Anisotropic anomalous diffusion assessed in the human brain by scalar invariant indices
A new method to investigate anomalous diffusion in human brain, inspired by the stretched‐exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of...
Saved in:
Published in | Magnetic resonance in medicine Vol. 65; no. 4; pp. 1043 - 1052 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Hoboken
Wiley Subscription Services, Inc., A Wiley Company
01.04.2011
|
Subjects | |
Online Access | Get full text |
ISSN | 0740-3194 1522-2594 1522-2594 |
DOI | 10.1002/mrm.22689 |
Cover
Loading…
Abstract | A new method to investigate anomalous diffusion in human brain, inspired by the stretched‐exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of anomalous diffusion indices to characterize white matter structures, whose complexity is only partially accounted by diffusion tensor imaging indices. MR signal was expressed as a stretched‐exponential only along the principal axes of diffusion; whereas, in a generic direction, it was modeled as a combination of three stretched‐exponentials. Indices to quantify the tissue anomalous diffusion and its anisotropy, independently of the experiment reference frame, were derived. Experimental results, obtained on 10 healthy subjects at 3T, show that the new parameters are highly correlated to intrinsic local geometry when compared with Hall and Barrick indices. Moreover, they offer a different contrast in white matter regions when compared with diffusion tensor imaging. Specifically, the new indices show a higher capability to discriminate among areas of the corpus callosum associated to different distribution in axonal densities, thus offering a new potential tool to detect more specific patterns of brain abnormalities than diffusion tensor imaging in the presence of neurological and psychiatric disorders. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc. |
---|---|
AbstractList | A new method to investigate anomalous diffusion in human brain, inspired by the stretched-exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of anomalous diffusion indices to characterize white matter structures, whose complexity is only partially accounted by diffusion tensor imaging indices. MR signal was expressed as a stretched-exponential only along the principal axes of diffusion; whereas, in a generic direction, it was modeled as a combination of three stretched-exponentials. Indices to quantify the tissue anomalous diffusion and its anisotropy, independently of the experiment reference frame, were derived. Experimental results, obtained on 10 healthy subjects at 3T, show that the new parameters are highly correlated to intrinsic local geometry when compared with Hall and Barrick indices. Moreover, they offer a different contrast in white matter regions when compared with diffusion tensor imaging. Specifically, the new indices show a higher capability to discriminate among areas of the corpus callosum associated to different distribution in axonal densities, thus offering a new potential tool to detect more specific patterns of brain abnormalities than diffusion tensor imaging in the presence of neurological and psychiatric disorders. Magn Reson Med, 2010. [copy 2010 Wiley-Liss, Inc. A new method to investigate anomalous diffusion in human brain, inspired by the stretched-exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of anomalous diffusion indices to characterize white matter structures, whose complexity is only partially accounted by diffusion tensor imaging indices. MR signal was expressed as a stretched-exponential only along the principal axes of diffusion; whereas, in a generic direction, it was modeled as a combination of three stretched-exponentials. Indices to quantify the tissue anomalous diffusion and its anisotropy, independently of the experiment reference frame, were derived. Experimental results, obtained on 10 healthy subjects at 3T, show that the new parameters are highly correlated to intrinsic local geometry when compared with Hall and Barrick indices. Moreover, they offer a different contrast in white matter regions when compared with diffusion tensor imaging. Specifically, the new indices show a higher capability to discriminate among areas of the corpus callosum associated to different distribution in axonal densities, thus offering a new potential tool to detect more specific patterns of brain abnormalities than diffusion tensor imaging in the presence of neurological and psychiatric disorders. A new method to investigate anomalous diffusion in human brain, inspired by the stretched‐exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of anomalous diffusion indices to characterize white matter structures, whose complexity is only partially accounted by diffusion tensor imaging indices. MR signal was expressed as a stretched‐exponential only along the principal axes of diffusion; whereas, in a generic direction, it was modeled as a combination of three stretched‐exponentials. Indices to quantify the tissue anomalous diffusion and its anisotropy, independently of the experiment reference frame, were derived. Experimental results, obtained on 10 healthy subjects at 3T, show that the new parameters are highly correlated to intrinsic local geometry when compared with Hall and Barrick indices. Moreover, they offer a different contrast in white matter regions when compared with diffusion tensor imaging. Specifically, the new indices show a higher capability to discriminate among areas of the corpus callosum associated to different distribution in axonal densities, thus offering a new potential tool to detect more specific patterns of brain abnormalities than diffusion tensor imaging in the presence of neurological and psychiatric disorders. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc. A new method to investigate anomalous diffusion in human brain, inspired by the stretched-exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of anomalous diffusion indices to characterize white matter structures, whose complexity is only partially accounted by diffusion tensor imaging indices. MR signal was expressed as a stretched-exponential only along the principal axes of diffusion; whereas, in a generic direction, it was modeled as a combination of three stretched-exponentials. Indices to quantify the tissue anomalous diffusion and its anisotropy, independently of the experiment reference frame, were derived. Experimental results, obtained on 10 healthy subjects at 3T, show that the new parameters are highly correlated to intrinsic local geometry when compared with Hall and Barrick indices. Moreover, they offer a different contrast in white matter regions when compared with diffusion tensor imaging. Specifically, the new indices show a higher capability to discriminate among areas of the corpus callosum associated to different distribution in axonal densities, thus offering a new potential tool to detect more specific patterns of brain abnormalities than diffusion tensor imaging in the presence of neurological and psychiatric disorders.A new method to investigate anomalous diffusion in human brain, inspired by the stretched-exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of anomalous diffusion indices to characterize white matter structures, whose complexity is only partially accounted by diffusion tensor imaging indices. MR signal was expressed as a stretched-exponential only along the principal axes of diffusion; whereas, in a generic direction, it was modeled as a combination of three stretched-exponentials. Indices to quantify the tissue anomalous diffusion and its anisotropy, independently of the experiment reference frame, were derived. Experimental results, obtained on 10 healthy subjects at 3T, show that the new parameters are highly correlated to intrinsic local geometry when compared with Hall and Barrick indices. Moreover, they offer a different contrast in white matter regions when compared with diffusion tensor imaging. Specifically, the new indices show a higher capability to discriminate among areas of the corpus callosum associated to different distribution in axonal densities, thus offering a new potential tool to detect more specific patterns of brain abnormalities than diffusion tensor imaging in the presence of neurological and psychiatric disorders. |
Author | Bozzali, M. Gabrielli, A. Macaluso, E. De Santis, S. Capuani, S. Maraviglia, B. |
Author_xml | – sequence: 1 givenname: S. surname: De Santis fullname: De Santis, S. email: silvia.desantis@roma1.infn.it organization: Physics Department, Sapienza University of Rome, P.le A.Moro 5, Rome, Italy – sequence: 2 givenname: A. surname: Gabrielli fullname: Gabrielli, A. organization: Physics Department, Sapienza University of Rome, P.le A.Moro 5, Rome, Italy – sequence: 3 givenname: M. surname: Bozzali fullname: Bozzali, M. organization: Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome, Italy – sequence: 4 givenname: B. surname: Maraviglia fullname: Maraviglia, B. organization: Physics Department, Sapienza University of Rome, P.le A.Moro 5, Rome, Italy – sequence: 5 givenname: E. surname: Macaluso fullname: Macaluso, E. organization: Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome, Italy – sequence: 6 givenname: S. surname: Capuani fullname: Capuani, S. organization: Physics Department, Sapienza University of Rome, P.le A.Moro 5, Rome, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/21413068$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkctOGzEYhS1EBYGy4AWq2VUsJvEtM_YSIgiVSEFtUZaWxxfFZcYTbA9t3h63SVhUrSpZsn_7O0fyOSfg0PfeAHCO4BhBiCdd6MYYV4wfgBGaYlziKaeHYARrCkuCOD0GJzF-hxByXtMjcIwRRQRWbASWl97FPoV-7VQhfd_Jth9ioZ21Q3S9L2SMJi9dOF-klSlWQyd90QSZ52ZTRCVbGfLjiwxO-pRP2ikT34N3VrbRnO32U_B4c_1tdlve3c8_zS7vSkUx5yVlqLFIqwqjRjVTiE1NmJSYY2YxQVhrUudbzYmmHDaqthZVrNZNRjJvySn4uPVdh_55MDGJzkVl2lZ6kz8iGCMQQ4rZ_8lpzRBivMrkhx05NJ3RYh1cJ8NG7FPLwGQLqNDHGIwVyiWZclwp59IKBMWvXkTuRfzuJSsu_lDsTf_G7tx_uNZs_g2KxZfFXlFuFS4m8_NNIcOTqOocoFh-nour2fzha0XmYkleAW4wq94 |
CitedBy_id | crossref_primary_10_1016_j_bcp_2013_11_009 crossref_primary_10_1137_23M1574944 crossref_primary_10_1016_j_jalz_2013_04_506 crossref_primary_10_1103_PhysRevE_89_042104 crossref_primary_10_1103_PhysRevE_92_012707 crossref_primary_10_1109_JETCAS_2013_2265795 crossref_primary_10_1007_s10334_011_0292_5 crossref_primary_10_1088_0031_9155_60_6_2355 crossref_primary_10_3389_fnagi_2020_602510 crossref_primary_10_1002_nbm_1747 crossref_primary_10_1016_j_mri_2011_04_006 crossref_primary_10_1016_j_neuroimage_2018_12_044 crossref_primary_10_1002_mrm_26466 crossref_primary_10_1016_j_neuroscience_2018_07_033 crossref_primary_10_1016_j_micromeso_2013_02_054 crossref_primary_10_1097_RLI_0b013e31826a0a49 crossref_primary_10_1118_1_4946819 crossref_primary_10_1002_mrm_24706 crossref_primary_10_1016_j_mcna_2012_12_013 crossref_primary_10_1016_j_jalz_2014_04_015 crossref_primary_10_1016_j_jmr_2011_12_023 crossref_primary_10_1016_j_jmr_2013_01_014 crossref_primary_10_1016_j_mri_2018_04_005 crossref_primary_10_3389_fnins_2021_797642 crossref_primary_10_3233_JAD_179932 crossref_primary_10_2478_s13380_013_0106_5 crossref_primary_10_3389_fphy_2019_00248 crossref_primary_10_1016_j_neuroimage_2018_03_052 crossref_primary_10_1051_mmnp_20161139 crossref_primary_10_1109_TMI_2016_2548503 crossref_primary_10_1038_s41598_021_01476_z crossref_primary_10_1016_j_micromeso_2013_02_046 crossref_primary_10_1016_j_mri_2017_05_006 crossref_primary_10_1016_j_mri_2012_08_012 crossref_primary_10_1016_j_neuroimage_2016_12_051 crossref_primary_10_1016_j_jtbi_2015_03_037 crossref_primary_10_1016_j_neuroimage_2012_01_105 crossref_primary_10_1063_1_3610367 |
Cites_doi | 10.1002/mrm.10209 10.1002/mrm.21577 10.1593/neo.06319 10.1093/brain/awp042 10.1016/j.jmr.2006.08.009 10.1002/mrm.20286 10.1002/nbm.1139 10.1590/S0100-879X2003000400002 10.1002/mrm.20274 10.1002/nbm.782 10.1016/j.mri.2007.03.017 10.1002/jmri.21808 10.1002/mrm.10581 10.1176/ajp.154.8.1051 10.1016/j.mri.2008.01.042 10.1002/mrm.20960 10.1016/j.neuroimage.2005.03.042 10.1016/0960-0779(95)80025-C 10.1093/brain/awh493 10.1063/1.1670306 10.1063/1.1695690 10.1002/mrm.1910360607 10.1016/0306-4522(91)90206-4 10.1002/nbm.1940080707 10.1002/mrm.20508 10.1016/j.mri.2005.10.023 10.1002/mrm.10578 10.1016/S0370-1573(00)00070-3 10.1097/YCO.0b013e328325aa23 10.1002/mrm.10270 10.1006/jmrb.1996.0086 10.1002/nbm.1020 10.1002/mrm.21453 10.1098/rspb.1982.0092 10.1016/0165-0270(94)00115-W 10.1148/radiol.2462061469 10.1002/(SICI)1099-1492(199902)12:1<51::AID-NBM546>3.0.CO;2-E |
ContentType | Journal Article |
Copyright | Copyright © 2010 Wiley‐Liss, Inc. Copyright © 2010 Wiley-Liss, Inc. |
Copyright_xml | – notice: Copyright © 2010 Wiley‐Liss, Inc. – notice: Copyright © 2010 Wiley-Liss, Inc. |
DBID | BSCLL AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 7QO 7TK 8FD FR3 P64 |
DOI | 10.1002/mrm.22689 |
DatabaseName | Istex CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic Biotechnology Research Abstracts Neurosciences Abstracts Technology Research Database Engineering Research Database Biotechnology and BioEngineering Abstracts |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic Engineering Research Database Biotechnology Research Abstracts Technology Research Database Neurosciences Abstracts Biotechnology and BioEngineering Abstracts |
DatabaseTitleList | Engineering Research Database MEDLINE MEDLINE - Academic CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Physics |
EISSN | 1522-2594 |
EndPage | 1052 |
ExternalDocumentID | 21413068 10_1002_mrm_22689 MRM22689 ark_67375_WNG_BCGPS63G_W |
Genre | article Journal Article |
GroupedDBID | --- -DZ .3N .55 .GA .Y3 05W 0R~ 10A 1L6 1OB 1OC 1ZS 24P 31~ 33P 3O- 3SF 3WU 4.4 4ZD 50Y 50Z 51W 51X 52M 52N 52O 52P 52R 52S 52T 52U 52V 52W 52X 53G 5GY 5RE 5VS 66C 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A01 A03 AAESR AAEVG AAHHS AANLZ AAONW AASGY AAXRX AAZKR ABCQN ABCUV ABDPE ABEML ABIJN ABJNI ABLJU ABPVW ABQWH ABXGK ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACGOF ACIWK ACMXC ACPOU ACPRK ACSCC ACXBN ACXQS ADBBV ADBTR ADEOM ADIZJ ADKYN ADMGS ADOZA ADXAS ADZMN AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUQT AEUYR AFBPY AFFNX AFFPM AFGKR AFPWT AFRAH AFZJQ AHBTC AHMBA AIACR AIAGR AITYG AIURR AIWBW AJBDE ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN AMBMR AMYDB ASPBG ATUGU AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMXJE BROTX BRXPI BSCLL BY8 C45 CS3 D-6 D-7 D-E D-F DCZOG DPXWK DR2 DRFUL DRMAN DRSTM DU5 EBD EBS EJD EMOBN F00 F01 F04 FEDTE FUBAC G-S G.N GNP GODZA H.X HBH HDBZQ HF~ HGLYW HHY HHZ HVGLF HZ~ I-F IX1 J0M JPC KBYEO KQQ LATKE LAW LC2 LC3 LEEKS LH4 LITHE LOXES LP6 LP7 LUTES LW6 LYRES M65 MEWTI MK4 MRFUL MRMAN MRSTM MSFUL MSMAN MSSTM MXFUL MXMAN MXSTM N04 N05 N9A NF~ NNB O66 O9- OIG OVD P2P P2W P2X P2Z P4B P4D PALCI PQQKQ Q.N Q11 QB0 QRW R.K RGB RIWAO RJQFR ROL RWI RX1 RYL SAMSI SUPJJ SV3 TEORI TUS TWZ UB1 V2E V8K W8V W99 WBKPD WHWMO WIB WIH WIJ WIK WIN WJL WOHZO WQJ WRC WUP WVDHM WXI WXSBR X7M XG1 XPP XV2 ZGI ZXP ZZTAW ~IA ~WT AAHQN AAIPD AAMNL AANHP AAYCA ACRPL ACYXJ ADNMO AFWVQ ALVPJ AAYXX AEYWJ AGHNM AGQPQ AGYGG CITATION CGR CUY CVF ECM EIF NPM 7X8 AAMMB AEFGJ AGXDD AIDQK AIDYY 7QO 7TK 8FD FR3 P64 |
ID | FETCH-LOGICAL-c4299-481bf1dc621bcb502e738aa2928f2312dd37502d93d490bc7ff1687dba29cb5f3 |
IEDL.DBID | DR2 |
ISSN | 0740-3194 1522-2594 |
IngestDate | Fri Jul 11 08:56:10 EDT 2025 Fri Jul 11 13:40:16 EDT 2025 Thu Apr 03 07:00:46 EDT 2025 Tue Jul 01 01:20:45 EDT 2025 Thu Apr 24 22:56:40 EDT 2025 Wed Jan 22 17:11:58 EST 2025 Wed Oct 30 09:48:31 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 4 |
Language | English |
License | Copyright © 2010 Wiley-Liss, Inc. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4299-481bf1dc621bcb502e738aa2928f2312dd37502d93d490bc7ff1687dba29cb5f3 |
Notes | ArticleID:MRM22689 istex:5110EAA6CC42CC65A63C15FA235A0106A8AEFAB1 ark:/67375/WNG-BCGPS63G-W ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 ObjectType-Article-2 ObjectType-Feature-1 |
OpenAccessLink | https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.22689 |
PMID | 21413068 |
PQID | 857811896 |
PQPubID | 23479 |
PageCount | 10 |
ParticipantIDs | proquest_miscellaneous_883020428 proquest_miscellaneous_857811896 pubmed_primary_21413068 crossref_citationtrail_10_1002_mrm_22689 crossref_primary_10_1002_mrm_22689 wiley_primary_10_1002_mrm_22689_MRM22689 istex_primary_ark_67375_WNG_BCGPS63G_W |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | April 2011 |
PublicationDateYYYYMMDD | 2011-04-01 |
PublicationDate_xml | – month: 04 year: 2011 text: April 2011 |
PublicationDecade | 2010 |
PublicationPlace | Hoboken |
PublicationPlace_xml | – name: Hoboken – name: United States |
PublicationTitle | Magnetic resonance in medicine |
PublicationTitleAlternate | Magn. Reson. Med |
PublicationYear | 2011 |
Publisher | Wiley Subscription Services, Inc., A Wiley Company |
Publisher_xml | – name: Wiley Subscription Services, Inc., A Wiley Company |
References | Stejskal E, Tanner J. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 1965; 42: 288-292. Bozzali M, Cherubini A. Diffusion tensor MRI to investigate dementias: a brief review. Magn Reson Imaging 2007; 25: 969-977. Bennett KM, Schmainda KM, Bennett RT, Rowe DB, Lu H, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 2003; 50: 727-734. Bennett KM, Hyde JS, Rand SD, Bennett R, Krouwer HGJ, Rebro KJ, Schmainda KM. Intravoxel distribution of DWI decay rates reveals C6 glioma invasion in rat brain. Magn Reson Med 2004; 52: 994-1004. Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M, Nicolay K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 1996; 36: 847-857. Thelwall PE, Grant SC, Stanisz GJ, Blackband SJ. Human erythrocyte ghosts: exploring the origins of multiexponential water diffusion in a model biological tissue with magnetic resonance. Magn Reson Med 2002; 48: 649-657. Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53: 1432-1440. Maier SE, Mulkern RV. Biexponential analysis of diffusion-related signal decay in normal human cortical and deep gray matter. Magn Reson Imaging 2008; 26: 897-904. Yablonskiy DA, Bretthorst GL, Ackerman JJH. Statistical model for diffusion attenuated MR signal. Magn Reson Med 2003; 50: 664-669. Callaghan P. Principles of nuclear magnetic resonance microscopy. New York: Oxford University Press Inc.; 1994. Metzler R, Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 2000; 339: 1-77. Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Ossadnik SM, Peng CK, Simons M, Stanley HE. Fractals in biology and medicine. Chaos Solitons Fractals 1995; 6: 171-201. Hall MG, Barrick TR. From diffusion-weighted MRI to anomalous diffusion imaging. Magn Reson Med 2008; 59: 447-455. Assaf Y, Freidlin RZ, Rohde GK, Basser PJ. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med 2004; 52: 965-978. Kyriakopoulos M, Frangou S. Recent diffusion tensor imaging findings in early stages of schizophrenia. Curr Opin Psychiatry 2009; 22: 168-176. Caserta F, Eldred WD, Fernandez E, Hausman RE, Stanford LR, Bulderev SV, Schwarzer S, Stanley HE. Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J Neurosci Methods 1995; 56: 133-144. Saito Y, Nobuhara K, Okugawa G, Takase K, Sugimoto T, Horiuchi M, Ueno C, Maehara M, Omura N, Kurokawa H, Ikeda K, Tanigawa N, Sawada S, Kinoshita T. Corpus callosum in patients with obsessive-compulsive disorder: diffusion-tensor imaging study. Radiology 2008; 246: 536-542. Peled S, Whalen S, Jolesz FA, Golby AJ. High b-value apparent diffusion-weighted images from curve-ball DTI. J Magn Reson Imaging 2009; 30: 243-248. Bozzali M, Falini A, Cercignani M, Baglio F, Farina E, Alberoni M, Vezzulli P, Olivotto F, Mantovani F, Shallice T, Scotti G, Canal N, Nemni R. Brain tissue damage in dementia with lewy bodies: an in vivo diffusion tensor MRI study. Brain 2005; 128: 1595-1604. Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995; 8: 333-344. Madhu B, Waterton JC, Griffiths JR, Ryan AJ, Robinson SP. The response of RIF-1 fibrosarcomas to the vascular-disrupting agent ZD6126 assessed by in vivo and ex vivo 1H magnetic resonance spectroscopy. Neoplasia 2006; 8: 560-567. Piven J, Bailey J, Ranson BJ, Arndt S. An MRI study of the corpus callosum in autism. Am J Psychiatry 1997; 154: 1051-1056. Ritchie JM. On the relation between fibre diameter and conduction velocity in myelinated nerve fibres. Proc R Soc Lond B Biol Sci 1982; 217: 29-35. Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J chem phys 1968; 49: 1768-1777. Bennett KM, Hyde JS, Schmainda KM. Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients. Magn Reson Med 2006; 56: 235-239. Cluskey S, Ramsden DB. Mechanisms of neurodegeneration in amyotrophic lateral sclerosis. Mol Pathol 2001; 54: 386-392. Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996; 111: 209-219. Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed 2002; 15: 435-455. Smith TG, Behar TN, Lange GD, Marks WB, Sheriff WH. A fractal analysis of cultured rat optic nerve glial growth and differentiation. Neuroscience 1991; 41: 159-166. Fushimi Y, Miki Y, Okada T, Yamamoto A, Mori N, Hanakawa T, Urayama SI, Aso T, Fukuyama H, Kikuta KI, Togashi K. Fractional anisotropy and mean diffusivity: comparison between 3.0-t and 1.5-t diffusion tensor imaging with parallel imaging using histogram and region of interest analysis. NMR Biomed 2007; 20: 743-748. Barazany D, Basser PJ, Assaf Y. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 2009; 132: 1210-1220. Alexander DC, Barker GJ, Arridge SR. Detection and modeling of non-gaussian apparent diffusion coefficient profiles in human brain data. Magn Reson Med 2002; 48: 331-340. Ronen I, Moeller S, Ugurbil K, Kim DS. Analysis of the distribution of diffusion coefficients in cat brain at 9.4 T using the inverse laplace transformation. Magn Reson Imaging 2006; 24: 61-68. Ozarslan E, Basser PJ, Shepherd TM, Thelwall PE, Vemuri BC, Blackband SJ. Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. J Magn Reson 2006; 183: 315-323. Aboitiz F, Montiel J. One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res 2003; 36: 409-420. Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ. Axcaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 2008; 59: 1347-1354. Sexton CE, Mackay CE, Ebmeier KP. A systematic review of diffusion tensor imaging studies in affective disorders. Biol Psychiatry 2009; 1: 66: 814-823. Mulkern RV, Gudbjartsson H, Westin CF, Zengingonul HP, Gartner W, Guttmann CR, Robertson RL, Kyriakos W, Schwartz R, Holtzman D, Jolesz FA, Maier SE. Multi-component apparent diffusion coefficients in human brain. NMR Biomed 1999; 12: 51-62. Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion (charmed) MR imaging of the human brain. Neuroimage 2005; 27: 48-58. Lu H, Jensen JH, Ramani A, Helpern JA. Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed 2006; 19: 236-247. 2009; 22 2002; 15 1968; 49 2006; 56 1995; 56 1997; 154 2000; 339 2009; 132 2008; 59 2006; 8 2003; 36 2006; 19 1994 2008; 246 1996; 36 2003; 50 2005; 27 1995; 6 1995; 8 1965; 42 2004; 52 2002; 48 2009; 30 2006; 24 1982; 217 1991; 41 2005; 128 1999; 12 2008; 26 2005; 53 1996; 111 2006; 183 2007; 20 2009; 1 2007; 25 2001; 54 e_1_2_6_31_2 e_1_2_6_30_2 Sexton CE (e_1_2_6_22_2) 2009; 1 e_1_2_6_18_2 e_1_2_6_19_2 e_1_2_6_12_2 e_1_2_6_35_2 e_1_2_6_13_2 e_1_2_6_34_2 e_1_2_6_10_2 e_1_2_6_33_2 e_1_2_6_11_2 e_1_2_6_32_2 e_1_2_6_16_2 e_1_2_6_39_2 e_1_2_6_17_2 e_1_2_6_38_2 e_1_2_6_14_2 e_1_2_6_37_2 e_1_2_6_15_2 e_1_2_6_36_2 Callaghan P (e_1_2_6_24_2) 1994 e_1_2_6_20_2 e_1_2_6_41_2 e_1_2_6_8_2 e_1_2_6_7_2 e_1_2_6_9_2 e_1_2_6_29_2 e_1_2_6_4_2 e_1_2_6_3_2 e_1_2_6_6_2 e_1_2_6_5_2 Cluskey S (e_1_2_6_40_2) 2001; 54 e_1_2_6_23_2 e_1_2_6_2_2 e_1_2_6_21_2 e_1_2_6_28_2 e_1_2_6_27_2 e_1_2_6_26_2 e_1_2_6_25_2 |
References_xml | – reference: Caserta F, Eldred WD, Fernandez E, Hausman RE, Stanford LR, Bulderev SV, Schwarzer S, Stanley HE. Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J Neurosci Methods 1995; 56: 133-144. – reference: Aboitiz F, Montiel J. One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res 2003; 36: 409-420. – reference: Metzler R, Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 2000; 339: 1-77. – reference: Callaghan P. Principles of nuclear magnetic resonance microscopy. New York: Oxford University Press Inc.; 1994. – reference: Bennett KM, Hyde JS, Schmainda KM. Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients. Magn Reson Med 2006; 56: 235-239. – reference: Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Ossadnik SM, Peng CK, Simons M, Stanley HE. Fractals in biology and medicine. Chaos Solitons Fractals 1995; 6: 171-201. – reference: Madhu B, Waterton JC, Griffiths JR, Ryan AJ, Robinson SP. The response of RIF-1 fibrosarcomas to the vascular-disrupting agent ZD6126 assessed by in vivo and ex vivo 1H magnetic resonance spectroscopy. Neoplasia 2006; 8: 560-567. – reference: Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ. Axcaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 2008; 59: 1347-1354. – reference: Piven J, Bailey J, Ranson BJ, Arndt S. An MRI study of the corpus callosum in autism. Am J Psychiatry 1997; 154: 1051-1056. – reference: Lu H, Jensen JH, Ramani A, Helpern JA. Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed 2006; 19: 236-247. – reference: Ritchie JM. On the relation between fibre diameter and conduction velocity in myelinated nerve fibres. Proc R Soc Lond B Biol Sci 1982; 217: 29-35. – reference: Hall MG, Barrick TR. From diffusion-weighted MRI to anomalous diffusion imaging. Magn Reson Med 2008; 59: 447-455. – reference: Peled S, Whalen S, Jolesz FA, Golby AJ. High b-value apparent diffusion-weighted images from curve-ball DTI. J Magn Reson Imaging 2009; 30: 243-248. – reference: Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996; 111: 209-219. – reference: Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M, Nicolay K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 1996; 36: 847-857. – reference: Ozarslan E, Basser PJ, Shepherd TM, Thelwall PE, Vemuri BC, Blackband SJ. Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. J Magn Reson 2006; 183: 315-323. – reference: Maier SE, Mulkern RV. Biexponential analysis of diffusion-related signal decay in normal human cortical and deep gray matter. Magn Reson Imaging 2008; 26: 897-904. – reference: Ronen I, Moeller S, Ugurbil K, Kim DS. Analysis of the distribution of diffusion coefficients in cat brain at 9.4 T using the inverse laplace transformation. Magn Reson Imaging 2006; 24: 61-68. – reference: Thelwall PE, Grant SC, Stanisz GJ, Blackband SJ. Human erythrocyte ghosts: exploring the origins of multiexponential water diffusion in a model biological tissue with magnetic resonance. Magn Reson Med 2002; 48: 649-657. – reference: Kyriakopoulos M, Frangou S. Recent diffusion tensor imaging findings in early stages of schizophrenia. Curr Opin Psychiatry 2009; 22: 168-176. – reference: Mulkern RV, Gudbjartsson H, Westin CF, Zengingonul HP, Gartner W, Guttmann CR, Robertson RL, Kyriakos W, Schwartz R, Holtzman D, Jolesz FA, Maier SE. Multi-component apparent diffusion coefficients in human brain. NMR Biomed 1999; 12: 51-62. – reference: Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53: 1432-1440. – reference: Bozzali M, Cherubini A. Diffusion tensor MRI to investigate dementias: a brief review. Magn Reson Imaging 2007; 25: 969-977. – reference: Saito Y, Nobuhara K, Okugawa G, Takase K, Sugimoto T, Horiuchi M, Ueno C, Maehara M, Omura N, Kurokawa H, Ikeda K, Tanigawa N, Sawada S, Kinoshita T. Corpus callosum in patients with obsessive-compulsive disorder: diffusion-tensor imaging study. Radiology 2008; 246: 536-542. – reference: Stejskal E, Tanner J. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 1965; 42: 288-292. – reference: Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion (charmed) MR imaging of the human brain. Neuroimage 2005; 27: 48-58. – reference: Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J chem phys 1968; 49: 1768-1777. – reference: Smith TG, Behar TN, Lange GD, Marks WB, Sheriff WH. A fractal analysis of cultured rat optic nerve glial growth and differentiation. Neuroscience 1991; 41: 159-166. – reference: Barazany D, Basser PJ, Assaf Y. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 2009; 132: 1210-1220. – reference: Bennett KM, Hyde JS, Rand SD, Bennett R, Krouwer HGJ, Rebro KJ, Schmainda KM. Intravoxel distribution of DWI decay rates reveals C6 glioma invasion in rat brain. Magn Reson Med 2004; 52: 994-1004. – reference: Bennett KM, Schmainda KM, Bennett RT, Rowe DB, Lu H, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 2003; 50: 727-734. – reference: Assaf Y, Freidlin RZ, Rohde GK, Basser PJ. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med 2004; 52: 965-978. – reference: Cluskey S, Ramsden DB. Mechanisms of neurodegeneration in amyotrophic lateral sclerosis. Mol Pathol 2001; 54: 386-392. – reference: Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995; 8: 333-344. – reference: Sexton CE, Mackay CE, Ebmeier KP. A systematic review of diffusion tensor imaging studies in affective disorders. Biol Psychiatry 2009; 1: 66: 814-823. – reference: Alexander DC, Barker GJ, Arridge SR. Detection and modeling of non-gaussian apparent diffusion coefficient profiles in human brain data. Magn Reson Med 2002; 48: 331-340. – reference: Bozzali M, Falini A, Cercignani M, Baglio F, Farina E, Alberoni M, Vezzulli P, Olivotto F, Mantovani F, Shallice T, Scotti G, Canal N, Nemni R. Brain tissue damage in dementia with lewy bodies: an in vivo diffusion tensor MRI study. Brain 2005; 128: 1595-1604. – reference: Fushimi Y, Miki Y, Okada T, Yamamoto A, Mori N, Hanakawa T, Urayama SI, Aso T, Fukuyama H, Kikuta KI, Togashi K. Fractional anisotropy and mean diffusivity: comparison between 3.0-t and 1.5-t diffusion tensor imaging with parallel imaging using histogram and region of interest analysis. NMR Biomed 2007; 20: 743-748. – reference: Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed 2002; 15: 435-455. – reference: Yablonskiy DA, Bretthorst GL, Ackerman JJH. Statistical model for diffusion attenuated MR signal. Magn Reson Med 2003; 50: 664-669. – volume: 19 start-page: 236 year: 2006 end-page: 247 article-title: Three‐dimensional characterization of non‐gaussian water diffusion in humans using diffusion kurtosis imaging publication-title: NMR Biomed – volume: 41 start-page: 159 year: 1991 end-page: 166 article-title: A fractal analysis of cultured rat optic nerve glial growth and differentiation publication-title: Neuroscience – volume: 52 start-page: 994 year: 2004 end-page: 1004 article-title: Intravoxel distribution of DWI decay rates reveals C6 glioma invasion in rat brain publication-title: Magn Reson Med – volume: 56 start-page: 235 year: 2006 end-page: 239 article-title: Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients publication-title: Magn Reson Med – volume: 6 start-page: 171 year: 1995 end-page: 201 article-title: Fractals in biology and medicine publication-title: Chaos Solitons Fractals – volume: 48 start-page: 331 year: 2002 end-page: 340 article-title: Detection and modeling of non‐gaussian apparent diffusion coefficient profiles in human brain data publication-title: Magn Reson Med – volume: 42 start-page: 288 year: 1965 end-page: 292 article-title: Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient publication-title: J Chem Phys – volume: 128 start-page: 1595 year: 2005 end-page: 1604 article-title: Brain tissue damage in dementia with lewy bodies: an in vivo diffusion tensor MRI study publication-title: Brain – volume: 20 start-page: 743 year: 2007 end-page: 748 article-title: Fractional anisotropy and mean diffusivity: comparison between 3.0‐t and 1.5‐t diffusion tensor imaging with parallel imaging using histogram and region of interest analysis publication-title: NMR Biomed – volume: 183 start-page: 315 year: 2006 end-page: 323 article-title: Observation of anomalous diffusion in excised tissue by characterizing the diffusion‐time dependence of the MR signal publication-title: J Magn Reson – volume: 59 start-page: 447 year: 2008 end-page: 455 article-title: From diffusion‐weighted MRI to anomalous diffusion imaging publication-title: Magn Reson Med – volume: 30 start-page: 243 year: 2009 end-page: 248 article-title: High ‐value apparent diffusion‐weighted images from curve‐ball DTI publication-title: J Magn Reson Imaging – volume: 53 start-page: 1432 year: 2005 end-page: 1440 article-title: Diffusional kurtosis imaging: the quantification of non‐gaussian water diffusion by means of magnetic resonance imaging publication-title: Magn Reson Med – volume: 36 start-page: 409 year: 2003 end-page: 420 article-title: One hundred million years of interhemispheric communication: the history of the corpus callosum publication-title: Braz J Med Biol Res – year: 1994 – volume: 50 start-page: 727 year: 2003 end-page: 734 article-title: Characterization of continuously distributed cortical water diffusion rates with a stretched‐exponential model publication-title: Magn Reson Med – volume: 15 start-page: 435 year: 2002 end-page: 455 article-title: The basis of anisotropic water diffusion in the nervous system—a technical review publication-title: NMR Biomed – volume: 27 start-page: 48 year: 2005 end-page: 58 article-title: Composite hindered and restricted model of diffusion (charmed) MR imaging of the human brain publication-title: Neuroimage – volume: 56 start-page: 133 year: 1995 end-page: 144 article-title: Determination of fractal dimension of physiologically characterized neurons in two and three dimensions publication-title: J Neurosci Methods – volume: 24 start-page: 61 year: 2006 end-page: 68 article-title: Analysis of the distribution of diffusion coefficients in cat brain at 9.4 T using the inverse laplace transformation publication-title: Magn Reson Imaging – volume: 339 start-page: 1 year: 2000 end-page: 77 article-title: The random walk's guide to anomalous diffusion: a fractional dynamics approach publication-title: Physics Reports – volume: 25 start-page: 969 year: 2007 end-page: 977 article-title: Diffusion tensor MRI to investigate dementias: a brief review publication-title: Magn Reson Imaging – volume: 1 start-page: 66 year: 2009 end-page: 823 article-title: A systematic review of diffusion tensor imaging studies in affective disorders publication-title: Biol Psychiatry – volume: 22 start-page: 168 year: 2009 end-page: 176 article-title: Recent diffusion tensor imaging findings in early stages of schizophrenia publication-title: Curr Opin Psychiatry – volume: 132 start-page: 1210 year: 2009 end-page: 1220 article-title: In vivo measurement of axon diameter distribution in the corpus callosum of rat brain publication-title: Brain – volume: 48 start-page: 649 year: 2002 end-page: 657 article-title: Human erythrocyte ghosts: exploring the origins of multiexponential water diffusion in a model biological tissue with magnetic resonance publication-title: Magn Reson Med – volume: 8 start-page: 560 year: 2006 end-page: 567 article-title: The response of RIF‐1 fibrosarcomas to the vascular‐disrupting agent ZD6126 assessed by in vivo and ex vivo 1H magnetic resonance spectroscopy publication-title: Neoplasia – volume: 8 start-page: 333 year: 1995 end-page: 344 article-title: Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images publication-title: NMR Biomed – volume: 111 start-page: 209 year: 1996 end-page: 219 article-title: Microstructural and physiological features of tissues elucidated by quantitative‐diffusion‐tensor MRI publication-title: J Magn Reson B – volume: 246 start-page: 536 year: 2008 end-page: 542 article-title: Corpus callosum in patients with obsessive‐compulsive disorder: diffusion‐tensor imaging study publication-title: Radiology – volume: 12 start-page: 51 year: 1999 end-page: 62 article-title: Multi‐component apparent diffusion coefficients in human brain publication-title: NMR Biomed – volume: 49 start-page: 1768 year: 1968 end-page: 1777 article-title: Restricted self‐diffusion of protons in colloidal systems by the pulsed‐gradient, spin‐echo method publication-title: J chem phys – volume: 154 start-page: 1051 year: 1997 end-page: 1056 article-title: An MRI study of the corpus callosum in autism publication-title: Am J Psychiatry – volume: 59 start-page: 1347 year: 2008 end-page: 1354 article-title: Axcaliber: a method for measuring axon diameter distribution from diffusion MRI publication-title: Magn Reson Med – volume: 36 start-page: 847 year: 1996 end-page: 857 article-title: Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion‐weighted imaging publication-title: Magn Reson Med – volume: 54 start-page: 386 year: 2001 end-page: 392 article-title: Mechanisms of neurodegeneration in amyotrophic lateral sclerosis publication-title: Mol Pathol – volume: 50 start-page: 664 year: 2003 end-page: 669 article-title: Statistical model for diffusion attenuated MR signal publication-title: Magn Reson Med – volume: 52 start-page: 965 year: 2004 end-page: 978 article-title: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter publication-title: Magn Reson Med – volume: 26 start-page: 897 year: 2008 end-page: 904 article-title: Biexponential analysis of diffusion‐related signal decay in normal human cortical and deep gray matter publication-title: Magn Reson Imaging – volume: 217 start-page: 29 year: 1982 end-page: 35 article-title: On the relation between fibre diameter and conduction velocity in myelinated nerve fibres publication-title: Proc R Soc Lond B Biol Sci – ident: e_1_2_6_9_2 doi: 10.1002/mrm.10209 – ident: e_1_2_6_37_2 doi: 10.1002/mrm.21577 – ident: e_1_2_6_18_2 doi: 10.1593/neo.06319 – ident: e_1_2_6_38_2 doi: 10.1093/brain/awp042 – ident: e_1_2_6_19_2 doi: 10.1016/j.jmr.2006.08.009 – ident: e_1_2_6_17_2 doi: 10.1002/mrm.20286 – ident: e_1_2_6_34_2 doi: 10.1002/nbm.1139 – ident: e_1_2_6_36_2 doi: 10.1590/S0100-879X2003000400002 – ident: e_1_2_6_27_2 doi: 10.1002/mrm.20274 – ident: e_1_2_6_4_2 doi: 10.1002/nbm.782 – ident: e_1_2_6_20_2 doi: 10.1016/j.mri.2007.03.017 – ident: e_1_2_6_29_2 doi: 10.1002/jmri.21808 – ident: e_1_2_6_15_2 doi: 10.1002/mrm.10581 – ident: e_1_2_6_41_2 doi: 10.1176/ajp.154.8.1051 – ident: e_1_2_6_10_2 doi: 10.1016/j.mri.2008.01.042 – volume: 1 start-page: 66 year: 2009 ident: e_1_2_6_22_2 article-title: A systematic review of diffusion tensor imaging studies in affective disorders publication-title: Biol Psychiatry – volume: 54 start-page: 386 year: 2001 ident: e_1_2_6_40_2 article-title: Mechanisms of neurodegeneration in amyotrophic lateral sclerosis publication-title: Mol Pathol – ident: e_1_2_6_26_2 doi: 10.1002/mrm.20960 – ident: e_1_2_6_28_2 doi: 10.1016/j.neuroimage.2005.03.042 – ident: e_1_2_6_33_2 doi: 10.1016/0960-0779(95)80025-C – ident: e_1_2_6_25_2 doi: 10.1093/brain/awh493 – ident: e_1_2_6_30_2 doi: 10.1063/1.1670306 – ident: e_1_2_6_5_2 doi: 10.1063/1.1695690 – ident: e_1_2_6_7_2 doi: 10.1002/mrm.1910360607 – ident: e_1_2_6_31_2 doi: 10.1016/0306-4522(91)90206-4 – ident: e_1_2_6_2_2 doi: 10.1002/nbm.1940080707 – ident: e_1_2_6_13_2 doi: 10.1002/mrm.20508 – ident: e_1_2_6_6_2 doi: 10.1016/j.mri.2005.10.023 – ident: e_1_2_6_11_2 doi: 10.1002/mrm.10578 – ident: e_1_2_6_23_2 doi: 10.1016/S0370-1573(00)00070-3 – volume-title: Principles of nuclear magnetic resonance microscopy year: 1994 ident: e_1_2_6_24_2 – ident: e_1_2_6_21_2 doi: 10.1097/YCO.0b013e328325aa23 – ident: e_1_2_6_12_2 doi: 10.1002/mrm.10270 – ident: e_1_2_6_3_2 doi: 10.1006/jmrb.1996.0086 – ident: e_1_2_6_14_2 doi: 10.1002/nbm.1020 – ident: e_1_2_6_16_2 doi: 10.1002/mrm.21453 – ident: e_1_2_6_39_2 doi: 10.1098/rspb.1982.0092 – ident: e_1_2_6_32_2 doi: 10.1016/0165-0270(94)00115-W – ident: e_1_2_6_35_2 doi: 10.1148/radiol.2462061469 – ident: e_1_2_6_8_2 doi: 10.1002/(SICI)1099-1492(199902)12:1<51::AID-NBM546>3.0.CO;2-E |
SSID | ssj0009974 |
Score | 2.2334538 |
Snippet | A new method to investigate anomalous diffusion in human brain, inspired by the stretched‐exponential model proposed by Hall and Barrick, is proposed here,... A new method to investigate anomalous diffusion in human brain, inspired by the stretched-exponential model proposed by Hall and Barrick, is proposed here,... |
SourceID | proquest pubmed crossref wiley istex |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1043 |
SubjectTerms | Algorithms Anisotropy anomalous diffusion Brain Brain - anatomy & histology Corpus callosum Diffusion Diffusion Magnetic Resonance Imaging - methods DTI Female Humans Image Enhancement - methods Image Interpretation, Computer-Assisted - methods Magnetic resonance imaging Male Mental disorders N.M.R Neurological diseases nongaussian diffusion Reproducibility of Results Sensitivity and Specificity stretched exponential Substantia alba water diffusion Young Adult |
Title | Anisotropic anomalous diffusion assessed in the human brain by scalar invariant indices |
URI | https://api.istex.fr/ark:/67375/WNG-BCGPS63G-W/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22689 https://www.ncbi.nlm.nih.gov/pubmed/21413068 https://www.proquest.com/docview/857811896 https://www.proquest.com/docview/883020428 |
Volume | 65 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9Ki-KL1ar16geLiPQl18vmaxefarFXhCtSLdcHYdmPBI72kpLclda_3pnNJaVSRXwL7IRsdmd3fjsz-xuA96YQkSVHFZqPJIjDUAdCZjYQloepLbRxvmjf5Dg9Oo2_nCVna_CxuwvT8kP0DjdaGX6_pgWuTbN3Sxo6r-dDxA6CLu9RrhYBopNb6igpWwbmLKZ9RsYdq9CI7_Vv3rFFGzSs1_cBzbu41Ruew0340XW5zTc5Hy4XZmh__sbm-J__9AQerwAp22816Cms5eUWPJysQu5b8MDniNrmGUz3y1lTLerqcmaZLqu5vqiWDaMSK0vyuTHtA8i5Y7OSIa5kvv4fM1SEgpkb1qA66Bobr_B8jhPKKFyO29RzOD38_P3gKFjVZQgsWa8gRqhbhM6mPDTWJCOeZ5HQmksuCoSL3LkIcQh3MnKxHBmbFUWYiswZFEH5InoB62VV5i8psUq73HJtLJ2MQqkjV4yMyXlqDCqPGcBuN0PKrkjLqXbGhWrplrnCIVN-yAbwrhe9bJk67hP64Ke5l9D1OaW2ZYmaHo_Vp4Px129pNFbTAbBODxQuOIqi6DLHUVUiocu5QqZ_ESFSNTqMDmC7VaH-ezwk1JBiy65XhD93VU1OJv5h599FX8Gj1udNmUWvYX1RL_M3CJoW5q1fHb8A6h4Sqw |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVhwvHOVaTgsh1JdsN85piZdS6C7QrFBptX2pLB-JtGo3qbK7CPj1zDibVEUFId4ieaI49ozn83j8DcBrXaSBoUAVuo_IC31fealIjJca7semUNq6on3ZOB4dhZ-Oo-M1eNvehWn4IbqAG1mGW6_JwCkgvX3BGjqrZ30ED6m4BhtU0ZvqF7w_uCCPEqLhYE5CWmlE2PIKDfh29-olb7RBA_v9Kqh5Gbk617N3B07aTjcZJ6f95UL3zc_f-Bz_96_uwu0VJmU7jRLdg7W83IQb2erUfROuuzRRM78Pk51yOq8WdXU-NUyV1UydVcs5oyorSwq7MeXOkHPLpiVDaMlcCUCmqQ4F0z_YHDVC1dj4DbfoOKeMTsxxpXoAR3sfDndH3qo0g2fIgXkhot3CtybmvjY6GvA8CVKluOBpgYiRWxsgFOFWBDYUA22SovDjNLEaRVC-CB7CelmV-WPKrVI2N1xpQ5sjX6jAFgOtcx5rjfqje7DVTpE0K95yKp9xJhvGZS5xyKQbsh686kTPG7KOq4TeuHnuJFR9StltSSQn46F8tzv88jUOhnLSA9YqgkSbo4MUVeY4qjKN6H5uKuK_iBCvGu1He_Co0aHue9wn4BBjy5bThD93VWYHmXt48u-iL-Hm6DDbl_sfx5-fwq0mBE6JRs9gfVEv8-eIoRb6hTOVX_wEFsU |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTUx84TFehQEWQmhf0jXO09qnMWjHo9U0mLoPSJYfiVRtTaq0RbC_fndOk2loIMS3SL4ojn3n-_l8_h3AG52ngaFAFbqPyAt9X3mpSIyXGu7HJlfauqJ9w1F8eBJ-Oo1O12CvuQtT80O0ATeyDLdek4HPbL57RRo6raZdxA6puAUbYYzGQojo-Io7SoiagjkJaaERYUMr1OO77avXnNEGjevPm5DmdeDqPE__Hnxv-lwnnJx1lwvdNRe_0Tn-50_dh7srRMr2axV6AGtZsQWbw9WZ-xbcdkmiZv4QxvvFZF4uqnI2MUwV5VSdl8s5oxorSwq6MeVOkDPLJgVDYMlcAUCmqQoF07_YHPVBVdj4AzfoOKOMzstxnXoEJ_0P3w4OvVVhBs-Q-_JCxLq5b03MfW101ONZEqRKccHTHPEitzZAIMKtCGwoetokee7HaWI1iqB8HjyG9aIssqeUWaVsZrjShrZGvlCBzXtaZzzWGrVHd2CnmSFpVqzlVDzjXNZ8y1zikEk3ZB143YrOaqqOm4TeumluJVR1RrltSSTHo4F8dzA4-hoHAznuAGv0QKLF0TGKKjIcVZlGdDs3FfFfRIhVjXajHXhSq1D7Pe4TbIixZccpwp-7KofHQ_fw7N9FX8Hm0fu-_PJx9Pk53Knj35RltA3ri2qZvUAAtdAvnaFcAsicFX0 |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+anomalous+diffusion+assessed+in+the+human+brain+by+scalar+invariant+indices&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=De+Santis%2C+S.&rft.au=Gabrielli%2C+A.&rft.au=Bozzali%2C+M.&rft.au=Maraviglia%2C+B.&rft.date=2011-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=65&rft.issue=4&rft.spage=1043&rft.epage=1052&rft_id=info:doi/10.1002%2Fmrm.22689&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_BCGPS63G_W |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon |