Anisotropic anomalous diffusion assessed in the human brain by scalar invariant indices

A new method to investigate anomalous diffusion in human brain, inspired by the stretched‐exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of...

Full description

Saved in:
Bibliographic Details
Published inMagnetic resonance in medicine Vol. 65; no. 4; pp. 1043 - 1052
Main Authors De Santis, S., Gabrielli, A., Bozzali, M., Maraviglia, B., Macaluso, E., Capuani, S.
Format Journal Article
LanguageEnglish
Published Hoboken Wiley Subscription Services, Inc., A Wiley Company 01.04.2011
Subjects
Online AccessGet full text
ISSN0740-3194
1522-2594
1522-2594
DOI10.1002/mrm.22689

Cover

Loading…
Abstract A new method to investigate anomalous diffusion in human brain, inspired by the stretched‐exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of anomalous diffusion indices to characterize white matter structures, whose complexity is only partially accounted by diffusion tensor imaging indices. MR signal was expressed as a stretched‐exponential only along the principal axes of diffusion; whereas, in a generic direction, it was modeled as a combination of three stretched‐exponentials. Indices to quantify the tissue anomalous diffusion and its anisotropy, independently of the experiment reference frame, were derived. Experimental results, obtained on 10 healthy subjects at 3T, show that the new parameters are highly correlated to intrinsic local geometry when compared with Hall and Barrick indices. Moreover, they offer a different contrast in white matter regions when compared with diffusion tensor imaging. Specifically, the new indices show a higher capability to discriminate among areas of the corpus callosum associated to different distribution in axonal densities, thus offering a new potential tool to detect more specific patterns of brain abnormalities than diffusion tensor imaging in the presence of neurological and psychiatric disorders. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.
AbstractList A new method to investigate anomalous diffusion in human brain, inspired by the stretched-exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of anomalous diffusion indices to characterize white matter structures, whose complexity is only partially accounted by diffusion tensor imaging indices. MR signal was expressed as a stretched-exponential only along the principal axes of diffusion; whereas, in a generic direction, it was modeled as a combination of three stretched-exponentials. Indices to quantify the tissue anomalous diffusion and its anisotropy, independently of the experiment reference frame, were derived. Experimental results, obtained on 10 healthy subjects at 3T, show that the new parameters are highly correlated to intrinsic local geometry when compared with Hall and Barrick indices. Moreover, they offer a different contrast in white matter regions when compared with diffusion tensor imaging. Specifically, the new indices show a higher capability to discriminate among areas of the corpus callosum associated to different distribution in axonal densities, thus offering a new potential tool to detect more specific patterns of brain abnormalities than diffusion tensor imaging in the presence of neurological and psychiatric disorders. Magn Reson Med, 2010. [copy 2010 Wiley-Liss, Inc.
A new method to investigate anomalous diffusion in human brain, inspired by the stretched-exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of anomalous diffusion indices to characterize white matter structures, whose complexity is only partially accounted by diffusion tensor imaging indices. MR signal was expressed as a stretched-exponential only along the principal axes of diffusion; whereas, in a generic direction, it was modeled as a combination of three stretched-exponentials. Indices to quantify the tissue anomalous diffusion and its anisotropy, independently of the experiment reference frame, were derived. Experimental results, obtained on 10 healthy subjects at 3T, show that the new parameters are highly correlated to intrinsic local geometry when compared with Hall and Barrick indices. Moreover, they offer a different contrast in white matter regions when compared with diffusion tensor imaging. Specifically, the new indices show a higher capability to discriminate among areas of the corpus callosum associated to different distribution in axonal densities, thus offering a new potential tool to detect more specific patterns of brain abnormalities than diffusion tensor imaging in the presence of neurological and psychiatric disorders.
A new method to investigate anomalous diffusion in human brain, inspired by the stretched‐exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of anomalous diffusion indices to characterize white matter structures, whose complexity is only partially accounted by diffusion tensor imaging indices. MR signal was expressed as a stretched‐exponential only along the principal axes of diffusion; whereas, in a generic direction, it was modeled as a combination of three stretched‐exponentials. Indices to quantify the tissue anomalous diffusion and its anisotropy, independently of the experiment reference frame, were derived. Experimental results, obtained on 10 healthy subjects at 3T, show that the new parameters are highly correlated to intrinsic local geometry when compared with Hall and Barrick indices. Moreover, they offer a different contrast in white matter regions when compared with diffusion tensor imaging. Specifically, the new indices show a higher capability to discriminate among areas of the corpus callosum associated to different distribution in axonal densities, thus offering a new potential tool to detect more specific patterns of brain abnormalities than diffusion tensor imaging in the presence of neurological and psychiatric disorders. Magn Reson Med, 2010. © 2010 Wiley‐Liss, Inc.
A new method to investigate anomalous diffusion in human brain, inspired by the stretched-exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of anomalous diffusion indices to characterize white matter structures, whose complexity is only partially accounted by diffusion tensor imaging indices. MR signal was expressed as a stretched-exponential only along the principal axes of diffusion; whereas, in a generic direction, it was modeled as a combination of three stretched-exponentials. Indices to quantify the tissue anomalous diffusion and its anisotropy, independently of the experiment reference frame, were derived. Experimental results, obtained on 10 healthy subjects at 3T, show that the new parameters are highly correlated to intrinsic local geometry when compared with Hall and Barrick indices. Moreover, they offer a different contrast in white matter regions when compared with diffusion tensor imaging. Specifically, the new indices show a higher capability to discriminate among areas of the corpus callosum associated to different distribution in axonal densities, thus offering a new potential tool to detect more specific patterns of brain abnormalities than diffusion tensor imaging in the presence of neurological and psychiatric disorders.A new method to investigate anomalous diffusion in human brain, inspired by the stretched-exponential model proposed by Hall and Barrick, is proposed here, together with a discussion about its potential application to cerebral white matter characterization. Aim of the work was to show the ability of anomalous diffusion indices to characterize white matter structures, whose complexity is only partially accounted by diffusion tensor imaging indices. MR signal was expressed as a stretched-exponential only along the principal axes of diffusion; whereas, in a generic direction, it was modeled as a combination of three stretched-exponentials. Indices to quantify the tissue anomalous diffusion and its anisotropy, independently of the experiment reference frame, were derived. Experimental results, obtained on 10 healthy subjects at 3T, show that the new parameters are highly correlated to intrinsic local geometry when compared with Hall and Barrick indices. Moreover, they offer a different contrast in white matter regions when compared with diffusion tensor imaging. Specifically, the new indices show a higher capability to discriminate among areas of the corpus callosum associated to different distribution in axonal densities, thus offering a new potential tool to detect more specific patterns of brain abnormalities than diffusion tensor imaging in the presence of neurological and psychiatric disorders.
Author Bozzali, M.
Gabrielli, A.
Macaluso, E.
De Santis, S.
Capuani, S.
Maraviglia, B.
Author_xml – sequence: 1
  givenname: S.
  surname: De Santis
  fullname: De Santis, S.
  email: silvia.desantis@roma1.infn.it
  organization: Physics Department, Sapienza University of Rome, P.le A.Moro 5, Rome, Italy
– sequence: 2
  givenname: A.
  surname: Gabrielli
  fullname: Gabrielli, A.
  organization: Physics Department, Sapienza University of Rome, P.le A.Moro 5, Rome, Italy
– sequence: 3
  givenname: M.
  surname: Bozzali
  fullname: Bozzali, M.
  organization: Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome, Italy
– sequence: 4
  givenname: B.
  surname: Maraviglia
  fullname: Maraviglia, B.
  organization: Physics Department, Sapienza University of Rome, P.le A.Moro 5, Rome, Italy
– sequence: 5
  givenname: E.
  surname: Macaluso
  fullname: Macaluso, E.
  organization: Neuroimaging Laboratory, Santa Lucia Foundation, Via Ardeatina 306, Rome, Italy
– sequence: 6
  givenname: S.
  surname: Capuani
  fullname: Capuani, S.
  organization: Physics Department, Sapienza University of Rome, P.le A.Moro 5, Rome, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/21413068$$D View this record in MEDLINE/PubMed
BookMark eNqFkctOGzEYhS1EBYGy4AWq2VUsJvEtM_YSIgiVSEFtUZaWxxfFZcYTbA9t3h63SVhUrSpZsn_7O0fyOSfg0PfeAHCO4BhBiCdd6MYYV4wfgBGaYlziKaeHYARrCkuCOD0GJzF-hxByXtMjcIwRRQRWbASWl97FPoV-7VQhfd_Jth9ioZ21Q3S9L2SMJi9dOF-klSlWQyd90QSZ52ZTRCVbGfLjiwxO-pRP2ikT34N3VrbRnO32U_B4c_1tdlve3c8_zS7vSkUx5yVlqLFIqwqjRjVTiE1NmJSYY2YxQVhrUudbzYmmHDaqthZVrNZNRjJvySn4uPVdh_55MDGJzkVl2lZ6kz8iGCMQQ4rZ_8lpzRBivMrkhx05NJ3RYh1cJ8NG7FPLwGQLqNDHGIwVyiWZclwp59IKBMWvXkTuRfzuJSsu_lDsTf_G7tx_uNZs_g2KxZfFXlFuFS4m8_NNIcOTqOocoFh-nour2fzha0XmYkleAW4wq94
CitedBy_id crossref_primary_10_1016_j_bcp_2013_11_009
crossref_primary_10_1137_23M1574944
crossref_primary_10_1016_j_jalz_2013_04_506
crossref_primary_10_1103_PhysRevE_89_042104
crossref_primary_10_1103_PhysRevE_92_012707
crossref_primary_10_1109_JETCAS_2013_2265795
crossref_primary_10_1007_s10334_011_0292_5
crossref_primary_10_1088_0031_9155_60_6_2355
crossref_primary_10_3389_fnagi_2020_602510
crossref_primary_10_1002_nbm_1747
crossref_primary_10_1016_j_mri_2011_04_006
crossref_primary_10_1016_j_neuroimage_2018_12_044
crossref_primary_10_1002_mrm_26466
crossref_primary_10_1016_j_neuroscience_2018_07_033
crossref_primary_10_1016_j_micromeso_2013_02_054
crossref_primary_10_1097_RLI_0b013e31826a0a49
crossref_primary_10_1118_1_4946819
crossref_primary_10_1002_mrm_24706
crossref_primary_10_1016_j_mcna_2012_12_013
crossref_primary_10_1016_j_jalz_2014_04_015
crossref_primary_10_1016_j_jmr_2011_12_023
crossref_primary_10_1016_j_jmr_2013_01_014
crossref_primary_10_1016_j_mri_2018_04_005
crossref_primary_10_3389_fnins_2021_797642
crossref_primary_10_3233_JAD_179932
crossref_primary_10_2478_s13380_013_0106_5
crossref_primary_10_3389_fphy_2019_00248
crossref_primary_10_1016_j_neuroimage_2018_03_052
crossref_primary_10_1051_mmnp_20161139
crossref_primary_10_1109_TMI_2016_2548503
crossref_primary_10_1038_s41598_021_01476_z
crossref_primary_10_1016_j_micromeso_2013_02_046
crossref_primary_10_1016_j_mri_2017_05_006
crossref_primary_10_1016_j_mri_2012_08_012
crossref_primary_10_1016_j_neuroimage_2016_12_051
crossref_primary_10_1016_j_jtbi_2015_03_037
crossref_primary_10_1016_j_neuroimage_2012_01_105
crossref_primary_10_1063_1_3610367
Cites_doi 10.1002/mrm.10209
10.1002/mrm.21577
10.1593/neo.06319
10.1093/brain/awp042
10.1016/j.jmr.2006.08.009
10.1002/mrm.20286
10.1002/nbm.1139
10.1590/S0100-879X2003000400002
10.1002/mrm.20274
10.1002/nbm.782
10.1016/j.mri.2007.03.017
10.1002/jmri.21808
10.1002/mrm.10581
10.1176/ajp.154.8.1051
10.1016/j.mri.2008.01.042
10.1002/mrm.20960
10.1016/j.neuroimage.2005.03.042
10.1016/0960-0779(95)80025-C
10.1093/brain/awh493
10.1063/1.1670306
10.1063/1.1695690
10.1002/mrm.1910360607
10.1016/0306-4522(91)90206-4
10.1002/nbm.1940080707
10.1002/mrm.20508
10.1016/j.mri.2005.10.023
10.1002/mrm.10578
10.1016/S0370-1573(00)00070-3
10.1097/YCO.0b013e328325aa23
10.1002/mrm.10270
10.1006/jmrb.1996.0086
10.1002/nbm.1020
10.1002/mrm.21453
10.1098/rspb.1982.0092
10.1016/0165-0270(94)00115-W
10.1148/radiol.2462061469
10.1002/(SICI)1099-1492(199902)12:1<51::AID-NBM546>3.0.CO;2-E
ContentType Journal Article
Copyright Copyright © 2010 Wiley‐Liss, Inc.
Copyright © 2010 Wiley-Liss, Inc.
Copyright_xml – notice: Copyright © 2010 Wiley‐Liss, Inc.
– notice: Copyright © 2010 Wiley-Liss, Inc.
DBID BSCLL
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
7QO
7TK
8FD
FR3
P64
DOI 10.1002/mrm.22689
DatabaseName Istex
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
Biotechnology Research Abstracts
Neurosciences Abstracts
Technology Research Database
Engineering Research Database
Biotechnology and BioEngineering Abstracts
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
Engineering Research Database
Biotechnology Research Abstracts
Technology Research Database
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
DatabaseTitleList Engineering Research Database
MEDLINE

MEDLINE - Academic
CrossRef
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Physics
EISSN 1522-2594
EndPage 1052
ExternalDocumentID 21413068
10_1002_mrm_22689
MRM22689
ark_67375_WNG_BCGPS63G_W
Genre article
Journal Article
GroupedDBID ---
-DZ
.3N
.55
.GA
.Y3
05W
0R~
10A
1L6
1OB
1OC
1ZS
24P
31~
33P
3O-
3SF
3WU
4.4
4ZD
50Y
50Z
51W
51X
52M
52N
52O
52P
52R
52S
52T
52U
52V
52W
52X
53G
5GY
5RE
5VS
66C
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A01
A03
AAESR
AAEVG
AAHHS
AANLZ
AAONW
AASGY
AAXRX
AAZKR
ABCQN
ABCUV
ABDPE
ABEML
ABIJN
ABJNI
ABLJU
ABPVW
ABQWH
ABXGK
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACGOF
ACIWK
ACMXC
ACPOU
ACPRK
ACSCC
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUQT
AEUYR
AFBPY
AFFNX
AFFPM
AFGKR
AFPWT
AFRAH
AFZJQ
AHBTC
AHMBA
AIACR
AIAGR
AITYG
AIURR
AIWBW
AJBDE
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
ASPBG
ATUGU
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMXJE
BROTX
BRXPI
BSCLL
BY8
C45
CS3
D-6
D-7
D-E
D-F
DCZOG
DPXWK
DR2
DRFUL
DRMAN
DRSTM
DU5
EBD
EBS
EJD
EMOBN
F00
F01
F04
FEDTE
FUBAC
G-S
G.N
GNP
GODZA
H.X
HBH
HDBZQ
HF~
HGLYW
HHY
HHZ
HVGLF
HZ~
I-F
IX1
J0M
JPC
KBYEO
KQQ
LATKE
LAW
LC2
LC3
LEEKS
LH4
LITHE
LOXES
LP6
LP7
LUTES
LW6
LYRES
M65
MEWTI
MK4
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
N04
N05
N9A
NF~
NNB
O66
O9-
OIG
OVD
P2P
P2W
P2X
P2Z
P4B
P4D
PALCI
PQQKQ
Q.N
Q11
QB0
QRW
R.K
RGB
RIWAO
RJQFR
ROL
RWI
RX1
RYL
SAMSI
SUPJJ
SV3
TEORI
TUS
TWZ
UB1
V2E
V8K
W8V
W99
WBKPD
WHWMO
WIB
WIH
WIJ
WIK
WIN
WJL
WOHZO
WQJ
WRC
WUP
WVDHM
WXI
WXSBR
X7M
XG1
XPP
XV2
ZGI
ZXP
ZZTAW
~IA
~WT
AAHQN
AAIPD
AAMNL
AANHP
AAYCA
ACRPL
ACYXJ
ADNMO
AFWVQ
ALVPJ
AAYXX
AEYWJ
AGHNM
AGQPQ
AGYGG
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
7QO
7TK
8FD
FR3
P64
ID FETCH-LOGICAL-c4299-481bf1dc621bcb502e738aa2928f2312dd37502d93d490bc7ff1687dba29cb5f3
IEDL.DBID DR2
ISSN 0740-3194
1522-2594
IngestDate Fri Jul 11 08:56:10 EDT 2025
Fri Jul 11 13:40:16 EDT 2025
Thu Apr 03 07:00:46 EDT 2025
Tue Jul 01 01:20:45 EDT 2025
Thu Apr 24 22:56:40 EDT 2025
Wed Jan 22 17:11:58 EST 2025
Wed Oct 30 09:48:31 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 4
Language English
License Copyright © 2010 Wiley-Liss, Inc.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4299-481bf1dc621bcb502e738aa2928f2312dd37502d93d490bc7ff1687dba29cb5f3
Notes ArticleID:MRM22689
istex:5110EAA6CC42CC65A63C15FA235A0106A8AEFAB1
ark:/67375/WNG-BCGPS63G-W
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ObjectType-Article-2
ObjectType-Feature-1
OpenAccessLink https://onlinelibrary.wiley.com/doi/pdfdirect/10.1002/mrm.22689
PMID 21413068
PQID 857811896
PQPubID 23479
PageCount 10
ParticipantIDs proquest_miscellaneous_883020428
proquest_miscellaneous_857811896
pubmed_primary_21413068
crossref_citationtrail_10_1002_mrm_22689
crossref_primary_10_1002_mrm_22689
wiley_primary_10_1002_mrm_22689_MRM22689
istex_primary_ark_67375_WNG_BCGPS63G_W
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate April 2011
PublicationDateYYYYMMDD 2011-04-01
PublicationDate_xml – month: 04
  year: 2011
  text: April 2011
PublicationDecade 2010
PublicationPlace Hoboken
PublicationPlace_xml – name: Hoboken
– name: United States
PublicationTitle Magnetic resonance in medicine
PublicationTitleAlternate Magn. Reson. Med
PublicationYear 2011
Publisher Wiley Subscription Services, Inc., A Wiley Company
Publisher_xml – name: Wiley Subscription Services, Inc., A Wiley Company
References Stejskal E, Tanner J. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 1965; 42: 288-292.
Bozzali M, Cherubini A. Diffusion tensor MRI to investigate dementias: a brief review. Magn Reson Imaging 2007; 25: 969-977.
Bennett KM, Schmainda KM, Bennett RT, Rowe DB, Lu H, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 2003; 50: 727-734.
Bennett KM, Hyde JS, Rand SD, Bennett R, Krouwer HGJ, Rebro KJ, Schmainda KM. Intravoxel distribution of DWI decay rates reveals C6 glioma invasion in rat brain. Magn Reson Med 2004; 52: 994-1004.
Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M, Nicolay K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 1996; 36: 847-857.
Thelwall PE, Grant SC, Stanisz GJ, Blackband SJ. Human erythrocyte ghosts: exploring the origins of multiexponential water diffusion in a model biological tissue with magnetic resonance. Magn Reson Med 2002; 48: 649-657.
Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53: 1432-1440.
Maier SE, Mulkern RV. Biexponential analysis of diffusion-related signal decay in normal human cortical and deep gray matter. Magn Reson Imaging 2008; 26: 897-904.
Yablonskiy DA, Bretthorst GL, Ackerman JJH. Statistical model for diffusion attenuated MR signal. Magn Reson Med 2003; 50: 664-669.
Callaghan P. Principles of nuclear magnetic resonance microscopy. New York: Oxford University Press Inc.; 1994.
Metzler R, Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 2000; 339: 1-77.
Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Ossadnik SM, Peng CK, Simons M, Stanley HE. Fractals in biology and medicine. Chaos Solitons Fractals 1995; 6: 171-201.
Hall MG, Barrick TR. From diffusion-weighted MRI to anomalous diffusion imaging. Magn Reson Med 2008; 59: 447-455.
Assaf Y, Freidlin RZ, Rohde GK, Basser PJ. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med 2004; 52: 965-978.
Kyriakopoulos M, Frangou S. Recent diffusion tensor imaging findings in early stages of schizophrenia. Curr Opin Psychiatry 2009; 22: 168-176.
Caserta F, Eldred WD, Fernandez E, Hausman RE, Stanford LR, Bulderev SV, Schwarzer S, Stanley HE. Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J Neurosci Methods 1995; 56: 133-144.
Saito Y, Nobuhara K, Okugawa G, Takase K, Sugimoto T, Horiuchi M, Ueno C, Maehara M, Omura N, Kurokawa H, Ikeda K, Tanigawa N, Sawada S, Kinoshita T. Corpus callosum in patients with obsessive-compulsive disorder: diffusion-tensor imaging study. Radiology 2008; 246: 536-542.
Peled S, Whalen S, Jolesz FA, Golby AJ. High b-value apparent diffusion-weighted images from curve-ball DTI. J Magn Reson Imaging 2009; 30: 243-248.
Bozzali M, Falini A, Cercignani M, Baglio F, Farina E, Alberoni M, Vezzulli P, Olivotto F, Mantovani F, Shallice T, Scotti G, Canal N, Nemni R. Brain tissue damage in dementia with lewy bodies: an in vivo diffusion tensor MRI study. Brain 2005; 128: 1595-1604.
Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995; 8: 333-344.
Madhu B, Waterton JC, Griffiths JR, Ryan AJ, Robinson SP. The response of RIF-1 fibrosarcomas to the vascular-disrupting agent ZD6126 assessed by in vivo and ex vivo 1H magnetic resonance spectroscopy. Neoplasia 2006; 8: 560-567.
Piven J, Bailey J, Ranson BJ, Arndt S. An MRI study of the corpus callosum in autism. Am J Psychiatry 1997; 154: 1051-1056.
Ritchie JM. On the relation between fibre diameter and conduction velocity in myelinated nerve fibres. Proc R Soc Lond B Biol Sci 1982; 217: 29-35.
Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J chem phys 1968; 49: 1768-1777.
Bennett KM, Hyde JS, Schmainda KM. Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients. Magn Reson Med 2006; 56: 235-239.
Cluskey S, Ramsden DB. Mechanisms of neurodegeneration in amyotrophic lateral sclerosis. Mol Pathol 2001; 54: 386-392.
Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996; 111: 209-219.
Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed 2002; 15: 435-455.
Smith TG, Behar TN, Lange GD, Marks WB, Sheriff WH. A fractal analysis of cultured rat optic nerve glial growth and differentiation. Neuroscience 1991; 41: 159-166.
Fushimi Y, Miki Y, Okada T, Yamamoto A, Mori N, Hanakawa T, Urayama SI, Aso T, Fukuyama H, Kikuta KI, Togashi K. Fractional anisotropy and mean diffusivity: comparison between 3.0-t and 1.5-t diffusion tensor imaging with parallel imaging using histogram and region of interest analysis. NMR Biomed 2007; 20: 743-748.
Barazany D, Basser PJ, Assaf Y. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 2009; 132: 1210-1220.
Alexander DC, Barker GJ, Arridge SR. Detection and modeling of non-gaussian apparent diffusion coefficient profiles in human brain data. Magn Reson Med 2002; 48: 331-340.
Ronen I, Moeller S, Ugurbil K, Kim DS. Analysis of the distribution of diffusion coefficients in cat brain at 9.4 T using the inverse laplace transformation. Magn Reson Imaging 2006; 24: 61-68.
Ozarslan E, Basser PJ, Shepherd TM, Thelwall PE, Vemuri BC, Blackband SJ. Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. J Magn Reson 2006; 183: 315-323.
Aboitiz F, Montiel J. One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res 2003; 36: 409-420.
Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ. Axcaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 2008; 59: 1347-1354.
Sexton CE, Mackay CE, Ebmeier KP. A systematic review of diffusion tensor imaging studies in affective disorders. Biol Psychiatry 2009; 1: 66: 814-823.
Mulkern RV, Gudbjartsson H, Westin CF, Zengingonul HP, Gartner W, Guttmann CR, Robertson RL, Kyriakos W, Schwartz R, Holtzman D, Jolesz FA, Maier SE. Multi-component apparent diffusion coefficients in human brain. NMR Biomed 1999; 12: 51-62.
Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion (charmed) MR imaging of the human brain. Neuroimage 2005; 27: 48-58.
Lu H, Jensen JH, Ramani A, Helpern JA. Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed 2006; 19: 236-247.
2009; 22
2002; 15
1968; 49
2006; 56
1995; 56
1997; 154
2000; 339
2009; 132
2008; 59
2006; 8
2003; 36
2006; 19
1994
2008; 246
1996; 36
2003; 50
2005; 27
1995; 6
1995; 8
1965; 42
2004; 52
2002; 48
2009; 30
2006; 24
1982; 217
1991; 41
2005; 128
1999; 12
2008; 26
2005; 53
1996; 111
2006; 183
2007; 20
2009; 1
2007; 25
2001; 54
e_1_2_6_31_2
e_1_2_6_30_2
Sexton CE (e_1_2_6_22_2) 2009; 1
e_1_2_6_18_2
e_1_2_6_19_2
e_1_2_6_12_2
e_1_2_6_35_2
e_1_2_6_13_2
e_1_2_6_34_2
e_1_2_6_10_2
e_1_2_6_33_2
e_1_2_6_11_2
e_1_2_6_32_2
e_1_2_6_16_2
e_1_2_6_39_2
e_1_2_6_17_2
e_1_2_6_38_2
e_1_2_6_14_2
e_1_2_6_37_2
e_1_2_6_15_2
e_1_2_6_36_2
Callaghan P (e_1_2_6_24_2) 1994
e_1_2_6_20_2
e_1_2_6_41_2
e_1_2_6_8_2
e_1_2_6_7_2
e_1_2_6_9_2
e_1_2_6_29_2
e_1_2_6_4_2
e_1_2_6_3_2
e_1_2_6_6_2
e_1_2_6_5_2
Cluskey S (e_1_2_6_40_2) 2001; 54
e_1_2_6_23_2
e_1_2_6_2_2
e_1_2_6_21_2
e_1_2_6_28_2
e_1_2_6_27_2
e_1_2_6_26_2
e_1_2_6_25_2
References_xml – reference: Caserta F, Eldred WD, Fernandez E, Hausman RE, Stanford LR, Bulderev SV, Schwarzer S, Stanley HE. Determination of fractal dimension of physiologically characterized neurons in two and three dimensions. J Neurosci Methods 1995; 56: 133-144.
– reference: Aboitiz F, Montiel J. One hundred million years of interhemispheric communication: the history of the corpus callosum. Braz J Med Biol Res 2003; 36: 409-420.
– reference: Metzler R, Klafter J. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Physics Reports 2000; 339: 1-77.
– reference: Callaghan P. Principles of nuclear magnetic resonance microscopy. New York: Oxford University Press Inc.; 1994.
– reference: Bennett KM, Hyde JS, Schmainda KM. Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients. Magn Reson Med 2006; 56: 235-239.
– reference: Havlin S, Buldyrev SV, Goldberger AL, Mantegna RN, Ossadnik SM, Peng CK, Simons M, Stanley HE. Fractals in biology and medicine. Chaos Solitons Fractals 1995; 6: 171-201.
– reference: Madhu B, Waterton JC, Griffiths JR, Ryan AJ, Robinson SP. The response of RIF-1 fibrosarcomas to the vascular-disrupting agent ZD6126 assessed by in vivo and ex vivo 1H magnetic resonance spectroscopy. Neoplasia 2006; 8: 560-567.
– reference: Assaf Y, Blumenfeld-Katzir T, Yovel Y, Basser PJ. Axcaliber: a method for measuring axon diameter distribution from diffusion MRI. Magn Reson Med 2008; 59: 1347-1354.
– reference: Piven J, Bailey J, Ranson BJ, Arndt S. An MRI study of the corpus callosum in autism. Am J Psychiatry 1997; 154: 1051-1056.
– reference: Lu H, Jensen JH, Ramani A, Helpern JA. Three-dimensional characterization of non-gaussian water diffusion in humans using diffusion kurtosis imaging. NMR Biomed 2006; 19: 236-247.
– reference: Ritchie JM. On the relation between fibre diameter and conduction velocity in myelinated nerve fibres. Proc R Soc Lond B Biol Sci 1982; 217: 29-35.
– reference: Hall MG, Barrick TR. From diffusion-weighted MRI to anomalous diffusion imaging. Magn Reson Med 2008; 59: 447-455.
– reference: Peled S, Whalen S, Jolesz FA, Golby AJ. High b-value apparent diffusion-weighted images from curve-ball DTI. J Magn Reson Imaging 2009; 30: 243-248.
– reference: Basser PJ, Pierpaoli C. Microstructural and physiological features of tissues elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 1996; 111: 209-219.
– reference: Niendorf T, Dijkhuizen RM, Norris DG, van Lookeren Campagne M, Nicolay K. Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion-weighted imaging. Magn Reson Med 1996; 36: 847-857.
– reference: Ozarslan E, Basser PJ, Shepherd TM, Thelwall PE, Vemuri BC, Blackband SJ. Observation of anomalous diffusion in excised tissue by characterizing the diffusion-time dependence of the MR signal. J Magn Reson 2006; 183: 315-323.
– reference: Maier SE, Mulkern RV. Biexponential analysis of diffusion-related signal decay in normal human cortical and deep gray matter. Magn Reson Imaging 2008; 26: 897-904.
– reference: Ronen I, Moeller S, Ugurbil K, Kim DS. Analysis of the distribution of diffusion coefficients in cat brain at 9.4 T using the inverse laplace transformation. Magn Reson Imaging 2006; 24: 61-68.
– reference: Thelwall PE, Grant SC, Stanisz GJ, Blackband SJ. Human erythrocyte ghosts: exploring the origins of multiexponential water diffusion in a model biological tissue with magnetic resonance. Magn Reson Med 2002; 48: 649-657.
– reference: Kyriakopoulos M, Frangou S. Recent diffusion tensor imaging findings in early stages of schizophrenia. Curr Opin Psychiatry 2009; 22: 168-176.
– reference: Mulkern RV, Gudbjartsson H, Westin CF, Zengingonul HP, Gartner W, Guttmann CR, Robertson RL, Kyriakos W, Schwartz R, Holtzman D, Jolesz FA, Maier SE. Multi-component apparent diffusion coefficients in human brain. NMR Biomed 1999; 12: 51-62.
– reference: Jensen JH, Helpern JA, Ramani A, Lu H, Kaczynski K. Diffusional kurtosis imaging: the quantification of non-gaussian water diffusion by means of magnetic resonance imaging. Magn Reson Med 2005; 53: 1432-1440.
– reference: Bozzali M, Cherubini A. Diffusion tensor MRI to investigate dementias: a brief review. Magn Reson Imaging 2007; 25: 969-977.
– reference: Saito Y, Nobuhara K, Okugawa G, Takase K, Sugimoto T, Horiuchi M, Ueno C, Maehara M, Omura N, Kurokawa H, Ikeda K, Tanigawa N, Sawada S, Kinoshita T. Corpus callosum in patients with obsessive-compulsive disorder: diffusion-tensor imaging study. Radiology 2008; 246: 536-542.
– reference: Stejskal E, Tanner J. Spin diffusion measurements: spin echoes in the presence of a time-dependent field gradient. J Chem Phys 1965; 42: 288-292.
– reference: Assaf Y, Basser PJ. Composite hindered and restricted model of diffusion (charmed) MR imaging of the human brain. Neuroimage 2005; 27: 48-58.
– reference: Tanner JE, Stejskal EO. Restricted self-diffusion of protons in colloidal systems by the pulsed-gradient, spin-echo method. J chem phys 1968; 49: 1768-1777.
– reference: Smith TG, Behar TN, Lange GD, Marks WB, Sheriff WH. A fractal analysis of cultured rat optic nerve glial growth and differentiation. Neuroscience 1991; 41: 159-166.
– reference: Barazany D, Basser PJ, Assaf Y. In vivo measurement of axon diameter distribution in the corpus callosum of rat brain. Brain 2009; 132: 1210-1220.
– reference: Bennett KM, Hyde JS, Rand SD, Bennett R, Krouwer HGJ, Rebro KJ, Schmainda KM. Intravoxel distribution of DWI decay rates reveals C6 glioma invasion in rat brain. Magn Reson Med 2004; 52: 994-1004.
– reference: Bennett KM, Schmainda KM, Bennett RT, Rowe DB, Lu H, Hyde JS. Characterization of continuously distributed cortical water diffusion rates with a stretched-exponential model. Magn Reson Med 2003; 50: 727-734.
– reference: Assaf Y, Freidlin RZ, Rohde GK, Basser PJ. New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter. Magn Reson Med 2004; 52: 965-978.
– reference: Cluskey S, Ramsden DB. Mechanisms of neurodegeneration in amyotrophic lateral sclerosis. Mol Pathol 2001; 54: 386-392.
– reference: Basser PJ. Inferring microstructural features and the physiological state of tissues from diffusion-weighted images. NMR Biomed 1995; 8: 333-344.
– reference: Sexton CE, Mackay CE, Ebmeier KP. A systematic review of diffusion tensor imaging studies in affective disorders. Biol Psychiatry 2009; 1: 66: 814-823.
– reference: Alexander DC, Barker GJ, Arridge SR. Detection and modeling of non-gaussian apparent diffusion coefficient profiles in human brain data. Magn Reson Med 2002; 48: 331-340.
– reference: Bozzali M, Falini A, Cercignani M, Baglio F, Farina E, Alberoni M, Vezzulli P, Olivotto F, Mantovani F, Shallice T, Scotti G, Canal N, Nemni R. Brain tissue damage in dementia with lewy bodies: an in vivo diffusion tensor MRI study. Brain 2005; 128: 1595-1604.
– reference: Fushimi Y, Miki Y, Okada T, Yamamoto A, Mori N, Hanakawa T, Urayama SI, Aso T, Fukuyama H, Kikuta KI, Togashi K. Fractional anisotropy and mean diffusivity: comparison between 3.0-t and 1.5-t diffusion tensor imaging with parallel imaging using histogram and region of interest analysis. NMR Biomed 2007; 20: 743-748.
– reference: Beaulieu C. The basis of anisotropic water diffusion in the nervous system-a technical review. NMR Biomed 2002; 15: 435-455.
– reference: Yablonskiy DA, Bretthorst GL, Ackerman JJH. Statistical model for diffusion attenuated MR signal. Magn Reson Med 2003; 50: 664-669.
– volume: 19
  start-page: 236
  year: 2006
  end-page: 247
  article-title: Three‐dimensional characterization of non‐gaussian water diffusion in humans using diffusion kurtosis imaging
  publication-title: NMR Biomed
– volume: 41
  start-page: 159
  year: 1991
  end-page: 166
  article-title: A fractal analysis of cultured rat optic nerve glial growth and differentiation
  publication-title: Neuroscience
– volume: 52
  start-page: 994
  year: 2004
  end-page: 1004
  article-title: Intravoxel distribution of DWI decay rates reveals C6 glioma invasion in rat brain
  publication-title: Magn Reson Med
– volume: 56
  start-page: 235
  year: 2006
  end-page: 239
  article-title: Water diffusion heterogeneity index in the human brain is insensitive to the orientation of applied magnetic field gradients
  publication-title: Magn Reson Med
– volume: 6
  start-page: 171
  year: 1995
  end-page: 201
  article-title: Fractals in biology and medicine
  publication-title: Chaos Solitons Fractals
– volume: 48
  start-page: 331
  year: 2002
  end-page: 340
  article-title: Detection and modeling of non‐gaussian apparent diffusion coefficient profiles in human brain data
  publication-title: Magn Reson Med
– volume: 42
  start-page: 288
  year: 1965
  end-page: 292
  article-title: Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient
  publication-title: J Chem Phys
– volume: 128
  start-page: 1595
  year: 2005
  end-page: 1604
  article-title: Brain tissue damage in dementia with lewy bodies: an in vivo diffusion tensor MRI study
  publication-title: Brain
– volume: 20
  start-page: 743
  year: 2007
  end-page: 748
  article-title: Fractional anisotropy and mean diffusivity: comparison between 3.0‐t and 1.5‐t diffusion tensor imaging with parallel imaging using histogram and region of interest analysis
  publication-title: NMR Biomed
– volume: 183
  start-page: 315
  year: 2006
  end-page: 323
  article-title: Observation of anomalous diffusion in excised tissue by characterizing the diffusion‐time dependence of the MR signal
  publication-title: J Magn Reson
– volume: 59
  start-page: 447
  year: 2008
  end-page: 455
  article-title: From diffusion‐weighted MRI to anomalous diffusion imaging
  publication-title: Magn Reson Med
– volume: 30
  start-page: 243
  year: 2009
  end-page: 248
  article-title: High ‐value apparent diffusion‐weighted images from curve‐ball DTI
  publication-title: J Magn Reson Imaging
– volume: 53
  start-page: 1432
  year: 2005
  end-page: 1440
  article-title: Diffusional kurtosis imaging: the quantification of non‐gaussian water diffusion by means of magnetic resonance imaging
  publication-title: Magn Reson Med
– volume: 36
  start-page: 409
  year: 2003
  end-page: 420
  article-title: One hundred million years of interhemispheric communication: the history of the corpus callosum
  publication-title: Braz J Med Biol Res
– year: 1994
– volume: 50
  start-page: 727
  year: 2003
  end-page: 734
  article-title: Characterization of continuously distributed cortical water diffusion rates with a stretched‐exponential model
  publication-title: Magn Reson Med
– volume: 15
  start-page: 435
  year: 2002
  end-page: 455
  article-title: The basis of anisotropic water diffusion in the nervous system—a technical review
  publication-title: NMR Biomed
– volume: 27
  start-page: 48
  year: 2005
  end-page: 58
  article-title: Composite hindered and restricted model of diffusion (charmed) MR imaging of the human brain
  publication-title: Neuroimage
– volume: 56
  start-page: 133
  year: 1995
  end-page: 144
  article-title: Determination of fractal dimension of physiologically characterized neurons in two and three dimensions
  publication-title: J Neurosci Methods
– volume: 24
  start-page: 61
  year: 2006
  end-page: 68
  article-title: Analysis of the distribution of diffusion coefficients in cat brain at 9.4 T using the inverse laplace transformation
  publication-title: Magn Reson Imaging
– volume: 339
  start-page: 1
  year: 2000
  end-page: 77
  article-title: The random walk's guide to anomalous diffusion: a fractional dynamics approach
  publication-title: Physics Reports
– volume: 25
  start-page: 969
  year: 2007
  end-page: 977
  article-title: Diffusion tensor MRI to investigate dementias: a brief review
  publication-title: Magn Reson Imaging
– volume: 1
  start-page: 66
  year: 2009
  end-page: 823
  article-title: A systematic review of diffusion tensor imaging studies in affective disorders
  publication-title: Biol Psychiatry
– volume: 22
  start-page: 168
  year: 2009
  end-page: 176
  article-title: Recent diffusion tensor imaging findings in early stages of schizophrenia
  publication-title: Curr Opin Psychiatry
– volume: 132
  start-page: 1210
  year: 2009
  end-page: 1220
  article-title: In vivo measurement of axon diameter distribution in the corpus callosum of rat brain
  publication-title: Brain
– volume: 48
  start-page: 649
  year: 2002
  end-page: 657
  article-title: Human erythrocyte ghosts: exploring the origins of multiexponential water diffusion in a model biological tissue with magnetic resonance
  publication-title: Magn Reson Med
– volume: 8
  start-page: 560
  year: 2006
  end-page: 567
  article-title: The response of RIF‐1 fibrosarcomas to the vascular‐disrupting agent ZD6126 assessed by in vivo and ex vivo 1H magnetic resonance spectroscopy
  publication-title: Neoplasia
– volume: 8
  start-page: 333
  year: 1995
  end-page: 344
  article-title: Inferring microstructural features and the physiological state of tissues from diffusion‐weighted images
  publication-title: NMR Biomed
– volume: 111
  start-page: 209
  year: 1996
  end-page: 219
  article-title: Microstructural and physiological features of tissues elucidated by quantitative‐diffusion‐tensor MRI
  publication-title: J Magn Reson B
– volume: 246
  start-page: 536
  year: 2008
  end-page: 542
  article-title: Corpus callosum in patients with obsessive‐compulsive disorder: diffusion‐tensor imaging study
  publication-title: Radiology
– volume: 12
  start-page: 51
  year: 1999
  end-page: 62
  article-title: Multi‐component apparent diffusion coefficients in human brain
  publication-title: NMR Biomed
– volume: 49
  start-page: 1768
  year: 1968
  end-page: 1777
  article-title: Restricted self‐diffusion of protons in colloidal systems by the pulsed‐gradient, spin‐echo method
  publication-title: J chem phys
– volume: 154
  start-page: 1051
  year: 1997
  end-page: 1056
  article-title: An MRI study of the corpus callosum in autism
  publication-title: Am J Psychiatry
– volume: 59
  start-page: 1347
  year: 2008
  end-page: 1354
  article-title: Axcaliber: a method for measuring axon diameter distribution from diffusion MRI
  publication-title: Magn Reson Med
– volume: 36
  start-page: 847
  year: 1996
  end-page: 857
  article-title: Biexponential diffusion attenuation in various states of brain tissue: implications for diffusion‐weighted imaging
  publication-title: Magn Reson Med
– volume: 54
  start-page: 386
  year: 2001
  end-page: 392
  article-title: Mechanisms of neurodegeneration in amyotrophic lateral sclerosis
  publication-title: Mol Pathol
– volume: 50
  start-page: 664
  year: 2003
  end-page: 669
  article-title: Statistical model for diffusion attenuated MR signal
  publication-title: Magn Reson Med
– volume: 52
  start-page: 965
  year: 2004
  end-page: 978
  article-title: New modeling and experimental framework to characterize hindered and restricted water diffusion in brain white matter
  publication-title: Magn Reson Med
– volume: 26
  start-page: 897
  year: 2008
  end-page: 904
  article-title: Biexponential analysis of diffusion‐related signal decay in normal human cortical and deep gray matter
  publication-title: Magn Reson Imaging
– volume: 217
  start-page: 29
  year: 1982
  end-page: 35
  article-title: On the relation between fibre diameter and conduction velocity in myelinated nerve fibres
  publication-title: Proc R Soc Lond B Biol Sci
– ident: e_1_2_6_9_2
  doi: 10.1002/mrm.10209
– ident: e_1_2_6_37_2
  doi: 10.1002/mrm.21577
– ident: e_1_2_6_18_2
  doi: 10.1593/neo.06319
– ident: e_1_2_6_38_2
  doi: 10.1093/brain/awp042
– ident: e_1_2_6_19_2
  doi: 10.1016/j.jmr.2006.08.009
– ident: e_1_2_6_17_2
  doi: 10.1002/mrm.20286
– ident: e_1_2_6_34_2
  doi: 10.1002/nbm.1139
– ident: e_1_2_6_36_2
  doi: 10.1590/S0100-879X2003000400002
– ident: e_1_2_6_27_2
  doi: 10.1002/mrm.20274
– ident: e_1_2_6_4_2
  doi: 10.1002/nbm.782
– ident: e_1_2_6_20_2
  doi: 10.1016/j.mri.2007.03.017
– ident: e_1_2_6_29_2
  doi: 10.1002/jmri.21808
– ident: e_1_2_6_15_2
  doi: 10.1002/mrm.10581
– ident: e_1_2_6_41_2
  doi: 10.1176/ajp.154.8.1051
– ident: e_1_2_6_10_2
  doi: 10.1016/j.mri.2008.01.042
– volume: 1
  start-page: 66
  year: 2009
  ident: e_1_2_6_22_2
  article-title: A systematic review of diffusion tensor imaging studies in affective disorders
  publication-title: Biol Psychiatry
– volume: 54
  start-page: 386
  year: 2001
  ident: e_1_2_6_40_2
  article-title: Mechanisms of neurodegeneration in amyotrophic lateral sclerosis
  publication-title: Mol Pathol
– ident: e_1_2_6_26_2
  doi: 10.1002/mrm.20960
– ident: e_1_2_6_28_2
  doi: 10.1016/j.neuroimage.2005.03.042
– ident: e_1_2_6_33_2
  doi: 10.1016/0960-0779(95)80025-C
– ident: e_1_2_6_25_2
  doi: 10.1093/brain/awh493
– ident: e_1_2_6_30_2
  doi: 10.1063/1.1670306
– ident: e_1_2_6_5_2
  doi: 10.1063/1.1695690
– ident: e_1_2_6_7_2
  doi: 10.1002/mrm.1910360607
– ident: e_1_2_6_31_2
  doi: 10.1016/0306-4522(91)90206-4
– ident: e_1_2_6_2_2
  doi: 10.1002/nbm.1940080707
– ident: e_1_2_6_13_2
  doi: 10.1002/mrm.20508
– ident: e_1_2_6_6_2
  doi: 10.1016/j.mri.2005.10.023
– ident: e_1_2_6_11_2
  doi: 10.1002/mrm.10578
– ident: e_1_2_6_23_2
  doi: 10.1016/S0370-1573(00)00070-3
– volume-title: Principles of nuclear magnetic resonance microscopy
  year: 1994
  ident: e_1_2_6_24_2
– ident: e_1_2_6_21_2
  doi: 10.1097/YCO.0b013e328325aa23
– ident: e_1_2_6_12_2
  doi: 10.1002/mrm.10270
– ident: e_1_2_6_3_2
  doi: 10.1006/jmrb.1996.0086
– ident: e_1_2_6_14_2
  doi: 10.1002/nbm.1020
– ident: e_1_2_6_16_2
  doi: 10.1002/mrm.21453
– ident: e_1_2_6_39_2
  doi: 10.1098/rspb.1982.0092
– ident: e_1_2_6_32_2
  doi: 10.1016/0165-0270(94)00115-W
– ident: e_1_2_6_35_2
  doi: 10.1148/radiol.2462061469
– ident: e_1_2_6_8_2
  doi: 10.1002/(SICI)1099-1492(199902)12:1<51::AID-NBM546>3.0.CO;2-E
SSID ssj0009974
Score 2.2334538
Snippet A new method to investigate anomalous diffusion in human brain, inspired by the stretched‐exponential model proposed by Hall and Barrick, is proposed here,...
A new method to investigate anomalous diffusion in human brain, inspired by the stretched-exponential model proposed by Hall and Barrick, is proposed here,...
SourceID proquest
pubmed
crossref
wiley
istex
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1043
SubjectTerms Algorithms
Anisotropy
anomalous diffusion
Brain
Brain - anatomy & histology
Corpus callosum
Diffusion
Diffusion Magnetic Resonance Imaging - methods
DTI
Female
Humans
Image Enhancement - methods
Image Interpretation, Computer-Assisted - methods
Magnetic resonance imaging
Male
Mental disorders
N.M.R
Neurological diseases
nongaussian diffusion
Reproducibility of Results
Sensitivity and Specificity
stretched exponential
Substantia alba
water diffusion
Young Adult
Title Anisotropic anomalous diffusion assessed in the human brain by scalar invariant indices
URI https://api.istex.fr/ark:/67375/WNG-BCGPS63G-W/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1002%2Fmrm.22689
https://www.ncbi.nlm.nih.gov/pubmed/21413068
https://www.proquest.com/docview/857811896
https://www.proquest.com/docview/883020428
Volume 65
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9RAEB9Ki-KL1ar16geLiPQl18vmaxefarFXhCtSLdcHYdmPBI72kpLclda_3pnNJaVSRXwL7IRsdmd3fjsz-xuA96YQkSVHFZqPJIjDUAdCZjYQloepLbRxvmjf5Dg9Oo2_nCVna_CxuwvT8kP0DjdaGX6_pgWuTbN3Sxo6r-dDxA6CLu9RrhYBopNb6igpWwbmLKZ9RsYdq9CI7_Vv3rFFGzSs1_cBzbu41Ruew0340XW5zTc5Hy4XZmh__sbm-J__9AQerwAp22816Cms5eUWPJysQu5b8MDniNrmGUz3y1lTLerqcmaZLqu5vqiWDaMSK0vyuTHtA8i5Y7OSIa5kvv4fM1SEgpkb1qA66Bobr_B8jhPKKFyO29RzOD38_P3gKFjVZQgsWa8gRqhbhM6mPDTWJCOeZ5HQmksuCoSL3LkIcQh3MnKxHBmbFUWYiswZFEH5InoB62VV5i8psUq73HJtLJ2MQqkjV4yMyXlqDCqPGcBuN0PKrkjLqXbGhWrplrnCIVN-yAbwrhe9bJk67hP64Ke5l9D1OaW2ZYmaHo_Vp4Px129pNFbTAbBODxQuOIqi6DLHUVUiocu5QqZ_ESFSNTqMDmC7VaH-ezwk1JBiy65XhD93VU1OJv5h599FX8Gj1udNmUWvYX1RL_M3CJoW5q1fHb8A6h4Sqw
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Zb9QwEB6VVhwvHOVaTgsh1JdsN85piZdS6C7QrFBptX2pLB-JtGo3qbK7CPj1zDibVEUFId4ieaI49ozn83j8DcBrXaSBoUAVuo_IC31fealIjJca7semUNq6on3ZOB4dhZ-Oo-M1eNvehWn4IbqAG1mGW6_JwCkgvX3BGjqrZ30ED6m4BhtU0ZvqF7w_uCCPEqLhYE5CWmlE2PIKDfh29-olb7RBA_v9Kqh5Gbk617N3B07aTjcZJ6f95UL3zc_f-Bz_96_uwu0VJmU7jRLdg7W83IQb2erUfROuuzRRM78Pk51yOq8WdXU-NUyV1UydVcs5oyorSwq7MeXOkHPLpiVDaMlcCUCmqQ4F0z_YHDVC1dj4DbfoOKeMTsxxpXoAR3sfDndH3qo0g2fIgXkhot3CtybmvjY6GvA8CVKluOBpgYiRWxsgFOFWBDYUA22SovDjNLEaRVC-CB7CelmV-WPKrVI2N1xpQ5sjX6jAFgOtcx5rjfqje7DVTpE0K95yKp9xJhvGZS5xyKQbsh686kTPG7KOq4TeuHnuJFR9StltSSQn46F8tzv88jUOhnLSA9YqgkSbo4MUVeY4qjKN6H5uKuK_iBCvGu1He_Co0aHue9wn4BBjy5bThD93VWYHmXt48u-iL-Hm6DDbl_sfx5-fwq0mBE6JRs9gfVEv8-eIoRb6hTOVX_wEFsU
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3rb9MwED-NTUx84TFehQEWQmhf0jXO09qnMWjHo9U0mLoPSJYfiVRtTaq0RbC_fndOk2loIMS3SL4ojn3n-_l8_h3AG52ngaFAFbqPyAt9X3mpSIyXGu7HJlfauqJ9w1F8eBJ-Oo1O12CvuQtT80O0ATeyDLdek4HPbL57RRo6raZdxA6puAUbYYzGQojo-Io7SoiagjkJaaERYUMr1OO77avXnNEGjevPm5DmdeDqPE__Hnxv-lwnnJx1lwvdNRe_0Tn-50_dh7srRMr2axV6AGtZsQWbw9WZ-xbcdkmiZv4QxvvFZF4uqnI2MUwV5VSdl8s5oxorSwq6MeVOkDPLJgVDYMlcAUCmqQoF07_YHPVBVdj4AzfoOKOMzstxnXoEJ_0P3w4OvVVhBs-Q-_JCxLq5b03MfW101ONZEqRKccHTHPEitzZAIMKtCGwoetokee7HaWI1iqB8HjyG9aIssqeUWaVsZrjShrZGvlCBzXtaZzzWGrVHd2CnmSFpVqzlVDzjXNZ8y1zikEk3ZB143YrOaqqOm4TeumluJVR1RrltSSTHo4F8dzA4-hoHAznuAGv0QKLF0TGKKjIcVZlGdDs3FfFfRIhVjXajHXhSq1D7Pe4TbIixZccpwp-7KofHQ_fw7N9FX8Hm0fu-_PJx9Pk53Knj35RltA3ri2qZvUAAtdAvnaFcAsicFX0
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Anisotropic+anomalous+diffusion+assessed+in+the+human+brain+by+scalar+invariant+indices&rft.jtitle=Magnetic+resonance+in+medicine&rft.au=De+Santis%2C+S.&rft.au=Gabrielli%2C+A.&rft.au=Bozzali%2C+M.&rft.au=Maraviglia%2C+B.&rft.date=2011-04-01&rft.pub=Wiley+Subscription+Services%2C+Inc.%2C+A+Wiley+Company&rft.issn=0740-3194&rft.eissn=1522-2594&rft.volume=65&rft.issue=4&rft.spage=1043&rft.epage=1052&rft_id=info:doi/10.1002%2Fmrm.22689&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_BCGPS63G_W
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0740-3194&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0740-3194&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0740-3194&client=summon