2_1_8_2
e_1_2_1_17_2
e_1_2_1_9_2
e_1_2_1_18_2
References_xml – volume: 60
  start-page: 1171
  year: 2000
  end-page: 1178
  article-title: Signaling angiogenesis via p42/p44 MAP kinase and hypoxia
  publication-title: Biochem Pharmacol
– volume: 39
  start-page: 285
  year: 1999
  end-page: 290
  article-title: Transforming growth factor‐β in benign and malignant prostate
  publication-title: Prostate
– volume: 20
  start-page: 1435
  year: 2001
  end-page: 1444
  article-title: A variant of nuclear localization signal of bipartite‐type is required for the nuclear translocation of hypoxia inducible factors (1 alpha, 2 alpha, 3 alpha)
  publication-title: Oncogene
– volume: 49
  start-page: 293
  year: 2001
  end-page: 305
  article-title: Thrombospondin‐I, vascular endothelial growth factor and fibroblast growth factor‐2 are key functional regulators of angiogenesis in the prostate
  publication-title: Prostate
– volume: 324
  start-page: 1
  year: 1991
  end-page: 8
  article-title: Tumor angiogenesis and metastasis—Correlation in invasive breast carcinoma
  publication-title: N Engl J Med
– volume: 3
  start-page: 292
  year: 2002
  end-page: 296
  article-title: Does the prostatic vascular system contribute to the development of benign prostate hyperplasia?
  publication-title: Curr Urol Rep
– volume: 33
  start-page: 177
  year: 1997
  end-page: 182
  article-title: Morphometric analysis of pediatric and nonhyperplastic glands: Evidence that BPH is not a unique stromal process
  publication-title: Prostate
– volume: 157
  start-page: 411
  year: 2000
  end-page: 421
  article-title: The expression and distribution of the hypoxia‐inducible factors hif 1‐alpha and hif 2‐alpha in normal human tissues, cancers, and tumor‐associated macrophages
  publication-title: Am J Pathol
– volume: 2
  start-page: 38
  year: 2001
  end-page: 47
  article-title: Hypoxia—A key regulatory factor in tumour growth
  publication-title: Nat Rev Cancer
– volume: 20
  start-page: 7624
  year: 2001
  end-page: 7634
  article-title: Cell density mediated pericellular hypoxia leads to induction of HIF‐1alpha via nitric oxide and Ras/MAP kinase mediated signaling pathways
  publication-title: Oncogene
– volume: 147
  start-page: 1293
  year: 1992
  end-page: 1297
  article-title: The relative proportion of stromal end epithelial hyperplasia is related to the development of symptomatic benign prostate hyperplasia
  publication-title: J Urol
– volume: 62
  start-page: 6021
  year: 2002
  end-page: 6025
  article-title: Inhibition of transforming growth factor‐β activity decreases angiogenesis in a human prostate cancer‐reactive stroma xenograft model
  publication-title: Cancer Res
– volume: 15
  start-page: 340
  year: 1978
  end-page: 345
  article-title: Origin and evolution of benign prostatic enlargement
  publication-title: Invest Urol
– volume: 31
  start-page: 223
  year: 1997
  end-page: 233
  article-title: Basic fibroblast growth factor levels in cancer cells and in sera of patients suffering from proliferative disorders of the prostate
  publication-title: Prostate
– volume: 4
  start-page: 503
  year: 1983
  end-page: 511
  article-title: Stromal‐epithelial interactions. 2. Regulation of prostatic growth by embryonic urogenital sinus mesenchyme
  publication-title: Prostate
– volume: 59
  start-page: 5830
  year: 1999
  end-page: 5835
  article-title: Overexpression of hypoxia‐inducible factor‐1 alpha in common human cancersand their metastases
  publication-title: Cancer Res
– volume: 4
  start-page: 597
  year: 1997
  end-page: 602
  article-title: Stimulative effect of transforming growth factor‐beta on collagen synthesis by human prostatic stromal cells in vitro
  publication-title: Int J Urol
– volume: 16
  start-page: 4604
  year: 1996
  end-page: 4613
  article-title: Activation of vascular endothelial growth factor gene transcription by hypoxia‐inducible factor 1
  publication-title: Mol Cell Biol
– volume: 35
  start-page: 125
  year: 1998
  end-page: 134
  article-title: Basic FGF, EGF, and PDGF modify TGF‐β‐induction of smooth muscle cell phenotype in human prostatic stromal cells
  publication-title: Prostate
– volume: 271
  start-page: 1172
  year: 1996
  end-page: 1180
  article-title: Hypoxia‐inducible factor 1 levels vary exponentially over a physiologically relevant range of O tension
  publication-title: Am J Physiol
– volume: 157
  start-page: 351
  year: 1997
  end-page: 356
  article-title: Expression of fibroblast growth factors (FGFs) and FGF receptors in human prostate
  publication-title: J Urol
– volume: 269
  start-page: 14828
  year: 1994
  end-page: 14833
  article-title: Transforming growth factor‐β stimulates alpha 2(1) collagen gene expression through a ‐acting element that contains an Sp1‐binding site
  publication-title: J Biol Chem
– volume: 5
  start-page: 34
  year: 1989
  end-page: 53
  article-title: Benign prostatic hyperplasia: Morphometric studies in relation to the pathogenesis
  publication-title: New Dev Biosci
– volume: 274
  start-page: 212
  year: 1998
  end-page: 219
  article-title: Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF‐1
  publication-title: Am J Physiol
– volume: 164
  start-page: 215
  year: 2000
  end-page: 223
  article-title: Transforming growth factor‐β induces growth inhibition and IGF‐binding protein‐3 production in prostatic stromal cells: Abnormalities in cells cultured from benign prostatic hyperplasia tissues
  publication-title: J Endocrinol
– volume: 165
  start-page: 2075
  year: 2001
  end-page: 2081
  article-title: The role of hypoxia and p53 in the regulation of angiogenesis in bladder cancer
  publication-title: J Urol
– volume: 15
  start-page: 995
  year: 2001
  end-page: 1005
  article-title: Tumor‐induced angiogenesis studied in confrontation cultures of multicellular tumor spheroids and embryonic bodies grown from pluripotent embryonic stem cells
  publication-title: FASEB J
– volume: 196
  start-page: 204
  year: 2002
  end-page: 212
  article-title: Expression of HIF‐1 alpha by human macrophages: Implications for the use of macrophages in hypoxia‐regulated cancer gene therapy
  publication-title: J Pathol
– volume: 95
  start-page: 189
  year: 2000
  end-page: 197
  article-title: Hypoxia respone element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: Control of hypoxia‐inducible factor‐1 activity by nitric oxide
  publication-title: Blood
– volume: 232
  start-page: 208
  year: 1997
  end-page: 215
  article-title: Induction of smooth muscle cell phenotypes in cultured human prostatic stromal cells
  publication-title: Exp Cell Res
– volume: 18
  start-page: 71
  year: 1990
  end-page: 73
  article-title: Morphometric evaluation of benign prostatic hyperplasia
  publication-title: Eur Urol
– volume: 155
  start-page: 1977
  year: 1999
  end-page: 1984
  article-title: Basic fibroblast growth factor synthesis by human peritoneal mesothelial cells
  publication-title: Am J Pathol
– volume: 27
  start-page: 668
  year: 1996
  end-page: 675
  article-title: Apoptotic versus proliferative activities in human benign prostatic hyperplasia
  publication-title: Hum Pathol
– volume: 127
  start-page: 795
  year: 1982
  end-page: 797
  article-title: Collagen and cellular proliferation in spontaneous canine benign prostatic hypertrophy
  publication-title: J Urol
– volume: 28
  start-page: 321
  year: 1989
  end-page: 328
  article-title: Benign prostatic hyperplasia: A stromal disease
  publication-title: Urologe A
– volume: 85
  start-page: 70
  year: 2000
  end-page: 73
  article-title: Microvessel density in prostatic hyperplasia
  publication-title: Br J Urol
– volume: 5
  start-page: 119
  year: 2002
  end-page: 122
  article-title: Distribution of vascular endothelial growth factor (VEGF) in prostate disease
  publication-title: Prost Cancer Prost Diseases
– volume: 10
  start-page: 269
  year: 1994
  end-page: 280
  article-title: Characteristics of FGF‐receptors expressed by stromal and epithelial cells cultured from normal and hyperplastic prostates
  publication-title: Growth Factors
– volume: 41
  start-page: 110
  year: 1999
  end-page: 120
  article-title: Regulation of prostatic stromal cell growth and function by transforming growth factor beta (TGFβ)
  publication-title: Prostate
– volume: 93
  start-page: 266
  year: 2001
  end-page: 276
  article-title: Tumor hypoxia: Definitions and current clinical, biologic, and molecular aspects
  publication-title: J Natl Cancer Inst
– volume: 59
  start-page: 4525
  year: 1999
  end-page: 4528
  article-title: Hypoxic cervical cancers with low apoptotic index are highly aggressive
  publication-title: Cancer Res
– volume: 130
  start-page: 2955
  year: 1992
  end-page: 2963
  article-title: Basic fibroblast growth factor: A potential mediator of stromal growth in the human prostate
  publication-title: Endocrinology
– volume: 127
  start-page: 2963
  year: 1990
  end-page: 2968
  article-title: Effect of transforming growth factor‐β1 on proliferation and death of rat prostatic cells
  publication-title: Endocrinology
– volume: 153
  start-page: 344A
  year: 1995
  article-title: Analysis of type III collagen mRNA expression in human benign prostatic hyperplasia
  publication-title: J Urol
– volume: 162
  start-page: 595
  year: 1999
  end-page: 599
  article-title: FGF7 and FGF2 are increased in benign prostatic hyperplasia and are associated with increased proliferation
  publication-title: J Urol
– volume: 159
  start-page: 139
  year: 2001
  end-page: 147
  article-title: Interleukin‐8 as a paracrine inducer of fibroblast growth factor 2, a stromal and epithelial growth factor in benign prostatic hyperplasia
  publication-title: Am J Pathol
– volume: 28
  start-page: 321
  year: 1989
  ident: e_1_2_1_41_2
  article-title: Benign prostatic hyperplasia: A stromal disease
  publication-title: Urologe A
  contributor:
    fullname: Bartsch G
– ident: e_1_2_1_21_2
  doi: 10.3109/08977199409010993
– ident: e_1_2_1_46_2
  doi: 10.1038/sj.pcan.4500575
– ident: e_1_2_1_10_2
  doi: 10.1016/S0002-9440(10)64554-3
– ident: e_1_2_1_7_2
  doi: 10.1016/S0006-2952(00)00423-8
– ident: e_1_2_1_34_2
  doi: 10.1056/NEJM199101033240101
– volume: 59
  start-page: 4525
  year: 1999
  ident: e_1_2_1_5_2
  article-title: Hypoxic cervical cancers with low apoptotic index are highly aggressive
  publication-title: Cancer Res
  contributor:
    fullname: Hockel M
– ident: e_1_2_1_25_2
  doi: 10.1002/(SICI)1097-0045(19970601)31:4<223::AID-PROS3>3.0.CO;2-L
– ident: e_1_2_1_17_2
  doi: 10.1038/sj.onc.1204972
– ident: e_1_2_1_18_2
  doi: 10.1210/en.130.5.2955
– volume: 274
  start-page: 212
  year: 1998
  ident: e_1_2_1_12_2
  article-title: Hypoxia induces type II NOS gene expression in pulmonary artery endothelial cells via HIF‐1
  publication-title: Am J Physiol
  contributor:
    fullname: Palmer LA
– ident: e_1_2_1_24_2
  doi: 10.1002/(SICI)1097-0045(19971101)33:3<177::AID-PROS5>3.0.CO;2-G
– volume: 269
  start-page: 14828
  year: 1994
  ident: e_1_2_1_39_2
  article-title: Transforming growth factor‐β stimulates alpha 2(1) collagen gene expression through a cis‐acting element that contains an Sp1‐binding site
  publication-title: J Biol Chem
  doi: 10.1016/S0021-9258(17)36699-1
  contributor:
    fullname: Inagaki Y
– ident: e_1_2_1_27_2
  doi: 10.1016/S0002-9440(10)61681-1
– ident: e_1_2_1_38_2
  doi: 10.1002/pros.2990040509
– ident: e_1_2_1_6_2
  doi: 10.1093/jnci/93.4.266
– ident: e_1_2_1_15_2
  doi: 10.1152/ajpcell.1996.271.4.C1172
– ident: e_1_2_1_37_2
  doi: 10.1002/(SICI)1097-0045(19991001)41:2<110::AID-PROS5>3.0.CO;2-X
– volume: 59
  start-page: 5830
  year: 1999
  ident: e_1_2_1_11_2
  article-title: Overexpression of hypoxia‐inducible factor‐1 alpha in common human cancersand their metastases
  publication-title: Cancer Res
  contributor:
    fullname: Zhong H
– ident: e_1_2_1_32_2
  doi: 10.1002/(SICI)1097-0045(19990601)39:4<285::AID-PROS9>3.0.CO;2-7
– volume: 153
  start-page: 344A
  year: 1995
  ident: e_1_2_1_42_2
  article-title: Analysis of type III collagen mRNA expression in human benign prostatic hyperplasia
  publication-title: J Urol
  contributor:
    fullname: Richier JC
– ident: e_1_2_1_22_2
  doi: 10.1159/000463872
– ident: e_1_2_1_45_2
  doi: 10.1016/S0022-5347(05)66297-0
– volume: 157
  start-page: 351
  year: 1997
  ident: e_1_2_1_19_2
  article-title: Expression of fibroblast growth factors (FGFs) and FGF receptors in human prostate
  publication-title: J Urol
  doi: 10.1016/S0022-5347(01)65376-X
  contributor:
    fullname: Ittmann M
– ident: e_1_2_1_36_2
  doi: 10.1002/(SICI)1097-0045(19980501)35:2<125::AID-PROS6>3.0.CO;2-I
– volume: 5
  start-page: 34
  year: 1989
  ident: e_1_2_1_2_2
  article-title: Benign prostatic hyperplasia: Morphometric studies in relation to the pathogenesis
  publication-title: New Dev Biosci
  contributor:
    fullname: Bartsch G
– ident: e_1_2_1_13_2
  doi: 10.1002/path.1029
– volume: 15
  start-page: 340
  year: 1978
  ident: e_1_2_1_4_2
  article-title: Origin and evolution of benign prostatic enlargement
  publication-title: Invest Urol
  contributor:
    fullname: McNeil JE
– ident: e_1_2_1_26_2
  doi: 10.1016/S0002-9440(10)65516-2
– ident: e_1_2_1_16_2
  doi: 10.1038/sj.onc.1204228
– ident: e_1_2_1_31_2
  doi: 10.1210/endo-127-6-2963
– ident: e_1_2_1_8_2
  doi: 10.1007/s11934-002-0051-2
– volume: 95
  start-page: 189
  year: 2000
  ident: e_1_2_1_30_2
  article-title: Hypoxia respone element of the human vascular endothelial growth factor gene mediates transcriptional regulation by nitric oxide: Control of hypoxia‐inducible factor‐1 activity by nitric oxide
  publication-title: Blood
  doi: 10.1182/blood.V95.1.189
  contributor:
    fullname: Kimura H
– volume: 62
  start-page: 6021
  year: 2002
  ident: e_1_2_1_47_2
  article-title: Inhibition of transforming growth factor‐β activity decreases angiogenesis in a human prostate cancer‐reactive stroma xenograft model
  publication-title: Cancer Res
  contributor:
    fullname: Tuxhorn JA
– ident: e_1_2_1_40_2
  doi: 10.1111/j.1442-2042.1997.tb00316.x
– ident: e_1_2_1_43_2
  doi: 10.1016/S0022-5347(17)54051-3
– ident: e_1_2_1_23_2
  doi: 10.1016/S0046-8177(96)90396-2
– ident: e_1_2_1_20_2
  doi: 10.1016/S0022-5347(05)68632-6
– ident: e_1_2_1_29_2
  doi: 10.1002/pros.10025
– ident: e_1_2_1_44_2
  doi: 10.1046/j.1464-410x.2000.00322.x
– ident: e_1_2_1_3_2
  doi: 10.1016/S0022-5347(17)37546-8
– ident: e_1_2_1_33_2
  doi: 10.1677/joe.0.1640215
– ident: e_1_2_1_9_2
  doi: 10.1038/nrc704
– ident: e_1_2_1_14_2
  doi: 10.1128/MCB.16.9.4604
– ident: e_1_2_1_28_2
  doi: 10.1096/fsb2fj000350com
– ident: e_1_2_1_35_2
  doi: 10.1006/excr.1997.3525
SSID ssj0010002
Score 2.075868
Snippet BACKGROUND Local hypoxia may be one of the triggers of embryonic reawakening of the stroma and subsequent hyperplastic growth in the prostate. Using a cell...
Local hypoxia may be one of the triggers of embryonic reawakening of the stroma and subsequent hyperplastic growth in the prostate. Using a cell culture model...
Abstract BACKGROUND Local hypoxia may be one of the triggers of embryonic reawakening of the stroma and subsequent hyperplastic growth in the prostate. Using a...
BACKGROUNDLocal hypoxia may be one of the triggers of embryonic reawakening of the stroma and subsequent hyperplastic growth in the prostate. Using a cell...
SourceID proquest
crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 57
SubjectTerms benign prostatic hyperplasia
Cell Line
Collagen Type I - metabolism
Collagen Type III - metabolism
Collagen Type IV - metabolism
DNA-Binding Proteins - metabolism
DNA-Binding Proteins - secretion
Endothelial Growth Factors - metabolism
Endothelial Growth Factors - secretion
FGF-2
FGF-7
Fibroblast Growth Factor 2 - metabolism
Fibroblast Growth Factor 2 - secretion
Fibroblast Growth Factor 7
Fibroblast Growth Factors - metabolism
Fibroblast Growth Factors - secretion
HIF 1
Human Growth Hormone - biosynthesis
Humans
hypoxia
Hypoxia - metabolism
Hypoxia-Inducible Factor 1
Hypoxia-Inducible Factor 1, alpha Subunit
IL 8
Intercellular Signaling Peptides and Proteins - metabolism
Intercellular Signaling Peptides and Proteins - secretion
Interleukin-8 - metabolism
Interleukin-8 - secretion
Lymphokines - metabolism
Lymphokines - secretion
Male
Nuclear Proteins - metabolism
Nuclear Proteins - secretion
Prostate - cytology
Prostate - metabolism
stromal cells
Stromal Cells - cytology
Stromal Cells - metabolism
Stromal Cells - secretion
TGF-β
Transcription Factors
Transforming Growth Factor beta - metabolism
Transforming Growth Factor beta - secretion
Vascular Endothelial Growth Factor A
Vascular Endothelial Growth Factors
VEGF
Title Increased growth factor production in a human prostatic stromal cell culture model caused by hypoxia
URI https://api.istex.fr/ark:/67375/WNG-JF7MHT55-5/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fpros.10279
https://www.ncbi.nlm.nih.gov/pubmed/12886524
https://search.proquest.com/docview/73517854
Volume 57
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB5CCqWXtulz26YRNPRQcGJrrYehlxC6WQKbhDxoLkVIstQsod5l1wtJf3010j5IKYXkZmxZljTS6LNm5huAbaed8LqyGZqBstLVMtN17oMy9Hnpra9pzJ8yOOL9i_Lwkl2uwddFLEzih1geuOHKiPoaF7g2090VaWhQMFMkHhAYvYdMeoiITpfcUXhuHU0IVORZ0NRiyU1Kd1ev3tmNHuHA3vwLat5FrnHr6T2DH4tGJ4-T651Za3bs77_4HB_aq-fwdI5JyV6aRBuw5poX8Hgwt7q_hDooEfRddzX5Gf7a2yuSsvSQcaKLDaIlw4ZoEhP-4V0MUxpaMm0no1-hZrQOkMTx4UjMvUOsnmF95pZc3Y5HN0P9Ci563873-9k8O0NmcQ_LRJdWUgedYJkJIMEVaOLjvvTdMkCevNa1qThjhtLCFYbxrpa1LaystPYckd9rWG9GjXsLJEiPGy9zntuydMabwlbCcVdIaxnXrgOfFlJS40TCoRLdMlXYJxUHrAOfowCXRfTkGt3WBFPfjw7UYU8M-ueMKdaBrYWEVVhMOAa6caPZVIkuK4RkZQfeJMGvPkel5IyGJ1-i-P7TDnVyenwWr97dp_B7eBIdBTE9BfsA6-1k5jYD4GnNxzix_wCS_fzb
link.rule.ids 315,786,790,1382,27955,27956,46327,46751
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwED_BJgEvfH-Ur1kC8YCULXHijzwioJSxFjQ6sTfLdmxWTaRVm0obfz0-u2s1hJDgLUocJ_b5zj_7zr8DeOm0E17XNkM3UFa5Rma6yX0whj6vvPUNjflThiM-OKr2j9nxKjYHz8Ikfoj1hhtqRrTXqOC4Ib23YQ0NFmaBzAOivgrbQd8Z6uW7wzV7FO5cRycCFXkWbLVYs5PSvc27l-ajbezasz-BzcvYNU4-_Vspw-oichZizMnp7rIzu_bnb4yO_92u23BzBUvJmzSO7sAV196Fa8OV4_0eNMGOYPi6a8j3sHDvTkhK1ENmiTE2SJdMWqJJzPmHd_Gk0sSSRTef_gg1o4OAJJoPR2L6HWL1Eusz5-TkfDY9m-j7cNR_P347yFYJGjKL01gmSlpLHcyCZSbgBFegl4_7ypdVQD15oxtTc8YMpYUrDOOllo0trKy19hzB3wPYaqetewSkKCU3XuY8t1XljDeFrYXjrpDWMq5dD15ciEnNEg-HSozLVGGbVOywHryKElwX0fNTjFwTTH0bfVD7fTEcjBlTrAc7FyJWQZ-wD3TrpsuFEiUrhGRVDx4myW8-R6XkjIYnr6P8_vIf6svh56_x6vG_FN6B64Px8EAdfBx9egI3YtwgZqtgT2Grmy_ds4B_OvM8jvJfYvQBCg
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1baxQxFD7UFoovWu_rrQHFB2HamczkMuBLaV3X6q6lttgXCUkmsUtxdtmdhdZf35zMXqiIoG_DTJJJcpKTLzkn3wF47bQTXpc2QTNQUrhKJrpKfVCGPi289RWN8VP6A947LQ7P2NkavFvchWn5IZYHbjgzor7GCT6u_O6KNDQomCkSD4jyFmwUPKe49To4XpJH4cF1tCFQkSZBVYslOSndXeW9sRxtYM9e_glr3oSuce3p3oXvi1q3LicXO7PG7NhfvxE6_m-ztuDOHJSSvXYU3YM1V9-Hzf7c7P4AqqBF0HndVeRH2LY356QN00PGLV9skC0Z1kSTGPEP3-I9paEl02Yy-hlKRvMAaUk-HInBd4jVMyzPXJHzq_Hocqgfwmn3_cl-L5mHZ0gsLmKJyGkpdVAKlpmAElyGNj7uC58XAfOkla5MyRkzlGYuM4znWlY2s7LU2nOEfo9gvR7V7gmQLJfceJny1BaFM95kthSOu0xay7h2HXi1kJIatywcquVbpgrbpGKHdeBNFOAyiZ5coN-aYOrb4IM67Ip-74QxxTqwvZCwCrMJ-0DXbjSbKpGzTEhWdOBxK_jV76iUnNHw5W0U31_qoY6Ov3yNT0__JfE2bB4ddNXnj4NPz-B2dBrEUBXsOaw3k5l7EcBPY17GMX4NZ_T_qg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Increased+growth+factor+production+in+a+human+prostatic+stromal+cell+culture+model+caused+by+hypoxia&rft.jtitle=The+Prostate&rft.au=Berger%2C+Andreas+P&rft.au=Kofler%2C+Kurt&rft.au=Bektic%2C+Jasmin&rft.au=Rogatsch%2C+Hermann&rft.date=2003-09-15&rft.issn=0270-4137&rft.volume=57&rft.issue=1&rft.spage=57&rft.epage=65&rft_id=info:doi/10.1002%2Fpros.10279&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0270-4137&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0270-4137&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0270-4137&client=summon