Fractal butterflies of Dirac fermions in monolayer and bilayer graphene

Bloch electrons in a perpendicular magnetic field exhibit unusual dynamics that has been studied for more than half a century. The single-electron energy spectrum of this system, the Hofstadter butterfly has been the subject of theoretical and experimental investigations for the past two decades. Ex...

Full description

Saved in:
Bibliographic Details
Published inIET circuits, devices & systems Vol. 9; no. 1; pp. 19 - 29
Main Authors Chakraborty, Tapash, Apalkov, Vadym M
Format Journal Article
LanguageEnglish
Published Stevenage The Institution of Engineering and Technology 01.01.2015
John Wiley & Sons, Inc
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Bloch electrons in a perpendicular magnetic field exhibit unusual dynamics that has been studied for more than half a century. The single-electron energy spectrum of this system, the Hofstadter butterfly has been the subject of theoretical and experimental investigations for the past two decades. Experimental observation of these unusual spectra in semiconductor nanostructures, however, met with only limited success. The fractal nature of the butterfly spectrum was finally observed in 2013, thanks to the unique electronic properties of graphene. Here, the authors present an overview of the theoretical understanding of Hofstadter butterflies in monolayer and bilayer graphene. First, they briefly discuss the energy spectra in conventional semiconductor systems. The electronic properties of monolayer and bilayer graphene are then presented. Theoretical background on the Moiré pattern in graphene and its application in the magnetoconductance probe that resulted in graphene butterflies are explained. They have also touched upon the important role of electron–electron interaction in the butterfly pattern in graphene. Experimental efforts to investigate this aspect of fractal butterflies have just begun. They conclude by discussing the future prospects of butterfly search, especially for interacting Dirac fermions in graphene.
AbstractList Bloch electrons in a perpendicular magnetic field exhibit unusual dynamics that has been studied for more than half a century. The single-electron energy spectrum of this system, the Hofstadter butterfly has been the subject of theoretical and experimental investigations for the past two decades. Experimental observation of these unusual spectra in semiconductor nanostructures, however, met with only limited success. The fractal nature of the butterfly spectrum was finally observed in 2013, thanks to the unique electronic properties of graphene. Here, the authors present an overview of the theoretical understanding of Hofstadter butterflies in monolayer and bilayer graphene. First, they briefly discuss the energy spectra in conventional semiconductor systems. The electronic properties of monolayer and bilayer graphene are then presented. Theoretical background on the Moire pattern in graphene and its application in the magnetoconductance probe that resulted in graphene butterflies are explained. They have also touched upon the important role of electron-electron interaction in the butterfly pattern in graphene. Experimental efforts to investigate this aspect of fractal butterflies have just begun. They conclude by discussing the future prospects of butterfly search, especially for interacting Dirac fermions in graphene.
Bloch electrons in a perpendicular magnetic field exhibit unusual dynamics that has been studied for more than half a century. The single‐electron energy spectrum of this system, the Hofstadter butterfly has been the subject of theoretical and experimental investigations for the past two decades. Experimental observation of these unusual spectra in semiconductor nanostructures, however, met with only limited success. The fractal nature of the butterfly spectrum was finally observed in 2013, thanks to the unique electronic properties of graphene. Here, the authors present an overview of the theoretical understanding of Hofstadter butterflies in monolayer and bilayer graphene. First, they briefly discuss the energy spectra in conventional semiconductor systems. The electronic properties of monolayer and bilayer graphene are then presented. Theoretical background on the Moiré pattern in graphene and its application in the magnetoconductance probe that resulted in graphene butterflies are explained. They have also touched upon the important role of electron–electron interaction in the butterfly pattern in graphene. Experimental efforts to investigate this aspect of fractal butterflies have just begun. They conclude by discussing the future prospects of butterfly search, especially for interacting Dirac fermions in graphene.
Author Chakraborty, Tapash
Apalkov, Vadym M
Author_xml – sequence: 1
  givenname: Tapash
  surname: Chakraborty
  fullname: Chakraborty, Tapash
  email: Tapash.Chakraborty@umanitoba.ca
  organization: 1Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada
– sequence: 2
  givenname: Vadym M
  surname: Apalkov
  fullname: Apalkov, Vadym M
  organization: 2Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA
BookMark eNqFkM1q3DAURkVIIT_tA3RnyKZdeKorWbbVXTuTSQOBLppCd0LSXCUKHmkqeQjz9pVxCSGUdKWLON_9pHNGjkMMSMh7oAugjfzkcaztJi8YhWZBWSeOyCl0AupeyP74ae5_nZCznB8oFULw9pRcrZO2ox4qsx9HTG7wmKvoqpUv95XDtPUx5MqHahtDHPQBU6XDpjJ-nu-S3t1jwLfkjdNDxnd_z3Pyc315u_xW33y_ul5-ualtw2RXMwbcOsE4AxStwd61ujG8xU3XgWkcQG8kou3RIDOMt8CEti2lyKVBJ_g5-TDv3aX4e495VFufLQ6DDhj3WUEnORN9A31BL16gD3GfQnmd4lSy4khyWSiYKZtizgmd2iW_1emggKpJrSpqVVGrJrVqUlsy3YuM9aMei6kxaT-8mvw8Jx_9gIf_V6nl6gf7uqYUoCvheg5P2NNfXiv7-A_--vJ22vqsY7dx_A_CP7AD
CitedBy_id crossref_primary_10_1103_PhysRevB_92_235404
crossref_primary_10_1103_PhysRevB_91_125131
crossref_primary_10_1088_0953_8984_28_1_015801
crossref_primary_10_1103_PhysRevB_91_235447
Cites_doi 10.1103/PhysRevB.78.193405
10.1038/nature08522
10.1103/PhysRevB.76.115419
10.1103/RevModPhys.71.863
10.1103/PhysRevB.30.7320
10.1080/00018732.2010.487978
10.1103/PhysRevB.81.161405
10.1103/PhysRevLett.76.4018
10.1103/PhysRevB.81.115410
10.1103/PhysRevLett.99.256802
10.1103/PhysRevB.39.7971
10.1038/nature12186
10.1103/PhysRevB.86.035401
10.1103/PhysRevB.86.115415
10.1103/PhysRevLett.96.086805
10.1038/nature08582
10.1103/PhysRevB.87.235429
10.1016/0039‐6028(90)90821‐O
10.1103/PhysRev.133.A1038
10.1103/PhysRevLett.50.1395
10.1103/PhysRev.134.A1602
10.1103/PhysRevLett.80.3232
10.1103/PhysRevB.87.245408
10.1016/j.physe.2003.09.031
10.1021/nl2005115
10.1103/PhysRev.180.633
10.1038/nphys1463
10.1103/PhysRevLett.101.056803
10.1103/PhysRevB.57.1312
10.1103/PhysRevLett.107.186803
10.1103/PhysRevLett.97.036803
10.1038/nphys2979
10.1126/science.1237240
10.1103/PhysRevB.84.035440
10.1103/PhysRevLett.112.176401
10.1103/PhysRevLett.102.056807
10.1103/PhysRevLett.86.147
10.1103/PhysRevB.86.235411
10.1088/0370‐1298/68/10/304
10.1007/978-3-642-97101-3
10.1103/PhysRevLett.105.036801
10.1016/j.ssc.2013.04.002
10.1103/PhysRevLett.111.185301
10.1007/978-3-319-02633-6_8
10.1038/nature12187
10.1088/0953-8984/27/18/185301
10.1103/PhysRevLett.86.1311
10.1103/PhysRevLett.57.130
10.1209/epl/i1996‐00399‐6
10.1103/PhysRevLett.97.126801
10.1038/nnano.2010.172
10.1103/PhysRevB.80.081408
10.1103/PhysRevB.54.R5223
10.1103/PhysRevLett.106.126802
10.1103/PhysRevLett.100.125504
10.1103/PhysRevLett.111.185302
10.1103/PhysRevB.84.033408
10.1103/PhysRevB.81.245412
10.1103/PhysRevB.74.161403
10.1038/nmat2968
10.1103/PhysRevB.75.201404
10.1080/00018730050198161
10.1103/PhysRevB.14.2239
10.1021/cr300263a
10.1016/0039‐6028(96)00456‐6
10.1103/PhysRevLett.92.256801
10.1088/0268‐1242/11/11S/022
10.1007/978-3-642-79319-6
10.1103/PhysRevLett.55.2095
10.1103/PhysRevLett.106.046801
10.1103/PhysRevB.89.075401
10.1103/PhysRevB.29.7032
10.1103/PhysRevB.48.8890
10.1103/PhysRevB.52.16744
10.1103/PhysRevB.56.R7100
10.1016/j.physe.2004.06.021
ContentType Journal Article
Copyright The Institution of Engineering and Technology
2015 The Institution of Engineering and Technology
Copyright The Institution of Engineering & Technology 2015
Copyright_xml – notice: The Institution of Engineering and Technology
– notice: 2015 The Institution of Engineering and Technology
– notice: Copyright The Institution of Engineering & Technology 2015
DBID AAYXX
CITATION
JQ2
7SP
7U5
8FD
F28
FR3
L7M
DOI 10.1049/iet-cds.2014.0275
DatabaseName CrossRef
ProQuest Computer Science Collection
Electronics & Communications Abstracts
Solid State and Superconductivity Abstracts
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
ProQuest Computer Science Collection
Solid State and Superconductivity Abstracts
Engineering Research Database
Technology Research Database
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
Electronics & Communications Abstracts
DatabaseTitleList Solid State and Superconductivity Abstracts
ProQuest Computer Science Collection


DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 1751-8598
EndPage 29
ExternalDocumentID 10_1049_iet_cds_2014_0275
CDS2BF00117
Genre article
GrantInformation_xml – fundername: NSF
  funderid: ECCS‐1308473
– fundername: Canada Research Chairs Program of the Government of Canada
GroupedDBID 0R
24P
29I
4.4
4IJ
6IK
8FE
8FG
AAJGR
ABJCF
ACGFS
ACIWK
ADCOW
AFKRA
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BENPR
BFFAM
BGLVJ
EBS
EJD
GOZPB
GRPMH
HCIFZ
HZ
IFIPE
IPLJI
JAVBF
K6V
K7-
L6V
LAI
LOTEE
LXI
M43
M7S
NADUK
NXXTH
O9-
OCL
P62
PTHSS
RIE
RNS
RUI
S0W
U5U
UNMZH
UNR
ZZ
.DC
0R~
0ZK
1OC
96U
AAHHS
AAHJG
ABQXS
ACCFJ
ACCMX
ACESK
ACXQS
ADEYR
ADZOD
AEEZP
AEGXH
AEQDE
AFAZI
AIWBW
AJBDE
ALUQN
AVUZU
CCPQU
F8P
GROUPED_DOAJ
HZ~
IAO
ITC
MCNEO
OK1
ROL
~ZZ
AAYXX
CITATION
IDLOA
PHGZM
PHGZT
JQ2
WIN
7SP
7U5
8FD
F28
FR3
L7M
ID FETCH-LOGICAL-c4297-2213cf52321e56be8f6a4b36ed771b4f118b9eec8ebe2b236125ac600e39bef53
IEDL.DBID 24P
ISSN 1751-858X
1751-8598
IngestDate Fri Jul 11 01:40:50 EDT 2025
Wed Aug 13 05:18:37 EDT 2025
Tue Jul 01 01:16:20 EDT 2025
Thu Apr 24 22:51:45 EDT 2025
Wed Jan 22 16:59:15 EST 2025
Tue Jan 05 21:46:20 EST 2021
Thu May 09 18:33:38 EDT 2019
IsPeerReviewed true
IsScholarly true
Issue 1
Keywords magnetoresistance
monolayer graphene
Hofstadter butterfly
Bloch electrons
monolayers
electronic properties
bilayer graphene
fractal butterflies
magnetoconductance probe
single-electron energy spectrum
graphene
perpendicular magnetic field
Dirac fermions
Moiré pattern
electron-electron interaction
semiconductor systems
semiconductor nanostructures
butterfly spectrum
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4297-2213cf52321e56be8f6a4b36ed771b4f118b9eec8ebe2b236125ac600e39bef53
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 3092275939
PQPubID 1936358
PageCount 11
ParticipantIDs proquest_miscellaneous_1793258418
proquest_journals_3092275939
crossref_citationtrail_10_1049_iet_cds_2014_0275
wiley_primary_10_1049_iet_cds_2014_0275_CDS2BF00117
iet_journals_10_1049_iet_cds_2014_0275
crossref_primary_10_1049_iet_cds_2014_0275
ProviderPackageCode RUI
CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20150100
January 2015
2015-01-00
20150101
PublicationDateYYYYMMDD 2015-01-01
PublicationDate_xml – month: 1
  year: 2015
  text: 20150100
PublicationDecade 2010
PublicationPlace Stevenage
PublicationPlace_xml – name: Stevenage
PublicationTitle IET circuits, devices & systems
PublicationYear 2015
Publisher The Institution of Engineering and Technology
John Wiley & Sons, Inc
Publisher_xml – name: The Institution of Engineering and Technology
– name: John Wiley & Sons, Inc
References Zak, J. (C71) 1964; 134
Brown, E. (C72) 1964; 133
Du, X.; Skachko, I.; Duerr, F. (C64) 2009; 462
Chakraborty, T.; Apalkov, V.M. (C18) 2013; 175
(C48) 1996; 54
Shallcross, S.; Sharma, S.; Pankratov, O.A. (C34) 2008; 101
McCann, E. (C44) 2006; 74
Dean, C.R.; Young, A.F.; Meric, I. (C23) 2010; 5
Zhang, F.C.; Chakraborty, T. (C82) 1984; 30
Rhim, J.-W.; Park, K. (C26) 2012; 86
Yu, G.L.; Gorbachev, R.V.; Tu, J.S. (C68) 2014; 10
Aidelsburger, M.; Atala, M.; Lohse, M. (C13) 2013; 111
Apalkov, V.M.; Chakraborty, T. (C57) 2010; 105
Abanin, D.A.; Skachko, I.; Du, X. (C65) 2010; 81
Nemec, N.; Cuniberti, G. (C27) 2007; 75
Kuhl, U.; Stöckmann, H.-J. (C12) 1998; 80
Kindermann, M.; Uchoa, B.; Miller, D.L. (C40) 2012; 86
Chakraborty, T. (C76) 2000; 49
Hass, J.; Varchon, F.; Millán-Otoya, J.E. (C33) 2008; 100
Apalkov, V.M.; Chakraborty, T. (C59) 2014; 177
Mele, E.J. (C36) 2010; 81
Hofstadter, D. (C4) 1976; 14
von Klitzing, K.; Chakraborty, T. (C69) 2011; 67
Chakraborty, T.; Pietiläinen, P. (C77) 1996; 76
Gat, O.; Avron, J.E. (C28) 2003; 5
Chen, X.; Wallbank, J.R.; Patel, A.A. (C42) 2014; 89
Albrecht, C.; Smet, J.H.; von Klitzing, K. (C9) 2003; 20
Laughlin, R.B. (C55) 1999; 71
Albrecht, C.; Smet, J.H.; von Klitzing, K. (C8) 2001; 86
Dean, C.R.; Wang, L.; Maher, P. (C20) 2013; 497
Geisler, M.C.; Smet, J.H.; Umansky, V. (C7) 2004; 25
Decker, R.; Wang, Y.; Brar, V.W. (C24) 2011; 11
Laughlin, R.B. (C54) 1983; 50
Ghahari, F.; Zhao, Y.; Cadden-Zimansky, P. (C67) 2011; 106
Apalkov, V.M.; Chakraborty, T. (C58) 2011; 107
Bistritzer, R.; MacDonald, A.H. (C38) 2011; 84
Schlösser, T.; Ensslin, K.; Kotthaus, J.P. (C11) 1996; 11
Latil, S.; Henrard, L. (C30) 2006; 97
Apalkov, V.M.; Chakraborty, T. (C51) 2014; 112
Pfannkuche, D.; MacDonald, A.H. (C49) 1997; 56
Chakraborty, T.; Pietiläinen, P.; Zhang, F.C. (C80) 1986; 57
Gudmundsson, V.; Gerhardts, R.R. (C47) 1996; 361–362
Miyake, H.; Siviloglu, G.A.; Kennedy, C.J. (C14) 2013; 111
Langbein, D. (C3) 1969; 180
Abergel, D.S.L.; Chakraborty, T. (C60) 2009; 102
Bolotin, K.I.; Ghahari, F.; Shulman, M.D. (C66) 2009; 462
Abergel, D.S.L.; Apalkov, V.; Berashevich, J. (C16) 2010; 59
Gudmundsson, V.; Gerhardts, R.R. (C46) 1995; 52
Chakraborty, T.; Pietiläinen, P. (C78) 1989; 39
Abergel, D.S.L.; Apalkov, V.M.; Chakraborty, T. (C61) 2008; 78
Harper, P.G. (C2) 1955; 68
Geisler, M.C.; Smet, J.H.; Umansky, V. (C6) 2004; 92
Xu, M.; Liang, T.; Shi, M. (C19) 2013; 113
Schlösser, T.; Ensslin, K.; Kotthaus, J.P. (C10) 1996; 33
Hunt, B.; Sanchez-Yamagishi, J.D.; Young, A.F. (C21) 2013; 340
Apalkov, V.M.; Chakraborty, T. (C56) 2006; 97
Luican, A.; Li, G.; Reina, A. (C39) 2011; 106
Doh, H.; Salk, S.H. (C50) 1998; 57
Apalkov, V.M.; Chakraborty, T. (C32); 84
Haldane, F.D.M. (C73) 1985; 55
Li, G.; Luican, A.; Lopes dos Santos, J.M.B. (C35) 2010; 6
Kol, A.; Read, N. (C74) 1993; 48
Chakraborty, T. (C75) 1990; 229
Lopes dos Santos, J.M.B.; Peres, N.M.R.; Castro Neto, A.H. (C31) 2007; 99
Milton Pereira, J.; Peeters, F.M.; Vasilopoulos, P. (C45) 2007; 76
Bistritzer, R.; MacDonald, A.H. (C37) 2010; 81
Wallbank, J.R.; Patel, A.A.; Mucha-Kruczynski, M. (C41) 2013; 87
Janecek, S.; Aichinger, M.; Hernandez, E.R. (C29) 2013; 87
McCann, E.; Falko, V. (C43) 2006; 96
Apalkov, V.M.; Chakraborty, T. (C63) 2012; 86
Xue, J.; Sanchez-Yamagishi, J.; Bulmash, D. (C25) 2011; 10
Apalkov, V.M.; Chakraborty, T.; Pietiläinen, P. (C79) 2001; 86
Chakraborty, T.; Zhang, F.C. (C81) 1984; 29
Pomomarenko, L.A.; Gorbachev, R.V.; Yu, G.L. (C22) 2013; 497
Abergel, D.S.L.; Pietiläinen, P.; Chakraborty, T. (C62) 2009; 80
1990; 229
2006; 74
2010; 59
2000; 49
2009; 80
2010; 105
2004; 25
1964; 134
1964; 133
2011; 11
2008; 78
2011; 10
1984; 29
1998; 80
1983; 50
2007; 75
2008; 101
2008; 100
2007; 76
2014; 177
1996; 76
2001; 86
1996; 33
1996; 361–362
1969; 180
1997; 56
2013; 111
2013; 113
2003; 5
1982
2011; 67
1985; 55
2010; 5
2010; 6
2014; 10
1989; 39
1998; 57
1988
1993; 48
1995; 52
2006; 96
2006; 97
2013; 87
1986; 57
2011; 84
1995
2013; 340
2010; 81
2007; 99
1955; 68
2014; 89
1996; 54
2014; 112
1996; 11
1984; 30
1976; 14
2004; 92
2011; 107
2011; 106
2013; 497
2009; 462
2000; 40
2009; 102
2014
2013; 175
1999; 71
2003; 20
84
2012; 86
e_1_2_9_52_2
e_1_2_9_73_2
e_1_2_9_50_2
e_1_2_9_71_2
e_1_2_9_10_2
e_1_2_9_33_2
e_1_2_9_56_2
e_1_2_9_77_2
e_1_2_9_12_2
e_1_2_9_31_2
e_1_2_9_54_2
e_1_2_9_75_2
Gat O. (e_1_2_9_29_2) 2003; 5
e_1_2_9_14_2
e_1_2_9_37_2
e_1_2_9_16_2
e_1_2_9_35_2
e_1_2_9_58_2
e_1_2_9_18_2
e_1_2_9_79_2
e_1_2_9_39_2
e_1_2_9_41_2
e_1_2_9_62_2
Mandelbrot B.B. (e_1_2_9_6_2) 1982
e_1_2_9_20_2
e_1_2_9_45_2
e_1_2_9_66_2
e_1_2_9_83_2
e_1_2_9_22_2
e_1_2_9_43_2
e_1_2_9_64_2
e_1_2_9_4_2
e_1_2_9_81_2
e_1_2_9_8_2
e_1_2_9_24_2
e_1_2_9_49_2
e_1_2_9_26_2
e_1_2_9_47_2
e_1_2_9_68_2
e_1_2_9_28_2
e_1_2_9_51_2
e_1_2_9_74_2
e_1_2_9_30_2
e_1_2_9_72_2
e_1_2_9_78_2
e_1_2_9_34_2
e_1_2_9_55_2
e_1_2_9_76_2
e_1_2_9_11_2
e_1_2_9_32_2
e_1_2_9_53_2
Rössler U. (e_1_2_9_2_2) 2000
Klitzing K. (e_1_2_9_70_2) 2011; 67
e_1_2_9_13_2
e_1_2_9_38_2
e_1_2_9_59_2
e_1_2_9_15_2
e_1_2_9_36_2
e_1_2_9_57_2
Apalkov V.M. (e_1_2_9_60_2) 2014; 177
e_1_2_9_17_2
e_1_2_9_19_2
e_1_2_9_40_2
e_1_2_9_63_2
e_1_2_9_61_2
e_1_2_9_21_2
e_1_2_9_44_2
e_1_2_9_67_2
e_1_2_9_82_2
e_1_2_9_23_2
e_1_2_9_42_2
e_1_2_9_65_2
e_1_2_9_7_2
e_1_2_9_5_2
e_1_2_9_80_2
e_1_2_9_3_2
e_1_2_9_9_2
e_1_2_9_25_2
e_1_2_9_48_2
e_1_2_9_27_2
e_1_2_9_46_2
e_1_2_9_69_2
References_xml – volume: 92
  start-page: 256801
  issue: 25
  year: 2004
  ident: C6
  article-title: Detection of a Landau band-coupling-induced rearrangement of the Hofstadter butterfly
  publication-title: Phys. Rev. Lett.
– volume: 59
  start-page: 261
  issue: 4
  year: 2010
  end-page: 482
  ident: C16
  article-title: Properties of graphene: a theoretical perspective
  publication-title: Adv. Phys.
– volume: 49
  start-page: 959
  issue: 8
  year: 2000
  end-page: 1014
  ident: C76
  article-title: Electron spin transitions in quantum Hall systems
  publication-title: Adv. Phys.
– volume: 71
  start-page: 863
  issue: 4
  year: 1999
  end-page: 874
  ident: C55
  article-title: Nobel lecture: fractional quantization
  publication-title: Rev. Mod. Phys.
– volume: 57
  start-page: 1312
  issue: 3
  year: 1998
  end-page: 1315
  ident: C50
  article-title: Effects of electron correlations on the Hofstadter spectrum
  publication-title: Phys. Rev. B
– volume: 134
  start-page: A1602
  issue: 6A
  year: 1964
  end-page: A1606
  ident: C71
  article-title: Magnetic translation group
  publication-title: Phys. Rev.
– volume: 133
  start-page: A1038
  issue: 4A
  year: 1964
  end-page: A1044
  ident: C72
  article-title: Bloch electrons in a uniform magnetic field
  publication-title: Phys. Rev.
– volume: 75
  start-page: 201404(R)
  issue: 20
  year: 2007
  ident: C27
  article-title: Hofstadter butterflies of bilayer graphene
  publication-title: Phys. Rev. B
– volume: 74
  start-page: 161403
  issue: 16
  year: 2006
  ident: C44
  article-title: Asymmetry gap in the electronic band structure of bilayer graphene
  publication-title: Phys. Rev. B
– volume: 97
  start-page: 126801
  issue: 12
  year: 2006
  ident: C56
  article-title: Fractional quantum Hall states of Dirac electrons in graphene
  publication-title: Phys. Rev. Lett.
– volume: 462
  start-page: 192
  issue: 7270
  year: 2009
  end-page: 195
  ident: C64
  article-title: Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene
  publication-title: Nature
– volume: 25
  start-page: 227
  issue: 2
  year: 2004
  end-page: 232
  ident: C7
  article-title: Detection of Landau band coupling induced rearrangement of the Hofstadter butterfly
  publication-title: Phys. E
– volume: 84
  start-page: 033408
  issue: 3
  ident: C32
  article-title: Optical transitions at commensurate angles in a misoriented bilayer graphene in an external magnetic field
  publication-title: Phys. Rev. B
– volume: 81
  start-page: 245412
  issue: 24
  year: 2010
  ident: C37
  article-title: Transport between twisted graphene layers
  publication-title: Phys. Rev. B
– volume: 52
  start-page: 16744
  issue: 23
  year: 1995
  end-page: 16752
  ident: C46
  article-title: Effects of screening on the Hofstadter butterfly
  publication-title: Phys. Rev. B
– volume: 20
  start-page: 143
  issue: 1
  year: 2003
  end-page: 148
  ident: C9
  article-title: Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance
  publication-title: Phys. E
– volume: 80
  start-page: 081408
  issue: 8
  year: 2009
  ident: C62
  article-title: Electronic compressibility of graphene: the case of vanishing electron correlations and the role of chirality
  publication-title: Phys. Rev. B
– volume: 39
  start-page: 7971
  issue: 11
  year: 1989
  end-page: 7973
  ident: C78
  article-title: Fractional quantum Hall effect in tilted magnetic fields
  publication-title: Phys. Rev. B
– volume: 33
  start-page: 683
  issue: 9
  year: 1996
  end-page: 688
  ident: C10
  article-title: Internal structure of a Landau band induced by a lateral superlattice: a glimpse of Hofstadter's butterfly
  publication-title: Europhys. Lett.
– volume: 11
  start-page: 1582
  issue: 11S
  year: 1996
  end-page: 1585
  ident: C11
  article-title: Landau subbands generated by a lateral electrostatic superlattice-chasing the Hofstadter butterfly
  publication-title: Semicond. Sci. Technol.
– volume: 361–362
  start-page: 505
  year: 1996
  end-page: 508
  ident: C47
  article-title: The Hofstadter energy spectrum for an interacting 2DEG
  publication-title: Surf. Sci.
– volume: 86
  start-page: 115415
  issue: 11
  year: 2012
  ident: C40
  article-title: Zero-energy modes and gate-tunable gap in graphene on hexagonal boron nitride
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 282
  issue: 4
  year: 2011
  end-page: 285
  ident: C25
  article-title: Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride
  publication-title: Nat. Mater.
– volume: 106
  start-page: 046801
  issue: 4
  year: 2011
  ident: C67
  article-title: Measurement of the ν = 1/3 fractional quantum Hall energy gap in suspended graphene
  publication-title: Phys. Rev. Lett.
– volume: 102
  start-page: 056807
  issue: 5
  year: 2009
  ident: C60
  article-title: Long-range Coulomb interaction in bilayer graphene
  publication-title: Phys. Rev. Lett.
– volume: 175
  start-page: 123
  year: 2013
  end-page: 131
  ident: C18
  article-title: Traits and characteristics of interacting Dirac fermions in monolayer and bilayer graphene
  publication-title: Solid State Commun.
– volume: 29
  start-page: 7032
  issue: 12
  year: 1984
  end-page: 7033(R)
  ident: C81
  article-title: Role of reversed spins in the correlated ground state for the fractional quantum Hall effect
  publication-title: Phys. Rev. B
– volume: 80
  start-page: 3232
  issue: 15
  year: 1998
  end-page: 3235
  ident: C12
  article-title: Microwave realization of the Hofstadter butterfly
  publication-title: Phys. Rev. Lett.
– volume: 497
  start-page: 598
  issue: 7451
  year: 2013
  end-page: 602
  ident: C20
  article-title: Hofstadter's butterfly and the fractal quantum Hall effect in Moiré superlattices
  publication-title: Nature
– volume: 112
  start-page: 176401
  issue: 17
  year: 2014
  ident: C51
  article-title: Gap structure of the Hofstadter system of interacting Dirac fermions in graphene
  publication-title: Phys. Rev. Lett.
– volume: 30
  start-page: 7320
  issue: 12
  year: 1984
  end-page: 7322(R)
  ident: C82
  article-title: Ground state of two-dimensional electrons and the reversed spins in the fractional quantum Hall effect
  publication-title: Phys. Rev. B
– volume: 76
  start-page: 115419
  issue: 11
  year: 2007
  ident: C45
  article-title: Landau levels and oscillator strength in a biased bilayer of graphene
  publication-title: Phys. Rev. B
– volume: 86
  start-page: 147
  issue: 1
  year: 2001
  end-page: 150
  ident: C8
  article-title: Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 2291
  issue: 6
  year: 2011
  end-page: 2295
  ident: C24
  article-title: Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy
  publication-title: Nano Lett.
– volume: 5
  start-page: 722
  issue: 10
  year: 2010
  end-page: 726
  ident: C23
  article-title: Boron nitride substrates for high-quality graphene electronics
  publication-title: Nature nanotechnology
– volume: 229
  start-page: 16
  issue: 1–3
  year: 1990
  end-page: 20
  ident: C75
  article-title: Spin-reversed ground state and energy gap in the fractional quantum Hall effect
  publication-title: Surf. Sci.
– volume: 97
  start-page: 036803
  issue: 3
  year: 2006
  ident: C30
  article-title: Charge carriers in few-layer graphene films
  publication-title: Phys. Rev. Lett.
– volume: 10
  start-page: 525
  issue: 7
  year: 2014
  end-page: 529
  ident: C68
  article-title: Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices
  publication-title: Nat. Phys.
– volume: 5
  start-page: 44.1
  issue: 1
  year: 2003
  end-page: 44.8
  ident: C28
  article-title: Magnetic fingerprints of fractal spectra and the duality of Hofstadter models
  publication-title: New J. Phys.
– volume: 81
  start-page: 161405(R)
  issue: 16
  year: 2010
  ident: C36
  article-title: Commensuration and interlayer coherence in twisted bilayer graphene
  publication-title: Phys. Rev. B
– volume: 86
  start-page: 235411
  issue: 23
  year: 2012
  ident: C26
  article-title: Self-similar occurrence of massless Dirac particles in graphene under a magnetic field
  publication-title: Phys. Rev. B
– volume: 76
  start-page: 4018
  issue: 21
  year: 1996
  end-page: 4021
  ident: C77
  article-title: Thermodynamics and spin polarizations of the fractional quantum Hall states
  publication-title: Phys. Rev. Lett.
– volume: 68
  start-page: 874
  issue: 10
  year: 1955
  end-page: 879
  ident: C2
  article-title: Single band motion of conduction electrons in a uniform magnetic field
  publication-title: Proc. Phys. Soc. A
– volume: 106
  start-page: 126802
  issue: 12
  year: 2011
  ident: C39
  article-title: Single-layer behavior and its breakdown in twisted graphene layers
  publication-title: Phys. Rev. Lett.
– volume: 99
  start-page: 256802
  issue: 25
  year: 2007
  ident: C31
  article-title: Graphene bilayer with a twist: electronic structure
  publication-title: Phys. Rev. Lett.
– volume: 100
  start-page: 125504
  issue: 12
  year: 2008
  ident: C33
  article-title: Why multilayer graphene on 4H-SiC ( ) behaves like a single sheet of graphene
  publication-title: Phys. Rev. Lett.
– volume: 55
  start-page: 2095
  issue: 20
  year: 1985
  end-page: 2098
  ident: C73
  article-title: Many-particle translational symmetries of two-dimensional electrons at rational Landau-level filling
  publication-title: Phys. Rev. Lett.
– volume: 56
  start-page: R7100
  issue: 12
  year: 1997
  end-page: R7103(R)
  ident: C49
  article-title: Quantum Hall effect of interacting electrons in a periodic potential
  publication-title: Phys. Rev. B
– volume: 107
  start-page: 186803
  issue: 18
  year: 2011
  ident: C58
  article-title: Stable Pfaffian state in bilayer graphene
  publication-title: Phys. Rev. Lett.
– volume: 113
  start-page: 3766
  issue: 5
  year: 2013
  end-page: 3798
  ident: C19
  article-title: Graphene-like two-dimensional materials
  publication-title: Chem. Rev.
– volume: 87
  start-page: 235429
  issue: 23
  year: 2013
  ident: C29
  article-title: Two-dimensional Bloch electrons in perpendicular magnetic fields: an exact calculation of the Hofstadter butterfly spectrum
  publication-title: Phys. Rev. B
– volume: 78
  start-page: 193405
  issue: 19
  year: 2008
  ident: C61
  article-title: Interplay between valley polarization and electron–electron interaction in a graphene ring
  publication-title: Phys. Rev. B
– volume: 57
  start-page: 130
  issue: 1
  year: 1986
  end-page: 133
  ident: C80
  article-title: Elementary excitations in the fractional quantum Hall effect and the spin-reversed quasiparticles
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 2239
  issue: 6
  year: 1976
  end-page: 2249
  ident: C4
  article-title: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields
  publication-title: Phys. Rev. B
– volume: 67
  start-page: 161
  issue: 3
  year: 2011
  end-page: 164
  ident: C69
  article-title: Taking stock of the quantum Hall effects: thirty years on
  publication-title: Phys. Canada
– volume: 50
  start-page: 1395
  issue: 18
  year: 1983
  end-page: 1398
  ident: C54
  article-title: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations
  publication-title: Phys. Rev. Lett.
– volume: 340
  start-page: 1427
  issue: 6139
  year: 2013
  end-page: 1430
  ident: C21
  article-title: Massive Dirac fermions and Hofstadter butterfly in a Van der Waals heterostructure
  publication-title: Science
– volume: 105
  start-page: 036801
  issue: 3
  year: 2010
  ident: C57
  article-title: Controllable driven phase transitions in fractional quantum Hall states in bilayer graphene
  publication-title: Phys. Rev. Lett.
– volume: 101
  start-page: 056803
  issue: 5
  year: 2008
  ident: C34
  article-title: Quantum interference at the twist boundary in graphene
  publication-title: Phys. Rev. Lett.
– volume: 89
  start-page: 075401
  issue: 7
  year: 2014
  ident: C42
  article-title: Dirac edges of fractal magnetic minibands in graphene with hexagonal Moiré superlattices
  publication-title: Phys. Rev. B
– volume: 84
  start-page: 035440
  issue: 3
  year: 2011
  ident: C38
  article-title: Moiré butterflies in twisted bilayer graphene
  publication-title: Phys. Rev. B
– volume: 87
  start-page: 245408
  issue: 24
  year: 2013
  ident: C41
  article-title: Generic miniband structure of graphene on a hexagonal substrate
  publication-title: Phys. Rev. B
– volume: 177
  issue: 128
  year: 2014
  ident: C59
  article-title: Incompressible states of Dirac fermions in graphene with anisotropic interactions
  publication-title: Solid State Commun.
– volume: 54
  start-page: R5223
  issue: 8
  year: 1996
  end-page: R5226(R)
  ident: C48
  article-title: Manifestation of the Hofstadter butterfly in far-infrared absorption
  publication-title: Phys. Rev. B
– volume: 462
  start-page: 196
  issue: 7270
  year: 2009
  end-page: 199
  ident: C66
  article-title: Observation of the fractional quantum Hall effect in graphene
  publication-title: Nature
– volume: 86
  start-page: 035401
  issue: 3
  year: 2012
  ident: C63
  article-title: Electrically tunable charge and spin transitions in Landau levels of interacting Dirac fermions in trilayer graphene
  publication-title: Phys. Rev. B
– volume: 48
  start-page: 8890
  issue: 12
  year: 1993
  end-page: 8898
  ident: C74
  article-title: Fractional quantum Hall effect in a periodic potential
  publication-title: Phys. Rev. B
– volume: 497
  start-page: 594
  issue: 7451
  year: 2013
  end-page: 597
  ident: C22
  article-title: Cloning of Dirac fermions in graphene superlattices
  publication-title: Nature
– volume: 86
  start-page: 1311
  issue: 7
  year: 2001
  end-page: 1314
  ident: C79
  article-title: Half-polarized quantum Hall states
  publication-title: Phys. Rev. Lett.
– volume: 81
  start-page: 115410
  issue: 11
  year: 2010
  ident: C65
  article-title: Fractional quantum Hall effect in suspended graphene: transport coefficients and electron interaction strength
  publication-title: Phys. Rev. B
– volume: 180
  start-page: 633
  issue: 3
  year: 1969
  end-page: 648
  ident: C3
  article-title: The tight-binding and the nearly-free-electron approach to lattice electrons in external magnetic fields
  publication-title: Phys. Rev.
– volume: 111
  start-page: 185302
  issue: 18
  year: 2013
  ident: C14
  article-title: Realising the Harper Hamiltonian with laser-assisted tunneling in optical lattices
  publication-title: Phys. Rev. Lett.
– volume: 111
  start-page: 185301
  issue: 18
  year: 2013
  ident: C13
  article-title: Realisation of the Hofstadter Hamiltonian with ultracold atoms in optical lattices
  publication-title: Phys. Rev. Lett.
– volume: 6
  start-page: 109
  issue: 2
  year: 2010
  end-page: 113
  ident: C35
  article-title: Observation of Van Hove singularities in twisted graphene layers
  publication-title: Nat. Phys.
– volume: 96
  start-page: 086805
  issue: 8
  year: 2006
  ident: C43
  article-title: Landau-level degeneracy and quantum Hall effect in a graphite bilayer
  publication-title: Phys. Rev. Lett.
– volume: 76
  start-page: 4018
  issue: 21
  year: 1996
  end-page: 4021
  article-title: Thermodynamics and spin polarizations of the fractional quantum Hall states
  publication-title: Phys. Rev. Lett.
– volume: 81
  start-page: 161405(R)
  issue: 16
  year: 2010
  article-title: Commensuration and interlayer coherence in twisted bilayer graphene
  publication-title: Phys. Rev. B
– volume: 86
  start-page: 115415
  issue: 11
  year: 2012
  article-title: Zero‐energy modes and gate‐tunable gap in graphene on hexagonal boron nitride
  publication-title: Phys. Rev. B
– volume: 462
  start-page: 192
  issue: 7270
  year: 2009
  end-page: 195
  article-title: Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene
  publication-title: Nature
– volume: 340
  start-page: 1427
  issue: 6139
  year: 2013
  end-page: 1430
  article-title: Massive Dirac fermions and Hofstadter butterfly in a Van der Waals heterostructure
  publication-title: Science
– volume: 497
  start-page: 594
  issue: 7451
  year: 2013
  end-page: 597
  article-title: Cloning of Dirac fermions in graphene superlattices
  publication-title: Nature
– volume: 59
  start-page: 261
  issue: 4
  year: 2010
  end-page: 482
  article-title: Properties of graphene: a theoretical perspective
  publication-title: Adv. Phys.
– volume: 25
  start-page: 227
  issue: 2
  year: 2004
  end-page: 232
  article-title: Detection of Landau band coupling induced rearrangement of the Hofstadter butterfly
  publication-title: Phys. E
– volume: 361–362
  start-page: 505
  year: 1996
  end-page: 508
  article-title: The Hofstadter energy spectrum for an interacting 2DEG
  publication-title: Surf. Sci.
– volume: 87
  start-page: 245408
  issue: 24
  year: 2013
  article-title: Generic miniband structure of graphene on a hexagonal substrate
  publication-title: Phys. Rev. B
– volume: 67
  start-page: 161
  issue: 3
  year: 2011
  end-page: 164
  article-title: Taking stock of the quantum Hall effects: thirty years on
  publication-title: Phys. Canada
– volume: 177
  issue: 128
  year: 2014
  article-title: Incompressible states of Dirac fermions in graphene with anisotropic interactions
  publication-title: Solid State Commun.
– volume: 10
  start-page: 525
  issue: 7
  year: 2014
  end-page: 529
  article-title: Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices
  publication-title: Nat. Phys.
– start-page: 251
  year: 2014
  end-page: 300
– volume: 5
  start-page: 722
  issue: 10
  year: 2010
  end-page: 726
  article-title: Boron nitride substrates for high‐quality graphene electronics
  publication-title: Nature nanotechnology
– volume: 81
  start-page: 115410
  issue: 11
  year: 2010
  article-title: Fractional quantum Hall effect in suspended graphene: transport coefficients and electron interaction strength
  publication-title: Phys. Rev. B
– volume: 75
  start-page: 201404(R)
  issue: 20
  year: 2007
  article-title: Hofstadter butterflies of bilayer graphene
  publication-title: Phys. Rev. B
– volume: 6
  start-page: 109
  issue: 2
  year: 2010
  end-page: 113
  article-title: Observation of Van Hove singularities in twisted graphene layers
  publication-title: Nat. Phys.
– year: 2014
– volume: 81
  start-page: 245412
  issue: 24
  year: 2010
  article-title: Transport between twisted graphene layers
  publication-title: Phys. Rev. B
– volume: 30
  start-page: 7320
  issue: 12
  year: 1984
  end-page: 7322(R)
  article-title: Ground state of two‐dimensional electrons and the reversed spins in the fractional quantum Hall effect
  publication-title: Phys. Rev. B
– volume: 49
  start-page: 959
  issue: 8
  year: 2000
  end-page: 1014
  article-title: Electron spin transitions in quantum Hall systems
  publication-title: Adv. Phys.
– volume: 29
  start-page: 7032
  issue: 12
  year: 1984
  end-page: 7033(R)
  article-title: Role of reversed spins in the correlated ground state for the fractional quantum Hall effect
  publication-title: Phys. Rev. B
– volume: 80
  start-page: 3232
  issue: 15
  year: 1998
  end-page: 3235
  article-title: Microwave realization of the Hofstadter butterfly
  publication-title: Phys. Rev. Lett.
– volume: 229
  start-page: 16
  issue: 1–3
  year: 1990
  end-page: 20
  article-title: Spin‐reversed ground state and energy gap in the fractional quantum Hall effect
  publication-title: Surf. Sci.
– year: 1982
– volume: 497
  start-page: 598
  issue: 7451
  year: 2013
  end-page: 602
  article-title: Hofstadter's butterfly and the fractal quantum Hall effect in Moiré superlattices
  publication-title: Nature
– volume: 71
  start-page: 863
  issue: 4
  year: 1999
  end-page: 874
  article-title: Nobel lecture: fractional quantization
  publication-title: Rev. Mod. Phys.
– volume: 33
  start-page: 683
  issue: 9
  year: 1996
  end-page: 688
  article-title: Internal structure of a Landau band induced by a lateral superlattice: a glimpse of Hofstadter's butterfly
  publication-title: Europhys. Lett.
– volume: 89
  start-page: 075401
  issue: 7
  year: 2014
  article-title: Dirac edges of fractal magnetic minibands in graphene with hexagonal Moiré superlattices
  publication-title: Phys. Rev. B
– volume: 39
  start-page: 7971
  issue: 11
  year: 1989
  end-page: 7973
  article-title: Fractional quantum Hall effect in tilted magnetic fields
  publication-title: Phys. Rev. B
– volume: 180
  start-page: 633
  issue: 3
  year: 1969
  end-page: 648
  article-title: The tight‐binding and the nearly‐free‐electron approach to lattice electrons in external magnetic fields
  publication-title: Phys. Rev.
– volume: 56
  start-page: R7100
  issue: 12
  year: 1997
  end-page: R7103(R)
  article-title: Quantum Hall effect of interacting electrons in a periodic potential
  publication-title: Phys. Rev. B
– volume: 133
  start-page: A1038
  issue: 4A
  year: 1964
  end-page: A1044
  article-title: Bloch electrons in a uniform magnetic field
  publication-title: Phys. Rev.
– volume: 101
  start-page: 056803
  issue: 5
  year: 2008
  article-title: Quantum interference at the twist boundary in graphene
  publication-title: Phys. Rev. Lett.
– volume: 92
  start-page: 256801
  issue: 25
  year: 2004
  article-title: Detection of a Landau band‐coupling‐induced rearrangement of the Hofstadter butterfly
  publication-title: Phys. Rev. Lett.
– volume: 99
  start-page: 256802
  issue: 25
  year: 2007
  article-title: Graphene bilayer with a twist: electronic structure
  publication-title: Phys. Rev. Lett.
– volume: 105
  start-page: 036801
  issue: 3
  year: 2010
  article-title: Controllable driven phase transitions in fractional quantum Hall states in bilayer graphene
  publication-title: Phys. Rev. Lett.
– volume: 102
  start-page: 056807
  issue: 5
  year: 2009
  article-title: Long‐range Coulomb interaction in bilayer graphene
  publication-title: Phys. Rev. Lett.
– volume: 106
  start-page: 126802
  issue: 12
  year: 2011
  article-title: Single‐layer behavior and its breakdown in twisted graphene layers
  publication-title: Phys. Rev. Lett.
– volume: 113
  start-page: 3766
  issue: 5
  year: 2013
  end-page: 3798
  article-title: Graphene‐like two‐dimensional materials
  publication-title: Chem. Rev.
– volume: 97
  start-page: 126801
  issue: 12
  year: 2006
  article-title: Fractional quantum Hall states of Dirac electrons in graphene
  publication-title: Phys. Rev. Lett.
– volume: 134
  start-page: A1602
  issue: 6A
  year: 1964
  end-page: A1606
  article-title: Magnetic translation group
  publication-title: Phys. Rev.
– volume: 20
  start-page: 143
  issue: 1
  year: 2003
  end-page: 148
  article-title: Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance
  publication-title: Phys. E
– start-page: 251
  year: 2014
– volume: 80
  start-page: 081408
  issue: 8
  year: 2009
  article-title: Electronic compressibility of graphene: the case of vanishing electron correlations and the role of chirality
  publication-title: Phys. Rev. B
– volume: 10
  start-page: 282
  issue: 4
  year: 2011
  end-page: 285
  article-title: Scanning tunnelling microscopy and spectroscopy of ultra‐flat graphene on hexagonal boron nitride
  publication-title: Nat. Mater.
– volume: 78
  start-page: 193405
  issue: 19
  year: 2008
  article-title: Interplay between valley polarization and electron–electron interaction in a graphene ring
  publication-title: Phys. Rev. B
– volume: 111
  start-page: 185302
  issue: 18
  year: 2013
  article-title: Realising the Harper Hamiltonian with laser‐assisted tunneling in optical lattices
  publication-title: Phys. Rev. Lett.
– volume: 14
  start-page: 2239
  issue: 6
  year: 1976
  end-page: 2249
  article-title: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields
  publication-title: Phys. Rev. B
– volume: 52
  start-page: 16744
  issue: 23
  year: 1995
  end-page: 16752
  article-title: Effects of screening on the Hofstadter butterfly
  publication-title: Phys. Rev. B
– volume: 48
  start-page: 8890
  issue: 12
  year: 1993
  end-page: 8898
  article-title: Fractional quantum Hall effect in a periodic potential
  publication-title: Phys. Rev. B
– volume: 112
  start-page: 176401
  issue: 17
  year: 2014
  article-title: Gap structure of the Hofstadter system of interacting Dirac fermions in graphene
  publication-title: Phys. Rev. Lett.
– volume: 86
  start-page: 235411
  issue: 23
  year: 2012
  article-title: Self‐similar occurrence of massless Dirac particles in graphene under a magnetic field
  publication-title: Phys. Rev. B
– volume: 40
  start-page: 35
  year: 2000
  end-page: 50
– volume: 86
  start-page: 147
  issue: 1
  year: 2001
  end-page: 150
  article-title: Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance
  publication-title: Phys. Rev. Lett.
– volume: 54
  start-page: R5223
  issue: 8
  year: 1996
  end-page: R5226(R)
  article-title: Manifestation of the Hofstadter butterfly in far‐infrared absorption
  publication-title: Phys. Rev. B
– volume: 107
  start-page: 186803
  issue: 18
  year: 2011
  article-title: Stable Pfaffian state in bilayer graphene
  publication-title: Phys. Rev. Lett.
– volume: 84
  start-page: 035440
  issue: 3
  year: 2011
  article-title: Moiré butterflies in twisted bilayer graphene
  publication-title: Phys. Rev. B
– volume: 57
  start-page: 1312
  issue: 3
  year: 1998
  end-page: 1315
  article-title: Effects of electron correlations on the Hofstadter spectrum
  publication-title: Phys. Rev. B
– volume: 50
  start-page: 1395
  issue: 18
  year: 1983
  end-page: 1398
  article-title: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations
  publication-title: Phys. Rev. Lett.
– volume: 87
  start-page: 235429
  issue: 23
  year: 2013
  article-title: Two‐dimensional Bloch electrons in perpendicular magnetic fields: an exact calculation of the Hofstadter butterfly spectrum
  publication-title: Phys. Rev. B
– volume: 111
  start-page: 185301
  issue: 18
  year: 2013
  article-title: Realisation of the Hofstadter Hamiltonian with ultracold atoms in optical lattices
  publication-title: Phys. Rev. Lett.
– volume: 5
  start-page: 44.1
  issue: 1
  year: 2003
  end-page: 44.8
  article-title: Magnetic fingerprints of fractal spectra and the duality of Hofstadter models
  publication-title: New J. Phys.
– volume: 97
  start-page: 036803
  issue: 3
  year: 2006
  article-title: Charge carriers in few‐layer graphene films
  publication-title: Phys. Rev. Lett.
– volume: 68
  start-page: 874
  issue: 10
  year: 1955
  end-page: 879
  article-title: Single band motion of conduction electrons in a uniform magnetic field
  publication-title: Proc. Phys. Soc. A
– volume: 86
  start-page: 035401
  issue: 3
  year: 2012
  article-title: Electrically tunable charge and spin transitions in Landau levels of interacting Dirac fermions in trilayer graphene
  publication-title: Phys. Rev. B
– year: 1988
– year: 1995
– volume: 100
  start-page: 125504
  issue: 12
  year: 2008
  article-title: Why multilayer graphene on 4H‐SiC ( ) behaves like a single sheet of graphene
  publication-title: Phys. Rev. Lett.
– volume: 76
  start-page: 115419
  issue: 11
  year: 2007
  article-title: Landau levels and oscillator strength in a biased bilayer of graphene
  publication-title: Phys. Rev. B
– volume: 86
  start-page: 1311
  issue: 7
  year: 2001
  end-page: 1314
  article-title: Half‐polarized quantum Hall states
  publication-title: Phys. Rev. Lett.
– volume: 57
  start-page: 130
  issue: 1
  year: 1986
  end-page: 133
  article-title: Elementary excitations in the fractional quantum Hall effect and the spin‐reversed quasiparticles
  publication-title: Phys. Rev. Lett.
– volume: 55
  start-page: 2095
  issue: 20
  year: 1985
  end-page: 2098
  article-title: Many‐particle translational symmetries of two‐dimensional electrons at rational Landau‐level filling
  publication-title: Phys. Rev. Lett.
– volume: 175
  start-page: 123
  year: 2013
  end-page: 131
  article-title: Traits and characteristics of interacting Dirac fermions in monolayer and bilayer graphene
  publication-title: Solid State Commun.
– volume: 74
  start-page: 161403
  issue: 16
  year: 2006
  article-title: Asymmetry gap in the electronic band structure of bilayer graphene
  publication-title: Phys. Rev. B
– volume: 462
  start-page: 196
  issue: 7270
  year: 2009
  end-page: 199
  article-title: Observation of the fractional quantum Hall effect in graphene
  publication-title: Nature
– volume: 106
  start-page: 046801
  issue: 4
  year: 2011
  article-title: Measurement of the ν = 1/3 fractional quantum Hall energy gap in suspended graphene
  publication-title: Phys. Rev. Lett.
– volume: 96
  start-page: 086805
  issue: 8
  year: 2006
  article-title: Landau‐level degeneracy and quantum Hall effect in a graphite bilayer
  publication-title: Phys. Rev. Lett.
– volume: 11
  start-page: 1582
  issue: 11S
  year: 1996
  end-page: 1585
  article-title: Landau subbands generated by a lateral electrostatic superlattice‐chasing the Hofstadter butterfly
  publication-title: Semicond. Sci. Technol.
– volume: 11
  start-page: 2291
  issue: 6
  year: 2011
  end-page: 2295
  article-title: Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy
  publication-title: Nano Lett.
– volume: 84
  start-page: 033408
  issue: 3
  article-title: Optical transitions at commensurate angles in a misoriented bilayer graphene in an external magnetic field
  publication-title: Phys. Rev. B
– ident: e_1_2_9_62_2
  doi: 10.1103/PhysRevB.78.193405
– ident: e_1_2_9_65_2
  doi: 10.1038/nature08522
– ident: e_1_2_9_46_2
  doi: 10.1103/PhysRevB.76.115419
– ident: e_1_2_9_56_2
  doi: 10.1103/RevModPhys.71.863
– ident: e_1_2_9_83_2
  doi: 10.1103/PhysRevB.30.7320
– ident: e_1_2_9_17_2
  doi: 10.1080/00018732.2010.487978
– ident: e_1_2_9_37_2
  doi: 10.1103/PhysRevB.81.161405
– ident: e_1_2_9_78_2
  doi: 10.1103/PhysRevLett.76.4018
– ident: e_1_2_9_66_2
  doi: 10.1103/PhysRevB.81.115410
– ident: e_1_2_9_32_2
  doi: 10.1103/PhysRevLett.99.256802
– ident: e_1_2_9_79_2
  doi: 10.1103/PhysRevB.39.7971
– ident: e_1_2_9_21_2
  doi: 10.1038/nature12186
– ident: e_1_2_9_64_2
  doi: 10.1103/PhysRevB.86.035401
– ident: e_1_2_9_41_2
  doi: 10.1103/PhysRevB.86.115415
– ident: e_1_2_9_44_2
  doi: 10.1103/PhysRevLett.96.086805
– ident: e_1_2_9_67_2
  doi: 10.1038/nature08582
– ident: e_1_2_9_30_2
  doi: 10.1103/PhysRevB.87.235429
– ident: e_1_2_9_76_2
  doi: 10.1016/0039‐6028(90)90821‐O
– ident: e_1_2_9_73_2
  doi: 10.1103/PhysRev.133.A1038
– ident: e_1_2_9_55_2
  doi: 10.1103/PhysRevLett.50.1395
– ident: e_1_2_9_72_2
  doi: 10.1103/PhysRev.134.A1602
– ident: e_1_2_9_13_2
  doi: 10.1103/PhysRevLett.80.3232
– ident: e_1_2_9_42_2
  doi: 10.1103/PhysRevB.87.245408
– ident: e_1_2_9_10_2
  doi: 10.1016/j.physe.2003.09.031
– start-page: 35
  volume-title: Advances in solid state physics
  year: 2000
  ident: e_1_2_9_2_2
– ident: e_1_2_9_25_2
  doi: 10.1021/nl2005115
– ident: e_1_2_9_4_2
  doi: 10.1103/PhysRev.180.633
– ident: e_1_2_9_36_2
  doi: 10.1038/nphys1463
– ident: e_1_2_9_35_2
  doi: 10.1103/PhysRevLett.101.056803
– ident: e_1_2_9_51_2
  doi: 10.1103/PhysRevB.57.1312
– ident: e_1_2_9_59_2
  doi: 10.1103/PhysRevLett.107.186803
– ident: e_1_2_9_31_2
  doi: 10.1103/PhysRevLett.97.036803
– ident: e_1_2_9_69_2
  doi: 10.1038/nphys2979
– ident: e_1_2_9_22_2
  doi: 10.1126/science.1237240
– ident: e_1_2_9_39_2
  doi: 10.1103/PhysRevB.84.035440
– ident: e_1_2_9_52_2
  doi: 10.1103/PhysRevLett.112.176401
– ident: e_1_2_9_61_2
  doi: 10.1103/PhysRevLett.102.056807
– ident: e_1_2_9_9_2
  doi: 10.1103/PhysRevLett.86.147
– ident: e_1_2_9_27_2
  doi: 10.1103/PhysRevB.86.235411
– ident: e_1_2_9_3_2
  doi: 10.1088/0370‐1298/68/10/304
– ident: e_1_2_9_54_2
  doi: 10.1007/978-3-642-97101-3
– ident: e_1_2_9_58_2
  doi: 10.1103/PhysRevLett.105.036801
– ident: e_1_2_9_19_2
  doi: 10.1016/j.ssc.2013.04.002
– ident: e_1_2_9_14_2
  doi: 10.1103/PhysRevLett.111.185301
– ident: e_1_2_9_18_2
  doi: 10.1007/978-3-319-02633-6_8
– ident: e_1_2_9_23_2
  doi: 10.1038/nature12187
– ident: e_1_2_9_71_2
  doi: 10.1088/0953-8984/27/18/185301
– ident: e_1_2_9_80_2
  doi: 10.1103/PhysRevLett.86.1311
– ident: e_1_2_9_81_2
  doi: 10.1103/PhysRevLett.57.130
– ident: e_1_2_9_11_2
  doi: 10.1209/epl/i1996‐00399‐6
– ident: e_1_2_9_16_2
  doi: 10.1007/978-3-319-02633-6_8
– ident: e_1_2_9_57_2
  doi: 10.1103/PhysRevLett.97.126801
– ident: e_1_2_9_24_2
  doi: 10.1038/nnano.2010.172
– ident: e_1_2_9_63_2
  doi: 10.1103/PhysRevB.80.081408
– ident: e_1_2_9_49_2
  doi: 10.1103/PhysRevB.54.R5223
– ident: e_1_2_9_40_2
  doi: 10.1103/PhysRevLett.106.126802
– ident: e_1_2_9_34_2
  doi: 10.1103/PhysRevLett.100.125504
– ident: e_1_2_9_15_2
  doi: 10.1103/PhysRevLett.111.185302
– ident: e_1_2_9_33_2
  doi: 10.1103/PhysRevB.84.033408
– ident: e_1_2_9_38_2
  doi: 10.1103/PhysRevB.81.245412
– ident: e_1_2_9_45_2
  doi: 10.1103/PhysRevB.74.161403
– ident: e_1_2_9_26_2
  doi: 10.1038/nmat2968
– ident: e_1_2_9_28_2
  doi: 10.1103/PhysRevB.75.201404
– ident: e_1_2_9_77_2
  doi: 10.1080/00018730050198161
– ident: e_1_2_9_5_2
  doi: 10.1103/PhysRevB.14.2239
– ident: e_1_2_9_20_2
  doi: 10.1021/cr300263a
– volume-title: The fractal geometry of nature
  year: 1982
  ident: e_1_2_9_6_2
– ident: e_1_2_9_48_2
  doi: 10.1016/0039‐6028(96)00456‐6
– ident: e_1_2_9_7_2
  doi: 10.1103/PhysRevLett.92.256801
– ident: e_1_2_9_12_2
  doi: 10.1088/0268‐1242/11/11S/022
– ident: e_1_2_9_53_2
  doi: 10.1007/978-3-642-79319-6
– ident: e_1_2_9_74_2
  doi: 10.1103/PhysRevLett.55.2095
– ident: e_1_2_9_68_2
  doi: 10.1103/PhysRevLett.106.046801
– volume: 177
  issue: 128
  year: 2014
  ident: e_1_2_9_60_2
  article-title: Incompressible states of Dirac fermions in graphene with anisotropic interactions
  publication-title: Solid State Commun.
– ident: e_1_2_9_43_2
  doi: 10.1103/PhysRevB.89.075401
– ident: e_1_2_9_82_2
  doi: 10.1103/PhysRevB.29.7032
– volume: 67
  start-page: 161
  issue: 3
  year: 2011
  ident: e_1_2_9_70_2
  article-title: Taking stock of the quantum Hall effects: thirty years on
  publication-title: Phys. Canada
– ident: e_1_2_9_75_2
  doi: 10.1103/PhysRevB.48.8890
– volume: 5
  start-page: 44.1
  issue: 1
  year: 2003
  ident: e_1_2_9_29_2
  article-title: Magnetic fingerprints of fractal spectra and the duality of Hofstadter models
  publication-title: New J. Phys.
– ident: e_1_2_9_47_2
  doi: 10.1103/PhysRevB.52.16744
– ident: e_1_2_9_50_2
  doi: 10.1103/PhysRevB.56.R7100
– ident: e_1_2_9_8_2
  doi: 10.1016/j.physe.2004.06.021
SSID ssj0055536
Score 2.0254772
Snippet Bloch electrons in a perpendicular magnetic field exhibit unusual dynamics that has been studied for more than half a century. The single-electron energy...
Bloch electrons in a perpendicular magnetic field exhibit unusual dynamics that has been studied for more than half a century. The single‐electron energy...
SourceID proquest
crossref
wiley
iet
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 19
SubjectTerms bilayer graphene
Bilayers
Bloch electrons
Butterflies
Butterflies & moths
butterfly spectrum
Dirac fermions
Dynamical systems
Dynamics
Electron energy
electron-electron interaction
electronic properties
Energy
Energy spectra
Fermions
Fractal analysis
fractal butterflies
Fractals
Graphene
Hofstadter butterfly
Magnetic fields
Magnetic properties
magnetoconductance probe
magnetoresistance
Moire patterns
Moiré pattern
monolayer graphene
Monolayers
perpendicular magnetic field
semiconductor nanostructures
semiconductor systems
Semiconductors
single-electron energy spectrum
Special Issue on Graphene Electronics
SummonAdditionalLinks – databaseName: IET Digital Library (Open Access)
  dbid: IDLOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9Bedke0IBNCzBk0MTDpIzajtP4caMtH5p4AaS-RbF9nipNKeLj_-cuSVsqTYAiRZZ9sZM75-7nrzuA79GgNJGjlwUd6eZNalWFqY2-UJWKmcRmg-xVfn6bXU7MZHk8Okz_cqyMdD7jxrPl2J484K3bpIdPOh63AUkI354QQeoDu96W2U9ehVuHDTUYyKwHGxfDPzzEajWzMaYJGUgWU6aFKSaLVc7_VLJip9apeAWCvgSyjSUaf4LNDkKKX63Mt2AN6234-MKx4A6cjfnwExG5Ng41Ac0HMYuCFFzlReQNMNTbxLQW1AtpcEu4W1R1EG7aphs31qQFP8PteHRzep52IRNST4ZlkColtY80uFQSTe6wiHmVOZ1jIIa4LNJwwllEX5DslGPHK8pUnkAPauswGv0FevWsxq8g1EAGZfuhCDrP0Bm6-kh1U0bOs6cJ9OcMKn3nT5zDWvwrm3XtzJbEtJJ4WjJPS-ZpAj8Wj9y1zjReIz7mvLm4XyM8WiG8GN2Up8PrJUF5F2IC-3PpLSl13yoqt9omcLgopv-LF02qGmdP1CwpMEUoTRYJ6Ebqb786N69-jxt_e7vv_Yw9-EBp007v7EPv8f4JvxHgeXQHXT9-Bs0w-og
  priority: 102
  providerName: Institution of Engineering and Technology
Title Fractal butterflies of Dirac fermions in monolayer and bilayer graphene
URI http://digital-library.theiet.org/content/journals/10.1049/iet-cds.2014.0275
https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cds.2014.0275
https://www.proquest.com/docview/3092275939
https://www.proquest.com/docview/1793258418
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_S5KV7GN3WMq8faKP0oeA2kizHemzTZu0oa6Et9M1Y8gkCwylr8v_3Tk7ShkIHw2CMdLLNnXT66et3APvBoDSBo5fVOtDNm9SqClMbfKEqFTKJcYPs7_ziPvv1YB46MFychWn5IZYTbtwyor_mBl65NgoJgVoy4hinqa-ZcVtmR7z4tgY9PmLLBPoqu1m4Y2NMjBNI3aRMC2OL5dKmPX7zipXOaY2yV3Dna_Qau5_RBnyc40Zx0hr6E3Sw-QwfXrEJfoGfIz7xREKuDT5N6PJJTIIgr1Z5EXjXC1UxMW4EVT0a0RLYFlVTCzdunyN3Nbm-Tbgfnd8NL9J5nITUU28ySJWS2gcaUSqJJndYhLzKnM6xHgykywKNIZxF9AUZTDlmW1Gm8oR0UFuHwegt6DaTBr-CUANZK9uvi1rnGTpDVx_p3ZSQ85RpAv2Fgko_JxHnWBZ_yriYndmSlFaSTkvWack6TeBwWeSxZdB4T_iA0-bt6Ok9wR8rgpfnd-Xw7PZFoHysQwI7C-u9SOq-VZRvtU3g-zKbGhWvlFQNTmb0WfJaiqCZLBLQ0er__nX-vDodRZK9b_9VahvWKd20Ezw70J3-neEuQZ6p24tVeg96l2dX1yfPzif59g
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB5yPLR9CE0P6iRt1FD6UHC71uG1HtMkm81JoRvIm7DkESwUb0g2_z8z8u4mSyGFYjBGGklmpDl0fQPwJRosTOToZY2K9Aomt7LG3MZQyVpGXWA6IHtZDq_06bW5XoHD-V2YDh9iseDGkpH0NQs4L0h3E07NIJljnOahYcjtQn_n3bdVWNel7LN4Sv1rro-NMSlQINnJIq-MrRZ7m_bHX1UsWadVyl5yPJ-6r8n-DF7DxsxxFPtdT2_CCrZv4NUTOMG3cDzgK09E5Lvo0-Re3olJFKTW6iAiH3uhMSbGraCxR1Na8rZF3TbCj7vvBF5Nuu8dXA2ORgfDfBYoIQ9kTvq5lIUKkaaUskBTeqxiWWuvSmz6_cLrSJMIbxFDRT0mPcOtSFMHcnVQWY_RqPew1k5a_ACC2NdI22uqRpUavaGnh1Q3JZS8ZppBb84gF2Yo4hzM4o9Lu9naOmKaI5465qljnmbwbVHkpoPQeI74K6fNBOnuOcK9JcKTo5E7OPz9SOBumpjBzrz3HilVz0rKt8pm8HmRTVLFWyV1i5N7apbUliTfrKgyUKnX__3r3Lz8OUgoe1v_VWoXXgxHF-fu_OTybBteEo3pVnt2YG16e48fyf-Z-k9peD8AdLL71g
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_6AaIPUr9wtWoU8UFYe_na2zzaa7etSinYQt_CJjuBA9kr9vr_O5O9u_YQKsjCsiSTZJlMJpNM8huAj8mitImjl3U60Sva0qkWS5dirVqVjMR8QPa0Or4w3y7t5QZMlndhBnyI1YYbj4ysr3mAX3VpWG8axsic4ryMHSNuS_OFnW-bsJ2dfgzvbM6W6tham-ME0jQpy9q6euXadHt_VbE2OW1S9prdedd6zdNPswOPF3aj-Dp09BPYwP4pPLqDJvgMjhq-8UREYQg-TdbltZglQVqtjSLxqRcSMTHtBYkerWjJ2BZt34kwHb4zdjWpvudw0RyeT47LRZyEMtJsMi6VkjomWlEqibYKWKeqNUFX2I3HMphEa4jgEGNNHaYCo60o20aydFC7gMnqF7DVz3p8CUKNZafcqKs7XRkMlp4RUt2UUPGWaQGjJYN8XICIcyyLXz47s43zxDRPPPXMU888LeDzqsjVgKBxH_EnTluMo-v7CD-sEZ4cnvvJwc9bAk_SUsDusvduKfXIKcp32hXwfpVNg4o9JW2PsxtqlrSWIlmSdQE69_q_f52bV_tNBtl79V-l3sGDs4PG_zg5_f4aHhKJHfZ6dmFr_vsG35D1Mw9vs3T_Afuz-wg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractal+butterflies+of+Dirac+fermions+in+monolayer+and+bilayer+graphene&rft.jtitle=IET+circuits%2C+devices+%26+systems&rft.au=Chakraborty%2C+Tapash&rft.au=Apalkov%2C+Vadym+M&rft.date=2015-01-01&rft.issn=1751-858X&rft.eissn=1751-8598&rft.volume=9&rft.issue=1&rft.spage=19&rft.epage=29&rft_id=info:doi/10.1049%2Fiet-cds.2014.0275&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-858X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-858X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-858X&client=summon