Camera pose estimation framework for array‐structured images

Despite the significant progress in camera pose estimation and structure‐from‐motion reconstruction from unstructured images, methods that exploit a priori information on camera arrangements have been overlooked. Conventional state‐of‐the‐art methods do not exploit the geometric structure to recover...

Full description

Saved in:
Bibliographic Details
Published inETRI journal Vol. 44; no. 1; pp. 10 - 23
Main Authors Shin, Min‐Jung, Park, Woojune, Kim, Jung Hee, Kim, Joonsoo, Yun, Kuk‐Jin, Kang, Suk‐Ju
Format Journal Article
LanguageEnglish
Published Electronics and Telecommunications Research Institute (ETRI) 01.02.2022
한국전자통신연구원
Subjects
Online AccessGet full text
ISSN1225-6463
2233-7326
DOI10.4218/etrij.2021-0303

Cover

Abstract Despite the significant progress in camera pose estimation and structure‐from‐motion reconstruction from unstructured images, methods that exploit a priori information on camera arrangements have been overlooked. Conventional state‐of‐the‐art methods do not exploit the geometric structure to recover accurate camera poses from a set of patch images in an array for mosaic‐based imaging that creates a wide field‐of‐view image by sewing together a collection of regular images. We propose a camera pose estimation framework that exploits the array‐structured image settings in each incremental reconstruction step. It consists of the two‐way registration, the 3D point outlier elimination and the bundle adjustment with a constraint term for consistent rotation vectors to reduce reprojection errors during optimization. We demonstrate that by using individual images' connected structures at different camera pose estimation steps, we can estimate camera poses more accurately from all structured mosaic‐based image sets, including omnidirectional scenes.
AbstractList Despite the significant progress in camera pose estimation and structure-from-motion reconstruction from unstructured images, methods that exploit a priori information on camera arrangements have been overlooked. Conventional state-of-the-art methods do not exploit the geometric structure to recover accurate camera poses from a set of patch images in an array for mosaic-based imaging that creates a wide field-of-view image by sewing together a collection of regular images. We propose a camera pose estimation framework that exploits the array-structured image settings in each incremental reconstruction step. It consists of the two-way registration, the 3D point outlier elimination and the bundle adjustment with a constraint term for consistent rotation vectors to reduce reprojection errors during optimization. We demonstrate that by using individual images' connected structures at different camera pose estimation steps, we can estimate camera poses more accurately from all structured mosaic-based image sets, including omnidirectional scenes.
Despite the significant progress in camera pose estimation and structure‐from‐motion reconstruction from unstructured images, methods that exploit a priori information on camera arrangements have been overlooked. Conventional state‐of‐the‐art methods do not exploit the geometric structure to recover accurate camera poses from a set of patch images in an array for mosaic‐based imaging that creates a wide field‐of‐view image by sewing together a collection of regular images. We propose a camera pose estimation framework that exploits the array‐structured image settings in each incremental reconstruction step. It consists of the two‐way registration, the 3D point outlier elimination and the bundle adjustment with a constraint term for consistent rotation vectors to reduce reprojection errors during optimization. We demonstrate that by using individual images' connected structures at different camera pose estimation steps, we can estimate camera poses more accurately from all structured mosaic‐based image sets, including omnidirectional scenes.
Despite the significant progress in camera pose estimation and structure-from-motion reconstruction from unstructured images, methods that exploit a priori information on camera arrangements have been overlooked. Conventional state-of-the-art methods do not exploit the geometric structure to recover accurate camera poses from a set of patch images in an array for mosaic-based imaging that creates a wide field-of-view image by sewing together a collection of regular images. We propose a camera pose estimation framework that exploits the array-structured image settings in each incremental reconstruction step. It consists of the two-way registration, the 3D point outlier elimination and the bundle adjustment with a constraint term for consistent rotation vectors to reduce reprojection errors during optimization. We demonstrate that by using individual images' connected structures at different camera pose estimation steps, we can estimate camera poses more accurately from all structured mosaic-based image sets, including omnidirectional scenes. KCI Citation Count: 0
Author Park, Woojune
Kim, Joonsoo
Kim, Jung Hee
Yun, Kuk‐Jin
Shin, Min‐Jung
Kang, Suk‐Ju
Author_xml – sequence: 1
  givenname: Min‐Jung
  surname: Shin
  fullname: Shin, Min‐Jung
  organization: Sogang University
– sequence: 2
  givenname: Woojune
  surname: Park
  fullname: Park, Woojune
  organization: Sogang University
– sequence: 3
  givenname: Jung Hee
  surname: Kim
  fullname: Kim, Jung Hee
  organization: Sogang University
– sequence: 4
  givenname: Joonsoo
  orcidid: 0000-0002-6470-0773
  surname: Kim
  fullname: Kim, Joonsoo
  organization: Electronics and Telecommunications Research Institute
– sequence: 5
  givenname: Kuk‐Jin
  surname: Yun
  fullname: Yun, Kuk‐Jin
  organization: Electronics and Telecommunications Research Institute
– sequence: 6
  givenname: Suk‐Ju
  orcidid: 0000-0002-4809-956X
  surname: Kang
  fullname: Kang, Suk‐Ju
  email: sjkang@sogang.ac.kr
  organization: Sogang University
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002828622$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFkM9qGzEQxkVJoXbac6977WETafRndy-FYJzWEAgE9yzGu5KR7VhhtMb41kfIM-ZJol2HHHpoLjMw8_2-Gb4pu9jHvWPsu-BXCkR97XoKmyvgIEouufzEJgBSlpUEc8EmAkCXRhn5hU1T2nAOXOl6wn7O8NERFk8xucKlPjxiH-K-8JTnx0jbwkcqkAhPL3-fU0-Htj-Q64osXLv0lX32uEvu21u_ZH9u58vZ7_Lu_tdidnNXtgqaqmyrFSgjlBcVx_yK0tIgrw1Ao3KtV9pD52onhTQSfWaM4QK1rtWwAHnJfpx99-Tttg02Yhj7Otot2ZuH5cI22atSTdYuztou4sY-Uf6UTiMwDiKtLVIf2p2zXEDndYfC1Y3SpsJGgsYKjJC-XXWD1_XZq6WYEjn_7ie4HWK3Y-x2iN0OsWdC_0O0oR8z7QnD7j-cOXPHsHOnj87Y-fIBBChVyVevt5m7
CitedBy_id crossref_primary_10_3788_LOP232187
crossref_primary_10_3390_rs17061013
crossref_primary_10_1109_ACCESS_2023_3332141
Cites_doi 10.1145/3197517.3201384
10.1023/A:1008191222954
10.1109/CVPR42600.2020.00257
10.1109/CVPR.2018.00480
10.1023/B:VISI.0000029664.99615.94
10.1523/JNEUROSCI.23-22-08135.2003
10.1109/ICCV.2017.253
10.1007/s11263-016-0902-9
10.1007/978-3-030-58517-4_20
10.1016/j.cviu.2018.08.001
10.1109/ICRA.2014.6906584
10.1109/CVPR.2019.00567
10.1007/3-540-44480-7_21
10.1109/CVPR.2016.445
10.1109/ICRA.2017.7989236
10.1167/3.1.9
10.1007/978-3-030-58586-0_9
10.1145/3072959.3073599
10.1109/ICCV.2011.6126513
10.1068/p080125
10.1109/CVPR.2006.19
10.1109/ICRA.2014.6907579
10.1109/ICRA40945.2020.9197374
10.1117/12.316427
10.1145/1141911.1141964
10.1023/A:1008176507526
10.1109/CVPR42600.2020.00202
10.1109/CVPR.2018.00218
10.1007/978-0-387-31439-6_488
10.1109/TPAMI.2009.161
10.1016/j.robot.2017.03.019
10.1109/ISCAS51556.2021.9401585
10.1109/TIP.2004.840690
10.1109/CVPR42600.2020.00200
10.1109/TPAMI.2004.17
10.1109/ICCV.2013.69
10.1109/IC3D48390.2019.8975995
10.1109/ICPR.2004.1334404
10.1007/978-3-319-10578-9_5
10.1007/978-3-030-58610-2_37
10.1109/TPAMI.2017.2693984
10.1145/3386569.3392485
10.1007/978-3-030-01237-3_47
10.1007/978-3-030-01231-1_30
10.1145/358669.358692
10.1007/978-3-642-15552-9_3
10.1109/CVPR.2011.5995552
10.1109/TPAMI.2005.44
10.1109/CVPR.2019.00989
10.1109/TRO.2015.2463671
10.1109/CVPR.2001.990963
10.1109/CVPR.2016.590
10.1109/ICCV.2015.105
10.1016/j.measurement.2018.10.087
10.1201/9781315208244
10.1109/CVPR46437.2021.00049
10.1109/TPAMI.2015.2505283
10.1162/105474603322955950
10.1016/S0167-8655(02)00287-8
10.1109/SIBGRA.2002.1167133
10.1145/218380.218398
10.1109/48.989892
10.1017/S096249291700006X
10.1109/ICCV.2007.4408984
10.1109/CVPR.1997.609359
10.1080/135062800394658
10.1109/CVPR.2011.5995569
10.1057/palgrave.jors.2601183
10.5194/isprs-annals-IV-1-W1-237-2017
10.1109/CVPR.2007.383246
ContentType Journal Article
Copyright 1225‐6463/$ © 2022 ETRI
Copyright_xml – notice: 1225‐6463/$ © 2022 ETRI
DBID AAYXX
CITATION
DOA
ACYCR
DOI 10.4218/etrij.2021-0303
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2233-7326
EndPage 23
ExternalDocumentID oai_kci_go_kr_ARTI_9948749
oai_doaj_org_article_012df5da1e894567a9325a72613fcbd9
10_4218_etrij_2021_0303
ETR212447
Genre article
GrantInformation_xml – fundername: Institute of Information & Communications Technology Planning & Evaluation
  funderid: 2018‐0‐00207
– fundername: Information Technology Research Center (ITRC)
  funderid: IITP‐2021‐2018‐0‐01421
– fundername: National Research Foundation of Korea (NRF)
  funderid: 2021R1A2C1004208
GroupedDBID -~X
.4S
.DC
.UV
0R~
1OC
29G
2WC
5GY
5VS
9ZL
AAKPC
AAYBS
ACGFS
ACXQS
ACYCR
ADBBV
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BCNDV
DU5
E3Z
EBS
EDO
EJD
GROUPED_DOAJ
IPNFZ
ITG
ITH
JDI
KQ8
KVFHK
MK~
ML~
O9-
OK1
P5Y
RIG
RNS
TR2
TUS
WIN
XSB
AAYXX
ADMLS
CITATION
OVT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4297-c7b24614f170a1224536a08622948628b5f2de8e31363af4296601a5584f2de23
IEDL.DBID DOA
ISSN 1225-6463
IngestDate Sun Mar 09 07:52:04 EDT 2025
Wed Aug 27 01:27:22 EDT 2025
Tue Jul 01 02:03:20 EDT 2025
Thu Apr 24 22:55:57 EDT 2025
Wed Jan 22 16:27:01 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 1
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4297-c7b24614f170a1224536a08622948628b5f2de8e31363af4296601a5584f2de23
Notes Funding information
Min‐jung Shin, Woojune Park, and Jung Hee Kim should be considered joint first authors.
Institute of Information & Communications Technology Planning & Evaluation, Grant/Award Number: 2018‐0‐00207; Information Technology Research Center (ITRC), Grant/Award Number: IITP‐2021‐2018‐0‐01421; National Research Foundation of Korea (NRF), Grant/Award Number: 2021R1A2C1004208
https://doi.org/10.4218/etrij.2021-0303
ORCID 0000-0002-4809-956X
0000-0002-6470-0773
OpenAccessLink https://doaj.org/article/012df5da1e894567a9325a72613fcbd9
PageCount 14
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9948749
doaj_primary_oai_doaj_org_article_012df5da1e894567a9325a72613fcbd9
crossref_primary_10_4218_etrij_2021_0303
crossref_citationtrail_10_4218_etrij_2021_0303
wiley_primary_10_4218_etrij_2021_0303_ETR212447
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate February 2022
2022-02-00
2022-02-01
2022-02
PublicationDateYYYYMMDD 2022-02-01
PublicationDate_xml – month: 02
  year: 2022
  text: February 2022
PublicationDecade 2020
PublicationTitle ETRI journal
PublicationYear 2022
Publisher Electronics and Telecommunications Research Institute (ETRI)
한국전자통신연구원
Publisher_xml – name: Electronics and Telecommunications Research Institute (ETRI)
– name: 한국전자통신연구원
References 2010; 32
2004; 60
2017; 26
2015; 31
2004; 26
2000; 7
2020; 39
1981; 24
2018; 40
2005; 27
2016; 38
2016; 120
2003; 12
2002; 27
2018; 174
2017; 93
2017; 36
2004; 38
2020
2004; 35
2003; 24
2003; 3
2018
2001; 15
2015
2014
2018; 37
2019; 134
2001; 52
1979; 8
2003; 23
2005; 14
e_1_2_9_75_1
e_1_2_9_31_1
e_1_2_9_52_1
e_1_2_9_50_1
e_1_2_9_73_1
e_1_2_9_79_1
e_1_2_9_10_1
e_1_2_9_35_1
e_1_2_9_56_1
e_1_2_9_12_1
e_1_2_9_33_1
e_1_2_9_54_1
Wrobel B. (e_1_2_9_78_1) 2001; 15
e_1_2_9_71_1
e_1_2_9_14_1
e_1_2_9_39_1
e_1_2_9_16_1
e_1_2_9_37_1
e_1_2_9_58_1
e_1_2_9_18_1
e_1_2_9_41_1
e_1_2_9_64_1
e_1_2_9_20_1
e_1_2_9_62_1
e_1_2_9_22_1
e_1_2_9_45_1
e_1_2_9_68_1
e_1_2_9_24_1
e_1_2_9_43_1
e_1_2_9_66_1
e_1_2_9_8_1
e_1_2_9_6_1
e_1_2_9_81_1
e_1_2_9_4_1
e_1_2_9_60_1
e_1_2_9_2_1
e_1_2_9_26_1
e_1_2_9_49_1
e_1_2_9_28_1
e_1_2_9_47_1
e_1_2_9_30_1
e_1_2_9_53_1
e_1_2_9_74_1
e_1_2_9_51_1
e_1_2_9_72_1
e_1_2_9_11_1
e_1_2_9_34_1
e_1_2_9_57_1
e_1_2_9_13_1
e_1_2_9_32_1
e_1_2_9_55_1
e_1_2_9_76_1
Shah R. (e_1_2_9_46_1) 2015
e_1_2_9_70_1
e_1_2_9_15_1
e_1_2_9_38_1
e_1_2_9_17_1
e_1_2_9_36_1
e_1_2_9_59_1
e_1_2_9_19_1
e_1_2_9_42_1
e_1_2_9_63_1
e_1_2_9_40_1
e_1_2_9_61_1
e_1_2_9_21_1
e_1_2_9_67_1
e_1_2_9_23_1
e_1_2_9_44_1
e_1_2_9_65_1
e_1_2_9_7_1
e_1_2_9_80_1
e_1_2_9_5_1
e_1_2_9_3_1
Inc. The MathWorks (e_1_2_9_77_1) 2020
e_1_2_9_9_1
e_1_2_9_25_1
e_1_2_9_27_1
e_1_2_9_48_1
e_1_2_9_69_1
e_1_2_9_29_1
References_xml – volume: 39
  start-page: 86:1
  year: 2020
  end-page: 15
  article-title: Immersive light field video with a layered mesh representation
  publication-title: ACM Trans. Graph.
– volume: 26
  start-page: 756
  year: 2004
  end-page: 770
  article-title: An efficient solution to the five‐point relative pose problem
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 36
  start-page: 1
  issue: 4
  year: 2017
  end-page: 3
  article-title: Tanks and temples: benchmarking large‐scale scene reconstruction
  publication-title: ACM Trans. Graph
– volume: 15
  start-page: 41
  year: 2001
  article-title: Multiple view geometry in computer vision
  publication-title: Künstliche Intell.
– volume: 26
  start-page: 305
  year: 2017
  end-page: 364
  article-title: A survey of structure from motion*
  publication-title: Acta Numerica
– volume: 24
  start-page: 1171
  year: 2003
  end-page: 1179
  article-title: Comprehensive interest points based imaging mosaic
  publication-title: Pattern Recogn. Lett.
– volume: 14
  start-page: 241
  issue: 2
  year: 2005
  end-page: 252
  article-title: Image registration for image‐based rendering
  publication-title: IEEE Trans. Image Process.
– volume: 40
  start-page: 958
  year: 2018
  end-page: 972
  article-title: Robust relative rotation averaging
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 38
  start-page: 199
  year: 2004
  end-page: 218
  article-title: A theory of shape by space carving
  publication-title: Int. J. Comput. Vis.
– volume: 35
  start-page: 151
  year: 2004
  end-page: 173
  article-title: Photorealistic scene reconstruction by voxel coloring
  publication-title: Int. J. Comput. Vis.
– volume: 31
  start-page: 1147
  year: 2015
  end-page: 1163
  article-title: ORB‐SLAM: a versatile and accurate monocular SLAM system
  publication-title: IEEE Trans. Robot.
– start-page: 552
  year: 2014
  end-page: 560
– volume: 27
  start-page: 418
  year: 2005
  end-page: 433
  article-title: A quasi‐dense approach to surface reconstruction from uncalibrated images
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 3
  start-page: 86
  issue: 1
  year: 2003
  end-page: 94
  article-title: What you see is what you need
  publication-title: J. Vision
– volume: 32
  start-page: 1362
  year: 2010
  end-page: 1376
  article-title: Accurate, dense, and robust multiview stereopsis
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 120
  start-page: 153
  year: 2016
  end-page: 168
  article-title: Large‐scale data for multiple‐view stereopsis
  publication-title: Int. J. Comput. Vis.
– volume: 8
  start-page: 125
  year: 1979
  end-page: 134
  article-title: Motion parallax as an independent cue for depth perception
  publication-title: Perception
– volume: 174
  year: 2018
– volume: 134
  start-page: 345
  year: 2019
  end-page: 358
  article-title: Multi‐camera calibration for accurate geometric measurements in industrial environments
  publication-title: Measurement
– volume: 12
  start-page: 663
  year: 2003
  end-page: 664
  article-title: Virtual reality technology
  publication-title: Presence: Teleoperators Virtual Environ.
– volume: 27
  start-page: 79
  year: 2002
  end-page: 99
  article-title: Mosaic‐based positioning and improved motion‐estimation methods for automatic navigation of submersible vehicles
  publication-title: IEEE J. Ocean. Eng.
– volume: 38
  start-page: 2024
  year: 2016
  end-page: 2039
  article-title: Learning depth from single monocular images using deep convolutional neural fields
  publication-title: IEEE Trans. Pattern Anal. Mach. Intell.
– volume: 93
  start-page: 27
  year: 2017
  end-page: 42
  article-title: S‐ptam: Stereo parallel tracking and mapping
  publication-title: Robotics Autonomous Syst.
– start-page: 488
  year: 2018
  end-page: 503
– volume: 37
  start-page: 1
  year: 2018
  end-page: 15
  article-title: Deep blending for free‐viewpoint image‐based rendering
  publication-title: ACM Trans. Graph.
– year: 2020
– volume: 23
  start-page: 8135
  year: 2003
  end-page: 8142
  article-title: Motion parallax is computed in the updating of human spatial memory
  publication-title: J. Neurosci.
– volume: 7
  start-page: 1
  year: 2000
  end-page: 15
  article-title: Current approaches to change blindness
  publication-title: Visual Cognition
– year: 2015
– volume: 24
  start-page: 381
  year: 1981
  end-page: 395
  article-title: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography
  publication-title: Commun. ACM
– volume: 52
  start-page: 245
  year: 2001
  article-title: Numerical optimization
  publication-title: J. Oper. Res. Soc.
– volume: 60
  start-page: 91
  year: 2004
  end-page: 110
  article-title: Distinctive image features from scale‐invariant keypoints
  publication-title: Int. J. Comput. Vision
– ident: e_1_2_9_8_1
  doi: 10.1145/3197517.3201384
– ident: e_1_2_9_49_1
  doi: 10.1023/A:1008191222954
– volume: 15
  start-page: 41
  year: 2001
  ident: e_1_2_9_78_1
  article-title: Multiple view geometry in computer vision
  publication-title: Künstliche Intell.
– ident: e_1_2_9_55_1
  doi: 10.1109/CVPR42600.2020.00257
– ident: e_1_2_9_48_1
  doi: 10.1109/CVPR.2018.00480
– ident: e_1_2_9_70_1
  doi: 10.1023/B:VISI.0000029664.99615.94
– ident: e_1_2_9_6_1
  doi: 10.1523/JNEUROSCI.23-22-08135.2003
– ident: e_1_2_9_51_1
  doi: 10.1109/ICCV.2017.253
– ident: e_1_2_9_58_1
  doi: 10.1007/s11263-016-0902-9
– ident: e_1_2_9_67_1
  doi: 10.1007/978-3-030-58517-4_20
– ident: e_1_2_9_17_1
  doi: 10.1016/j.cviu.2018.08.001
– ident: e_1_2_9_34_1
  doi: 10.1109/ICRA.2014.6906584
– ident: e_1_2_9_56_1
  doi: 10.1109/CVPR.2019.00567
– ident: e_1_2_9_43_1
– ident: e_1_2_9_73_1
  doi: 10.1007/3-540-44480-7_21
– ident: e_1_2_9_22_1
  doi: 10.1109/CVPR.2016.445
– ident: e_1_2_9_35_1
  doi: 10.1109/ICRA.2017.7989236
– ident: e_1_2_9_3_1
  doi: 10.1167/3.1.9
– ident: e_1_2_9_4_1
– ident: e_1_2_9_19_1
  doi: 10.1007/978-3-030-58586-0_9
– ident: e_1_2_9_59_1
  doi: 10.1145/3072959.3073599
– ident: e_1_2_9_27_1
  doi: 10.1109/ICCV.2011.6126513
– ident: e_1_2_9_5_1
  doi: 10.1068/p080125
– ident: e_1_2_9_12_1
  doi: 10.1109/CVPR.2006.19
– ident: e_1_2_9_66_1
  doi: 10.1109/ICRA.2014.6907579
– ident: e_1_2_9_71_1
– ident: e_1_2_9_36_1
  doi: 10.1109/ICRA40945.2020.9197374
– ident: e_1_2_9_60_1
  doi: 10.1117/12.316427
– ident: e_1_2_9_42_1
  doi: 10.1145/1141911.1141964
– ident: e_1_2_9_44_1
– ident: e_1_2_9_52_1
– ident: e_1_2_9_50_1
  doi: 10.1023/A:1008176507526
– ident: e_1_2_9_30_1
– ident: e_1_2_9_57_1
  doi: 10.1109/CVPR42600.2020.00202
– ident: e_1_2_9_32_1
  doi: 10.1109/CVPR.2018.00218
– ident: e_1_2_9_68_1
  doi: 10.1007/978-0-387-31439-6_488
– ident: e_1_2_9_54_1
  doi: 10.1109/TPAMI.2009.161
– ident: e_1_2_9_29_1
  doi: 10.1016/j.robot.2017.03.019
– ident: e_1_2_9_79_1
– ident: e_1_2_9_26_1
  doi: 10.1109/ISCAS51556.2021.9401585
– ident: e_1_2_9_16_1
  doi: 10.1109/TIP.2004.840690
– ident: e_1_2_9_39_1
  doi: 10.1109/CVPR42600.2020.00200
– ident: e_1_2_9_37_1
  doi: 10.1109/TPAMI.2004.17
– ident: e_1_2_9_24_1
  doi: 10.1109/ICCV.2013.69
– ident: e_1_2_9_80_1
  doi: 10.1109/IC3D48390.2019.8975995
– ident: e_1_2_9_61_1
  doi: 10.1109/ICPR.2004.1334404
– ident: e_1_2_9_21_1
  doi: 10.1007/978-3-319-10578-9_5
– ident: e_1_2_9_38_1
  doi: 10.1007/978-3-030-58610-2_37
– ident: e_1_2_9_18_1
  doi: 10.1109/TPAMI.2017.2693984
– ident: e_1_2_9_9_1
  doi: 10.1145/3386569.3392485
– volume-title: Multistage SfM: a coarse‐to‐fine approach for 3D reconstruction
  year: 2015
  ident: e_1_2_9_46_1
– ident: e_1_2_9_81_1
  doi: 10.1007/978-3-030-01237-3_47
– ident: e_1_2_9_41_1
  doi: 10.1007/978-3-030-01231-1_30
– ident: e_1_2_9_72_1
  doi: 10.1145/358669.358692
– ident: e_1_2_9_74_1
  doi: 10.1007/978-3-642-15552-9_3
– ident: e_1_2_9_76_1
  doi: 10.1109/CVPR.2011.5995552
– ident: e_1_2_9_53_1
  doi: 10.1109/TPAMI.2005.44
– ident: e_1_2_9_33_1
  doi: 10.1109/CVPR.2019.00989
– ident: e_1_2_9_28_1
  doi: 10.1109/TRO.2015.2463671
– ident: e_1_2_9_20_1
  doi: 10.1109/CVPR.2001.990963
– ident: e_1_2_9_40_1
  doi: 10.1109/CVPR.2016.590
– ident: e_1_2_9_47_1
  doi: 10.1109/ICCV.2015.105
– ident: e_1_2_9_69_1
  doi: 10.1016/j.measurement.2018.10.087
– ident: e_1_2_9_11_1
  doi: 10.1201/9781315208244
– ident: e_1_2_9_25_1
  doi: 10.1109/CVPR46437.2021.00049
– ident: e_1_2_9_31_1
  doi: 10.1109/TPAMI.2015.2505283
– ident: e_1_2_9_10_1
  doi: 10.1162/105474603322955950
– ident: e_1_2_9_64_1
  doi: 10.1016/S0167-8655(02)00287-8
– ident: e_1_2_9_15_1
  doi: 10.1109/SIBGRA.2002.1167133
– ident: e_1_2_9_7_1
  doi: 10.1145/218380.218398
– ident: e_1_2_9_62_1
  doi: 10.1109/48.989892
– ident: e_1_2_9_23_1
  doi: 10.1017/S096249291700006X
– volume-title: Computer vision toolbox
  year: 2020
  ident: e_1_2_9_77_1
– ident: e_1_2_9_13_1
  doi: 10.1109/ICCV.2007.4408984
– ident: e_1_2_9_63_1
  doi: 10.1109/CVPR.1997.609359
– ident: e_1_2_9_2_1
  doi: 10.1080/135062800394658
– ident: e_1_2_9_45_1
  doi: 10.1109/CVPR.2011.5995569
– ident: e_1_2_9_75_1
  doi: 10.1057/palgrave.jors.2601183
– ident: e_1_2_9_65_1
  doi: 10.5194/isprs-annals-IV-1-W1-237-2017
– ident: e_1_2_9_14_1
  doi: 10.1109/CVPR.2007.383246
SSID ssj0020458
Score 2.2774477
Snippet Despite the significant progress in camera pose estimation and structure‐from‐motion reconstruction from unstructured images, methods that exploit a priori...
Despite the significant progress in camera pose estimation and structure-from-motion reconstruction from unstructured images, methods that exploit a priori...
SourceID nrf
doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 10
SubjectTerms camera pose estimation
mosaic-based image
omnidirectional image
structure from motion
전자/정보통신공학
Title Camera pose estimation framework for array‐structured images
URI https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.2021-0303
https://doaj.org/article/012df5da1e894567a9325a72613fcbd9
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002828622
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ETRI Journal, 2022, 44(1), , pp.10-23
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV09T8MwELVQJxgQn6IUkIUYWEKTOLFriQWqVoWBAbVSN8tx7AqK0iqFgX_PnZNUZUBdWBqptSX3XZJ7Lzm_I-TGaOtMDuqEh1kcJI7BNReFJmChMRY0LlJ-rLZ44aNJ8jxNpxutvrAmrLIHroDrwg00d2muI9uTkOyFBsKRagHEnzmT5X7rXijDRkzVUgtf_6HUgrM14AlnlalPAvmsi42q3kEYxlhK1PTKqvORt-2HLFOU7jdZ9dlmeED2a5pIH6rlHZIdWxyRvQ3zwGNy39f4QIkuFytL0Suj2oRIXVNuRYGPUl2W-juoXGK_SptTGDazqxMyGQ7G_VFQ90IIDGQMERiRofNb4iIRanwbljKuUY7EMoHPXpa6OLc9yyLGmXYwh4PU0inwC_whZqekVSwKe0ZoqjngEDLBLARCMi21zOCWnUGuliyRbXLXIKJMbRSO_So-FAgGhFB5CBVCqBDCNrldT1hWHhl_D31EiNfD0NzafwEhV3XI1baQt8k1BEjNzZufj8fZQs1LBRLgSUkAROC_6Pr4bVuRGoxfYyQ54vw_1tYhuzFukPB13RekBeG1l0BbPrMrf4b-AAGu44o
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV27TsMwFLVQOwAD4inKM0IMLKFpnEezIJWqVQulA2pQxWI5jl2VoqRKy8DGJ_CNfAn3JmnUIiHEkkiJHTn3-vqe49gnhFwKLpUIgZ04RmDqlqIQczVD6NQQQgLHRciPqy36Tse37ob2cGkvTKYPUUy4YWSk4zUGOE5IY5RbkJbQi_Nk_AIMz8Q1QSj4WUZsY5ZIufHkP_sF7cJPgUi7oOfqjuXQTOAHH1L98YiV3JRK-EPGiRK1ClzTzNPeJls5ZNQamY93yJqMdsnmkpDgHrlpcpxc0qbxTGqom5FtSNTUYumVBthU40nC378-PjPN2LdEhhoUHMnZPvHbrUGzo-d_RtAF5A9XF26AOnCWqrkGx29jNnU4khPTs-BYD2xlhrIuaY06lCuo4wDx4jagDbxh0gNSiuJIHhLN5g5YwqAuleAWj3KPewEM4AFkbo9aXoVcL2zCRC4bjn-veGVAH9CILDUiQyMyNGKFXBUVpplixu9Fb9HIRTGUuk4vxMmI5ZHDIIOGyg55TdY9QHsuB8RpcxeYH1UiCKGBF-AiNhHjtD6eRzGbJAwIQZd5YBAX36KaevCvFrHW4NFEyOMe_bvGOVnvDB56rNft3x-TDRP3SaTLu09ICfwqTwG9zIOzvHt-A4rX5hQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8NAEF6kBdGD-MT6DOLBS2ySzaO5CLW2tCpFpBHxsmw2u6VWkpLWgzd_gr_RX-JMkgYriHhJINkNm5mdzPcls18IORVcKhEBO3GN0NJtRSHmTEPo1BBCAsdFyI_VFn23G9jXj868mhDXwuT6EOULN4yM7HmNAT6JFAa5DVkJnThLR89A8CwsCUK9zypq5cFUrzYfgqegZF34JRBZF0xc3bVdmuv74EXqPy6xkJoyBX9IOHGqFnFrlng662StQIxaM3fxBlmS8SZZ_aYjuEUuWhzfLWmTZCo1lM3I1yNqal55pQE01Xia8rfP949cMvY1lZEGDYdyuk2CTnvQ6urFjxF0AenD04UXogycrUzP4PhpzKEuR25i-TZsG6GjrEg2JDWpS7mCPi7wLu4A2MATFt0hlTiJ5S7RHO6CJQzqUQle8Sn3uR_C8zuExO1T26-R87lNmChUw_HnFS8M2AMakWVGZGhEhkaskbOywyQXzPi96SUauWyGStfZgSQdsiJwGCTQSDkRN2XDB7DncQCcDveA-FElwggGeAIuYmMxyvrjfpiwccqAD_SYDwbx8C7qmQf_GhFrD-4tRDze3r97HJPlu6sOu-31b_bJioWrJLLi7gNSAbfKQ8Aus_ComJ1fLOjlPQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Camera+pose+estimation+framework+for+array%E2%80%90structured+images&rft.jtitle=ETRI+journal&rft.au=%EC%8B%A0%EB%AF%BC%EC%A0%95&rft.au=%EB%B0%95%EC%9A%B0%EC%A4%80&rft.au=%EA%B9%80%EC%A0%95%ED%9D%AC&rft.au=%EA%B9%80%EC%A4%80%EC%88%98&rft.date=2022-02-01&rft.pub=%ED%95%9C%EA%B5%AD%EC%A0%84%EC%9E%90%ED%86%B5%EC%8B%A0%EC%97%B0%EA%B5%AC%EC%9B%90&rft.issn=1225-6463&rft.eissn=2233-7326&rft.spage=10&rft.epage=23&rft_id=info:doi/10.4218%2Fetrij.2021-0303&rft.externalDBID=n%2Fa&rft.externalDocID=oai_kci_go_kr_ARTI_9948749
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon