Using long‐term data for a reintroduced population to empirically estimate future consequences of inbreeding
Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting fu...
Saved in:
Published in | Conservation biology Vol. 35; no. 3; pp. 859 - 869 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United States
Blackwell Publishing Ltd
01.06.2021
|
Subjects | |
Online Access | Get full text |
ISSN | 0888-8892 1523-1739 1523-1739 |
DOI | 10.1111/cobi.13646 |
Cover
Loading…
Abstract | Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long‐term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state‐space modeling methods based on a 26‐year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a Ne/N ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.
Uso de Datos a Largo Plazo de una Población Reintroducida para Estimar Empíricamente las Consecuencias Futuras de la Endogamia
Resumen
La depresión endogámica es una amenaza importante a largo plazo para las poblaciones reintroducidas. Sin embargo, es complicado estimar la fuerza de la depresión endogámica en las poblaciones silvestres porque los datos sobre el linaje sin duda estarán incompletos y porque se necesitan datos sólidos sobre la supervivencia y la reproducción. Es especialmente difícil predecir las consecuencias poblacionales a futuro pues esto requiere proyectar a futuro los niveles de endogamia y sus impactos sobre las dinámicas poblacionales a largo plazo, las cuales están sujetas a muchas incertidumbres. Ilustramos cómo dichas proyecciones pueden derivarse mediante métodos de modelado bayesiano de estado‐espacio basados en un conjunto de datos obtenidos durante 26 años para los tordos de la Isla del Norte (Petroica longipes) reintroducidos a la isla Tiritiri Matangi en 1992. Usamos datos de linaje para modelar los incrementos en el nivel promedio de endogamia (F̲) a lo largo del tiempo con base en el parentesco de las posibles parejas reproductoras y para estimar empíricamente Ne/N (tamaño poblacional efectivo/por censo). Usamos una imputación múltiple para modelar los componentes desconocidos de los coeficientes de endogamia, lo que nos permitió estimar los efectos de la endogamia sobre la supervivencia para todas las aves (1458) incluidas en el conjunto de datos a la vez que modelamos la dependencia de la densidad y la estocasticidad ambiental. Este modelado indicó que la endogamia redujo la supervivencia juvenil (1.83 equivalentes letales [SE 0.81]) y podría haber reducido la subsecuente supervivencia adulta (0.44 equivalentes letales [0.81]) pero no tuvo un efecto aparente sobre los números de polluelos producidos. El nivel promedio de endogamia incrementó a 0.10 (SE 0.001) conforme la población creció de 33 (0.3) a 160 (6) individuos a lo largo de los 25 años, lo que resultó en una proporción Ne/N de 0.56 (0.01). Con base en un modelo que también incorporó la regeneración del hábitat, se proyectó que la población alcanzaría un máximo de 331–1144 aves (mediana: 726) para 2130 y después comenzaría una lenta disminución. Sin la endogamia, se esperaría que la población se estabilizaría con 887–1465 (mediana: 1131) aves. Por lo tanto, dicho análisis hace posible la derivación empírica de la información necesaria para las decisiones racionales sobre el manejo de la endogamia a la vez que considera a varias fuentes de incertidumbre.
Article Impact Statement: Empirically estimating the future consequences of inbreeding allows rational long‐term management of reintroduced populations. |
---|---|
AbstractList | Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long‐term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state‐space modeling methods based on a 26‐year data set for North Island Robins (
Petroica longipes
) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (
F
) over time based on kinship of possible breeding pairs and to estimate empirically
N
e
/N
(effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a
ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.
Article Impact Statement
: Empirically estimating the future consequences of inbreeding allows rational long‐term management of reintroduced populations. Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Ne /N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a Ne/N ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331-1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887-1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Ne /N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a Ne/N ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331-1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887-1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty. Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a urn:x-wiley:08888892:media:cobi13646:cobi13646-math-0001 ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty. Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long‐term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state‐space modeling methods based on a 26‐year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Nₑ/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a Ne/N ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty. Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long‐term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state‐space modeling methods based on a 26‐year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a Ne/N ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty. Uso de Datos a Largo Plazo de una Población Reintroducida para Estimar Empíricamente las Consecuencias Futuras de la Endogamia Resumen La depresión endogámica es una amenaza importante a largo plazo para las poblaciones reintroducidas. Sin embargo, es complicado estimar la fuerza de la depresión endogámica en las poblaciones silvestres porque los datos sobre el linaje sin duda estarán incompletos y porque se necesitan datos sólidos sobre la supervivencia y la reproducción. Es especialmente difícil predecir las consecuencias poblacionales a futuro pues esto requiere proyectar a futuro los niveles de endogamia y sus impactos sobre las dinámicas poblacionales a largo plazo, las cuales están sujetas a muchas incertidumbres. Ilustramos cómo dichas proyecciones pueden derivarse mediante métodos de modelado bayesiano de estado‐espacio basados en un conjunto de datos obtenidos durante 26 años para los tordos de la Isla del Norte (Petroica longipes) reintroducidos a la isla Tiritiri Matangi en 1992. Usamos datos de linaje para modelar los incrementos en el nivel promedio de endogamia (F̲) a lo largo del tiempo con base en el parentesco de las posibles parejas reproductoras y para estimar empíricamente Ne/N (tamaño poblacional efectivo/por censo). Usamos una imputación múltiple para modelar los componentes desconocidos de los coeficientes de endogamia, lo que nos permitió estimar los efectos de la endogamia sobre la supervivencia para todas las aves (1458) incluidas en el conjunto de datos a la vez que modelamos la dependencia de la densidad y la estocasticidad ambiental. Este modelado indicó que la endogamia redujo la supervivencia juvenil (1.83 equivalentes letales [SE 0.81]) y podría haber reducido la subsecuente supervivencia adulta (0.44 equivalentes letales [0.81]) pero no tuvo un efecto aparente sobre los números de polluelos producidos. El nivel promedio de endogamia incrementó a 0.10 (SE 0.001) conforme la población creció de 33 (0.3) a 160 (6) individuos a lo largo de los 25 años, lo que resultó en una proporción Ne/N de 0.56 (0.01). Con base en un modelo que también incorporó la regeneración del hábitat, se proyectó que la población alcanzaría un máximo de 331–1144 aves (mediana: 726) para 2130 y después comenzaría una lenta disminución. Sin la endogamia, se esperaría que la población se estabilizaría con 887–1465 (mediana: 1131) aves. Por lo tanto, dicho análisis hace posible la derivación empírica de la información necesaria para las decisiones racionales sobre el manejo de la endogamia a la vez que considera a varias fuentes de incertidumbre. Article Impact Statement: Empirically estimating the future consequences of inbreeding allows rational long‐term management of reintroduced populations. Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically N /N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331-1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887-1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty. Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long‐term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state‐space modeling methods based on a 26‐year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a Ne/N ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty. |
Author | Parlato, Elizabeth H. Kwikkel, Renske Ewen, John G. McCready, Mhairi Parker, Kevin A. Berggren, Åsa Armstrong, Doug P. Egli, Barbara Dimond, Wendy J. |
Author_xml | – sequence: 1 givenname: Doug P. orcidid: 0000-0003-0163-3435 surname: Armstrong fullname: Armstrong, Doug P. email: d.p.armstrong@massey.ac.nz organization: Massey University – sequence: 2 givenname: Elizabeth H. orcidid: 0000-0002-0787-0485 surname: Parlato fullname: Parlato, Elizabeth H. organization: Massey University – sequence: 3 givenname: Barbara surname: Egli fullname: Egli, Barbara organization: Massey University – sequence: 4 givenname: Wendy J. surname: Dimond fullname: Dimond, Wendy J. organization: The Australian National University – sequence: 5 givenname: Renske surname: Kwikkel fullname: Kwikkel, Renske organization: Van Hall Instituut – sequence: 6 givenname: Åsa surname: Berggren fullname: Berggren, Åsa organization: Swedish University of Agricultural Sciences – sequence: 7 givenname: Mhairi surname: McCready fullname: McCready, Mhairi organization: Hihi Conservation Charitable Trust – sequence: 8 givenname: Kevin A. surname: Parker fullname: Parker, Kevin A. organization: Parker Conservation – sequence: 9 givenname: John G. surname: Ewen fullname: Ewen, John G. organization: Zoological Society of London |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/32997349$$D View this record in MEDLINE/PubMed https://res.slu.se/id/publ/109466$$DView record from Swedish Publication Index |
BookMark | eNqFksFu1DAURS1URKeFDR-ALLFBSBns2E7sJYwKVKrUDV1bTvJSuXLsYDuqZtdP4Bv5knqalkWFwJu3Off6Pr17go588IDQW0q2tLxPfejslrKGNy_QhoqaVbRl6ghtiJSyklLVx-gkpRtCiBKUv0LHrFaqZVxtkL9K1l9jF_z177tfGeKEB5MNHkPEBkewPscwLD0MeA7z4ky2weMcMEyzjbY3zu0xpGwnkwGPS14i4D74BD8X8D0kHEZsfRcBhvLRa_RyNC7Bm8d5iq6-nv3Yfa8uLr-d7z5fVD2vVVM11NS1lKQlrRASQHRKctWANJIPLemHmlAiOkp4Z2AY6k6YUbVGKENH2XDJTtF29U23MC-dnmMJGPc6GKuTWzoTD0Mn0JQo3jRF8GEVzDGU5CnryaYenDMewpJ0LRoqGOVM_B_lvBWcNoQV9P0z9CYs0ZfNiyGrW95yTgv17pFaugmGP2GfrlQAsgJ9DClFGHVv88MlcjTWlR30oQj6UAT9UIQi-fhM8uT6V5iu8K11sP8HqXeXX85XzT2dRcSq |
CitedBy_id | crossref_primary_10_1016_j_ecolmodel_2024_110662 crossref_primary_10_1111_mec_17690 crossref_primary_10_1111_acv_13019 crossref_primary_10_1111_mec_17608 crossref_primary_10_1111_1365_2656_13592 crossref_primary_10_1111_mec_16068 crossref_primary_10_1111_cobi_13843 |
Cites_doi | 10.1007/s00442-015-3330-6 10.1002/9781444355833.ch13 10.1002/9781444355833.ch11 10.1007/s10592-019-01231-y 10.1093/beheco/arp034 10.1111/j.1558-5646.1996.tb03609.x 10.1534/genetics.111.135541 10.1111/j.1420-9101.2010.01979.x 10.1016/j.tree.2019.06.006 10.1111/conl.12412 10.1093/oso/9780198783411.001.0001 10.1006/tpbi.1995.1025 10.3168/jds.S0022-0302(92)78077-1 10.1002/9781444355833.ch12 10.1111/conl.12218 10.1038/s41559-019-0968-1 10.1086/285684 10.2307/1308256 10.1111/j.1523-1739.2011.01794.x 10.1016/j.tree.2006.03.018 10.1111/eva.12713 10.2307/4089074 10.1046/j.1523-1739.2002.00215.x 10.1038/s41467-020-14803-1 10.1038/s41437-017-0045-y 10.1111/j.1469-1795.2006.00078.x 10.1111/j.1523-1739.2006.00537.x 10.1038/nrg.2015.28 10.1016/j.tree.2016.09.005 |
ContentType | Journal Article |
Copyright | 2020 Society for Conservation Biology 2020 Society for Conservation Biology. 2021, Society for Conservation Biology |
Copyright_xml | – notice: 2020 Society for Conservation Biology – notice: 2020 Society for Conservation Biology. – notice: 2021, Society for Conservation Biology |
CorporateAuthor | Sveriges lantbruksuniversitet |
CorporateAuthor_xml | – name: Sveriges lantbruksuniversitet |
DBID | AAYXX CITATION NPM 7QG 7SN 7SS 7ST 7U6 8FD C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 ADTPV AOWAS |
DOI | 10.1111/cobi.13646 |
DatabaseName | CrossRef PubMed Animal Behavior Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Sustainability Science Abstracts Technology Research Database Environmental Sciences and Pollution Management ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Aquatic Science & Fisheries Abstracts (ASFA) Professional Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic SwePub SwePub Articles |
DatabaseTitle | CrossRef PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional Technology Research Database Ecology Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Genetics Abstracts Sustainability Science Abstracts Animal Behavior Abstracts ASFA: Aquatic Sciences and Fisheries Abstracts Engineering Research Database Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources Environment Abstracts MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic AGRICOLA PubMed Aquatic Science & Fisheries Abstracts (ASFA) Professional |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology Ecology |
EISSN | 1523-1739 |
EndPage | 869 |
ExternalDocumentID | oai_slubar_slu_se_109466 32997349 10_1111_cobi_13646 COBI13646 |
Genre | article Journal Article |
GeographicLocations | Tiritiri Matangi |
GeographicLocations_xml | – name: Tiritiri Matangi |
GroupedDBID | --- -DZ .-4 .3N .GA .Y3 05W 0R~ 10A 1OB 1OC 29F 31~ 33P 3SF 4.4 42X 50Y 50Z 51W 51X 52M 52N 52O 52P 52S 52T 52U 52W 52X 53G 5GY 5HH 5LA 5VS 66C 6J9 702 7PT 8-0 8-1 8-3 8-4 8-5 8UM 930 A03 AAESR AAEVG AAHBH AAHHS AAHKG AAHQN AAISJ AAKGQ AAMNL AANHP AANLZ AAONW AASGY AAUTI AAXRX AAYCA AAZKR ABBHK ABCQN ABCUV ABEFU ABEML ABJNI ABLJU ABPLY ABPPZ ABPVW ABTLG ABXSQ ACAHQ ACBWZ ACCFJ ACCZN ACFBH ACGFO ACGFS ACHIC ACNCT ACPOU ACPRK ACPVT ACRPL ACSCC ACSTJ ACXBN ACXQS ACYXJ ADBBV ADEOM ADIZJ ADKYN ADMGS ADNMO ADOZA ADUKH ADULT ADXAS ADZMN ADZOD AEEZP AEGXH AEIGN AEIMD AENEX AEQDE AEUPB AEUQT AEUYR AFAZZ AFBPY AFEBI AFFPM AFGKR AFPWT AFRAH AFWVQ AFZJQ AHBTC AHXOZ AI. AIAGR AILXY AITYG AIURR AIWBW AJBDE AJXKR ALAGY ALMA_UNASSIGNED_HOLDINGS ALUQN ALVPJ AMBMR AMYDB ANHSF AQVQM ASPBG ATUGU AUFTA AVWKF AZBYB AZFZN AZVAB BAFTC BDRZF BFHJK BHBCM BMNLL BMXJE BNHUX BROTX BRXPI BY8 C45 CAG CBGCD COF CS3 CUYZI D-E D-F D0L DCZOG DEVKO DOOOF DPXWK DR2 DRFUL DRSTM DU5 EBS ECGQY EJD ESX F00 F01 F04 F5P FEDTE G-S G.N GODZA GTFYD H.T H.X HF~ HGD HGLYW HQ2 HTVGU HVGLF HZI HZ~ IHE IPSME IX1 J0M JAAYA JBMMH JBS JEB JENOY JHFFW JKQEH JLS JLXEF JPM JSODD JST LATKE LC2 LC3 LEEKS LH4 LITHE LMP LOXES LP6 LP7 LUTES LW6 LYRES MEWTI MK4 MRFUL MRSTM MSFUL MSSTM MVM MXFUL MXSTM N04 N05 N9A NEJ NF~ O66 O9- OES OIG OVD P2P P2W P2X P4D PQQKQ Q.N Q11 QB0 QN7 R.K ROL RSU RX1 SA0 SAMSI SUPJJ TEORI TN5 UB1 UKR UQL V8K VH1 VOH W8V W99 WBKPD WHG WIH WIK WNSPC WOHZO WQJ WRC WXSBR WYISQ XG1 XIH XSW YFH YUY YV5 YZZ ZCA ZCG ZO4 ZZTAW ~02 ~IA ~KM ~WT AAYXX ABSQW ADXHL AEYWJ AGHNM AGQPQ AGUYK AGYGG CITATION NPM 7QG 7SN 7SS 7ST 7U6 8FD AAMMB AEFGJ AGXDD AIDQK AIDYY C1K F1W FR3 H95 L.G P64 RC3 SOI 7X8 7S9 L.6 ADTPV AOWAS |
ID | FETCH-LOGICAL-c4296-61a22880707558ee5b98496e8a84d70cd20105b104baedd2b5af97a59a1f86483 |
IEDL.DBID | DR2 |
ISSN | 0888-8892 1523-1739 |
IngestDate | Thu Aug 21 06:24:22 EDT 2025 Fri Jul 11 18:27:06 EDT 2025 Fri Jul 11 07:20:24 EDT 2025 Fri Jul 25 11:06:10 EDT 2025 Wed Feb 19 02:30:05 EST 2025 Thu Apr 24 23:01:24 EDT 2025 Tue Jul 01 02:25:32 EDT 2025 Wed Jan 22 16:30:27 EST 2025 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 3 |
Keywords | Bayesian hierarchical modeling reintroducción Toutouwai poblaciones pequeñas modelado jerárquico bayesiano New Zealand population modeling North Island robin reintroduction modelado poblacional small populations tordo de la Isla del Norte Nueva Zelanda inbreeding depression depresión endogámica |
Language | English |
License | 2020 Society for Conservation Biology. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4296-61a22880707558ee5b98496e8a84d70cd20105b104baedd2b5af97a59a1f86483 |
Notes | Article Impact Statement: Empirically estimating the future consequences of inbreeding allows rational long‐term management of reintroduced populations. ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-0787-0485 0000-0003-0163-3435 |
PMID | 32997349 |
PQID | 2532747441 |
PQPubID | 36794 |
PageCount | 11 |
ParticipantIDs | swepub_primary_oai_slubar_slu_se_109466 proquest_miscellaneous_2561531435 proquest_miscellaneous_2447541603 proquest_journals_2532747441 pubmed_primary_32997349 crossref_citationtrail_10_1111_cobi_13646 crossref_primary_10_1111_cobi_13646 wiley_primary_10_1111_cobi_13646_COBI13646 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2021 |
PublicationDateYYYYMMDD | 2021-06-01 |
PublicationDate_xml | – month: 06 year: 2021 text: June 2021 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States – name: Washington |
PublicationTitle | Conservation biology |
PublicationTitleAlternate | Conserv Biol |
PublicationYear | 2021 |
Publisher | Blackwell Publishing Ltd |
Publisher_xml | – name: Blackwell Publishing Ltd |
References | 2002; 16 1997; 114 2018; 121 2019; 3 2009; 21 2012 2011 2010 2019; 34 2019; 12 1996; 50 2016; 31 1970 2002 1992; 75 2016; 17 2007; 10 2010; 23 1994; 144 2015; 179 2006; 21 2020 2019; 21 2012; 190 2019 2013; 60 2015 2014 2012; 26 2007; 21 2018; 11 2016; 9 1981; 31 1985; 13 Mitchell ND (e_1_2_8_30_1) 1985; 13 Kéry M (e_1_2_8_23_1) 2012 e_1_2_8_29_1 e_1_2_8_24_1 e_1_2_8_25_1 e_1_2_8_26_1 e_1_2_8_27_1 Miskelly CM (e_1_2_8_28_1) 2013; 60 e_1_2_8_3_1 e_1_2_8_2_1 e_1_2_8_4_1 Spiegelhalter D (e_1_2_8_37_1) 2014 e_1_2_8_7_1 e_1_2_8_9_1 e_1_2_8_8_1 e_1_2_8_20_1 e_1_2_8_21_1 e_1_2_8_22_1 e_1_2_8_17_1 Ballou JD (e_1_2_8_6_1) 2011 e_1_2_8_18_1 e_1_2_8_19_1 Ballou JD (e_1_2_8_5_1) 2010 e_1_2_8_13_1 e_1_2_8_36_1 e_1_2_8_14_1 e_1_2_8_35_1 e_1_2_8_15_1 e_1_2_8_38_1 e_1_2_8_16_1 Weeks AR (e_1_2_8_39_1) 2015 e_1_2_8_32_1 e_1_2_8_10_1 e_1_2_8_31_1 e_1_2_8_11_1 e_1_2_8_34_1 e_1_2_8_12_1 e_1_2_8_33_1 |
References_xml | – year: 2011 – volume: 21 start-page: 41 year: 2019 end-page: 53 article-title: Genetic rescue of an isolated African lion population publication-title: Conservation Genetics – volume: 75 start-page: 3136 year: 1992 end-page: 3144 article-title: Accounting for inbreeding and crossbreeding in genetic evaluation publication-title: Journal of Dairy Science – volume: 60 start-page: 3 year: 2013 end-page: 28 article-title: Conservation translocations of New Zealand birds, 1863–2012 publication-title: Notornis – volume: 26 start-page: 97 year: 2012 end-page: 106 article-title: An integrated approach for predicting fates of reintroductions with demographic data from multiple populations publication-title: Conservation Biology – start-page: 395 year: 2012 end-page: 440 – volume: 10 start-page: 95 year: 2007 end-page: 102 article-title: Moderate inbreeding depression in a reintroduced population of North Island robins publication-title: Animal Conservation – volume: 23 start-page: 1148 year: 2010 end-page: 1158 article-title: Estimating the ratio of effective to actual size of an age‐structured population from individual demographic data publication-title: Journal of Evolutionary Biology – volume: 31 start-page: 131 year: 1981 end-page: 134 article-title: Minimum population sizes for species conservation publication-title: BioScience – volume: 3 start-page: 359 year: 2019 end-page: 1364 article-title: Inbreeding reduces long‐term growth of populations publication-title: Nature Ecology and Evolution – volume: 50 start-page: 2187 year: 1996 end-page: 2200 article-title: Hierarchical analysis of inbreeding depression in publication-title: Evolution – year: 2014 – volume: 121 start-page: 38 year: 2018 end-page: 51 article-title: Detection of genetic purging and predictive value of purging parameters estimated in pedigreed populations publication-title: Heredity – volume: 13 start-page: 36 year: 1985 end-page: 41 article-title: The revegetation of Tiritiri Matangi Island: the creation of an open sanctuary publication-title: Royal New Zealand Horticultural Society Annual Journal – volume: 16 start-page: 1074 year: 2002 end-page: 1085 article-title: Dynamics and viability of a New Zealand robin population reintroduced to regenerating fragmented habitat publication-title: Conservation Biology – start-page: 360 year: 2012 end-page: 394 – year: 2012 – volume: 9 start-page: 260 year: 2016 end-page: 266 article-title: Stochastic dominance to account for uncertainty and risk in conservation decisions publication-title: Conservation Letters – volume: 12 start-page: 266 year: 2019 end-page: 279 article-title: Nonequivalent lethal equivalents: models and inbreeding metrics for unbiased estimation of inbreeding load publication-title: Evolutionary Applications – volume: 144 start-page: 412 year: 1994 end-page: 431 article-title: Demographic consequences of inbreeding in remnant populations publication-title: The American Naturalist – volume: 21 start-page: 341 year: 2006 end-page: 347 article-title: Natural selection and population dynamics publication-title: Trends in Ecology and Evolution – volume: 21 start-page: 575 year: 2009 end-page: 584 article-title: Why some species of birds do not avoid inbreeding: insights from New Zealand robins and saddlebacks publication-title: Behavioural Ecology – volume: 34 start-page: 1070 year: 2019 end-page: 1079 article-title: The exciting potential and remaining uncertainties of genetic rescue publication-title: Trends in Ecology and Evolution – year: 2002 – volume: 179 start-page: 319 year: 2015 end-page: 328 article-title: Traits influencing range contraction in New Zealand's endemic forest birds publication-title: Oecologia – year: 1970 – volume: 21 start-page: 114 year: 2007 end-page: 124 article-title: Adaptive harvesting of source populations for translocation: a case study using New Zealand robins publication-title: Conservation Biology – start-page: 441 year: 2012 end-page: 475 – volume: 17 start-page: 81 year: 2016 end-page: 92 article-title: Harnessing the power of RADseq for ecological and evolutionary genomics publication-title: Nature Reviews Genetics – volume: 114 start-page: 120 year: 1997 end-page: 126 article-title: Social and sexual monogamy detected in New Zealand robins using multilocus minisatellite DNA publication-title: Auk – volume: 31 start-page: 940 year: 2016 end-page: 952 article-title: Understanding inbreeding depression, purging and genetic rescue publication-title: Trends in Ecology & Evolution – start-page: 127 year: 2015 end-page: 140 – start-page: 219 year: 2010 end-page: 252 – volume: 190 start-page: 1461 year: 2012 end-page: 1476 article-title: Understanding and predicting the fitness decline of shrunk populations: inbreeding, purging, mutation, and standard selection publication-title: Genetics – year: 2020 article-title: Purging of highly deleterious mutations through severe bottlenecks in publication-title: Nature Communications – volume: 11 start-page: 1 year: 2018 end-page: 6 article-title: Call for a paradigm shift in the genetic management of fragmented populations publication-title: Conservation Letters – year: 2019 – ident: e_1_2_8_33_1 doi: 10.1007/s00442-015-3330-6 – ident: e_1_2_8_19_1 doi: 10.1002/9781444355833.ch13 – ident: e_1_2_8_22_1 doi: 10.1002/9781444355833.ch11 – start-page: 127 volume-title: Advances in reintroduction biology of Australian and New Zealand fauna year: 2015 ident: e_1_2_8_39_1 – start-page: 219 volume-title: Wild mammals in captivity: principles and techniques for zoo management year: 2010 ident: e_1_2_8_5_1 – volume-title: OpenBUGS User Manual, Version 3.2.3. MRC Biostatistics Unit year: 2014 ident: e_1_2_8_37_1 – ident: e_1_2_8_26_1 doi: 10.1007/s10592-019-01231-y – ident: e_1_2_8_21_1 doi: 10.1093/beheco/arp034 – ident: e_1_2_8_24_1 doi: 10.1111/j.1558-5646.1996.tb03609.x – volume-title: PMx: software for demographic and genetic analysis and management of pedigreed populations (version 1.0) year: 2011 ident: e_1_2_8_6_1 – ident: e_1_2_8_15_1 doi: 10.1534/genetics.111.135541 – ident: e_1_2_8_13_1 doi: 10.1111/j.1420-9101.2010.01979.x – ident: e_1_2_8_7_1 doi: 10.1016/j.tree.2019.06.006 – volume: 13 start-page: 36 year: 1985 ident: e_1_2_8_30_1 article-title: The revegetation of Tiritiri Matangi Island: the creation of an open sanctuary publication-title: Royal New Zealand Horticultural Society Annual Journal – ident: e_1_2_8_34_1 doi: 10.1111/conl.12412 – ident: e_1_2_8_14_1 doi: 10.1093/oso/9780198783411.001.0001 – ident: e_1_2_8_11_1 doi: 10.1006/tpbi.1995.1025 – ident: e_1_2_8_38_1 doi: 10.3168/jds.S0022-0302(92)78077-1 – volume-title: Bayesian population analysis using WinBUGS: a hierarchical perspective year: 2012 ident: e_1_2_8_23_1 – ident: e_1_2_8_16_1 doi: 10.1002/9781444355833.ch12 – ident: e_1_2_8_10_1 doi: 10.1111/conl.12218 – ident: e_1_2_8_9_1 doi: 10.1038/s41559-019-0968-1 – ident: e_1_2_8_27_1 doi: 10.1086/285684 – ident: e_1_2_8_36_1 doi: 10.2307/1308256 – ident: e_1_2_8_32_1 doi: 10.1111/j.1523-1739.2011.01794.x – ident: e_1_2_8_8_1 – ident: e_1_2_8_35_1 doi: 10.1016/j.tree.2006.03.018 – ident: e_1_2_8_31_1 doi: 10.1111/eva.12713 – ident: e_1_2_8_3_1 doi: 10.2307/4089074 – ident: e_1_2_8_4_1 doi: 10.1046/j.1523-1739.2002.00215.x – ident: e_1_2_8_17_1 doi: 10.1038/s41467-020-14803-1 – ident: e_1_2_8_25_1 doi: 10.1038/s41437-017-0045-y – volume: 60 start-page: 3 year: 2013 ident: e_1_2_8_28_1 article-title: Conservation translocations of New Zealand birds, 1863–2012 publication-title: Notornis – ident: e_1_2_8_20_1 doi: 10.1111/j.1469-1795.2006.00078.x – ident: e_1_2_8_12_1 doi: 10.1111/j.1523-1739.2006.00537.x – ident: e_1_2_8_2_1 doi: 10.1038/nrg.2015.28 – ident: e_1_2_8_29_1 – ident: e_1_2_8_18_1 doi: 10.1016/j.tree.2016.09.005 |
SSID | ssj0009514 |
Score | 2.4057133 |
Snippet | Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in... Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in... |
SourceID | swepub proquest pubmed crossref wiley |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 859 |
SubjectTerms | adults Bayesian analysis Bayesian hierarchical modeling Bayesian theory Birds Breeding Coefficients Data data collection Datasets Density dependence depresión endogámica Ecology Ekologi Environment models Equivalence habitats Inbreeding Inbreeding depression Juveniles kinship modelado jerárquico bayesiano modelado poblacional Modelling New Zealand North Island robin Nueva Zelanda Pedigree Petroica Petroica longipes poblaciones pequeñas Population Population decline Population dynamics population modeling Population number population size Populations Probability theory Regeneration Regeneration (biological) reintroducción reintroduction small populations Stochasticity Survival tordo de la Isla del Norte Toutouwai Uncertainty wildlife management |
Title | Using long‐term data for a reintroduced population to empirically estimate future consequences of inbreeding |
URI | https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.13646 https://www.ncbi.nlm.nih.gov/pubmed/32997349 https://www.proquest.com/docview/2532747441 https://www.proquest.com/docview/2447541603 https://www.proquest.com/docview/2561531435 https://res.slu.se/id/publ/109466 |
Volume | 35 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5KoeCL90tslRUFUUjp2exuNuCLlpYqqCAW-iJhd7MpB4_J4VweTp_8Cf2N_SWd2U3iqUpBn7KQCWySmdlvNl--AXihKkIJlP24rFKh6jw1I-dTlxnMh47bPOzpfvykjo7FhxN5sgFv-n9hoj7EsOFGkRHyNQW4sfO1IHetHRNJS5DeNpG1CBF94WuKu1HYG0u8VOuCd9qkROP5denV1egPiDnoh16FrmHtObwF3_pZR8rJ993lwu66s98EHf_3tm7DzQ6UsrfRi-7Ahm_uwlZsU7nC0UGQtl7dgyYwDNikbU4vfp5TVmdEMWWIfJlhMz8m3nuF3lKx6dAZjC1a5n9Mx0GMZLJipOuBONmzqGfC3Bqhm7U1GzdYpoc19T4cHx583T9Ku44NqcN1TWEdajjHjJAjEJHae2kLLQrltdGiyvdcRd_epcUS0BpfVdxKUxe5kYUZ1VoJnT2AzaZt_CNgKqss5h98c7URflRYraQXRtYKh97tJfCqf3Ol6-TMqavGpOzLGnqSZXiSCTwfbKdRxOOvVju9A5RdIM9LLjOq2xE0JvBsOI0hSN9VTOPbJdqQaKKgft3X2EhC1gROE3gYnWuYSoaQIM9EkcDL6G3DGdL-nk-W1szoUM49EQaEwqm-Dj50zd2U-5_fvQ-jx_9ivA03OLF2wj7TDmwuZkv_BGHXwj4N4XUJ5KAqCA |
linkProvider | Wiley-Blackwell |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1BEYIX7pdAASOQEEipuo7tOI9QWm2hLRJqpb5FtuOgFUuy2svD8sQn8I18CTN2NmwBVYKnWMpEymVmfMY-OQPwXFWEEij7cVmlQtV5agbOpy4zmA8dt3lY0z08UsMT8e5UnnbcHPoXJupD9AtuFBkhX1OA04L0WpS71o6IpSXURbhELb0pLt9-5Guau1HaG4u8VOuCd-qkROT5de3Z-egPkNkriJ4Fr2H22bseW6zOgmghkU4-by3mdst9_U3S8b8f7AZc63Apex0d6SZc8M0tuBw7VS5xtBvUrZe3oQkkAzZum08_vn2nxM6IZcoQ_DLDpn5E1PcKHaZik745GJu3zH-ZjIIeyXjJSNoDobJnUdKEuTVON2trNmqwUg_T6h042ds93hmmXdOG1OHUprAUNZxjUsgRi0jtvbSFFoXy2mhR5duuou13abEKtMZXFbfS1EVuZGEGtVZCZ3dho2kbfx-YyiqLKQg_XW2EHxRWK-mFkbXCoXfbCbxcfbrSdYrm1FhjXK4qG3qTZXiTCTzrbSdRx-OvVpsrDyi7WJ6VXGZUuiNuTOBpfxqjkLZWTOPbBdqQbqKglt3n2EgC14RPE7gXvau_lQxRQZ6JIoEX0d36MyT_PRsvrJnSoZx54gwIhbf6KjjROU9T7nx4sx9GD_7F-AlcGR4fHpQH-0fvH8JVTiSesOy0CRvz6cI_QhQ2t49DrP0EWPQuIQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bitRAEC3WFcUX75foqi0KopBlJunudMAX3d1h18sq4sK-SOhbZHBMhrk8jE9-gt_ol1jVuTirsqBPaUgFOklV9anOySmAR9IRSqDslwgXc1lmsR5aH9tUYz60icnCnu6bQ7l_xF8ei-MNeNb9C9PoQ_QbbhQZIV9TgE9duRbktjZjImlxeQbOcjlQVHrtvk_WJHcbZW-s8WKl8qQVJyUez69rTy5Hf2DMXkD0JHYNi8_oEnzspt1wTj5vLxdm2379TdHxf-_rMlxsUSl73rjRFdjw1VU41_SpXOFoL2hbr65BFSgGbFJXn358-05pnRHHlCH0ZZrN_JiI7w7dxbFp3xqMLWrmv0zHQY1ksmIk7IFA2bNG0ITZNUY3q0s2rrBOD4vqdTga7X3Y2Y_blg2xxYVNYiGqkwRTQoZIRCjvhckVz6VXWnGXDayjj-_CYA1otHcuMUKXeaZFroelklylN2Czqit_C5hMncEEhG-u1NwPc6Ok8FyLUuLQ20EET7o3V9hWz5zaakyKrq6hJ1mEJxnBw9522qh4_NVqq3OAoo3keZGIlAp3RI0RPOhPYwzShxVd-XqJNqSayKlh9yk2gqA1odMIbjbO1U8lRUyQpTyP4HHjbf0ZEv-eT5ZGz-hQzD0xBrjEqT4NPnTK3RQ7b18chNHtfzG-D-ff7Y6K1weHr-7AhYQYPGHPaQs2F7Olv4sQbGHuhUj7CdH6LNk |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+long%E2%80%90term+data+for+a+reintroduced+population+to+empirically+estimate+future+consequences+of+inbreeding&rft.jtitle=Conservation+biology&rft.au=Armstrong%2C+Doug+P.&rft.au=Parlato%2C+Elizabeth+H.&rft.au=Egli%2C+Barbara&rft.au=Dimond%2C+Wendy+J.&rft.date=2021-06-01&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=35&rft.issue=3&rft.spage=859&rft.epage=869&rft_id=info:doi/10.1111%2Fcobi.13646&rft.externalDBID=10.1111%252Fcobi.13646&rft.externalDocID=COBI13646 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon |