Using long‐term data for a reintroduced population to empirically estimate future consequences of inbreeding

Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting fu...

Full description

Saved in:
Bibliographic Details
Published inConservation biology Vol. 35; no. 3; pp. 859 - 869
Main Authors Armstrong, Doug P., Parlato, Elizabeth H., Egli, Barbara, Dimond, Wendy J., Kwikkel, Renske, Berggren, Åsa, McCready, Mhairi, Parker, Kevin A., Ewen, John G.
Format Journal Article
LanguageEnglish
Published United States Blackwell Publishing Ltd 01.06.2021
Subjects
Online AccessGet full text
ISSN0888-8892
1523-1739
1523-1739
DOI10.1111/cobi.13646

Cover

Loading…
Abstract Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long‐term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state‐space modeling methods based on a 26‐year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a Ne/N ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty. Uso de Datos a Largo Plazo de una Población Reintroducida para Estimar Empíricamente las Consecuencias Futuras de la Endogamia Resumen La depresión endogámica es una amenaza importante a largo plazo para las poblaciones reintroducidas. Sin embargo, es complicado estimar la fuerza de la depresión endogámica en las poblaciones silvestres porque los datos sobre el linaje sin duda estarán incompletos y porque se necesitan datos sólidos sobre la supervivencia y la reproducción. Es especialmente difícil predecir las consecuencias poblacionales a futuro pues esto requiere proyectar a futuro los niveles de endogamia y sus impactos sobre las dinámicas poblacionales a largo plazo, las cuales están sujetas a muchas incertidumbres. Ilustramos cómo dichas proyecciones pueden derivarse mediante métodos de modelado bayesiano de estado‐espacio basados en un conjunto de datos obtenidos durante 26 años para los tordos de la Isla del Norte (Petroica longipes) reintroducidos a la isla Tiritiri Matangi en 1992. Usamos datos de linaje para modelar los incrementos en el nivel promedio de endogamia (F̲) a lo largo del tiempo con base en el parentesco de las posibles parejas reproductoras y para estimar empíricamente Ne/N (tamaño poblacional efectivo/por censo). Usamos una imputación múltiple para modelar los componentes desconocidos de los coeficientes de endogamia, lo que nos permitió estimar los efectos de la endogamia sobre la supervivencia para todas las aves (1458) incluidas en el conjunto de datos a la vez que modelamos la dependencia de la densidad y la estocasticidad ambiental. Este modelado indicó que la endogamia redujo la supervivencia juvenil (1.83 equivalentes letales [SE 0.81]) y podría haber reducido la subsecuente supervivencia adulta (0.44 equivalentes letales [0.81]) pero no tuvo un efecto aparente sobre los números de polluelos producidos. El nivel promedio de endogamia incrementó a 0.10 (SE 0.001) conforme la población creció de 33 (0.3) a 160 (6) individuos a lo largo de los 25 años, lo que resultó en una proporción Ne/N de 0.56 (0.01). Con base en un modelo que también incorporó la regeneración del hábitat, se proyectó que la población alcanzaría un máximo de 331–1144 aves (mediana: 726) para 2130 y después comenzaría una lenta disminución. Sin la endogamia, se esperaría que la población se estabilizaría con 887–1465 (mediana: 1131) aves. Por lo tanto, dicho análisis hace posible la derivación empírica de la información necesaria para las decisiones racionales sobre el manejo de la endogamia a la vez que considera a varias fuentes de incertidumbre. Article Impact Statement: Empirically estimating the future consequences of inbreeding allows rational long‐term management of reintroduced populations.
AbstractList Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long‐term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state‐space modeling methods based on a 26‐year data set for North Island Robins ( Petroica longipes ) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level ( F ) over time based on kinship of possible breeding pairs and to estimate empirically N e /N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty. Article Impact Statement : Empirically estimating the future consequences of inbreeding allows rational long‐term management of reintroduced populations.
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Ne /N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a Ne/N ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331-1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887-1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Ne /N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a Ne/N ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331-1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887-1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a urn:x-wiley:08888892:media:cobi13646:cobi13646-math-0001 ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.
Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long‐term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state‐space modeling methods based on a 26‐year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Nₑ/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a Ne/N ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.
Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long‐term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state‐space modeling methods based on a 26‐year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a Ne/N ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty. Uso de Datos a Largo Plazo de una Población Reintroducida para Estimar Empíricamente las Consecuencias Futuras de la Endogamia Resumen La depresión endogámica es una amenaza importante a largo plazo para las poblaciones reintroducidas. Sin embargo, es complicado estimar la fuerza de la depresión endogámica en las poblaciones silvestres porque los datos sobre el linaje sin duda estarán incompletos y porque se necesitan datos sólidos sobre la supervivencia y la reproducción. Es especialmente difícil predecir las consecuencias poblacionales a futuro pues esto requiere proyectar a futuro los niveles de endogamia y sus impactos sobre las dinámicas poblacionales a largo plazo, las cuales están sujetas a muchas incertidumbres. Ilustramos cómo dichas proyecciones pueden derivarse mediante métodos de modelado bayesiano de estado‐espacio basados en un conjunto de datos obtenidos durante 26 años para los tordos de la Isla del Norte (Petroica longipes) reintroducidos a la isla Tiritiri Matangi en 1992. Usamos datos de linaje para modelar los incrementos en el nivel promedio de endogamia (F̲) a lo largo del tiempo con base en el parentesco de las posibles parejas reproductoras y para estimar empíricamente Ne/N (tamaño poblacional efectivo/por censo). Usamos una imputación múltiple para modelar los componentes desconocidos de los coeficientes de endogamia, lo que nos permitió estimar los efectos de la endogamia sobre la supervivencia para todas las aves (1458) incluidas en el conjunto de datos a la vez que modelamos la dependencia de la densidad y la estocasticidad ambiental. Este modelado indicó que la endogamia redujo la supervivencia juvenil (1.83 equivalentes letales [SE 0.81]) y podría haber reducido la subsecuente supervivencia adulta (0.44 equivalentes letales [0.81]) pero no tuvo un efecto aparente sobre los números de polluelos producidos. El nivel promedio de endogamia incrementó a 0.10 (SE 0.001) conforme la población creció de 33 (0.3) a 160 (6) individuos a lo largo de los 25 años, lo que resultó en una proporción Ne/N de 0.56 (0.01). Con base en un modelo que también incorporó la regeneración del hábitat, se proyectó que la población alcanzaría un máximo de 331–1144 aves (mediana: 726) para 2130 y después comenzaría una lenta disminución. Sin la endogamia, se esperaría que la población se estabilizaría con 887–1465 (mediana: 1131) aves. Por lo tanto, dicho análisis hace posible la derivación empírica de la información necesaria para las decisiones racionales sobre el manejo de la endogamia a la vez que considera a varias fuentes de incertidumbre. Article Impact Statement: Empirically estimating the future consequences of inbreeding allows rational long‐term management of reintroduced populations.
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long-term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state-space modeling methods based on a 26-year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically N /N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331-1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887-1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.
Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in wild populations because pedigree data are inevitably incomplete and because good data are needed on survival and reproduction. Predicting future population consequences is especially difficult because this also requires projecting future inbreeding levels and their impacts on long‐term population dynamics, which are subject to many uncertainties. We illustrate how such projections can be derived through Bayesian state‐space modeling methods based on a 26‐year data set for North Island Robins (Petroica longipes) reintroduced to Tiritiri Matangi Island in 1992. We used pedigree data to model increases in the average inbreeding level (F) over time based on kinship of possible breeding pairs and to estimate empirically Ne/N (effective/census population size). We used multiple imputation to model the unknown components of inbreeding coefficients, which allowed us to estimate effects of inbreeding on survival for all 1458 birds in the data set while modeling density dependence and environmental stochasticity. This modeling indicated that inbreeding reduced juvenile survival (1.83 lethal equivalents [SE 0.81]) and may have reduced subsequent adult survival (0.44 lethal equivalents [0.81]) but had no apparent effect on numbers of fledglings produced. Average inbreeding level increased to 0.10 (SE 0.001) as the population grew from 33 (0.3) to 160 (6) individuals over the 25 years, giving a Ne/N ratio of 0.56 (0.01). Based on a model that also incorporated habitat regeneration, the population was projected to reach a maximum of 331–1144 birds (median 726) in 2130, then to begin a slow decline. Without inbreeding, the population would be expected stabilize at 887–1465 birds (median 1131). Such analysis, therefore, makes it possible to empirically derive the information needed for rational decisions about inbreeding management while accounting for multiple sources of uncertainty.
Author Parlato, Elizabeth H.
Kwikkel, Renske
Ewen, John G.
McCready, Mhairi
Parker, Kevin A.
Berggren, Åsa
Armstrong, Doug P.
Egli, Barbara
Dimond, Wendy J.
Author_xml – sequence: 1
  givenname: Doug P.
  orcidid: 0000-0003-0163-3435
  surname: Armstrong
  fullname: Armstrong, Doug P.
  email: d.p.armstrong@massey.ac.nz
  organization: Massey University
– sequence: 2
  givenname: Elizabeth H.
  orcidid: 0000-0002-0787-0485
  surname: Parlato
  fullname: Parlato, Elizabeth H.
  organization: Massey University
– sequence: 3
  givenname: Barbara
  surname: Egli
  fullname: Egli, Barbara
  organization: Massey University
– sequence: 4
  givenname: Wendy J.
  surname: Dimond
  fullname: Dimond, Wendy J.
  organization: The Australian National University
– sequence: 5
  givenname: Renske
  surname: Kwikkel
  fullname: Kwikkel, Renske
  organization: Van Hall Instituut
– sequence: 6
  givenname: Åsa
  surname: Berggren
  fullname: Berggren, Åsa
  organization: Swedish University of Agricultural Sciences
– sequence: 7
  givenname: Mhairi
  surname: McCready
  fullname: McCready, Mhairi
  organization: Hihi Conservation Charitable Trust
– sequence: 8
  givenname: Kevin A.
  surname: Parker
  fullname: Parker, Kevin A.
  organization: Parker Conservation
– sequence: 9
  givenname: John G.
  surname: Ewen
  fullname: Ewen, John G.
  organization: Zoological Society of London
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32997349$$D View this record in MEDLINE/PubMed
https://res.slu.se/id/publ/109466$$DView record from Swedish Publication Index
BookMark eNqFksFu1DAURS1URKeFDR-ALLFBSBns2E7sJYwKVKrUDV1bTvJSuXLsYDuqZtdP4Bv5knqalkWFwJu3Off6Pr17go588IDQW0q2tLxPfejslrKGNy_QhoqaVbRl6ghtiJSyklLVx-gkpRtCiBKUv0LHrFaqZVxtkL9K1l9jF_z177tfGeKEB5MNHkPEBkewPscwLD0MeA7z4ky2weMcMEyzjbY3zu0xpGwnkwGPS14i4D74BD8X8D0kHEZsfRcBhvLRa_RyNC7Bm8d5iq6-nv3Yfa8uLr-d7z5fVD2vVVM11NS1lKQlrRASQHRKctWANJIPLemHmlAiOkp4Z2AY6k6YUbVGKENH2XDJTtF29U23MC-dnmMJGPc6GKuTWzoTD0Mn0JQo3jRF8GEVzDGU5CnryaYenDMewpJ0LRoqGOVM_B_lvBWcNoQV9P0z9CYs0ZfNiyGrW95yTgv17pFaugmGP2GfrlQAsgJ9DClFGHVv88MlcjTWlR30oQj6UAT9UIQi-fhM8uT6V5iu8K11sP8HqXeXX85XzT2dRcSq
CitedBy_id crossref_primary_10_1016_j_ecolmodel_2024_110662
crossref_primary_10_1111_mec_17690
crossref_primary_10_1111_acv_13019
crossref_primary_10_1111_mec_17608
crossref_primary_10_1111_1365_2656_13592
crossref_primary_10_1111_mec_16068
crossref_primary_10_1111_cobi_13843
Cites_doi 10.1007/s00442-015-3330-6
10.1002/9781444355833.ch13
10.1002/9781444355833.ch11
10.1007/s10592-019-01231-y
10.1093/beheco/arp034
10.1111/j.1558-5646.1996.tb03609.x
10.1534/genetics.111.135541
10.1111/j.1420-9101.2010.01979.x
10.1016/j.tree.2019.06.006
10.1111/conl.12412
10.1093/oso/9780198783411.001.0001
10.1006/tpbi.1995.1025
10.3168/jds.S0022-0302(92)78077-1
10.1002/9781444355833.ch12
10.1111/conl.12218
10.1038/s41559-019-0968-1
10.1086/285684
10.2307/1308256
10.1111/j.1523-1739.2011.01794.x
10.1016/j.tree.2006.03.018
10.1111/eva.12713
10.2307/4089074
10.1046/j.1523-1739.2002.00215.x
10.1038/s41467-020-14803-1
10.1038/s41437-017-0045-y
10.1111/j.1469-1795.2006.00078.x
10.1111/j.1523-1739.2006.00537.x
10.1038/nrg.2015.28
10.1016/j.tree.2016.09.005
ContentType Journal Article
Copyright 2020 Society for Conservation Biology
2020 Society for Conservation Biology.
2021, Society for Conservation Biology
Copyright_xml – notice: 2020 Society for Conservation Biology
– notice: 2020 Society for Conservation Biology.
– notice: 2021, Society for Conservation Biology
CorporateAuthor Sveriges lantbruksuniversitet
CorporateAuthor_xml – name: Sveriges lantbruksuniversitet
DBID AAYXX
CITATION
NPM
7QG
7SN
7SS
7ST
7U6
8FD
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
7S9
L.6
ADTPV
AOWAS
DOI 10.1111/cobi.13646
DatabaseName CrossRef
PubMed
Animal Behavior Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Sustainability Science Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
SwePub
SwePub Articles
DatabaseTitle CrossRef
PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Technology Research Database
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Genetics Abstracts
Sustainability Science Abstracts
Animal Behavior Abstracts
ASFA: Aquatic Sciences and Fisheries Abstracts
Engineering Research Database
Aquatic Science & Fisheries Abstracts (ASFA) 1: Biological Sciences & Living Resources
Environment Abstracts
MEDLINE - Academic
AGRICOLA
AGRICOLA - Academic
DatabaseTitleList CrossRef
MEDLINE - Academic

AGRICOLA

PubMed
Aquatic Science & Fisheries Abstracts (ASFA) Professional
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Biology
Ecology
EISSN 1523-1739
EndPage 869
ExternalDocumentID oai_slubar_slu_se_109466
32997349
10_1111_cobi_13646
COBI13646
Genre article
Journal Article
GeographicLocations Tiritiri Matangi
GeographicLocations_xml – name: Tiritiri Matangi
GroupedDBID ---
-DZ
.-4
.3N
.GA
.Y3
05W
0R~
10A
1OB
1OC
29F
31~
33P
3SF
4.4
42X
50Y
50Z
51W
51X
52M
52N
52O
52P
52S
52T
52U
52W
52X
53G
5GY
5HH
5LA
5VS
66C
6J9
702
7PT
8-0
8-1
8-3
8-4
8-5
8UM
930
A03
AAESR
AAEVG
AAHBH
AAHHS
AAHKG
AAHQN
AAISJ
AAKGQ
AAMNL
AANHP
AANLZ
AAONW
AASGY
AAUTI
AAXRX
AAYCA
AAZKR
ABBHK
ABCQN
ABCUV
ABEFU
ABEML
ABJNI
ABLJU
ABPLY
ABPPZ
ABPVW
ABTLG
ABXSQ
ACAHQ
ACBWZ
ACCFJ
ACCZN
ACFBH
ACGFO
ACGFS
ACHIC
ACNCT
ACPOU
ACPRK
ACPVT
ACRPL
ACSCC
ACSTJ
ACXBN
ACXQS
ACYXJ
ADBBV
ADEOM
ADIZJ
ADKYN
ADMGS
ADNMO
ADOZA
ADUKH
ADULT
ADXAS
ADZMN
ADZOD
AEEZP
AEGXH
AEIGN
AEIMD
AENEX
AEQDE
AEUPB
AEUQT
AEUYR
AFAZZ
AFBPY
AFEBI
AFFPM
AFGKR
AFPWT
AFRAH
AFWVQ
AFZJQ
AHBTC
AHXOZ
AI.
AIAGR
AILXY
AITYG
AIURR
AIWBW
AJBDE
AJXKR
ALAGY
ALMA_UNASSIGNED_HOLDINGS
ALUQN
ALVPJ
AMBMR
AMYDB
ANHSF
AQVQM
ASPBG
ATUGU
AUFTA
AVWKF
AZBYB
AZFZN
AZVAB
BAFTC
BDRZF
BFHJK
BHBCM
BMNLL
BMXJE
BNHUX
BROTX
BRXPI
BY8
C45
CAG
CBGCD
COF
CS3
CUYZI
D-E
D-F
D0L
DCZOG
DEVKO
DOOOF
DPXWK
DR2
DRFUL
DRSTM
DU5
EBS
ECGQY
EJD
ESX
F00
F01
F04
F5P
FEDTE
G-S
G.N
GODZA
GTFYD
H.T
H.X
HF~
HGD
HGLYW
HQ2
HTVGU
HVGLF
HZI
HZ~
IHE
IPSME
IX1
J0M
JAAYA
JBMMH
JBS
JEB
JENOY
JHFFW
JKQEH
JLS
JLXEF
JPM
JSODD
JST
LATKE
LC2
LC3
LEEKS
LH4
LITHE
LMP
LOXES
LP6
LP7
LUTES
LW6
LYRES
MEWTI
MK4
MRFUL
MRSTM
MSFUL
MSSTM
MVM
MXFUL
MXSTM
N04
N05
N9A
NEJ
NF~
O66
O9-
OES
OIG
OVD
P2P
P2W
P2X
P4D
PQQKQ
Q.N
Q11
QB0
QN7
R.K
ROL
RSU
RX1
SA0
SAMSI
SUPJJ
TEORI
TN5
UB1
UKR
UQL
V8K
VH1
VOH
W8V
W99
WBKPD
WHG
WIH
WIK
WNSPC
WOHZO
WQJ
WRC
WXSBR
WYISQ
XG1
XIH
XSW
YFH
YUY
YV5
YZZ
ZCA
ZCG
ZO4
ZZTAW
~02
~IA
~KM
~WT
AAYXX
ABSQW
ADXHL
AEYWJ
AGHNM
AGQPQ
AGUYK
AGYGG
CITATION
NPM
7QG
7SN
7SS
7ST
7U6
8FD
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
C1K
F1W
FR3
H95
L.G
P64
RC3
SOI
7X8
7S9
L.6
ADTPV
AOWAS
ID FETCH-LOGICAL-c4296-61a22880707558ee5b98496e8a84d70cd20105b104baedd2b5af97a59a1f86483
IEDL.DBID DR2
ISSN 0888-8892
1523-1739
IngestDate Thu Aug 21 06:24:22 EDT 2025
Fri Jul 11 18:27:06 EDT 2025
Fri Jul 11 07:20:24 EDT 2025
Fri Jul 25 11:06:10 EDT 2025
Wed Feb 19 02:30:05 EST 2025
Thu Apr 24 23:01:24 EDT 2025
Tue Jul 01 02:25:32 EDT 2025
Wed Jan 22 16:30:27 EST 2025
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Keywords Bayesian hierarchical modeling
reintroducción
Toutouwai
poblaciones pequeñas
modelado jerárquico bayesiano
New Zealand
population modeling
North Island robin
reintroduction
modelado poblacional
small populations
tordo de la Isla del Norte
Nueva Zelanda
inbreeding depression
depresión endogámica
Language English
License 2020 Society for Conservation Biology.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4296-61a22880707558ee5b98496e8a84d70cd20105b104baedd2b5af97a59a1f86483
Notes Article Impact Statement: Empirically estimating the future consequences of inbreeding allows rational long‐term management of reintroduced populations.
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-0787-0485
0000-0003-0163-3435
PMID 32997349
PQID 2532747441
PQPubID 36794
PageCount 11
ParticipantIDs swepub_primary_oai_slubar_slu_se_109466
proquest_miscellaneous_2561531435
proquest_miscellaneous_2447541603
proquest_journals_2532747441
pubmed_primary_32997349
crossref_citationtrail_10_1111_cobi_13646
crossref_primary_10_1111_cobi_13646
wiley_primary_10_1111_cobi_13646_COBI13646
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2021
PublicationDateYYYYMMDD 2021-06-01
PublicationDate_xml – month: 06
  year: 2021
  text: June 2021
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
– name: Washington
PublicationTitle Conservation biology
PublicationTitleAlternate Conserv Biol
PublicationYear 2021
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References 2002; 16
1997; 114
2018; 121
2019; 3
2009; 21
2012
2011
2010
2019; 34
2019; 12
1996; 50
2016; 31
1970
2002
1992; 75
2016; 17
2007; 10
2010; 23
1994; 144
2015; 179
2006; 21
2020
2019; 21
2012; 190
2019
2013; 60
2015
2014
2012; 26
2007; 21
2018; 11
2016; 9
1981; 31
1985; 13
Mitchell ND (e_1_2_8_30_1) 1985; 13
Kéry M (e_1_2_8_23_1) 2012
e_1_2_8_29_1
e_1_2_8_24_1
e_1_2_8_25_1
e_1_2_8_26_1
e_1_2_8_27_1
Miskelly CM (e_1_2_8_28_1) 2013; 60
e_1_2_8_3_1
e_1_2_8_2_1
e_1_2_8_4_1
Spiegelhalter D (e_1_2_8_37_1) 2014
e_1_2_8_7_1
e_1_2_8_9_1
e_1_2_8_8_1
e_1_2_8_20_1
e_1_2_8_21_1
e_1_2_8_22_1
e_1_2_8_17_1
Ballou JD (e_1_2_8_6_1) 2011
e_1_2_8_18_1
e_1_2_8_19_1
Ballou JD (e_1_2_8_5_1) 2010
e_1_2_8_13_1
e_1_2_8_36_1
e_1_2_8_14_1
e_1_2_8_35_1
e_1_2_8_15_1
e_1_2_8_38_1
e_1_2_8_16_1
Weeks AR (e_1_2_8_39_1) 2015
e_1_2_8_32_1
e_1_2_8_10_1
e_1_2_8_31_1
e_1_2_8_11_1
e_1_2_8_34_1
e_1_2_8_12_1
e_1_2_8_33_1
References_xml – year: 2011
– volume: 21
  start-page: 41
  year: 2019
  end-page: 53
  article-title: Genetic rescue of an isolated African lion population
  publication-title: Conservation Genetics
– volume: 75
  start-page: 3136
  year: 1992
  end-page: 3144
  article-title: Accounting for inbreeding and crossbreeding in genetic evaluation
  publication-title: Journal of Dairy Science
– volume: 60
  start-page: 3
  year: 2013
  end-page: 28
  article-title: Conservation translocations of New Zealand birds, 1863–2012
  publication-title: Notornis
– volume: 26
  start-page: 97
  year: 2012
  end-page: 106
  article-title: An integrated approach for predicting fates of reintroductions with demographic data from multiple populations
  publication-title: Conservation Biology
– start-page: 395
  year: 2012
  end-page: 440
– volume: 10
  start-page: 95
  year: 2007
  end-page: 102
  article-title: Moderate inbreeding depression in a reintroduced population of North Island robins
  publication-title: Animal Conservation
– volume: 23
  start-page: 1148
  year: 2010
  end-page: 1158
  article-title: Estimating the ratio of effective to actual size of an age‐structured population from individual demographic data
  publication-title: Journal of Evolutionary Biology
– volume: 31
  start-page: 131
  year: 1981
  end-page: 134
  article-title: Minimum population sizes for species conservation
  publication-title: BioScience
– volume: 3
  start-page: 359
  year: 2019
  end-page: 1364
  article-title: Inbreeding reduces long‐term growth of populations
  publication-title: Nature Ecology and Evolution
– volume: 50
  start-page: 2187
  year: 1996
  end-page: 2200
  article-title: Hierarchical analysis of inbreeding depression in
  publication-title: Evolution
– year: 2014
– volume: 121
  start-page: 38
  year: 2018
  end-page: 51
  article-title: Detection of genetic purging and predictive value of purging parameters estimated in pedigreed populations
  publication-title: Heredity
– volume: 13
  start-page: 36
  year: 1985
  end-page: 41
  article-title: The revegetation of Tiritiri Matangi Island: the creation of an open sanctuary
  publication-title: Royal New Zealand Horticultural Society Annual Journal
– volume: 16
  start-page: 1074
  year: 2002
  end-page: 1085
  article-title: Dynamics and viability of a New Zealand robin population reintroduced to regenerating fragmented habitat
  publication-title: Conservation Biology
– start-page: 360
  year: 2012
  end-page: 394
– year: 2012
– volume: 9
  start-page: 260
  year: 2016
  end-page: 266
  article-title: Stochastic dominance to account for uncertainty and risk in conservation decisions
  publication-title: Conservation Letters
– volume: 12
  start-page: 266
  year: 2019
  end-page: 279
  article-title: Nonequivalent lethal equivalents: models and inbreeding metrics for unbiased estimation of inbreeding load
  publication-title: Evolutionary Applications
– volume: 144
  start-page: 412
  year: 1994
  end-page: 431
  article-title: Demographic consequences of inbreeding in remnant populations
  publication-title: The American Naturalist
– volume: 21
  start-page: 341
  year: 2006
  end-page: 347
  article-title: Natural selection and population dynamics
  publication-title: Trends in Ecology and Evolution
– volume: 21
  start-page: 575
  year: 2009
  end-page: 584
  article-title: Why some species of birds do not avoid inbreeding: insights from New Zealand robins and saddlebacks
  publication-title: Behavioural Ecology
– volume: 34
  start-page: 1070
  year: 2019
  end-page: 1079
  article-title: The exciting potential and remaining uncertainties of genetic rescue
  publication-title: Trends in Ecology and Evolution
– year: 2002
– volume: 179
  start-page: 319
  year: 2015
  end-page: 328
  article-title: Traits influencing range contraction in New Zealand's endemic forest birds
  publication-title: Oecologia
– year: 1970
– volume: 21
  start-page: 114
  year: 2007
  end-page: 124
  article-title: Adaptive harvesting of source populations for translocation: a case study using New Zealand robins
  publication-title: Conservation Biology
– start-page: 441
  year: 2012
  end-page: 475
– volume: 17
  start-page: 81
  year: 2016
  end-page: 92
  article-title: Harnessing the power of RADseq for ecological and evolutionary genomics
  publication-title: Nature Reviews Genetics
– volume: 114
  start-page: 120
  year: 1997
  end-page: 126
  article-title: Social and sexual monogamy detected in New Zealand robins using multilocus minisatellite DNA
  publication-title: Auk
– volume: 31
  start-page: 940
  year: 2016
  end-page: 952
  article-title: Understanding inbreeding depression, purging and genetic rescue
  publication-title: Trends in Ecology & Evolution
– start-page: 127
  year: 2015
  end-page: 140
– start-page: 219
  year: 2010
  end-page: 252
– volume: 190
  start-page: 1461
  year: 2012
  end-page: 1476
  article-title: Understanding and predicting the fitness decline of shrunk populations: inbreeding, purging, mutation, and standard selection
  publication-title: Genetics
– year: 2020
  article-title: Purging of highly deleterious mutations through severe bottlenecks in
  publication-title: Nature Communications
– volume: 11
  start-page: 1
  year: 2018
  end-page: 6
  article-title: Call for a paradigm shift in the genetic management of fragmented populations
  publication-title: Conservation Letters
– year: 2019
– ident: e_1_2_8_33_1
  doi: 10.1007/s00442-015-3330-6
– ident: e_1_2_8_19_1
  doi: 10.1002/9781444355833.ch13
– ident: e_1_2_8_22_1
  doi: 10.1002/9781444355833.ch11
– start-page: 127
  volume-title: Advances in reintroduction biology of Australian and New Zealand fauna
  year: 2015
  ident: e_1_2_8_39_1
– start-page: 219
  volume-title: Wild mammals in captivity: principles and techniques for zoo management
  year: 2010
  ident: e_1_2_8_5_1
– volume-title: OpenBUGS User Manual, Version 3.2.3. MRC Biostatistics Unit
  year: 2014
  ident: e_1_2_8_37_1
– ident: e_1_2_8_26_1
  doi: 10.1007/s10592-019-01231-y
– ident: e_1_2_8_21_1
  doi: 10.1093/beheco/arp034
– ident: e_1_2_8_24_1
  doi: 10.1111/j.1558-5646.1996.tb03609.x
– volume-title: PMx: software for demographic and genetic analysis and management of pedigreed populations (version 1.0)
  year: 2011
  ident: e_1_2_8_6_1
– ident: e_1_2_8_15_1
  doi: 10.1534/genetics.111.135541
– ident: e_1_2_8_13_1
  doi: 10.1111/j.1420-9101.2010.01979.x
– ident: e_1_2_8_7_1
  doi: 10.1016/j.tree.2019.06.006
– volume: 13
  start-page: 36
  year: 1985
  ident: e_1_2_8_30_1
  article-title: The revegetation of Tiritiri Matangi Island: the creation of an open sanctuary
  publication-title: Royal New Zealand Horticultural Society Annual Journal
– ident: e_1_2_8_34_1
  doi: 10.1111/conl.12412
– ident: e_1_2_8_14_1
  doi: 10.1093/oso/9780198783411.001.0001
– ident: e_1_2_8_11_1
  doi: 10.1006/tpbi.1995.1025
– ident: e_1_2_8_38_1
  doi: 10.3168/jds.S0022-0302(92)78077-1
– volume-title: Bayesian population analysis using WinBUGS: a hierarchical perspective
  year: 2012
  ident: e_1_2_8_23_1
– ident: e_1_2_8_16_1
  doi: 10.1002/9781444355833.ch12
– ident: e_1_2_8_10_1
  doi: 10.1111/conl.12218
– ident: e_1_2_8_9_1
  doi: 10.1038/s41559-019-0968-1
– ident: e_1_2_8_27_1
  doi: 10.1086/285684
– ident: e_1_2_8_36_1
  doi: 10.2307/1308256
– ident: e_1_2_8_32_1
  doi: 10.1111/j.1523-1739.2011.01794.x
– ident: e_1_2_8_8_1
– ident: e_1_2_8_35_1
  doi: 10.1016/j.tree.2006.03.018
– ident: e_1_2_8_31_1
  doi: 10.1111/eva.12713
– ident: e_1_2_8_3_1
  doi: 10.2307/4089074
– ident: e_1_2_8_4_1
  doi: 10.1046/j.1523-1739.2002.00215.x
– ident: e_1_2_8_17_1
  doi: 10.1038/s41467-020-14803-1
– ident: e_1_2_8_25_1
  doi: 10.1038/s41437-017-0045-y
– volume: 60
  start-page: 3
  year: 2013
  ident: e_1_2_8_28_1
  article-title: Conservation translocations of New Zealand birds, 1863–2012
  publication-title: Notornis
– ident: e_1_2_8_20_1
  doi: 10.1111/j.1469-1795.2006.00078.x
– ident: e_1_2_8_12_1
  doi: 10.1111/j.1523-1739.2006.00537.x
– ident: e_1_2_8_2_1
  doi: 10.1038/nrg.2015.28
– ident: e_1_2_8_29_1
– ident: e_1_2_8_18_1
  doi: 10.1016/j.tree.2016.09.005
SSID ssj0009514
Score 2.4057133
Snippet Inbreeding depression is an important long‐term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in...
Inbreeding depression is an important long-term threat to reintroduced populations. However, the strength of inbreeding depression is difficult to estimate in...
SourceID swepub
proquest
pubmed
crossref
wiley
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 859
SubjectTerms adults
Bayesian analysis
Bayesian hierarchical modeling
Bayesian theory
Birds
Breeding
Coefficients
Data
data collection
Datasets
Density dependence
depresión endogámica
Ecology
Ekologi
Environment models
Equivalence
habitats
Inbreeding
Inbreeding depression
Juveniles
kinship
modelado jerárquico bayesiano
modelado poblacional
Modelling
New Zealand
North Island robin
Nueva Zelanda
Pedigree
Petroica
Petroica longipes
poblaciones pequeñas
Population
Population decline
Population dynamics
population modeling
Population number
population size
Populations
Probability theory
Regeneration
Regeneration (biological)
reintroducción
reintroduction
small populations
Stochasticity
Survival
tordo de la Isla del Norte
Toutouwai
Uncertainty
wildlife management
Title Using long‐term data for a reintroduced population to empirically estimate future consequences of inbreeding
URI https://onlinelibrary.wiley.com/doi/abs/10.1111%2Fcobi.13646
https://www.ncbi.nlm.nih.gov/pubmed/32997349
https://www.proquest.com/docview/2532747441
https://www.proquest.com/docview/2447541603
https://www.proquest.com/docview/2561531435
https://res.slu.se/id/publ/109466
Volume 35
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1ba9VAEB5KoeCL90tslRUFUUjp2exuNuCLlpYqqCAW-iJhd7MpB4_J4VweTp_8Cf2N_SWd2U3iqUpBn7KQCWySmdlvNl--AXihKkIJlP24rFKh6jw1I-dTlxnMh47bPOzpfvykjo7FhxN5sgFv-n9hoj7EsOFGkRHyNQW4sfO1IHetHRNJS5DeNpG1CBF94WuKu1HYG0u8VOuCd9qkROP5denV1egPiDnoh16FrmHtObwF3_pZR8rJ993lwu66s98EHf_3tm7DzQ6UsrfRi-7Ahm_uwlZsU7nC0UGQtl7dgyYwDNikbU4vfp5TVmdEMWWIfJlhMz8m3nuF3lKx6dAZjC1a5n9Mx0GMZLJipOuBONmzqGfC3Bqhm7U1GzdYpoc19T4cHx583T9Ku44NqcN1TWEdajjHjJAjEJHae2kLLQrltdGiyvdcRd_epcUS0BpfVdxKUxe5kYUZ1VoJnT2AzaZt_CNgKqss5h98c7URflRYraQXRtYKh97tJfCqf3Ol6-TMqavGpOzLGnqSZXiSCTwfbKdRxOOvVju9A5RdIM9LLjOq2xE0JvBsOI0hSN9VTOPbJdqQaKKgft3X2EhC1gROE3gYnWuYSoaQIM9EkcDL6G3DGdL-nk-W1szoUM49EQaEwqm-Dj50zd2U-5_fvQ-jx_9ivA03OLF2wj7TDmwuZkv_BGHXwj4N4XUJ5KAqCA
linkProvider Wiley-Blackwell
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bbtQwEB1BEYIX7pdAASOQEEipuo7tOI9QWm2hLRJqpb5FtuOgFUuy2svD8sQn8I18CTN2NmwBVYKnWMpEymVmfMY-OQPwXFWEEij7cVmlQtV5agbOpy4zmA8dt3lY0z08UsMT8e5UnnbcHPoXJupD9AtuFBkhX1OA04L0WpS71o6IpSXURbhELb0pLt9-5Guau1HaG4u8VOuCd-qkROT5de3Z-egPkNkriJ4Fr2H22bseW6zOgmghkU4-by3mdst9_U3S8b8f7AZc63Apex0d6SZc8M0tuBw7VS5xtBvUrZe3oQkkAzZum08_vn2nxM6IZcoQ_DLDpn5E1PcKHaZik745GJu3zH-ZjIIeyXjJSNoDobJnUdKEuTVON2trNmqwUg_T6h042ds93hmmXdOG1OHUprAUNZxjUsgRi0jtvbSFFoXy2mhR5duuou13abEKtMZXFbfS1EVuZGEGtVZCZ3dho2kbfx-YyiqLKQg_XW2EHxRWK-mFkbXCoXfbCbxcfbrSdYrm1FhjXK4qG3qTZXiTCTzrbSdRx-OvVpsrDyi7WJ6VXGZUuiNuTOBpfxqjkLZWTOPbBdqQbqKglt3n2EgC14RPE7gXvau_lQxRQZ6JIoEX0d36MyT_PRsvrJnSoZx54gwIhbf6KjjROU9T7nx4sx9GD_7F-AlcGR4fHpQH-0fvH8JVTiSesOy0CRvz6cI_QhQ2t49DrP0EWPQuIQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3bitRAEC3WFcUX75foqi0KopBlJunudMAX3d1h18sq4sK-SOhbZHBMhrk8jE9-gt_ol1jVuTirsqBPaUgFOklV9anOySmAR9IRSqDslwgXc1lmsR5aH9tUYz60icnCnu6bQ7l_xF8ei-MNeNb9C9PoQ_QbbhQZIV9TgE9duRbktjZjImlxeQbOcjlQVHrtvk_WJHcbZW-s8WKl8qQVJyUez69rTy5Hf2DMXkD0JHYNi8_oEnzspt1wTj5vLxdm2379TdHxf-_rMlxsUSl73rjRFdjw1VU41_SpXOFoL2hbr65BFSgGbFJXn358-05pnRHHlCH0ZZrN_JiI7w7dxbFp3xqMLWrmv0zHQY1ksmIk7IFA2bNG0ITZNUY3q0s2rrBOD4vqdTga7X3Y2Y_blg2xxYVNYiGqkwRTQoZIRCjvhckVz6VXWnGXDayjj-_CYA1otHcuMUKXeaZFroelklylN2Czqit_C5hMncEEhG-u1NwPc6Ok8FyLUuLQ20EET7o3V9hWz5zaakyKrq6hJ1mEJxnBw9522qh4_NVqq3OAoo3keZGIlAp3RI0RPOhPYwzShxVd-XqJNqSayKlh9yk2gqA1odMIbjbO1U8lRUyQpTyP4HHjbf0ZEv-eT5ZGz-hQzD0xBrjEqT4NPnTK3RQ7b18chNHtfzG-D-ff7Y6K1weHr-7AhYQYPGHPaQs2F7Olv4sQbGHuhUj7CdH6LNk
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Using+long%E2%80%90term+data+for+a+reintroduced+population+to+empirically+estimate+future+consequences+of+inbreeding&rft.jtitle=Conservation+biology&rft.au=Armstrong%2C+Doug+P.&rft.au=Parlato%2C+Elizabeth+H.&rft.au=Egli%2C+Barbara&rft.au=Dimond%2C+Wendy+J.&rft.date=2021-06-01&rft.issn=0888-8892&rft.eissn=1523-1739&rft.volume=35&rft.issue=3&rft.spage=859&rft.epage=869&rft_id=info:doi/10.1111%2Fcobi.13646&rft.externalDBID=10.1111%252Fcobi.13646&rft.externalDocID=COBI13646
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0888-8892&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0888-8892&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0888-8892&client=summon