Fractal butterflies of Dirac fermions in monolayer and bilayer graphene
Bloch electrons in a perpendicular magnetic field exhibit unusual dynamics that has been studied for more than half a century. The single-electron energy spectrum of this system, the Hofstadter butterfly has been the subject of theoretical and experimental investigations for the past two decades. Ex...
Saved in:
Published in | IET circuits, devices & systems Vol. 9; no. 1; pp. 19 - 29 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Stevenage
The Institution of Engineering and Technology
01.01.2015
John Wiley & Sons, Inc |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Bloch electrons in a perpendicular magnetic field exhibit unusual dynamics that has been studied for more than half a century. The single-electron energy spectrum of this system, the Hofstadter butterfly has been the subject of theoretical and experimental investigations for the past two decades. Experimental observation of these unusual spectra in semiconductor nanostructures, however, met with only limited success. The fractal nature of the butterfly spectrum was finally observed in 2013, thanks to the unique electronic properties of graphene. Here, the authors present an overview of the theoretical understanding of Hofstadter butterflies in monolayer and bilayer graphene. First, they briefly discuss the energy spectra in conventional semiconductor systems. The electronic properties of monolayer and bilayer graphene are then presented. Theoretical background on the Moiré pattern in graphene and its application in the magnetoconductance probe that resulted in graphene butterflies are explained. They have also touched upon the important role of electron–electron interaction in the butterfly pattern in graphene. Experimental efforts to investigate this aspect of fractal butterflies have just begun. They conclude by discussing the future prospects of butterfly search, especially for interacting Dirac fermions in graphene. |
---|---|
AbstractList | Bloch electrons in a perpendicular magnetic field exhibit unusual dynamics that has been studied for more than half a century. The single-electron energy spectrum of this system, the Hofstadter butterfly has been the subject of theoretical and experimental investigations for the past two decades. Experimental observation of these unusual spectra in semiconductor nanostructures, however, met with only limited success. The fractal nature of the butterfly spectrum was finally observed in 2013, thanks to the unique electronic properties of graphene. Here, the authors present an overview of the theoretical understanding of Hofstadter butterflies in monolayer and bilayer graphene. First, they briefly discuss the energy spectra in conventional semiconductor systems. The electronic properties of monolayer and bilayer graphene are then presented. Theoretical background on the Moire pattern in graphene and its application in the magnetoconductance probe that resulted in graphene butterflies are explained. They have also touched upon the important role of electron-electron interaction in the butterfly pattern in graphene. Experimental efforts to investigate this aspect of fractal butterflies have just begun. They conclude by discussing the future prospects of butterfly search, especially for interacting Dirac fermions in graphene. Bloch electrons in a perpendicular magnetic field exhibit unusual dynamics that has been studied for more than half a century. The single‐electron energy spectrum of this system, the Hofstadter butterfly has been the subject of theoretical and experimental investigations for the past two decades. Experimental observation of these unusual spectra in semiconductor nanostructures, however, met with only limited success. The fractal nature of the butterfly spectrum was finally observed in 2013, thanks to the unique electronic properties of graphene. Here, the authors present an overview of the theoretical understanding of Hofstadter butterflies in monolayer and bilayer graphene. First, they briefly discuss the energy spectra in conventional semiconductor systems. The electronic properties of monolayer and bilayer graphene are then presented. Theoretical background on the Moiré pattern in graphene and its application in the magnetoconductance probe that resulted in graphene butterflies are explained. They have also touched upon the important role of electron–electron interaction in the butterfly pattern in graphene. Experimental efforts to investigate this aspect of fractal butterflies have just begun. They conclude by discussing the future prospects of butterfly search, especially for interacting Dirac fermions in graphene. |
Author | Chakraborty, Tapash Apalkov, Vadym M |
Author_xml | – sequence: 1 givenname: Tapash surname: Chakraborty fullname: Chakraborty, Tapash email: Tapash.Chakraborty@umanitoba.ca organization: 1Department of Physics and Astronomy, University of Manitoba, Winnipeg, R3T 2N2, Canada – sequence: 2 givenname: Vadym M surname: Apalkov fullname: Apalkov, Vadym M organization: 2Department of Physics and Astronomy, Georgia State University, Atlanta, Georgia 30303, USA |
BookMark | eNqFkM1q3DAURkVIIT_tA3RnyKZdeKorWbbVXTuTSQOBLppCd0LSXCUKHmkqeQjz9pVxCSGUdKWLON_9pHNGjkMMSMh7oAugjfzkcaztJi8YhWZBWSeOyCl0AupeyP74ae5_nZCznB8oFULw9pRcrZO2ox4qsx9HTG7wmKvoqpUv95XDtPUx5MqHahtDHPQBU6XDpjJ-nu-S3t1jwLfkjdNDxnd_z3Pyc315u_xW33y_ul5-ualtw2RXMwbcOsE4AxStwd61ujG8xU3XgWkcQG8kou3RIDOMt8CEti2lyKVBJ_g5-TDv3aX4e495VFufLQ6DDhj3WUEnORN9A31BL16gD3GfQnmd4lSy4khyWSiYKZtizgmd2iW_1emggKpJrSpqVVGrJrVqUlsy3YuM9aMei6kxaT-8mvw8Jx_9gIf_V6nl6gf7uqYUoCvheg5P2NNfXiv7-A_--vJ22vqsY7dx_A_CP7AD |
CitedBy_id | crossref_primary_10_1103_PhysRevB_92_235404 crossref_primary_10_1103_PhysRevB_91_125131 crossref_primary_10_1088_0953_8984_28_1_015801 crossref_primary_10_1103_PhysRevB_91_235447 |
Cites_doi | 10.1103/PhysRevB.78.193405 10.1038/nature08522 10.1103/PhysRevB.76.115419 10.1103/RevModPhys.71.863 10.1103/PhysRevB.30.7320 10.1080/00018732.2010.487978 10.1103/PhysRevB.81.161405 10.1103/PhysRevLett.76.4018 10.1103/PhysRevB.81.115410 10.1103/PhysRevLett.99.256802 10.1103/PhysRevB.39.7971 10.1038/nature12186 10.1103/PhysRevB.86.035401 10.1103/PhysRevB.86.115415 10.1103/PhysRevLett.96.086805 10.1038/nature08582 10.1103/PhysRevB.87.235429 10.1016/0039‐6028(90)90821‐O 10.1103/PhysRev.133.A1038 10.1103/PhysRevLett.50.1395 10.1103/PhysRev.134.A1602 10.1103/PhysRevLett.80.3232 10.1103/PhysRevB.87.245408 10.1016/j.physe.2003.09.031 10.1021/nl2005115 10.1103/PhysRev.180.633 10.1038/nphys1463 10.1103/PhysRevLett.101.056803 10.1103/PhysRevB.57.1312 10.1103/PhysRevLett.107.186803 10.1103/PhysRevLett.97.036803 10.1038/nphys2979 10.1126/science.1237240 10.1103/PhysRevB.84.035440 10.1103/PhysRevLett.112.176401 10.1103/PhysRevLett.102.056807 10.1103/PhysRevLett.86.147 10.1103/PhysRevB.86.235411 10.1088/0370‐1298/68/10/304 10.1007/978-3-642-97101-3 10.1103/PhysRevLett.105.036801 10.1016/j.ssc.2013.04.002 10.1103/PhysRevLett.111.185301 10.1007/978-3-319-02633-6_8 10.1038/nature12187 10.1088/0953-8984/27/18/185301 10.1103/PhysRevLett.86.1311 10.1103/PhysRevLett.57.130 10.1209/epl/i1996‐00399‐6 10.1103/PhysRevLett.97.126801 10.1038/nnano.2010.172 10.1103/PhysRevB.80.081408 10.1103/PhysRevB.54.R5223 10.1103/PhysRevLett.106.126802 10.1103/PhysRevLett.100.125504 10.1103/PhysRevLett.111.185302 10.1103/PhysRevB.84.033408 10.1103/PhysRevB.81.245412 10.1103/PhysRevB.74.161403 10.1038/nmat2968 10.1103/PhysRevB.75.201404 10.1080/00018730050198161 10.1103/PhysRevB.14.2239 10.1021/cr300263a 10.1016/0039‐6028(96)00456‐6 10.1103/PhysRevLett.92.256801 10.1088/0268‐1242/11/11S/022 10.1007/978-3-642-79319-6 10.1103/PhysRevLett.55.2095 10.1103/PhysRevLett.106.046801 10.1103/PhysRevB.89.075401 10.1103/PhysRevB.29.7032 10.1103/PhysRevB.48.8890 10.1103/PhysRevB.52.16744 10.1103/PhysRevB.56.R7100 10.1016/j.physe.2004.06.021 |
ContentType | Journal Article |
Copyright | The Institution of Engineering and Technology 2015 The Institution of Engineering and Technology Copyright The Institution of Engineering & Technology 2015 |
Copyright_xml | – notice: The Institution of Engineering and Technology – notice: 2015 The Institution of Engineering and Technology – notice: Copyright The Institution of Engineering & Technology 2015 |
DBID | AAYXX CITATION JQ2 7SP 7U5 8FD F28 FR3 L7M |
DOI | 10.1049/iet-cds.2014.0275 |
DatabaseName | CrossRef ProQuest Computer Science Collection Electronics & Communications Abstracts Solid State and Superconductivity Abstracts Technology Research Database ANTE: Abstracts in New Technology & Engineering Engineering Research Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef ProQuest Computer Science Collection Solid State and Superconductivity Abstracts Engineering Research Database Technology Research Database Advanced Technologies Database with Aerospace ANTE: Abstracts in New Technology & Engineering Electronics & Communications Abstracts |
DatabaseTitleList | Solid State and Superconductivity Abstracts ProQuest Computer Science Collection |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 1751-8598 |
EndPage | 29 |
ExternalDocumentID | 10_1049_iet_cds_2014_0275 CDS2BF00117 |
Genre | article |
GrantInformation_xml | – fundername: NSF funderid: ECCS‐1308473 – fundername: Canada Research Chairs Program of the Government of Canada |
GroupedDBID | 0R 24P 29I 4.4 4IJ 6IK 8FE 8FG AAJGR ABJCF ACGFS ACIWK ADCOW AFKRA ALMA_UNASSIGNED_HOLDINGS ARAPS BENPR BFFAM BGLVJ EBS EJD GOZPB GRPMH HCIFZ HZ IFIPE IPLJI JAVBF K6V K7- L6V LAI LOTEE LXI M43 M7S NADUK NXXTH O9- OCL P62 PTHSS RIE RNS RUI S0W U5U UNMZH UNR ZZ .DC 0R~ 0ZK 1OC 96U AAHHS AAHJG ABQXS ACCFJ ACCMX ACESK ACXQS ADEYR ADZOD AEEZP AEGXH AEQDE AFAZI AIWBW AJBDE ALUQN AVUZU CCPQU F8P GROUPED_DOAJ HZ~ IAO ITC MCNEO OK1 ROL ~ZZ AAYXX CITATION IDLOA PHGZM PHGZT JQ2 WIN 7SP 7U5 8FD F28 FR3 L7M |
ID | FETCH-LOGICAL-c4297-2213cf52321e56be8f6a4b36ed771b4f118b9eec8ebe2b236125ac600e39bef53 |
IEDL.DBID | 24P |
ISSN | 1751-858X 1751-8598 |
IngestDate | Fri Jul 11 01:40:50 EDT 2025 Wed Aug 13 05:18:37 EDT 2025 Tue Jul 01 01:16:20 EDT 2025 Thu Apr 24 22:51:45 EDT 2025 Wed Jan 22 16:59:15 EST 2025 Tue Jan 05 21:46:20 EST 2021 Thu May 09 18:33:38 EDT 2019 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 1 |
Keywords | magnetoresistance monolayer graphene Hofstadter butterfly Bloch electrons monolayers electronic properties bilayer graphene fractal butterflies magnetoconductance probe single-electron energy spectrum graphene perpendicular magnetic field Dirac fermions Moiré pattern electron-electron interaction semiconductor systems semiconductor nanostructures butterfly spectrum |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4297-2213cf52321e56be8f6a4b36ed771b4f118b9eec8ebe2b236125ac600e39bef53 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 3092275939 |
PQPubID | 1936358 |
PageCount | 11 |
ParticipantIDs | proquest_miscellaneous_1793258418 proquest_journals_3092275939 crossref_citationtrail_10_1049_iet_cds_2014_0275 wiley_primary_10_1049_iet_cds_2014_0275_CDS2BF00117 iet_journals_10_1049_iet_cds_2014_0275 crossref_primary_10_1049_iet_cds_2014_0275 |
ProviderPackageCode | RUI CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20150100 January 2015 2015-01-00 20150101 |
PublicationDateYYYYMMDD | 2015-01-01 |
PublicationDate_xml | – month: 1 year: 2015 text: 20150100 |
PublicationDecade | 2010 |
PublicationPlace | Stevenage |
PublicationPlace_xml | – name: Stevenage |
PublicationTitle | IET circuits, devices & systems |
PublicationYear | 2015 |
Publisher | The Institution of Engineering and Technology John Wiley & Sons, Inc |
Publisher_xml | – name: The Institution of Engineering and Technology – name: John Wiley & Sons, Inc |
References | Zak, J. (C71) 1964; 134 Brown, E. (C72) 1964; 133 Du, X.; Skachko, I.; Duerr, F. (C64) 2009; 462 Chakraborty, T.; Apalkov, V.M. (C18) 2013; 175 (C48) 1996; 54 Shallcross, S.; Sharma, S.; Pankratov, O.A. (C34) 2008; 101 McCann, E. (C44) 2006; 74 Dean, C.R.; Young, A.F.; Meric, I. (C23) 2010; 5 Zhang, F.C.; Chakraborty, T. (C82) 1984; 30 Rhim, J.-W.; Park, K. (C26) 2012; 86 Yu, G.L.; Gorbachev, R.V.; Tu, J.S. (C68) 2014; 10 Aidelsburger, M.; Atala, M.; Lohse, M. (C13) 2013; 111 Apalkov, V.M.; Chakraborty, T. (C57) 2010; 105 Abanin, D.A.; Skachko, I.; Du, X. (C65) 2010; 81 Nemec, N.; Cuniberti, G. (C27) 2007; 75 Kuhl, U.; Stöckmann, H.-J. (C12) 1998; 80 Kindermann, M.; Uchoa, B.; Miller, D.L. (C40) 2012; 86 Chakraborty, T. (C76) 2000; 49 Hass, J.; Varchon, F.; Millán-Otoya, J.E. (C33) 2008; 100 Apalkov, V.M.; Chakraborty, T. (C59) 2014; 177 Mele, E.J. (C36) 2010; 81 Hofstadter, D. (C4) 1976; 14 von Klitzing, K.; Chakraborty, T. (C69) 2011; 67 Chakraborty, T.; Pietiläinen, P. (C77) 1996; 76 Gat, O.; Avron, J.E. (C28) 2003; 5 Chen, X.; Wallbank, J.R.; Patel, A.A. (C42) 2014; 89 Albrecht, C.; Smet, J.H.; von Klitzing, K. (C9) 2003; 20 Laughlin, R.B. (C55) 1999; 71 Albrecht, C.; Smet, J.H.; von Klitzing, K. (C8) 2001; 86 Dean, C.R.; Wang, L.; Maher, P. (C20) 2013; 497 Geisler, M.C.; Smet, J.H.; Umansky, V. (C7) 2004; 25 Decker, R.; Wang, Y.; Brar, V.W. (C24) 2011; 11 Laughlin, R.B. (C54) 1983; 50 Ghahari, F.; Zhao, Y.; Cadden-Zimansky, P. (C67) 2011; 106 Apalkov, V.M.; Chakraborty, T. (C58) 2011; 107 Bistritzer, R.; MacDonald, A.H. (C38) 2011; 84 Schlösser, T.; Ensslin, K.; Kotthaus, J.P. (C11) 1996; 11 Latil, S.; Henrard, L. (C30) 2006; 97 Apalkov, V.M.; Chakraborty, T. (C51) 2014; 112 Pfannkuche, D.; MacDonald, A.H. (C49) 1997; 56 Chakraborty, T.; Pietiläinen, P.; Zhang, F.C. (C80) 1986; 57 Gudmundsson, V.; Gerhardts, R.R. (C47) 1996; 361–362 Miyake, H.; Siviloglu, G.A.; Kennedy, C.J. (C14) 2013; 111 Langbein, D. (C3) 1969; 180 Abergel, D.S.L.; Chakraborty, T. (C60) 2009; 102 Bolotin, K.I.; Ghahari, F.; Shulman, M.D. (C66) 2009; 462 Abergel, D.S.L.; Apalkov, V.; Berashevich, J. (C16) 2010; 59 Gudmundsson, V.; Gerhardts, R.R. (C46) 1995; 52 Chakraborty, T.; Pietiläinen, P. (C78) 1989; 39 Abergel, D.S.L.; Apalkov, V.M.; Chakraborty, T. (C61) 2008; 78 Harper, P.G. (C2) 1955; 68 Geisler, M.C.; Smet, J.H.; Umansky, V. (C6) 2004; 92 Xu, M.; Liang, T.; Shi, M. (C19) 2013; 113 Schlösser, T.; Ensslin, K.; Kotthaus, J.P. (C10) 1996; 33 Hunt, B.; Sanchez-Yamagishi, J.D.; Young, A.F. (C21) 2013; 340 Apalkov, V.M.; Chakraborty, T. (C56) 2006; 97 Luican, A.; Li, G.; Reina, A. (C39) 2011; 106 Doh, H.; Salk, S.H. (C50) 1998; 57 Apalkov, V.M.; Chakraborty, T. (C32); 84 Haldane, F.D.M. (C73) 1985; 55 Li, G.; Luican, A.; Lopes dos Santos, J.M.B. (C35) 2010; 6 Kol, A.; Read, N. (C74) 1993; 48 Chakraborty, T. (C75) 1990; 229 Lopes dos Santos, J.M.B.; Peres, N.M.R.; Castro Neto, A.H. (C31) 2007; 99 Milton Pereira, J.; Peeters, F.M.; Vasilopoulos, P. (C45) 2007; 76 Bistritzer, R.; MacDonald, A.H. (C37) 2010; 81 Wallbank, J.R.; Patel, A.A.; Mucha-Kruczynski, M. (C41) 2013; 87 Janecek, S.; Aichinger, M.; Hernandez, E.R. (C29) 2013; 87 McCann, E.; Falko, V. (C43) 2006; 96 Apalkov, V.M.; Chakraborty, T. (C63) 2012; 86 Xue, J.; Sanchez-Yamagishi, J.; Bulmash, D. (C25) 2011; 10 Apalkov, V.M.; Chakraborty, T.; Pietiläinen, P. (C79) 2001; 86 Chakraborty, T.; Zhang, F.C. (C81) 1984; 29 Pomomarenko, L.A.; Gorbachev, R.V.; Yu, G.L. (C22) 2013; 497 Abergel, D.S.L.; Pietiläinen, P.; Chakraborty, T. (C62) 2009; 80 1990; 229 2006; 74 2010; 59 2000; 49 2009; 80 2010; 105 2004; 25 1964; 134 1964; 133 2011; 11 2008; 78 2011; 10 1984; 29 1998; 80 1983; 50 2007; 75 2008; 101 2008; 100 2007; 76 2014; 177 1996; 76 2001; 86 1996; 33 1996; 361–362 1969; 180 1997; 56 2013; 111 2013; 113 2003; 5 1982 2011; 67 1985; 55 2010; 5 2010; 6 2014; 10 1989; 39 1998; 57 1988 1993; 48 1995; 52 2006; 96 2006; 97 2013; 87 1986; 57 2011; 84 1995 2013; 340 2010; 81 2007; 99 1955; 68 2014; 89 1996; 54 2014; 112 1996; 11 1984; 30 1976; 14 2004; 92 2011; 107 2011; 106 2013; 497 2009; 462 2000; 40 2009; 102 2014 2013; 175 1999; 71 2003; 20 84 2012; 86 e_1_2_9_52_2 e_1_2_9_73_2 e_1_2_9_50_2 e_1_2_9_71_2 e_1_2_9_10_2 e_1_2_9_33_2 e_1_2_9_56_2 e_1_2_9_77_2 e_1_2_9_12_2 e_1_2_9_31_2 e_1_2_9_54_2 e_1_2_9_75_2 Gat O. (e_1_2_9_29_2) 2003; 5 e_1_2_9_14_2 e_1_2_9_37_2 e_1_2_9_16_2 e_1_2_9_35_2 e_1_2_9_58_2 e_1_2_9_18_2 e_1_2_9_79_2 e_1_2_9_39_2 e_1_2_9_41_2 e_1_2_9_62_2 Mandelbrot B.B. (e_1_2_9_6_2) 1982 e_1_2_9_20_2 e_1_2_9_45_2 e_1_2_9_66_2 e_1_2_9_83_2 e_1_2_9_22_2 e_1_2_9_43_2 e_1_2_9_64_2 e_1_2_9_4_2 e_1_2_9_81_2 e_1_2_9_8_2 e_1_2_9_24_2 e_1_2_9_49_2 e_1_2_9_26_2 e_1_2_9_47_2 e_1_2_9_68_2 e_1_2_9_28_2 e_1_2_9_51_2 e_1_2_9_74_2 e_1_2_9_30_2 e_1_2_9_72_2 e_1_2_9_78_2 e_1_2_9_34_2 e_1_2_9_55_2 e_1_2_9_76_2 e_1_2_9_11_2 e_1_2_9_32_2 e_1_2_9_53_2 Rössler U. (e_1_2_9_2_2) 2000 Klitzing K. (e_1_2_9_70_2) 2011; 67 e_1_2_9_13_2 e_1_2_9_38_2 e_1_2_9_59_2 e_1_2_9_15_2 e_1_2_9_36_2 e_1_2_9_57_2 Apalkov V.M. (e_1_2_9_60_2) 2014; 177 e_1_2_9_17_2 e_1_2_9_19_2 e_1_2_9_40_2 e_1_2_9_63_2 e_1_2_9_61_2 e_1_2_9_21_2 e_1_2_9_44_2 e_1_2_9_67_2 e_1_2_9_82_2 e_1_2_9_23_2 e_1_2_9_42_2 e_1_2_9_65_2 e_1_2_9_7_2 e_1_2_9_5_2 e_1_2_9_80_2 e_1_2_9_3_2 e_1_2_9_9_2 e_1_2_9_25_2 e_1_2_9_48_2 e_1_2_9_27_2 e_1_2_9_46_2 e_1_2_9_69_2 |
References_xml | – volume: 92 start-page: 256801 issue: 25 year: 2004 ident: C6 article-title: Detection of a Landau band-coupling-induced rearrangement of the Hofstadter butterfly publication-title: Phys. Rev. Lett. – volume: 59 start-page: 261 issue: 4 year: 2010 end-page: 482 ident: C16 article-title: Properties of graphene: a theoretical perspective publication-title: Adv. Phys. – volume: 49 start-page: 959 issue: 8 year: 2000 end-page: 1014 ident: C76 article-title: Electron spin transitions in quantum Hall systems publication-title: Adv. Phys. – volume: 71 start-page: 863 issue: 4 year: 1999 end-page: 874 ident: C55 article-title: Nobel lecture: fractional quantization publication-title: Rev. Mod. Phys. – volume: 57 start-page: 1312 issue: 3 year: 1998 end-page: 1315 ident: C50 article-title: Effects of electron correlations on the Hofstadter spectrum publication-title: Phys. Rev. B – volume: 134 start-page: A1602 issue: 6A year: 1964 end-page: A1606 ident: C71 article-title: Magnetic translation group publication-title: Phys. Rev. – volume: 133 start-page: A1038 issue: 4A year: 1964 end-page: A1044 ident: C72 article-title: Bloch electrons in a uniform magnetic field publication-title: Phys. Rev. – volume: 75 start-page: 201404(R) issue: 20 year: 2007 ident: C27 article-title: Hofstadter butterflies of bilayer graphene publication-title: Phys. Rev. B – volume: 74 start-page: 161403 issue: 16 year: 2006 ident: C44 article-title: Asymmetry gap in the electronic band structure of bilayer graphene publication-title: Phys. Rev. B – volume: 97 start-page: 126801 issue: 12 year: 2006 ident: C56 article-title: Fractional quantum Hall states of Dirac electrons in graphene publication-title: Phys. Rev. Lett. – volume: 462 start-page: 192 issue: 7270 year: 2009 end-page: 195 ident: C64 article-title: Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene publication-title: Nature – volume: 25 start-page: 227 issue: 2 year: 2004 end-page: 232 ident: C7 article-title: Detection of Landau band coupling induced rearrangement of the Hofstadter butterfly publication-title: Phys. E – volume: 84 start-page: 033408 issue: 3 ident: C32 article-title: Optical transitions at commensurate angles in a misoriented bilayer graphene in an external magnetic field publication-title: Phys. Rev. B – volume: 81 start-page: 245412 issue: 24 year: 2010 ident: C37 article-title: Transport between twisted graphene layers publication-title: Phys. Rev. B – volume: 52 start-page: 16744 issue: 23 year: 1995 end-page: 16752 ident: C46 article-title: Effects of screening on the Hofstadter butterfly publication-title: Phys. Rev. B – volume: 20 start-page: 143 issue: 1 year: 2003 end-page: 148 ident: C9 article-title: Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance publication-title: Phys. E – volume: 80 start-page: 081408 issue: 8 year: 2009 ident: C62 article-title: Electronic compressibility of graphene: the case of vanishing electron correlations and the role of chirality publication-title: Phys. Rev. B – volume: 39 start-page: 7971 issue: 11 year: 1989 end-page: 7973 ident: C78 article-title: Fractional quantum Hall effect in tilted magnetic fields publication-title: Phys. Rev. B – volume: 33 start-page: 683 issue: 9 year: 1996 end-page: 688 ident: C10 article-title: Internal structure of a Landau band induced by a lateral superlattice: a glimpse of Hofstadter's butterfly publication-title: Europhys. Lett. – volume: 11 start-page: 1582 issue: 11S year: 1996 end-page: 1585 ident: C11 article-title: Landau subbands generated by a lateral electrostatic superlattice-chasing the Hofstadter butterfly publication-title: Semicond. Sci. Technol. – volume: 361–362 start-page: 505 year: 1996 end-page: 508 ident: C47 article-title: The Hofstadter energy spectrum for an interacting 2DEG publication-title: Surf. Sci. – volume: 86 start-page: 115415 issue: 11 year: 2012 ident: C40 article-title: Zero-energy modes and gate-tunable gap in graphene on hexagonal boron nitride publication-title: Phys. Rev. B – volume: 10 start-page: 282 issue: 4 year: 2011 end-page: 285 ident: C25 article-title: Scanning tunnelling microscopy and spectroscopy of ultra-flat graphene on hexagonal boron nitride publication-title: Nat. Mater. – volume: 106 start-page: 046801 issue: 4 year: 2011 ident: C67 article-title: Measurement of the ν = 1/3 fractional quantum Hall energy gap in suspended graphene publication-title: Phys. Rev. Lett. – volume: 102 start-page: 056807 issue: 5 year: 2009 ident: C60 article-title: Long-range Coulomb interaction in bilayer graphene publication-title: Phys. Rev. Lett. – volume: 175 start-page: 123 year: 2013 end-page: 131 ident: C18 article-title: Traits and characteristics of interacting Dirac fermions in monolayer and bilayer graphene publication-title: Solid State Commun. – volume: 29 start-page: 7032 issue: 12 year: 1984 end-page: 7033(R) ident: C81 article-title: Role of reversed spins in the correlated ground state for the fractional quantum Hall effect publication-title: Phys. Rev. B – volume: 80 start-page: 3232 issue: 15 year: 1998 end-page: 3235 ident: C12 article-title: Microwave realization of the Hofstadter butterfly publication-title: Phys. Rev. Lett. – volume: 497 start-page: 598 issue: 7451 year: 2013 end-page: 602 ident: C20 article-title: Hofstadter's butterfly and the fractal quantum Hall effect in Moiré superlattices publication-title: Nature – volume: 112 start-page: 176401 issue: 17 year: 2014 ident: C51 article-title: Gap structure of the Hofstadter system of interacting Dirac fermions in graphene publication-title: Phys. Rev. Lett. – volume: 30 start-page: 7320 issue: 12 year: 1984 end-page: 7322(R) ident: C82 article-title: Ground state of two-dimensional electrons and the reversed spins in the fractional quantum Hall effect publication-title: Phys. Rev. B – volume: 76 start-page: 115419 issue: 11 year: 2007 ident: C45 article-title: Landau levels and oscillator strength in a biased bilayer of graphene publication-title: Phys. Rev. B – volume: 86 start-page: 147 issue: 1 year: 2001 end-page: 150 ident: C8 article-title: Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance publication-title: Phys. Rev. Lett. – volume: 11 start-page: 2291 issue: 6 year: 2011 end-page: 2295 ident: C24 article-title: Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy publication-title: Nano Lett. – volume: 5 start-page: 722 issue: 10 year: 2010 end-page: 726 ident: C23 article-title: Boron nitride substrates for high-quality graphene electronics publication-title: Nature nanotechnology – volume: 229 start-page: 16 issue: 1–3 year: 1990 end-page: 20 ident: C75 article-title: Spin-reversed ground state and energy gap in the fractional quantum Hall effect publication-title: Surf. Sci. – volume: 97 start-page: 036803 issue: 3 year: 2006 ident: C30 article-title: Charge carriers in few-layer graphene films publication-title: Phys. Rev. Lett. – volume: 10 start-page: 525 issue: 7 year: 2014 end-page: 529 ident: C68 article-title: Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices publication-title: Nat. Phys. – volume: 5 start-page: 44.1 issue: 1 year: 2003 end-page: 44.8 ident: C28 article-title: Magnetic fingerprints of fractal spectra and the duality of Hofstadter models publication-title: New J. Phys. – volume: 81 start-page: 161405(R) issue: 16 year: 2010 ident: C36 article-title: Commensuration and interlayer coherence in twisted bilayer graphene publication-title: Phys. Rev. B – volume: 86 start-page: 235411 issue: 23 year: 2012 ident: C26 article-title: Self-similar occurrence of massless Dirac particles in graphene under a magnetic field publication-title: Phys. Rev. B – volume: 76 start-page: 4018 issue: 21 year: 1996 end-page: 4021 ident: C77 article-title: Thermodynamics and spin polarizations of the fractional quantum Hall states publication-title: Phys. Rev. Lett. – volume: 68 start-page: 874 issue: 10 year: 1955 end-page: 879 ident: C2 article-title: Single band motion of conduction electrons in a uniform magnetic field publication-title: Proc. Phys. Soc. A – volume: 106 start-page: 126802 issue: 12 year: 2011 ident: C39 article-title: Single-layer behavior and its breakdown in twisted graphene layers publication-title: Phys. Rev. Lett. – volume: 99 start-page: 256802 issue: 25 year: 2007 ident: C31 article-title: Graphene bilayer with a twist: electronic structure publication-title: Phys. Rev. Lett. – volume: 100 start-page: 125504 issue: 12 year: 2008 ident: C33 article-title: Why multilayer graphene on 4H-SiC ( ) behaves like a single sheet of graphene publication-title: Phys. Rev. Lett. – volume: 55 start-page: 2095 issue: 20 year: 1985 end-page: 2098 ident: C73 article-title: Many-particle translational symmetries of two-dimensional electrons at rational Landau-level filling publication-title: Phys. Rev. Lett. – volume: 56 start-page: R7100 issue: 12 year: 1997 end-page: R7103(R) ident: C49 article-title: Quantum Hall effect of interacting electrons in a periodic potential publication-title: Phys. Rev. B – volume: 107 start-page: 186803 issue: 18 year: 2011 ident: C58 article-title: Stable Pfaffian state in bilayer graphene publication-title: Phys. Rev. Lett. – volume: 113 start-page: 3766 issue: 5 year: 2013 end-page: 3798 ident: C19 article-title: Graphene-like two-dimensional materials publication-title: Chem. Rev. – volume: 87 start-page: 235429 issue: 23 year: 2013 ident: C29 article-title: Two-dimensional Bloch electrons in perpendicular magnetic fields: an exact calculation of the Hofstadter butterfly spectrum publication-title: Phys. Rev. B – volume: 78 start-page: 193405 issue: 19 year: 2008 ident: C61 article-title: Interplay between valley polarization and electron–electron interaction in a graphene ring publication-title: Phys. Rev. B – volume: 57 start-page: 130 issue: 1 year: 1986 end-page: 133 ident: C80 article-title: Elementary excitations in the fractional quantum Hall effect and the spin-reversed quasiparticles publication-title: Phys. Rev. Lett. – volume: 14 start-page: 2239 issue: 6 year: 1976 end-page: 2249 ident: C4 article-title: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields publication-title: Phys. Rev. B – volume: 67 start-page: 161 issue: 3 year: 2011 end-page: 164 ident: C69 article-title: Taking stock of the quantum Hall effects: thirty years on publication-title: Phys. Canada – volume: 50 start-page: 1395 issue: 18 year: 1983 end-page: 1398 ident: C54 article-title: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations publication-title: Phys. Rev. Lett. – volume: 340 start-page: 1427 issue: 6139 year: 2013 end-page: 1430 ident: C21 article-title: Massive Dirac fermions and Hofstadter butterfly in a Van der Waals heterostructure publication-title: Science – volume: 105 start-page: 036801 issue: 3 year: 2010 ident: C57 article-title: Controllable driven phase transitions in fractional quantum Hall states in bilayer graphene publication-title: Phys. Rev. Lett. – volume: 101 start-page: 056803 issue: 5 year: 2008 ident: C34 article-title: Quantum interference at the twist boundary in graphene publication-title: Phys. Rev. Lett. – volume: 89 start-page: 075401 issue: 7 year: 2014 ident: C42 article-title: Dirac edges of fractal magnetic minibands in graphene with hexagonal Moiré superlattices publication-title: Phys. Rev. B – volume: 84 start-page: 035440 issue: 3 year: 2011 ident: C38 article-title: Moiré butterflies in twisted bilayer graphene publication-title: Phys. Rev. B – volume: 87 start-page: 245408 issue: 24 year: 2013 ident: C41 article-title: Generic miniband structure of graphene on a hexagonal substrate publication-title: Phys. Rev. B – volume: 177 issue: 128 year: 2014 ident: C59 article-title: Incompressible states of Dirac fermions in graphene with anisotropic interactions publication-title: Solid State Commun. – volume: 54 start-page: R5223 issue: 8 year: 1996 end-page: R5226(R) ident: C48 article-title: Manifestation of the Hofstadter butterfly in far-infrared absorption publication-title: Phys. Rev. B – volume: 462 start-page: 196 issue: 7270 year: 2009 end-page: 199 ident: C66 article-title: Observation of the fractional quantum Hall effect in graphene publication-title: Nature – volume: 86 start-page: 035401 issue: 3 year: 2012 ident: C63 article-title: Electrically tunable charge and spin transitions in Landau levels of interacting Dirac fermions in trilayer graphene publication-title: Phys. Rev. B – volume: 48 start-page: 8890 issue: 12 year: 1993 end-page: 8898 ident: C74 article-title: Fractional quantum Hall effect in a periodic potential publication-title: Phys. Rev. B – volume: 497 start-page: 594 issue: 7451 year: 2013 end-page: 597 ident: C22 article-title: Cloning of Dirac fermions in graphene superlattices publication-title: Nature – volume: 86 start-page: 1311 issue: 7 year: 2001 end-page: 1314 ident: C79 article-title: Half-polarized quantum Hall states publication-title: Phys. Rev. Lett. – volume: 81 start-page: 115410 issue: 11 year: 2010 ident: C65 article-title: Fractional quantum Hall effect in suspended graphene: transport coefficients and electron interaction strength publication-title: Phys. Rev. B – volume: 180 start-page: 633 issue: 3 year: 1969 end-page: 648 ident: C3 article-title: The tight-binding and the nearly-free-electron approach to lattice electrons in external magnetic fields publication-title: Phys. Rev. – volume: 111 start-page: 185302 issue: 18 year: 2013 ident: C14 article-title: Realising the Harper Hamiltonian with laser-assisted tunneling in optical lattices publication-title: Phys. Rev. Lett. – volume: 111 start-page: 185301 issue: 18 year: 2013 ident: C13 article-title: Realisation of the Hofstadter Hamiltonian with ultracold atoms in optical lattices publication-title: Phys. Rev. Lett. – volume: 6 start-page: 109 issue: 2 year: 2010 end-page: 113 ident: C35 article-title: Observation of Van Hove singularities in twisted graphene layers publication-title: Nat. Phys. – volume: 96 start-page: 086805 issue: 8 year: 2006 ident: C43 article-title: Landau-level degeneracy and quantum Hall effect in a graphite bilayer publication-title: Phys. Rev. Lett. – volume: 76 start-page: 4018 issue: 21 year: 1996 end-page: 4021 article-title: Thermodynamics and spin polarizations of the fractional quantum Hall states publication-title: Phys. Rev. Lett. – volume: 81 start-page: 161405(R) issue: 16 year: 2010 article-title: Commensuration and interlayer coherence in twisted bilayer graphene publication-title: Phys. Rev. B – volume: 86 start-page: 115415 issue: 11 year: 2012 article-title: Zero‐energy modes and gate‐tunable gap in graphene on hexagonal boron nitride publication-title: Phys. Rev. B – volume: 462 start-page: 192 issue: 7270 year: 2009 end-page: 195 article-title: Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene publication-title: Nature – volume: 340 start-page: 1427 issue: 6139 year: 2013 end-page: 1430 article-title: Massive Dirac fermions and Hofstadter butterfly in a Van der Waals heterostructure publication-title: Science – volume: 497 start-page: 594 issue: 7451 year: 2013 end-page: 597 article-title: Cloning of Dirac fermions in graphene superlattices publication-title: Nature – volume: 59 start-page: 261 issue: 4 year: 2010 end-page: 482 article-title: Properties of graphene: a theoretical perspective publication-title: Adv. Phys. – volume: 25 start-page: 227 issue: 2 year: 2004 end-page: 232 article-title: Detection of Landau band coupling induced rearrangement of the Hofstadter butterfly publication-title: Phys. E – volume: 361–362 start-page: 505 year: 1996 end-page: 508 article-title: The Hofstadter energy spectrum for an interacting 2DEG publication-title: Surf. Sci. – volume: 87 start-page: 245408 issue: 24 year: 2013 article-title: Generic miniband structure of graphene on a hexagonal substrate publication-title: Phys. Rev. B – volume: 67 start-page: 161 issue: 3 year: 2011 end-page: 164 article-title: Taking stock of the quantum Hall effects: thirty years on publication-title: Phys. Canada – volume: 177 issue: 128 year: 2014 article-title: Incompressible states of Dirac fermions in graphene with anisotropic interactions publication-title: Solid State Commun. – volume: 10 start-page: 525 issue: 7 year: 2014 end-page: 529 article-title: Hierarchy of Hofstadter states and replica quantum Hall ferromagnetism in graphene superlattices publication-title: Nat. Phys. – start-page: 251 year: 2014 end-page: 300 – volume: 5 start-page: 722 issue: 10 year: 2010 end-page: 726 article-title: Boron nitride substrates for high‐quality graphene electronics publication-title: Nature nanotechnology – volume: 81 start-page: 115410 issue: 11 year: 2010 article-title: Fractional quantum Hall effect in suspended graphene: transport coefficients and electron interaction strength publication-title: Phys. Rev. B – volume: 75 start-page: 201404(R) issue: 20 year: 2007 article-title: Hofstadter butterflies of bilayer graphene publication-title: Phys. Rev. B – volume: 6 start-page: 109 issue: 2 year: 2010 end-page: 113 article-title: Observation of Van Hove singularities in twisted graphene layers publication-title: Nat. Phys. – year: 2014 – volume: 81 start-page: 245412 issue: 24 year: 2010 article-title: Transport between twisted graphene layers publication-title: Phys. Rev. B – volume: 30 start-page: 7320 issue: 12 year: 1984 end-page: 7322(R) article-title: Ground state of two‐dimensional electrons and the reversed spins in the fractional quantum Hall effect publication-title: Phys. Rev. B – volume: 49 start-page: 959 issue: 8 year: 2000 end-page: 1014 article-title: Electron spin transitions in quantum Hall systems publication-title: Adv. Phys. – volume: 29 start-page: 7032 issue: 12 year: 1984 end-page: 7033(R) article-title: Role of reversed spins in the correlated ground state for the fractional quantum Hall effect publication-title: Phys. Rev. B – volume: 80 start-page: 3232 issue: 15 year: 1998 end-page: 3235 article-title: Microwave realization of the Hofstadter butterfly publication-title: Phys. Rev. Lett. – volume: 229 start-page: 16 issue: 1–3 year: 1990 end-page: 20 article-title: Spin‐reversed ground state and energy gap in the fractional quantum Hall effect publication-title: Surf. Sci. – year: 1982 – volume: 497 start-page: 598 issue: 7451 year: 2013 end-page: 602 article-title: Hofstadter's butterfly and the fractal quantum Hall effect in Moiré superlattices publication-title: Nature – volume: 71 start-page: 863 issue: 4 year: 1999 end-page: 874 article-title: Nobel lecture: fractional quantization publication-title: Rev. Mod. Phys. – volume: 33 start-page: 683 issue: 9 year: 1996 end-page: 688 article-title: Internal structure of a Landau band induced by a lateral superlattice: a glimpse of Hofstadter's butterfly publication-title: Europhys. Lett. – volume: 89 start-page: 075401 issue: 7 year: 2014 article-title: Dirac edges of fractal magnetic minibands in graphene with hexagonal Moiré superlattices publication-title: Phys. Rev. B – volume: 39 start-page: 7971 issue: 11 year: 1989 end-page: 7973 article-title: Fractional quantum Hall effect in tilted magnetic fields publication-title: Phys. Rev. B – volume: 180 start-page: 633 issue: 3 year: 1969 end-page: 648 article-title: The tight‐binding and the nearly‐free‐electron approach to lattice electrons in external magnetic fields publication-title: Phys. Rev. – volume: 56 start-page: R7100 issue: 12 year: 1997 end-page: R7103(R) article-title: Quantum Hall effect of interacting electrons in a periodic potential publication-title: Phys. Rev. B – volume: 133 start-page: A1038 issue: 4A year: 1964 end-page: A1044 article-title: Bloch electrons in a uniform magnetic field publication-title: Phys. Rev. – volume: 101 start-page: 056803 issue: 5 year: 2008 article-title: Quantum interference at the twist boundary in graphene publication-title: Phys. Rev. Lett. – volume: 92 start-page: 256801 issue: 25 year: 2004 article-title: Detection of a Landau band‐coupling‐induced rearrangement of the Hofstadter butterfly publication-title: Phys. Rev. Lett. – volume: 99 start-page: 256802 issue: 25 year: 2007 article-title: Graphene bilayer with a twist: electronic structure publication-title: Phys. Rev. Lett. – volume: 105 start-page: 036801 issue: 3 year: 2010 article-title: Controllable driven phase transitions in fractional quantum Hall states in bilayer graphene publication-title: Phys. Rev. Lett. – volume: 102 start-page: 056807 issue: 5 year: 2009 article-title: Long‐range Coulomb interaction in bilayer graphene publication-title: Phys. Rev. Lett. – volume: 106 start-page: 126802 issue: 12 year: 2011 article-title: Single‐layer behavior and its breakdown in twisted graphene layers publication-title: Phys. Rev. Lett. – volume: 113 start-page: 3766 issue: 5 year: 2013 end-page: 3798 article-title: Graphene‐like two‐dimensional materials publication-title: Chem. Rev. – volume: 97 start-page: 126801 issue: 12 year: 2006 article-title: Fractional quantum Hall states of Dirac electrons in graphene publication-title: Phys. Rev. Lett. – volume: 134 start-page: A1602 issue: 6A year: 1964 end-page: A1606 article-title: Magnetic translation group publication-title: Phys. Rev. – volume: 20 start-page: 143 issue: 1 year: 2003 end-page: 148 article-title: Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance publication-title: Phys. E – start-page: 251 year: 2014 – volume: 80 start-page: 081408 issue: 8 year: 2009 article-title: Electronic compressibility of graphene: the case of vanishing electron correlations and the role of chirality publication-title: Phys. Rev. B – volume: 10 start-page: 282 issue: 4 year: 2011 end-page: 285 article-title: Scanning tunnelling microscopy and spectroscopy of ultra‐flat graphene on hexagonal boron nitride publication-title: Nat. Mater. – volume: 78 start-page: 193405 issue: 19 year: 2008 article-title: Interplay between valley polarization and electron–electron interaction in a graphene ring publication-title: Phys. Rev. B – volume: 111 start-page: 185302 issue: 18 year: 2013 article-title: Realising the Harper Hamiltonian with laser‐assisted tunneling in optical lattices publication-title: Phys. Rev. Lett. – volume: 14 start-page: 2239 issue: 6 year: 1976 end-page: 2249 article-title: Energy levels and wave functions of Bloch electrons in rational and irrational magnetic fields publication-title: Phys. Rev. B – volume: 52 start-page: 16744 issue: 23 year: 1995 end-page: 16752 article-title: Effects of screening on the Hofstadter butterfly publication-title: Phys. Rev. B – volume: 48 start-page: 8890 issue: 12 year: 1993 end-page: 8898 article-title: Fractional quantum Hall effect in a periodic potential publication-title: Phys. Rev. B – volume: 112 start-page: 176401 issue: 17 year: 2014 article-title: Gap structure of the Hofstadter system of interacting Dirac fermions in graphene publication-title: Phys. Rev. Lett. – volume: 86 start-page: 235411 issue: 23 year: 2012 article-title: Self‐similar occurrence of massless Dirac particles in graphene under a magnetic field publication-title: Phys. Rev. B – volume: 40 start-page: 35 year: 2000 end-page: 50 – volume: 86 start-page: 147 issue: 1 year: 2001 end-page: 150 article-title: Evidence of Hofstadter's fractal energy spectrum in the quantized Hall conductance publication-title: Phys. Rev. Lett. – volume: 54 start-page: R5223 issue: 8 year: 1996 end-page: R5226(R) article-title: Manifestation of the Hofstadter butterfly in far‐infrared absorption publication-title: Phys. Rev. B – volume: 107 start-page: 186803 issue: 18 year: 2011 article-title: Stable Pfaffian state in bilayer graphene publication-title: Phys. Rev. Lett. – volume: 84 start-page: 035440 issue: 3 year: 2011 article-title: Moiré butterflies in twisted bilayer graphene publication-title: Phys. Rev. B – volume: 57 start-page: 1312 issue: 3 year: 1998 end-page: 1315 article-title: Effects of electron correlations on the Hofstadter spectrum publication-title: Phys. Rev. B – volume: 50 start-page: 1395 issue: 18 year: 1983 end-page: 1398 article-title: Anomalous quantum Hall effect: an incompressible quantum fluid with fractionally charged excitations publication-title: Phys. Rev. Lett. – volume: 87 start-page: 235429 issue: 23 year: 2013 article-title: Two‐dimensional Bloch electrons in perpendicular magnetic fields: an exact calculation of the Hofstadter butterfly spectrum publication-title: Phys. Rev. B – volume: 111 start-page: 185301 issue: 18 year: 2013 article-title: Realisation of the Hofstadter Hamiltonian with ultracold atoms in optical lattices publication-title: Phys. Rev. Lett. – volume: 5 start-page: 44.1 issue: 1 year: 2003 end-page: 44.8 article-title: Magnetic fingerprints of fractal spectra and the duality of Hofstadter models publication-title: New J. Phys. – volume: 97 start-page: 036803 issue: 3 year: 2006 article-title: Charge carriers in few‐layer graphene films publication-title: Phys. Rev. Lett. – volume: 68 start-page: 874 issue: 10 year: 1955 end-page: 879 article-title: Single band motion of conduction electrons in a uniform magnetic field publication-title: Proc. Phys. Soc. A – volume: 86 start-page: 035401 issue: 3 year: 2012 article-title: Electrically tunable charge and spin transitions in Landau levels of interacting Dirac fermions in trilayer graphene publication-title: Phys. Rev. B – year: 1988 – year: 1995 – volume: 100 start-page: 125504 issue: 12 year: 2008 article-title: Why multilayer graphene on 4H‐SiC ( ) behaves like a single sheet of graphene publication-title: Phys. Rev. Lett. – volume: 76 start-page: 115419 issue: 11 year: 2007 article-title: Landau levels and oscillator strength in a biased bilayer of graphene publication-title: Phys. Rev. B – volume: 86 start-page: 1311 issue: 7 year: 2001 end-page: 1314 article-title: Half‐polarized quantum Hall states publication-title: Phys. Rev. Lett. – volume: 57 start-page: 130 issue: 1 year: 1986 end-page: 133 article-title: Elementary excitations in the fractional quantum Hall effect and the spin‐reversed quasiparticles publication-title: Phys. Rev. Lett. – volume: 55 start-page: 2095 issue: 20 year: 1985 end-page: 2098 article-title: Many‐particle translational symmetries of two‐dimensional electrons at rational Landau‐level filling publication-title: Phys. Rev. Lett. – volume: 175 start-page: 123 year: 2013 end-page: 131 article-title: Traits and characteristics of interacting Dirac fermions in monolayer and bilayer graphene publication-title: Solid State Commun. – volume: 74 start-page: 161403 issue: 16 year: 2006 article-title: Asymmetry gap in the electronic band structure of bilayer graphene publication-title: Phys. Rev. B – volume: 462 start-page: 196 issue: 7270 year: 2009 end-page: 199 article-title: Observation of the fractional quantum Hall effect in graphene publication-title: Nature – volume: 106 start-page: 046801 issue: 4 year: 2011 article-title: Measurement of the ν = 1/3 fractional quantum Hall energy gap in suspended graphene publication-title: Phys. Rev. Lett. – volume: 96 start-page: 086805 issue: 8 year: 2006 article-title: Landau‐level degeneracy and quantum Hall effect in a graphite bilayer publication-title: Phys. Rev. Lett. – volume: 11 start-page: 1582 issue: 11S year: 1996 end-page: 1585 article-title: Landau subbands generated by a lateral electrostatic superlattice‐chasing the Hofstadter butterfly publication-title: Semicond. Sci. Technol. – volume: 11 start-page: 2291 issue: 6 year: 2011 end-page: 2295 article-title: Local electronic properties of graphene on a BN substrate via scanning tunneling microscopy publication-title: Nano Lett. – volume: 84 start-page: 033408 issue: 3 article-title: Optical transitions at commensurate angles in a misoriented bilayer graphene in an external magnetic field publication-title: Phys. Rev. B – ident: e_1_2_9_62_2 doi: 10.1103/PhysRevB.78.193405 – ident: e_1_2_9_65_2 doi: 10.1038/nature08522 – ident: e_1_2_9_46_2 doi: 10.1103/PhysRevB.76.115419 – ident: e_1_2_9_56_2 doi: 10.1103/RevModPhys.71.863 – ident: e_1_2_9_83_2 doi: 10.1103/PhysRevB.30.7320 – ident: e_1_2_9_17_2 doi: 10.1080/00018732.2010.487978 – ident: e_1_2_9_37_2 doi: 10.1103/PhysRevB.81.161405 – ident: e_1_2_9_78_2 doi: 10.1103/PhysRevLett.76.4018 – ident: e_1_2_9_66_2 doi: 10.1103/PhysRevB.81.115410 – ident: e_1_2_9_32_2 doi: 10.1103/PhysRevLett.99.256802 – ident: e_1_2_9_79_2 doi: 10.1103/PhysRevB.39.7971 – ident: e_1_2_9_21_2 doi: 10.1038/nature12186 – ident: e_1_2_9_64_2 doi: 10.1103/PhysRevB.86.035401 – ident: e_1_2_9_41_2 doi: 10.1103/PhysRevB.86.115415 – ident: e_1_2_9_44_2 doi: 10.1103/PhysRevLett.96.086805 – ident: e_1_2_9_67_2 doi: 10.1038/nature08582 – ident: e_1_2_9_30_2 doi: 10.1103/PhysRevB.87.235429 – ident: e_1_2_9_76_2 doi: 10.1016/0039‐6028(90)90821‐O – ident: e_1_2_9_73_2 doi: 10.1103/PhysRev.133.A1038 – ident: e_1_2_9_55_2 doi: 10.1103/PhysRevLett.50.1395 – ident: e_1_2_9_72_2 doi: 10.1103/PhysRev.134.A1602 – ident: e_1_2_9_13_2 doi: 10.1103/PhysRevLett.80.3232 – ident: e_1_2_9_42_2 doi: 10.1103/PhysRevB.87.245408 – ident: e_1_2_9_10_2 doi: 10.1016/j.physe.2003.09.031 – start-page: 35 volume-title: Advances in solid state physics year: 2000 ident: e_1_2_9_2_2 – ident: e_1_2_9_25_2 doi: 10.1021/nl2005115 – ident: e_1_2_9_4_2 doi: 10.1103/PhysRev.180.633 – ident: e_1_2_9_36_2 doi: 10.1038/nphys1463 – ident: e_1_2_9_35_2 doi: 10.1103/PhysRevLett.101.056803 – ident: e_1_2_9_51_2 doi: 10.1103/PhysRevB.57.1312 – ident: e_1_2_9_59_2 doi: 10.1103/PhysRevLett.107.186803 – ident: e_1_2_9_31_2 doi: 10.1103/PhysRevLett.97.036803 – ident: e_1_2_9_69_2 doi: 10.1038/nphys2979 – ident: e_1_2_9_22_2 doi: 10.1126/science.1237240 – ident: e_1_2_9_39_2 doi: 10.1103/PhysRevB.84.035440 – ident: e_1_2_9_52_2 doi: 10.1103/PhysRevLett.112.176401 – ident: e_1_2_9_61_2 doi: 10.1103/PhysRevLett.102.056807 – ident: e_1_2_9_9_2 doi: 10.1103/PhysRevLett.86.147 – ident: e_1_2_9_27_2 doi: 10.1103/PhysRevB.86.235411 – ident: e_1_2_9_3_2 doi: 10.1088/0370‐1298/68/10/304 – ident: e_1_2_9_54_2 doi: 10.1007/978-3-642-97101-3 – ident: e_1_2_9_58_2 doi: 10.1103/PhysRevLett.105.036801 – ident: e_1_2_9_19_2 doi: 10.1016/j.ssc.2013.04.002 – ident: e_1_2_9_14_2 doi: 10.1103/PhysRevLett.111.185301 – ident: e_1_2_9_18_2 doi: 10.1007/978-3-319-02633-6_8 – ident: e_1_2_9_23_2 doi: 10.1038/nature12187 – ident: e_1_2_9_71_2 doi: 10.1088/0953-8984/27/18/185301 – ident: e_1_2_9_80_2 doi: 10.1103/PhysRevLett.86.1311 – ident: e_1_2_9_81_2 doi: 10.1103/PhysRevLett.57.130 – ident: e_1_2_9_11_2 doi: 10.1209/epl/i1996‐00399‐6 – ident: e_1_2_9_16_2 doi: 10.1007/978-3-319-02633-6_8 – ident: e_1_2_9_57_2 doi: 10.1103/PhysRevLett.97.126801 – ident: e_1_2_9_24_2 doi: 10.1038/nnano.2010.172 – ident: e_1_2_9_63_2 doi: 10.1103/PhysRevB.80.081408 – ident: e_1_2_9_49_2 doi: 10.1103/PhysRevB.54.R5223 – ident: e_1_2_9_40_2 doi: 10.1103/PhysRevLett.106.126802 – ident: e_1_2_9_34_2 doi: 10.1103/PhysRevLett.100.125504 – ident: e_1_2_9_15_2 doi: 10.1103/PhysRevLett.111.185302 – ident: e_1_2_9_33_2 doi: 10.1103/PhysRevB.84.033408 – ident: e_1_2_9_38_2 doi: 10.1103/PhysRevB.81.245412 – ident: e_1_2_9_45_2 doi: 10.1103/PhysRevB.74.161403 – ident: e_1_2_9_26_2 doi: 10.1038/nmat2968 – ident: e_1_2_9_28_2 doi: 10.1103/PhysRevB.75.201404 – ident: e_1_2_9_77_2 doi: 10.1080/00018730050198161 – ident: e_1_2_9_5_2 doi: 10.1103/PhysRevB.14.2239 – ident: e_1_2_9_20_2 doi: 10.1021/cr300263a – volume-title: The fractal geometry of nature year: 1982 ident: e_1_2_9_6_2 – ident: e_1_2_9_48_2 doi: 10.1016/0039‐6028(96)00456‐6 – ident: e_1_2_9_7_2 doi: 10.1103/PhysRevLett.92.256801 – ident: e_1_2_9_12_2 doi: 10.1088/0268‐1242/11/11S/022 – ident: e_1_2_9_53_2 doi: 10.1007/978-3-642-79319-6 – ident: e_1_2_9_74_2 doi: 10.1103/PhysRevLett.55.2095 – ident: e_1_2_9_68_2 doi: 10.1103/PhysRevLett.106.046801 – volume: 177 issue: 128 year: 2014 ident: e_1_2_9_60_2 article-title: Incompressible states of Dirac fermions in graphene with anisotropic interactions publication-title: Solid State Commun. – ident: e_1_2_9_43_2 doi: 10.1103/PhysRevB.89.075401 – ident: e_1_2_9_82_2 doi: 10.1103/PhysRevB.29.7032 – volume: 67 start-page: 161 issue: 3 year: 2011 ident: e_1_2_9_70_2 article-title: Taking stock of the quantum Hall effects: thirty years on publication-title: Phys. Canada – ident: e_1_2_9_75_2 doi: 10.1103/PhysRevB.48.8890 – volume: 5 start-page: 44.1 issue: 1 year: 2003 ident: e_1_2_9_29_2 article-title: Magnetic fingerprints of fractal spectra and the duality of Hofstadter models publication-title: New J. Phys. – ident: e_1_2_9_47_2 doi: 10.1103/PhysRevB.52.16744 – ident: e_1_2_9_50_2 doi: 10.1103/PhysRevB.56.R7100 – ident: e_1_2_9_8_2 doi: 10.1016/j.physe.2004.06.021 |
SSID | ssj0055536 |
Score | 2.0254772 |
Snippet | Bloch electrons in a perpendicular magnetic field exhibit unusual dynamics that has been studied for more than half a century. The single-electron energy... Bloch electrons in a perpendicular magnetic field exhibit unusual dynamics that has been studied for more than half a century. The single‐electron energy... |
SourceID | proquest crossref wiley iet |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 19 |
SubjectTerms | bilayer graphene Bilayers Bloch electrons Butterflies Butterflies & moths butterfly spectrum Dirac fermions Dynamical systems Dynamics Electron energy electron-electron interaction electronic properties Energy Energy spectra Fermions Fractal analysis fractal butterflies Fractals Graphene Hofstadter butterfly Magnetic fields Magnetic properties magnetoconductance probe magnetoresistance Moire patterns Moiré pattern monolayer graphene Monolayers perpendicular magnetic field semiconductor nanostructures semiconductor systems Semiconductors single-electron energy spectrum Special Issue on Graphene Electronics |
SummonAdditionalLinks | – databaseName: IET Digital Library (Open Access) dbid: IDLOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3dT9swED9Bedke0IBNCzBk0MTDpIzajtP4caMtH5p4AaS-RbF9nipNKeLj_-cuSVsqTYAiRZZ9sZM75-7nrzuA79GgNJGjlwUd6eZNalWFqY2-UJWKmcRmg-xVfn6bXU7MZHk8Okz_cqyMdD7jxrPl2J484K3bpIdPOh63AUkI354QQeoDu96W2U9ehVuHDTUYyKwHGxfDPzzEajWzMaYJGUgWU6aFKSaLVc7_VLJip9apeAWCvgSyjSUaf4LNDkKKX63Mt2AN6234-MKx4A6cjfnwExG5Ng41Ac0HMYuCFFzlReQNMNTbxLQW1AtpcEu4W1R1EG7aphs31qQFP8PteHRzep52IRNST4ZlkColtY80uFQSTe6wiHmVOZ1jIIa4LNJwwllEX5DslGPHK8pUnkAPauswGv0FevWsxq8g1EAGZfuhCDrP0Bm6-kh1U0bOs6cJ9OcMKn3nT5zDWvwrm3XtzJbEtJJ4WjJPS-ZpAj8Wj9y1zjReIz7mvLm4XyM8WiG8GN2Up8PrJUF5F2IC-3PpLSl13yoqt9omcLgopv-LF02qGmdP1CwpMEUoTRYJ6Ebqb786N69-jxt_e7vv_Yw9-EBp007v7EPv8f4JvxHgeXQHXT9-Bs0w-og priority: 102 providerName: Institution of Engineering and Technology |
Title | Fractal butterflies of Dirac fermions in monolayer and bilayer graphene |
URI | http://digital-library.theiet.org/content/journals/10.1049/iet-cds.2014.0275 https://onlinelibrary.wiley.com/doi/abs/10.1049%2Fiet-cds.2014.0275 https://www.proquest.com/docview/3092275939 https://www.proquest.com/docview/1793258418 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swED_S5KV7GN3WMq8faKP0oeA2kizHemzTZu0oa6Et9M1Y8gkCwylr8v_3Tk7ShkIHw2CMdLLNnXT66et3APvBoDSBo5fVOtDNm9SqClMbfKEqFTKJcYPs7_ziPvv1YB46MFychWn5IZYTbtwyor_mBl65NgoJgVoy4hinqa-ZcVtmR7z4tgY9PmLLBPoqu1m4Y2NMjBNI3aRMC2OL5dKmPX7zipXOaY2yV3Dna_Qau5_RBnyc40Zx0hr6E3Sw-QwfXrEJfoGfIz7xREKuDT5N6PJJTIIgr1Z5EXjXC1UxMW4EVT0a0RLYFlVTCzdunyN3Nbm-Tbgfnd8NL9J5nITUU28ySJWS2gcaUSqJJndYhLzKnM6xHgykywKNIZxF9AUZTDlmW1Gm8oR0UFuHwegt6DaTBr-CUANZK9uvi1rnGTpDVx_p3ZSQ85RpAv2Fgko_JxHnWBZ_yriYndmSlFaSTkvWack6TeBwWeSxZdB4T_iA0-bt6Ok9wR8rgpfnd-Xw7PZFoHysQwI7C-u9SOq-VZRvtU3g-zKbGhWvlFQNTmb0WfJaiqCZLBLQ0er__nX-vDodRZK9b_9VahvWKd20Ezw70J3-neEuQZ6p24tVeg96l2dX1yfPzif59g |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Za9wwEB5yPLR9CE0P6iRt1FD6UHC71uG1HtMkm81JoRvIm7DkESwUb0g2_z8z8u4mSyGFYjBGGklmpDl0fQPwJRosTOToZY2K9Aomt7LG3MZQyVpGXWA6IHtZDq_06bW5XoHD-V2YDh9iseDGkpH0NQs4L0h3E07NIJljnOahYcjtQn_n3bdVWNel7LN4Sv1rro-NMSlQINnJIq-MrRZ7m_bHX1UsWadVyl5yPJ-6r8n-DF7DxsxxFPtdT2_CCrZv4NUTOMG3cDzgK09E5Lvo0-Re3olJFKTW6iAiH3uhMSbGraCxR1Na8rZF3TbCj7vvBF5Nuu8dXA2ORgfDfBYoIQ9kTvq5lIUKkaaUskBTeqxiWWuvSmz6_cLrSJMIbxFDRT0mPcOtSFMHcnVQWY_RqPew1k5a_ACC2NdI22uqRpUavaGnh1Q3JZS8ZppBb84gF2Yo4hzM4o9Lu9naOmKaI5465qljnmbwbVHkpoPQeI74K6fNBOnuOcK9JcKTo5E7OPz9SOBumpjBzrz3HilVz0rKt8pm8HmRTVLFWyV1i5N7apbUliTfrKgyUKnX__3r3Lz8OUgoe1v_VWoXXgxHF-fu_OTybBteEo3pVnt2YG16e48fyf-Z-k9peD8AdLL71g |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3daxQxEB_6AaIPUr9wtWoU8UFYe_na2zzaa7etSinYQt_CJjuBA9kr9vr_O5O9u_YQKsjCsiSTZJlMJpNM8huAj8mitImjl3U60Sva0qkWS5dirVqVjMR8QPa0Or4w3y7t5QZMlndhBnyI1YYbj4ysr3mAX3VpWG8axsic4ryMHSNuS_OFnW-bsJ2dfgzvbM6W6tham-ME0jQpy9q6euXadHt_VbE2OW1S9prdedd6zdNPswOPF3aj-Dp09BPYwP4pPLqDJvgMjhq-8UREYQg-TdbltZglQVqtjSLxqRcSMTHtBYkerWjJ2BZt34kwHb4zdjWpvudw0RyeT47LRZyEMtJsMi6VkjomWlEqibYKWKeqNUFX2I3HMphEa4jgEGNNHaYCo60o20aydFC7gMnqF7DVz3p8CUKNZafcqKs7XRkMlp4RUt2UUPGWaQGjJYN8XICIcyyLXz47s43zxDRPPPXMU888LeDzqsjVgKBxH_EnTluMo-v7CD-sEZ4cnvvJwc9bAk_SUsDusvduKfXIKcp32hXwfpVNg4o9JW2PsxtqlrSWIlmSdQE69_q_f52bV_tNBtl79V-l3sGDs4PG_zg5_f4aHhKJHfZ6dmFr_vsG35D1Mw9vs3T_Afuz-wg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Fractal+butterflies+of+Dirac+fermions+in+monolayer+and+bilayer+graphene&rft.jtitle=IET+circuits%2C+devices+%26+systems&rft.au=Chakraborty%2C+Tapash&rft.au=Apalkov%2C+Vadym+M&rft.date=2015-01-01&rft.issn=1751-858X&rft.eissn=1751-8598&rft.volume=9&rft.issue=1&rft.spage=19&rft.epage=29&rft_id=info:doi/10.1049%2Fiet-cds.2014.0275&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1751-858X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1751-858X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1751-858X&client=summon |