Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere

We develop a nonlinear wave growth theory of magnetospheric chorus emissions, taking into account the spatial inhomogeneity of the static magnetic field and the plasma density variation along the magnetic field line. We derive theoretical expressions for the nonlinear growth rate and the amplitude t...

Full description

Saved in:
Bibliographic Details
Published inJournal of Geophysical Research: Space Physics Vol. 114; no. A7
Main Authors Omura, Yoshiharu, Hikishima, Mitsuru, Katoh, Yuto, Summers, Danny, Yagitani, Satoshi
Format Journal Article
LanguageEnglish
Published Washington, DC Blackwell Publishing Ltd 01.07.2009
American Geophysical Union
Subjects
Online AccessGet full text

Cover

Loading…
Abstract We develop a nonlinear wave growth theory of magnetospheric chorus emissions, taking into account the spatial inhomogeneity of the static magnetic field and the plasma density variation along the magnetic field line. We derive theoretical expressions for the nonlinear growth rate and the amplitude threshold for the generation of self‐sustaining chorus emissions. We assume that nonlinear growth of a whistler mode wave is initiated at the magnetic equator where the linear growth rate maximizes. Self‐sustaining emissions become possible when the wave propagates away from the equator during which process the increasing gradients of the static magnetic field and electron density provide the conditions for nonlinear growth. The amplitude threshold is tested against both observational data and self‐consistent particle simulations of the chorus emissions. The self‐sustaining mechanism can result in a rising tone emission covering the frequency range of 0.1–0.7 Ωe0, where Ωe0 is the equatorial electron gyrofrequency. During propagation, higher frequencies are subject to stronger dispersion effects that can destroy the self‐sustaining mechanism. We obtain a pair of coupled differential equations for the wave amplitude and frequency. Solving the equations numerically, we reproduce a rising tone of VLF whistler mode emissions that is continuous in frequency. Chorus emissions, however, characteristically occur in two distinct frequency ranges, a lower band and an upper band, separated at half the electron gyrofrequency. We explain the gap by means of the nonlinear damping of the longitudinal component of a slightly oblique whistler mode wave packet propagating along the inhomogeneous static magnetic field.
AbstractList We develop a nonlinear wave growth theory of magnetospheric chorus emissions, taking into account the spatial inhomogeneity of the static magnetic field and the plasma density variation along the magnetic field line. We derive theoretical expressions for the nonlinear growth rate and the amplitude threshold for the generation of self‐sustaining chorus emissions. We assume that nonlinear growth of a whistler mode wave is initiated at the magnetic equator where the linear growth rate maximizes. Self‐sustaining emissions become possible when the wave propagates away from the equator during which process the increasing gradients of the static magnetic field and electron density provide the conditions for nonlinear growth. The amplitude threshold is tested against both observational data and self‐consistent particle simulations of the chorus emissions. The self‐sustaining mechanism can result in a rising tone emission covering the frequency range of 0.1–0.7 Ωe0, where Ωe0 is the equatorial electron gyrofrequency. During propagation, higher frequencies are subject to stronger dispersion effects that can destroy the self‐sustaining mechanism. We obtain a pair of coupled differential equations for the wave amplitude and frequency. Solving the equations numerically, we reproduce a rising tone of VLF whistler mode emissions that is continuous in frequency. Chorus emissions, however, characteristically occur in two distinct frequency ranges, a lower band and an upper band, separated at half the electron gyrofrequency. We explain the gap by means of the nonlinear damping of the longitudinal component of a slightly oblique whistler mode wave packet propagating along the inhomogeneous static magnetic field.
We develop a nonlinear wave growth theory of magnetospheric chorus emissions, taking into account the spatial inhomogeneity of the static magnetic field and the plasma density variation along the magnetic field line. We derive theoretical expressions for the nonlinear growth rate and the amplitude threshold for the generation of self‐sustaining chorus emissions. We assume that nonlinear growth of a whistler mode wave is initiated at the magnetic equator where the linear growth rate maximizes. Self‐sustaining emissions become possible when the wave propagates away from the equator during which process the increasing gradients of the static magnetic field and electron density provide the conditions for nonlinear growth. The amplitude threshold is tested against both observational data and self‐consistent particle simulations of the chorus emissions. The self‐sustaining mechanism can result in a rising tone emission covering the frequency range of 0.1–0.7 Ω e 0 , where Ω e 0 is the equatorial electron gyrofrequency. During propagation, higher frequencies are subject to stronger dispersion effects that can destroy the self‐sustaining mechanism. We obtain a pair of coupled differential equations for the wave amplitude and frequency. Solving the equations numerically, we reproduce a rising tone of VLF whistler mode emissions that is continuous in frequency. Chorus emissions, however, characteristically occur in two distinct frequency ranges, a lower band and an upper band, separated at half the electron gyrofrequency. We explain the gap by means of the nonlinear damping of the longitudinal component of a slightly oblique whistler mode wave packet propagating along the inhomogeneous static magnetic field.
Author Katoh, Yuto
Omura, Yoshiharu
Hikishima, Mitsuru
Summers, Danny
Yagitani, Satoshi
Author_xml – sequence: 1
  givenname: Yoshiharu
  surname: Omura
  fullname: Omura, Yoshiharu
  organization: Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
– sequence: 2
  givenname: Mitsuru
  surname: Hikishima
  fullname: Hikishima, Mitsuru
  organization: Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
– sequence: 3
  givenname: Yuto
  surname: Katoh
  fullname: Katoh, Yuto
  organization: Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
– sequence: 4
  givenname: Danny
  surname: Summers
  fullname: Summers, Danny
  organization: Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan
– sequence: 5
  givenname: Satoshi
  surname: Yagitani
  fullname: Yagitani, Satoshi
  organization: Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan
BackLink http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21885225$$DView record in Pascal Francis
BookMark eNp9kFtLwzAUx4NMcF7e_AB58c1qrm3zOMXNy1AQnaAPIU0TF23TklSm396O6RBBDxwO5_D7n9s2GPjGGwD2MTrCiIhjgpC4HCHMCEo3wJBgniaEIDIAw76YJ4iQbAvsxfiCemM8ZQgPwdN14yvnjQqwNnquvIt1hI2FVbMwISmUL-HS39r2O51Nx1DPm_AWoaldjK7xEToPu7mBtXr2pmtiOzfB7IJNq6po9r7iDrgfn92dnifTm8nF6WiaaEYET0pc8hyVlmGrOWW0zBQThWJYF7kuKCoEx5YYbS0zguaYIGuYKFFJM1XQ1NIdcLDq26qoVWWD8tpF2QZXq_AhCc5zTgjvucMVp0MTYzB2jWAklz-UP3_Y4-QXrl2nuv7cLihX_SWiK9HCVebj3wHycnI7wkKw5WbJSuViZ97XKhVeZZrRjMuH64m8mp3wx9kjk4J-Am2Dk9g
CitedBy_id crossref_primary_10_1029_2019JA027488
crossref_primary_10_1002_2016JA022775
crossref_primary_10_1029_2010JA016280
crossref_primary_10_1063_1_4927774
crossref_primary_10_1002_2017JA024211
crossref_primary_10_5194_angeo_31_665_2013
crossref_primary_10_5194_angeo_36_867_2018
crossref_primary_10_1029_2022JA030438
crossref_primary_10_11728_cjss2024_06_2024_yg27
crossref_primary_10_1002_2013JA019146
crossref_primary_10_1002_2015JA021135
crossref_primary_10_1002_jgra_50395
crossref_primary_10_1029_2019GL083115
crossref_primary_10_1002_2015JA022223
crossref_primary_10_1016_j_jastp_2012_03_004
crossref_primary_10_1029_2019GL082140
crossref_primary_10_13074_jent_2013_09_132029
crossref_primary_10_1029_2021GL097597
crossref_primary_10_3934_krm_2017015
crossref_primary_10_1186_s40623_022_01646_x
crossref_primary_10_1002_2014JA020898
crossref_primary_10_1029_2020GL091762
crossref_primary_10_1029_2011JA017428
crossref_primary_10_1002_2015JA022219
crossref_primary_10_1029_2012JA017842
crossref_primary_10_1007_s10712_023_09792_x
crossref_primary_10_1029_2010JA015860
crossref_primary_10_1002_2013JA019371
crossref_primary_10_1029_2019JA026951
crossref_primary_10_1002_jgra_50165
crossref_primary_10_1029_2019JA026493
crossref_primary_10_1103_PhysRevLett_114_245002
crossref_primary_10_1002_2017JA023949
crossref_primary_10_1029_2019JA027465
crossref_primary_10_1007_s11430_019_9384_6
crossref_primary_10_1029_2020JA028216
crossref_primary_10_1029_2012JA017708
crossref_primary_10_1088_1674_1056_27_1_015201
crossref_primary_10_1186_s40623_021_01380_w
crossref_primary_10_1002_2014JA020440
crossref_primary_10_1016_j_jastp_2013_01_013
crossref_primary_10_1029_2012JA018242
crossref_primary_10_1029_2020JA027913
crossref_primary_10_1002_2017JA024801
crossref_primary_10_1029_2020GL086958
crossref_primary_10_1029_2024GL110539
crossref_primary_10_1063_1_5096537
crossref_primary_10_1007_s11214_025_01144_y
crossref_primary_10_1007_s11214_016_0252_5
crossref_primary_10_1016_j_asr_2024_10_002
crossref_primary_10_1002_2014JA020437
crossref_primary_10_1002_2016GL070333
crossref_primary_10_1002_2015JA021902
crossref_primary_10_1002_2016GL069473
crossref_primary_10_1088_0031_8949_81_03_035901
crossref_primary_10_1029_2011JA016913
crossref_primary_10_1029_2021JA029624
crossref_primary_10_1029_2012JA017943
crossref_primary_10_1063_1_4816022
crossref_primary_10_1029_2019JA026810
crossref_primary_10_1029_2022GL100385
crossref_primary_10_1186_s40623_024_02109_1
crossref_primary_10_1002_2016JA022696
crossref_primary_10_1002_2016JA023429
crossref_primary_10_1002_2017GL073829
crossref_primary_10_3390_atmos11020177
crossref_primary_10_1029_2020JA028631
crossref_primary_10_1016_j_rinp_2020_103004
crossref_primary_10_1134_S0016793217060135
crossref_primary_10_1186_s40623_016_0568_0
crossref_primary_10_1029_2018JA025875
crossref_primary_10_1186_s40623_017_0771_7
crossref_primary_10_1029_2011GL048375
crossref_primary_10_1029_2021GL094979
crossref_primary_10_1002_jgra_50594
crossref_primary_10_1002_jgra_50477
crossref_primary_10_1029_2009JA014885
crossref_primary_10_1029_2019GL082292
crossref_primary_10_1063_1_4993238
crossref_primary_10_1002_2017JA024540
crossref_primary_10_1002_2015GL066004
crossref_primary_10_1063_1_5037763
crossref_primary_10_1002_2014JA020736
crossref_primary_10_1002_2015GL064182
crossref_primary_10_1029_2017JA024782
crossref_primary_10_1029_2010JA015300
crossref_primary_10_23919_URSIRSB_2019_9117240
crossref_primary_10_1029_2021JA029768
crossref_primary_10_1002_2015JA021563
crossref_primary_10_1029_2019GL082161
crossref_primary_10_1002_2014JA020092
crossref_primary_10_1029_2011JA017095
crossref_primary_10_1029_2010JA016181
crossref_primary_10_1029_2010JA016183
crossref_primary_10_1029_2023GL102748
crossref_primary_10_1186_s40623_023_01871_y
crossref_primary_10_1029_2020JA028094
crossref_primary_10_1029_2022JA030582
crossref_primary_10_1029_2020JA028090
crossref_primary_10_1002_2013JA019281
crossref_primary_10_1002_2014JA020523
crossref_primary_10_1029_2017JA025050
crossref_primary_10_1029_2009JA014428
crossref_primary_10_1063_1_4978555
crossref_primary_10_1541_jae_33
crossref_primary_10_1002_2015GL066107
crossref_primary_10_1186_s40623_018_0785_9
crossref_primary_10_1029_2021GL095714
crossref_primary_10_1002_2013GL058889
crossref_primary_10_1002_2014JA019891
crossref_primary_10_1002_jgra_50264
crossref_primary_10_1007_s12648_015_0680_1
crossref_primary_10_1029_2019JA027088
crossref_primary_10_1038_s41467_019_12561_3
crossref_primary_10_1029_2022GL097941
crossref_primary_10_1029_2018GL081391
crossref_primary_10_1029_2009JA014837
crossref_primary_10_4236_jmp_2022_136050
crossref_primary_10_1029_2023JA031676
crossref_primary_10_1029_2020JA028276
crossref_primary_10_1109_TPS_2022_3208906
crossref_primary_10_1029_2018JA026374
crossref_primary_10_1029_2023JA031307
crossref_primary_10_1029_2023JA031787
crossref_primary_10_5194_angeo_31_503_2013
crossref_primary_10_1002_2015JA021530
crossref_primary_10_1002_2015JA021772
crossref_primary_10_1029_2020JA028149
crossref_primary_10_1029_2022JA030967
crossref_primary_10_1002_2017JA024501
crossref_primary_10_1029_2020JA027973
crossref_primary_10_3389_fspas_2019_00002
crossref_primary_10_1029_2018JA025848
crossref_primary_10_3847_1538_4357_abbeee
crossref_primary_10_1029_2022JA031024
crossref_primary_10_1063_1_4986225
crossref_primary_10_1029_2018JA025963
crossref_primary_10_1029_2010JA016312
crossref_primary_10_1029_2021JA029569
crossref_primary_10_1002_2016GL072251
crossref_primary_10_1063_5_0127471
crossref_primary_10_1088_0741_3335_59_1_014016
crossref_primary_10_1002_2015JA021520
crossref_primary_10_5194_angeo_32_889_2014
crossref_primary_10_1029_2010JA015468
crossref_primary_10_1002_grl_50787
crossref_primary_10_1029_2011JA016730
crossref_primary_10_1029_2010GL042678
crossref_primary_10_1029_2023GL105253
crossref_primary_10_1186_s40623_018_0862_0
crossref_primary_10_1002_2016JA023446
crossref_primary_10_1186_s40623_020_1134_3
crossref_primary_10_1002_2015GL067126
crossref_primary_10_1002_2016GL068313
crossref_primary_10_1002_2016JA022915
crossref_primary_10_1002_2017JA024513
crossref_primary_10_1029_2012JA017557
crossref_primary_10_1002_2014JA020161
crossref_primary_10_1063_1_5018084
crossref_primary_10_1002_2013JA019507
crossref_primary_10_1063_1_5078604
crossref_primary_10_1029_2020GL091100
crossref_primary_10_1029_2022JA031127
crossref_primary_10_1002_2016GL068780
crossref_primary_10_1029_2011JA016638
crossref_primary_10_1029_2020GL088853
crossref_primary_10_3389_fspas_2022_1063329
crossref_primary_10_1103_PhysRevE_95_023204
crossref_primary_10_1029_2012JA018076
crossref_primary_10_1186_s40623_021_01549_3
crossref_primary_10_1063_5_0026220
crossref_primary_10_1002_2016JA023389
crossref_primary_10_1002_2015GL065565
crossref_primary_10_1002_2014JA019914
crossref_primary_10_1002_2017RS006245
crossref_primary_10_1016_j_icarus_2013_04_016
crossref_primary_10_1029_2010JA016245
crossref_primary_10_1029_2012JA018187
crossref_primary_10_1002_2016GL070386
crossref_primary_10_1029_2009JA015218
crossref_primary_10_1002_jgra_50529
crossref_primary_10_1186_s40623_021_01467_4
crossref_primary_10_1007_s11214_019_0629_3
crossref_primary_10_1002_2015JA021728
crossref_primary_10_1029_2010JA016233
crossref_primary_10_1002_2013JA019696
crossref_primary_10_1029_2018JA025803
crossref_primary_10_1002_2013JA019695
crossref_primary_10_1029_2010JA016351
crossref_primary_10_1029_2018JA026337
crossref_primary_10_1029_2012JA017765
crossref_primary_10_1029_2021JA029802
crossref_primary_10_1186_s40645_021_00413_y
crossref_primary_10_1029_2009JA014371
crossref_primary_10_1029_2011JA016496
crossref_primary_10_1002_2014JA020575
crossref_primary_10_1002_jgra_50523
crossref_primary_10_1029_2011JA016499
crossref_primary_10_1029_2009JA014932
crossref_primary_10_1029_2021JA030119
crossref_primary_10_1029_2023JA031893
crossref_primary_10_1002_2017JA024399
crossref_primary_10_1002_2014JA019935
crossref_primary_10_1029_2021GL092850
crossref_primary_10_1029_2011JA016602
crossref_primary_10_1029_2020GL087791
crossref_primary_10_1029_2021JA029258
crossref_primary_10_1063_5_0106004
crossref_primary_10_1002_2014JA020364
crossref_primary_10_1002_2014JA020366
crossref_primary_10_1029_2010JA015919
crossref_primary_10_1029_2019JA027154
crossref_primary_10_1002_2016JA023255
crossref_primary_10_1029_2018JA025393
crossref_primary_10_1029_2020JA027953
crossref_primary_10_5194_angeo_31_1619_2013
crossref_primary_10_5194_angeo_33_583_2015
crossref_primary_10_1029_2020JA028484
crossref_primary_10_1002_2013JA019678
crossref_primary_10_1029_2021JA029826
crossref_primary_10_1029_2010GL042648
crossref_primary_10_1029_2019JA026735
Cites_doi 10.1029/2006GL028594
10.1029/2007JA012856
10.1029/2005GL024553
10.1029/2008JA013625
10.5194/npg-15-621-2008
10.1029/JA086iA02p00779
10.1029/95JA00843
10.1029/97JA02518
10.1007/s00585-999-0631-2
10.1029/2007GL029758
10.1063/1.1757457
10.1029/JA079i001p00118
10.1029/2008JA013237
10.1029/2006JA011704
10.1029/2007JA012622
10.1029/RG026i003p00551
10.1029/GM105p0259
10.5194/angeo-26-3451-2008
10.1007/3-540-36530-3_4
10.1029/2001JA007542
10.1029/2001GL013941
10.1029/2004JA010811
10.1029/2008GL036454
10.1029/98JA01740
10.1029/1999JA900444
10.1007/s00585-999-0095-4
10.1029/2006JA011993
10.5194/angeo-22-2555-2004
10.1029/2002JA009791
10.1029/2006JA012243
10.1029/2004JA010437
10.1029/2000JA003019
10.1029/2006JA011600
10.1016/j.jastp.2003.09.013
10.1029/98GL01425
10.1016/0021-9169(91)90031-2
10.1029/GM053p0081
10.1029/2008JA013157
10.1029/2006JA011801
10.1029/JA089iA06p03801
10.1029/2007JA012478
10.1029/2000JA000008
10.1016/0032-0633(74)90070-1
10.1029/JA087iA06p04435
10.1029/2003GL018757
10.1029/2002GL016039
10.1029/2004JA010654
10.1029/2007GL032226
ContentType Journal Article
Copyright Copyright 2009 by the American Geophysical Union.
2009 INIST-CNRS
Copyright_xml – notice: Copyright 2009 by the American Geophysical Union.
– notice: 2009 INIST-CNRS
DBID BSCLL
AAYXX
CITATION
IQODW
DOI 10.1029/2009JA014206
DatabaseName Istex
CrossRef
Pascal-Francis
DatabaseTitle CrossRef
DatabaseTitleList
CrossRef
DeliveryMethod fulltext_linktorsrc
Discipline Meteorology & Climatology
Biology
Oceanography
Geology
Astronomy & Astrophysics
Physics
EISSN 2156-2202
EndPage n/a
ExternalDocumentID 21885225
10_1029_2009JA014206
JGRA19945
ark_67375_WNG_KVB5ZVZ4_9
Genre article
GroupedDBID 12K
1OC
24P
7XC
88I
8FE
8FH
8G5
8R4
8R5
AANLZ
AAXRX
ABUWG
ACAHQ
ACCZN
ACXBN
AEIGN
AEUYR
AFFPM
AHBTC
AITYG
ALMA_UNASSIGNED_HOLDINGS
AMYDB
ATCPS
BBNVY
BENPR
BHPHI
BKSAR
BPHCQ
BRXPI
BSCLL
DCZOG
DRFUL
DRSTM
DU5
DWQXO
GNUQQ
GUQSH
HCIFZ
LATKE
LITHE
LOXES
LUTES
LYRES
M2O
M2P
MEWTI
MSFUL
MSSTM
MXFUL
MXSTM
P-X
Q2X
RNS
WHG
WIN
WXSBR
XSW
~OA
~~A
AAHQN
AAMNL
AAYXX
AGYGG
CITATION
IQODW
ID FETCH-LOGICAL-c4295-d1d580df41fc5343d7a49ba41cb8cb30b951f2ecff4e938120fe49d0d37ab36f3
ISSN 0148-0227
IngestDate Mon Jul 21 09:11:53 EDT 2025
Thu Apr 24 23:01:47 EDT 2025
Tue Jul 01 02:41:48 EDT 2025
Wed Jan 22 16:16:19 EST 2025
Wed Oct 30 09:57:14 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue A7
Keywords magnetic field
Field line
growth rates
Differential equation
Plasma density
electrons
Whistler wave
amplitude
magnetosphere
propagation
Non linear damping
Particle code
Wave packet
inhomogeneity
growth
Dawn chorus
electron density
dispersion
Gyrofrequency
theory
Non linear wave
Language English
License http://onlinelibrary.wiley.com/termsAndConditions#vor
CC BY 4.0
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4295-d1d580df41fc5343d7a49ba41cb8cb30b951f2ecff4e938120fe49d0d37ab36f3
Notes istex:69843672CFBCC4FEA701FD797E41CF5CA0237676
ark:/67375/WNG-KVB5ZVZ4-9
ArticleID:2009JA014206
OpenAccessLink http://hdl.handle.net/2433/91257
PageCount 15
ParticipantIDs pascalfrancis_primary_21885225
crossref_primary_10_1029_2009JA014206
crossref_citationtrail_10_1029_2009JA014206
wiley_primary_10_1029_2009JA014206_JGRA19945
istex_primary_ark_67375_WNG_KVB5ZVZ4_9
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate July 2009
PublicationDateYYYYMMDD 2009-07-01
PublicationDate_xml – month: 07
  year: 2009
  text: July 2009
PublicationDecade 2000
PublicationPlace Washington, DC
PublicationPlace_xml – name: Washington, DC
PublicationTitle Journal of Geophysical Research: Space Physics
PublicationTitleAlternate J. Geophys. Res
PublicationYear 2009
Publisher Blackwell Publishing Ltd
American Geophysical Union
Publisher_xml – name: Blackwell Publishing Ltd
– name: American Geophysical Union
References Hikishima, M., S. Yagitani, Y. Omura, and I. Nagano (2009), Full particle simulation of whistler-mode rising chorus emissions in the magnetosphere, J. Geophys. Res., 114, A01203, doi:10.1029/2008JA013625.
Omura, Y., N. Furuya, and D. Summers (2007), Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field, J. Geophys. Res., 112, A06236, doi:10.1029/2006JA012243.
Matsumoto, H., and Y. Omura (1981), Cluster and channel effect phase bunching by whistler waves in the nonuniform geomagnetic field, J. Geophys. Res., 86(A2), 779.
Summers, D., C. Ma, N. P. Meredith, R. B. Horne, R. M. Thorne, D. Heynderickx, and R. R. Anderson (2002), Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm, Geophys. Res. Lett., 29(24), 2174, doi:10.1029/2002GL016039.
Lauben, D. S., U. S. Inan, T. F. Bell, D. L. Kirchner, S. B. Hospodarsky, and J. S. Pickett (1998), VLF chorus emissions observed by Polar during the January 10, 1997, magnetic cloud, Geophys. Res. Lett., 25(15), 2995.
Katoh, Y., and Y. Omura (2004), Acceleration of relativistic electrons due to resonant scattering by whistler mode waves generated by temperature anisotropy in the inner magnetosphere, J. Geophys. Res., 109, A12214, doi:10.1029/2004JA010654.
Nunn, D. (1974), A self-consistent theory of triggered VLF emissions, Planet. Space Sci., 22, 349-378.
Trakhtengerts, V. Y. (1995), Magnetosphere cyclotron maser: Backward wave oscillator generation regime, J. Geophys. Res., 100(A9), 17,205.
Omura, Y., and H. Matsumoto (1982), Computer simulations of basic processes of coherent whistler wave-particle interactions in the magnetosphere, J. Geophys. Res., 87(A6), 4435.
Summers, D., B. Ni, and N. P. Meredith (2007b), Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and EMIC waves, J. Geophys. Res., 112, A04207, doi:10.1029/2006JA011993.
Santolik, O., D. A. Gurnett, J. S. Pickett, and N. Cornilleau-Wehrlin (2004b), A microscopic and nanoscopic view of storm-time chorus on 31 March 2001, Geophys. Res. Lett., 31, L02801, doi:10.1029/2003GL018757.
Omura, Y., and D. Summers (2004), Computer simulations of relativistic whistler-mode wave-particle interactions, Phys. Plasmas, 11, 3530-3534.
Lauben, D. S., U. S. Inan, T. F. Bell, and D. A. Gurnett (2002), Source characteristics of ELF/VLF chorus, J. Geophys. Res., 107(A12), 1429, doi:10.1029/2000JA003019.
Helliwell, R. A. (1988), VLF wave simulation experiments in the magnetosphere from Siple Station, Antarctica, Rev. Geophys., 26(3), 551.
Kasahara, Y., Y. Miyoshi, Y. Omura, O. P. Verkhoglyadova, I. Nagano, I. Kimura, and B. T. Tsurutani (2009), Simultaneous satellite observations of VLF chorus, hot and relativistic electrons in a magnetic storm "recovery" phase, Geophys. Res. Lett., 36, L01106, doi:10.1029/2008GL036454.
Katoh, Y., and Y. Omura (2007b), Computer simulation of chorus wave generation in the Earth's inner magnetosphere, Geophys. Res. Lett., 34, L03102, doi:10.1029/2006GL028594.
Summers, D., and C. Ma (2000), A model for generating relativistic electrons in the Earth's inner magnetosphere based on gyroresonant wave-particle interactions, J. Geophys. Res., 105(A2), 2625.
Roth, I., M. Temerin, and M. K. Hudson (1999), Resonant enhancement of relativistic electron fluxes during geomagnetically active periods, Ann. Geophys., 17, 631-638.
Miyoshi, Y., A. Morioka, T. Obara, H. Misawa, T. Nagai, and Y. Kasahara (2003), Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations, J. Geophys. Res., 108(A1), 1004, doi:10.1029/2001JA007542.
Albert, J. M. (2002), Nonlinear interaction of outer zone electrons with VLF waves, Geophys. Res. Lett., 29(8), 1275, doi:10.1029/2001GL013941.
Omura, Y., and D. Summers (2006), Dynamics of high-energy electrons interacting with whistler mode chorus emissions in the magnetosphere, J. Geophys. Res., 111, A09222, doi:10.1029/2006JA011600.
Stix, T. H. (1992), Waves in Plasmas, Am. Inst. Phys., New York.
Hospodarsky, G. B., T. F. Averkamp, W. S. Kurth, D. A. Gurnett, J. D. Menietti, O. Santolik, and M. K. Dougherty (2008), Observations of chorus at Saturn using the Cassini Radio and Plasma Wave Science instrument, J. Geophys. Res., 113, A12206, doi:10.1029/2008JA013237.
Summers, D., and Y. Omura (2007), Ultra-relativistic acceleration of electrons in planetary magnetospheres, Geophys. Res. Lett., 34, L24205, doi:10.1029/2007GL032226.
Golkowski, M., U. S. Inan, A. R. Gibby, and M. B. Cohen (2008), Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater, J. Geophys. Res., 113, A10201, doi:10.1029/2008JA013157.
Coroniti, F. V., F. L. Scarf, C. F. Kennel, and W. S. Kurth (1984), Analysis of chorus emissions at Jupiter, J. Geophys. Res., 89(A6), 3801.
Omura, Y., D. Nunn, H. Matsumoto, and M. J. Rycroft (1991), A review of observational, theoretical and numerical studies of VLF triggered emissions, J. Atmos. Terr. Phys., 53, 351-368.
Omura, Y., Y. Katoh, and D. Summers (2008), Theory and simulation of the generation of whistler-mode chorus, J. Geophys. Res., 113, A04223, doi:10.1029/2007JA012622.
Katoh, Y., and Y. Omura (2006), A study of generation mechanism of VLF triggered emission by self-consistent particle code, J. Geophys. Res., 111, A12207, doi:10.1029/2006JA011704.
Santolik, O., D. A. Gurnett, J. S. Pickett, M. Parrot, and N. Cornilleau-Wehrlin (2003), Spatio-temporal structure of storm-time chorus, J. Geophys. Res., 108(A7), 1278, doi:10.1029/2002JA009791.
Santolik, O., D. A. Gurnett, and J. S. Pickett (2004a), Multipoint investigation of the source region of storm-time chorus, Ann. Geophys., 22, 2255.
Summers, D., C. Ma, N. P. Meredith, R. B. Horne, R. M. Thorne, and R. R. Anderson (2004a), Modeling outer-zone relativistic electron response to whistler-mode chorus activity during substorms, J. Atmos. Sol. Terr. Phys., 66, 133-146.
Summers, D., R. M. Thorne, and F. Xiao (1998), Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere, J. Geophys. Res., 103(A9), 20,487.
Summers, D., B. Ni, and N. P. Meredith (2007a), Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory, J. Geophys. Res., 112, A04206, doi:10.1029/2006JA011801.
Santolik, O. (2008), New results of investigations of whistler-mode chorus emissions, Nonlinear Processes Geophys., 15, 621-630.
Albert, J. M. (2000), Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave, J. Geophys. Res., 105(A9), 21,191.
Katoh, Y., and Y. Omura (2007a), Relativistic particle acceleration in the process of whistler-mode chorus wave generation, Geophys. Res. Lett., 34, L13102, doi:10.1029/2007GL029758.
Katoh, Y., Y. Omura, and D. Summers (2008), Rapid energization of radiation belt electrons by nonlinear wave trapping, Ann. Geophys., 26, 3451-3456.
Menietti, J. D., O. Santolik, A. M. Rymer, G. B. Hospodarsky, A. M. Persoon, D. A. Gurnett, and D. T. Young (2008), Analysis of plasma waves observed within local plasma injections seen in Saturn's magnetosphere, J. Geophys. Res., 113, A05213, doi:10.1029/2007JA012856.
Horne, R. B., R. M. Thorne, S. A. Glauert, J. M. Albert, N. P. Meredith, and R. R. Anderson (2005), Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110(A12), A03225, doi:10.1029/2004JA010811.
Trakhtengerts, V. Y. (1999), A generation mechanism for chorus emission, Ann. Geophys., 17, 95-100.
Tsurutani, B. T., and E. J. Smith (1974), Postmidnight chorus: A substorm phenomenon, J. Geophys. Res., 79(1), 118.
Summers, D., C. Ma, and T. Mukai (2004b), Competition between acceleration and loss mechanisms of relativistic electrons during geomagnetic storms, J. Geophys. Res., 109, A04221, doi:10.1029/2004JA010437.
Nunn, D., Y. Omura, H. Matsumoto, I. Nagano, and S. Yagitani (1997), The numerical simulation of VLF chorus and discrete emissions observed on the Geotail satellite using a Vlasov code, J. Geophys. Res., 102(A12), 27,083.
Bortnik, J., U. S. Inan, and T. F. Bell (2006), Landau damping and resultant unidirectional propagation of chorus waves, Geophys. Res. Lett., 33, L03102, doi:10.1029/2005GL024553.
Furuya, N., Y. Omura, and D. Summers (2008), Relativistic turning acceleration of radiation belt electrons by whistler mode chorus, J. Geophys. Res., 113, A04224, doi:10.1029/2007JA012478.
2004; 22
2004; 66
1974; 79
2005; 110
2006; 33
1991; 53
1984; 89
2008; 15
2003
1992
2004; 109
2007; 34
2009; 114
2006; 111
1981; 86
1998; 25
1997; 102
2004; 11
2009; 36
2007; 112
2004; 31
2003; 108
1974; 22
2002; 29
1989; 53
2000; 105
1999; 17
1988; 26
1982; 87
2008; 26
2002; 107
1998; 103
1995; 100
2008; 113
1998; 105
e_1_2_13_24_1
e_1_2_13_49_1
e_1_2_13_26_1
e_1_2_13_47_1
e_1_2_13_20_1
e_1_2_13_45_1
e_1_2_13_22_1
e_1_2_13_43_1
e_1_2_13_8_1
e_1_2_13_41_1
e_1_2_13_6_1
e_1_2_13_17_1
e_1_2_13_19_1
e_1_2_13_13_1
e_1_2_13_36_1
e_1_2_13_15_1
e_1_2_13_38_1
e_1_2_13_32_1
e_1_2_13_11_1
e_1_2_13_34_1
e_1_2_13_30_1
e_1_2_13_4_1
e_1_2_13_2_1
e_1_2_13_29_1
e_1_2_13_25_1
e_1_2_13_48_1
e_1_2_13_27_1
e_1_2_13_46_1
e_1_2_13_21_1
e_1_2_13_44_1
e_1_2_13_23_1
e_1_2_13_42_1
e_1_2_13_9_1
e_1_2_13_40_1
e_1_2_13_7_1
Stix T. H. (e_1_2_13_39_1) 1992
e_1_2_13_18_1
e_1_2_13_14_1
e_1_2_13_35_1
e_1_2_13_16_1
e_1_2_13_37_1
e_1_2_13_10_1
e_1_2_13_31_1
e_1_2_13_12_1
e_1_2_13_33_1
e_1_2_13_50_1
e_1_2_13_5_1
e_1_2_13_3_1
e_1_2_13_28_1
References_xml – reference: Golkowski, M., U. S. Inan, A. R. Gibby, and M. B. Cohen (2008), Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater, J. Geophys. Res., 113, A10201, doi:10.1029/2008JA013157.
– reference: Coroniti, F. V., F. L. Scarf, C. F. Kennel, and W. S. Kurth (1984), Analysis of chorus emissions at Jupiter, J. Geophys. Res., 89(A6), 3801.
– reference: Lauben, D. S., U. S. Inan, T. F. Bell, D. L. Kirchner, S. B. Hospodarsky, and J. S. Pickett (1998), VLF chorus emissions observed by Polar during the January 10, 1997, magnetic cloud, Geophys. Res. Lett., 25(15), 2995.
– reference: Omura, Y., N. Furuya, and D. Summers (2007), Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field, J. Geophys. Res., 112, A06236, doi:10.1029/2006JA012243.
– reference: Horne, R. B., R. M. Thorne, S. A. Glauert, J. M. Albert, N. P. Meredith, and R. R. Anderson (2005), Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110(A12), A03225, doi:10.1029/2004JA010811.
– reference: Hikishima, M., S. Yagitani, Y. Omura, and I. Nagano (2009), Full particle simulation of whistler-mode rising chorus emissions in the magnetosphere, J. Geophys. Res., 114, A01203, doi:10.1029/2008JA013625.
– reference: Omura, Y., Y. Katoh, and D. Summers (2008), Theory and simulation of the generation of whistler-mode chorus, J. Geophys. Res., 113, A04223, doi:10.1029/2007JA012622.
– reference: Kasahara, Y., Y. Miyoshi, Y. Omura, O. P. Verkhoglyadova, I. Nagano, I. Kimura, and B. T. Tsurutani (2009), Simultaneous satellite observations of VLF chorus, hot and relativistic electrons in a magnetic storm "recovery" phase, Geophys. Res. Lett., 36, L01106, doi:10.1029/2008GL036454.
– reference: Summers, D., C. Ma, and T. Mukai (2004b), Competition between acceleration and loss mechanisms of relativistic electrons during geomagnetic storms, J. Geophys. Res., 109, A04221, doi:10.1029/2004JA010437.
– reference: Albert, J. M. (2000), Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave, J. Geophys. Res., 105(A9), 21,191.
– reference: Nunn, D., Y. Omura, H. Matsumoto, I. Nagano, and S. Yagitani (1997), The numerical simulation of VLF chorus and discrete emissions observed on the Geotail satellite using a Vlasov code, J. Geophys. Res., 102(A12), 27,083.
– reference: Roth, I., M. Temerin, and M. K. Hudson (1999), Resonant enhancement of relativistic electron fluxes during geomagnetically active periods, Ann. Geophys., 17, 631-638.
– reference: Summers, D., C. Ma, N. P. Meredith, R. B. Horne, R. M. Thorne, and R. R. Anderson (2004a), Modeling outer-zone relativistic electron response to whistler-mode chorus activity during substorms, J. Atmos. Sol. Terr. Phys., 66, 133-146.
– reference: Stix, T. H. (1992), Waves in Plasmas, Am. Inst. Phys., New York.
– reference: Summers, D., B. Ni, and N. P. Meredith (2007b), Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and EMIC waves, J. Geophys. Res., 112, A04207, doi:10.1029/2006JA011993.
– reference: Matsumoto, H., and Y. Omura (1981), Cluster and channel effect phase bunching by whistler waves in the nonuniform geomagnetic field, J. Geophys. Res., 86(A2), 779.
– reference: Trakhtengerts, V. Y. (1995), Magnetosphere cyclotron maser: Backward wave oscillator generation regime, J. Geophys. Res., 100(A9), 17,205.
– reference: Santolik, O. (2008), New results of investigations of whistler-mode chorus emissions, Nonlinear Processes Geophys., 15, 621-630.
– reference: Helliwell, R. A. (1988), VLF wave simulation experiments in the magnetosphere from Siple Station, Antarctica, Rev. Geophys., 26(3), 551.
– reference: Katoh, Y., Y. Omura, and D. Summers (2008), Rapid energization of radiation belt electrons by nonlinear wave trapping, Ann. Geophys., 26, 3451-3456.
– reference: Trakhtengerts, V. Y. (1999), A generation mechanism for chorus emission, Ann. Geophys., 17, 95-100.
– reference: Furuya, N., Y. Omura, and D. Summers (2008), Relativistic turning acceleration of radiation belt electrons by whistler mode chorus, J. Geophys. Res., 113, A04224, doi:10.1029/2007JA012478.
– reference: Albert, J. M. (2002), Nonlinear interaction of outer zone electrons with VLF waves, Geophys. Res. Lett., 29(8), 1275, doi:10.1029/2001GL013941.
– reference: Summers, D., and Y. Omura (2007), Ultra-relativistic acceleration of electrons in planetary magnetospheres, Geophys. Res. Lett., 34, L24205, doi:10.1029/2007GL032226.
– reference: Katoh, Y., and Y. Omura (2007b), Computer simulation of chorus wave generation in the Earth's inner magnetosphere, Geophys. Res. Lett., 34, L03102, doi:10.1029/2006GL028594.
– reference: Summers, D., B. Ni, and N. P. Meredith (2007a), Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory, J. Geophys. Res., 112, A04206, doi:10.1029/2006JA011801.
– reference: Nunn, D. (1974), A self-consistent theory of triggered VLF emissions, Planet. Space Sci., 22, 349-378.
– reference: Summers, D., R. M. Thorne, and F. Xiao (1998), Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere, J. Geophys. Res., 103(A9), 20,487.
– reference: Bortnik, J., U. S. Inan, and T. F. Bell (2006), Landau damping and resultant unidirectional propagation of chorus waves, Geophys. Res. Lett., 33, L03102, doi:10.1029/2005GL024553.
– reference: Miyoshi, Y., A. Morioka, T. Obara, H. Misawa, T. Nagai, and Y. Kasahara (2003), Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations, J. Geophys. Res., 108(A1), 1004, doi:10.1029/2001JA007542.
– reference: Summers, D., C. Ma, N. P. Meredith, R. B. Horne, R. M. Thorne, D. Heynderickx, and R. R. Anderson (2002), Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm, Geophys. Res. Lett., 29(24), 2174, doi:10.1029/2002GL016039.
– reference: Omura, Y., and D. Summers (2004), Computer simulations of relativistic whistler-mode wave-particle interactions, Phys. Plasmas, 11, 3530-3534.
– reference: Omura, Y., and D. Summers (2006), Dynamics of high-energy electrons interacting with whistler mode chorus emissions in the magnetosphere, J. Geophys. Res., 111, A09222, doi:10.1029/2006JA011600.
– reference: Omura, Y., D. Nunn, H. Matsumoto, and M. J. Rycroft (1991), A review of observational, theoretical and numerical studies of VLF triggered emissions, J. Atmos. Terr. Phys., 53, 351-368.
– reference: Katoh, Y., and Y. Omura (2007a), Relativistic particle acceleration in the process of whistler-mode chorus wave generation, Geophys. Res. Lett., 34, L13102, doi:10.1029/2007GL029758.
– reference: Santolik, O., D. A. Gurnett, J. S. Pickett, M. Parrot, and N. Cornilleau-Wehrlin (2003), Spatio-temporal structure of storm-time chorus, J. Geophys. Res., 108(A7), 1278, doi:10.1029/2002JA009791.
– reference: Santolik, O., D. A. Gurnett, and J. S. Pickett (2004a), Multipoint investigation of the source region of storm-time chorus, Ann. Geophys., 22, 2255.
– reference: Lauben, D. S., U. S. Inan, T. F. Bell, and D. A. Gurnett (2002), Source characteristics of ELF/VLF chorus, J. Geophys. Res., 107(A12), 1429, doi:10.1029/2000JA003019.
– reference: Katoh, Y., and Y. Omura (2004), Acceleration of relativistic electrons due to resonant scattering by whistler mode waves generated by temperature anisotropy in the inner magnetosphere, J. Geophys. Res., 109, A12214, doi:10.1029/2004JA010654.
– reference: Santolik, O., D. A. Gurnett, J. S. Pickett, and N. Cornilleau-Wehrlin (2004b), A microscopic and nanoscopic view of storm-time chorus on 31 March 2001, Geophys. Res. Lett., 31, L02801, doi:10.1029/2003GL018757.
– reference: Hospodarsky, G. B., T. F. Averkamp, W. S. Kurth, D. A. Gurnett, J. D. Menietti, O. Santolik, and M. K. Dougherty (2008), Observations of chorus at Saturn using the Cassini Radio and Plasma Wave Science instrument, J. Geophys. Res., 113, A12206, doi:10.1029/2008JA013237.
– reference: Menietti, J. D., O. Santolik, A. M. Rymer, G. B. Hospodarsky, A. M. Persoon, D. A. Gurnett, and D. T. Young (2008), Analysis of plasma waves observed within local plasma injections seen in Saturn's magnetosphere, J. Geophys. Res., 113, A05213, doi:10.1029/2007JA012856.
– reference: Summers, D., and C. Ma (2000), A model for generating relativistic electrons in the Earth's inner magnetosphere based on gyroresonant wave-particle interactions, J. Geophys. Res., 105(A2), 2625.
– reference: Tsurutani, B. T., and E. J. Smith (1974), Postmidnight chorus: A substorm phenomenon, J. Geophys. Res., 79(1), 118.
– reference: Katoh, Y., and Y. Omura (2006), A study of generation mechanism of VLF triggered emission by self-consistent particle code, J. Geophys. Res., 111, A12207, doi:10.1029/2006JA011704.
– reference: Omura, Y., and H. Matsumoto (1982), Computer simulations of basic processes of coherent whistler wave-particle interactions in the magnetosphere, J. Geophys. Res., 87(A6), 4435.
– volume: 34
  year: 2007
  article-title: Relativistic particle acceleration in the process of whistler‐mode chorus wave generation
  publication-title: Geophys. Res. Lett.
– volume: 34
  year: 2007
  article-title: Computer simulation of chorus wave generation in the Earth's inner magnetosphere
  publication-title: Geophys. Res. Lett.
– volume: 86
  start-page: 779
  issue: A2
  year: 1981
  article-title: Cluster and channel effect phase bunching by whistler waves in the nonuniform geomagnetic field
  publication-title: J. Geophys. Res.
– volume: 114
  year: 2009
  article-title: Full particle simulation of whistler‐mode rising chorus emissions in the magnetosphere
  publication-title: J. Geophys. Res.
– volume: 53
  start-page: 351
  year: 1991
  end-page: 368
  article-title: A review of observational, theoretical and numerical studies of VLF triggered emissions
  publication-title: J. Atmos. Terr. Phys.
– volume: 102
  start-page: 27,083
  issue: A12
  year: 1997
  article-title: The numerical simulation of VLF chorus and discrete emissions observed on the Geotail satellite using a Vlasov code
  publication-title: J. Geophys. Res.
– volume: 29
  issue: 8
  year: 2002
  article-title: Nonlinear interaction of outer zone electrons with VLF waves
  publication-title: Geophys. Res. Lett.
– volume: 22
  start-page: 2255
  year: 2004
  article-title: Multipoint investigation of the source region of storm‐time chorus
  publication-title: Ann. Geophys.
– volume: 25
  start-page: 2995
  issue: 15
  year: 1998
  article-title: VLF chorus emissions observed by Polar during the January 10, 1997, magnetic cloud
  publication-title: Geophys. Res. Lett.
– volume: 112
  year: 2007
  article-title: Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field
  publication-title: J. Geophys. Res.
– volume: 34
  year: 2007
  article-title: Ultra‐relativistic acceleration of electrons in planetary magnetospheres
  publication-title: Geophys. Res. Lett.
– volume: 108
  issue: A7
  year: 2003
  article-title: Spatio‐temporal structure of storm‐time chorus
  publication-title: J. Geophys. Res.
– volume: 100
  start-page: 17,205
  issue: A9
  year: 1995
  article-title: Magnetosphere cyclotron maser: Backward wave oscillator generation regime
  publication-title: J. Geophys. Res.
– volume: 87
  start-page: 4435
  issue: A6
  year: 1982
  article-title: Computer simulations of basic processes of coherent whistler wave‐particle interactions in the magnetosphere
  publication-title: J. Geophys. Res.
– volume: 103
  start-page: 20,487
  issue: A9
  year: 1998
  article-title: Relativistic theory of wave‐particle resonant diffusion with application to electron acceleration in the magnetosphere
  publication-title: J. Geophys. Res.
– start-page: 79
  year: 2003
  end-page: 92
– volume: 89
  start-page: 3801
  issue: A6
  year: 1984
  article-title: Analysis of chorus emissions at Jupiter
  publication-title: J. Geophys. Res.
– volume: 111
  year: 2006
  article-title: A study of generation mechanism of VLF triggered emission by self‐consistent particle code
  publication-title: J. Geophys. Res.
– volume: 105
  start-page: 259
  year: 1998
– volume: 113
  year: 2008
  article-title: Theory and simulation of the generation of whistler‐mode chorus
  publication-title: J. Geophys. Res.
– volume: 108
  issue: A1
  year: 2003
  article-title: Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos‐D observations
  publication-title: J. Geophys. Res.
– volume: 15
  start-page: 621
  year: 2008
  end-page: 630
  article-title: New results of investigations of whistler‐mode chorus emissions
  publication-title: Nonlinear Processes Geophys.
– volume: 110
  issue: A12
  year: 2005
  article-title: Timescale for radiation belt electron acceleration by whistler mode chorus waves
  publication-title: J. Geophys. Res.
– volume: 29
  issue: 24
  year: 2002
  article-title: Model of the energization of outer‐zone electrons by whistler‐mode chorus during the October 9, 1990 geomagnetic storm
  publication-title: Geophys. Res. Lett.
– volume: 105
  start-page: 2625
  issue: A2
  year: 2000
  article-title: A model for generating relativistic electrons in the Earth's inner magnetosphere based on gyroresonant wave‐particle interactions
  publication-title: J. Geophys. Res.
– volume: 112
  year: 2007
  article-title: Timescales for radiation belt electron acceleration and loss due to resonant wave‐particle interactions: 1. Theory
  publication-title: J. Geophys. Res.
– volume: 36
  year: 2009
  article-title: Simultaneous satellite observations of VLF chorus, hot and relativistic electrons in a magnetic storm “recovery” phase
  publication-title: Geophys. Res. Lett.
– volume: 79
  start-page: 118
  issue: 1
  year: 1974
  article-title: Postmidnight chorus: A substorm phenomenon
  publication-title: J. Geophys. Res.
– volume: 111
  year: 2006
  article-title: Dynamics of high‐energy electrons interacting with whistler mode chorus emissions in the magnetosphere
  publication-title: J. Geophys. Res.
– volume: 17
  start-page: 95
  year: 1999
  end-page: 100
  article-title: A generation mechanism for chorus emission
  publication-title: Ann. Geophys.
– volume: 31
  year: 2004
  article-title: A microscopic and nanoscopic view of storm‐time chorus on 31 March 2001
  publication-title: Geophys. Res. Lett.
– volume: 26
  start-page: 3451
  year: 2008
  end-page: 3456
  article-title: Rapid energization of radiation belt electrons by nonlinear wave trapping
  publication-title: Ann. Geophys.
– year: 1992
– volume: 11
  start-page: 3530
  year: 2004
  end-page: 3534
  article-title: Computer simulations of relativistic whistler‐mode wave‐particle interactions
  publication-title: Phys. Plasmas
– volume: 113
  year: 2008
  article-title: Observations of chorus at Saturn using the Cassini Radio and Plasma Wave Science instrument
  publication-title: J. Geophys. Res.
– volume: 109
  year: 2004
  article-title: Competition between acceleration and loss mechanisms of relativistic electrons during geomagnetic storms
  publication-title: J. Geophys. Res.
– volume: 113
  year: 2008
  article-title: Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater
  publication-title: J. Geophys. Res.
– volume: 17
  start-page: 631
  year: 1999
  end-page: 638
  article-title: Resonant enhancement of relativistic electron fluxes during geomagnetically active periods
  publication-title: Ann. Geophys.
– volume: 33
  year: 2006
  article-title: Landau damping and resultant unidirectional propagation of chorus waves
  publication-title: Geophys. Res. Lett.
– volume: 113
  year: 2008
  article-title: Relativistic turning acceleration of radiation belt electrons by whistler mode chorus
  publication-title: J. Geophys. Res.
– volume: 113
  year: 2008
  article-title: Analysis of plasma waves observed within local plasma injections seen in Saturn's magnetosphere
  publication-title: J. Geophys. Res.
– volume: 105
  start-page: 21,191
  issue: A9
  year: 2000
  article-title: Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave
  publication-title: J. Geophys. Res.
– volume: 22
  start-page: 349
  year: 1974
  end-page: 378
  article-title: A self‐consistent theory of triggered VLF emissions
  publication-title: Planet. Space Sci.
– volume: 109
  year: 2004
  article-title: Acceleration of relativistic electrons due to resonant scattering by whistler mode waves generated by temperature anisotropy in the inner magnetosphere
  publication-title: J. Geophys. Res.
– volume: 26
  start-page: 551
  issue: 3
  year: 1988
  article-title: VLF wave simulation experiments in the magnetosphere from Siple Station
  publication-title: Rev. Geophys.
– volume: 107
  issue: A12
  year: 2002
  article-title: Source characteristics of ELF/VLF chorus
  publication-title: J. Geophys. Res.
– volume: 66
  start-page: 133
  year: 2004
  end-page: 146
  article-title: Modeling outer‐zone relativistic electron response to whistler‐mode chorus activity during substorms
  publication-title: J. Atmos. Sol. Terr. Phys.
– volume: 112
  year: 2007
  article-title: Timescales for radiation belt electron acceleration and loss due to resonant wave‐particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and EMIC waves
  publication-title: J. Geophys. Res.
– volume: 53
  start-page: 81
  year: 1989
– ident: e_1_2_13_17_1
  doi: 10.1029/2006GL028594
– ident: e_1_2_13_23_1
  doi: 10.1029/2007JA012856
– ident: e_1_2_13_5_1
  doi: 10.1029/2005GL024553
– ident: e_1_2_13_10_1
  doi: 10.1029/2008JA013625
– ident: e_1_2_13_35_1
  doi: 10.5194/npg-15-621-2008
– ident: e_1_2_13_21_1
  doi: 10.1029/JA086iA02p00779
– ident: e_1_2_13_48_1
  doi: 10.1029/95JA00843
– ident: e_1_2_13_26_1
  doi: 10.1029/97JA02518
– ident: e_1_2_13_34_1
  doi: 10.1007/s00585-999-0631-2
– ident: e_1_2_13_16_1
  doi: 10.1029/2007GL029758
– ident: e_1_2_13_28_1
  doi: 10.1063/1.1757457
– ident: e_1_2_13_50_1
  doi: 10.1029/JA079i001p00118
– ident: e_1_2_13_12_1
  doi: 10.1029/2008JA013237
– ident: e_1_2_13_15_1
  doi: 10.1029/2006JA011704
– ident: e_1_2_13_33_1
  doi: 10.1029/2007JA012622
– ident: e_1_2_13_9_1
  doi: 10.1029/RG026i003p00551
– ident: e_1_2_13_22_1
  doi: 10.1029/GM105p0259
– ident: e_1_2_13_18_1
  doi: 10.5194/angeo-26-3451-2008
– ident: e_1_2_13_31_1
  doi: 10.1007/3-540-36530-3_4
– ident: e_1_2_13_24_1
  doi: 10.1029/2001JA007542
– ident: e_1_2_13_3_1
  doi: 10.1029/2001GL013941
– ident: e_1_2_13_11_1
  doi: 10.1029/2004JA010811
– ident: e_1_2_13_13_1
  doi: 10.1029/2008GL036454
– ident: e_1_2_13_42_1
  doi: 10.1029/98JA01740
– ident: e_1_2_13_40_1
  doi: 10.1029/1999JA900444
– ident: e_1_2_13_49_1
  doi: 10.1007/s00585-999-0095-4
– ident: e_1_2_13_47_1
  doi: 10.1029/2006JA011993
– ident: e_1_2_13_37_1
  doi: 10.5194/angeo-22-2555-2004
– ident: e_1_2_13_36_1
  doi: 10.1029/2002JA009791
– ident: e_1_2_13_32_1
  doi: 10.1029/2006JA012243
– ident: e_1_2_13_45_1
  doi: 10.1029/2004JA010437
– ident: e_1_2_13_20_1
  doi: 10.1029/2000JA003019
– ident: e_1_2_13_29_1
  doi: 10.1029/2006JA011600
– ident: e_1_2_13_44_1
  doi: 10.1016/j.jastp.2003.09.013
– ident: e_1_2_13_19_1
  doi: 10.1029/98GL01425
– volume-title: Waves in Plasmas
  year: 1992
  ident: e_1_2_13_39_1
– ident: e_1_2_13_30_1
  doi: 10.1016/0021-9169(91)90031-2
– ident: e_1_2_13_4_1
  doi: 10.1029/GM053p0081
– ident: e_1_2_13_8_1
  doi: 10.1029/2008JA013157
– ident: e_1_2_13_46_1
  doi: 10.1029/2006JA011801
– ident: e_1_2_13_6_1
  doi: 10.1029/JA089iA06p03801
– ident: e_1_2_13_7_1
  doi: 10.1029/2007JA012478
– ident: e_1_2_13_2_1
  doi: 10.1029/2000JA000008
– ident: e_1_2_13_25_1
  doi: 10.1016/0032-0633(74)90070-1
– ident: e_1_2_13_27_1
  doi: 10.1029/JA087iA06p04435
– ident: e_1_2_13_38_1
  doi: 10.1029/2003GL018757
– ident: e_1_2_13_43_1
  doi: 10.1029/2002GL016039
– ident: e_1_2_13_14_1
  doi: 10.1029/2004JA010654
– ident: e_1_2_13_41_1
  doi: 10.1029/2007GL032226
SSID ssj0000456401
ssj0014561
ssj0030581
ssj0030583
ssj0043761
ssj0030582
ssj0030585
ssj0030584
ssj0030586
Score 2.4443047
Snippet We develop a nonlinear wave growth theory of magnetospheric chorus emissions, taking into account the spatial inhomogeneity of the static magnetic field and...
SourceID pascalfrancis
crossref
wiley
istex
SourceType Index Database
Enrichment Source
Publisher
SubjectTerms chorus
Earth sciences
Earth, ocean, space
Exact sciences and technology
nonlinear
whistler mode
Title Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere
URI https://api.istex.fr/ark:/67375/WNG-KVB5ZVZ4-9/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2009JA014206
Volume 114
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZbtNAcBVSISEkBAXUcFT7AH0JBh_r2H50qzShIUkV2lCVB2t3bbcRSRzZjqB8PbP2-kLlfIi1Y--uY8-RmckcCL1imkU1qvoKZaooqk25QjVmKgangH_fNv3MmTOe9Ibn5OTCvGi1vtazS1L2ln-_Na_kf7AK5wCvIkv2HzBbbgonYAz4hSNgGI5_heNJXueCxt1VIDJ4F8kqi8xYitZnCpN1WLvbzaYA5x-OuyDw4m3SFY3ekiKQXKifK3q1DtIoEYUGmgFCldJ6FUSbArOyTlDpT56Oz2duJtKj5HpxTeNtSTPvR8IvNnbzQP002VbXRu7ZdJit2qZR6e8BWd-ffZQ58FJcFb4Jp4xjTWvpACCnBrUvB7q0JLjKoynqGDZEcp5YKmnPtW6V9aouSqWK2564sIuu3lJS-6efujIAERQbGzRP8w7a0cG-0Nto57A_OZ2V7rmszE4VLaSRLP83B0BE2g1ArwNGHSB1wKwDvQIgIOLzrpnyRcj0DHi8d_WHayhOO0IGfBOBvDSBlxrmTViaBlamIZ09RA8klWA3p9NHqBWsd9Gem4g_W6LVDT7A2ThHUbKL7uZ9UG9gNAjkqDMGIy6KMwgWHC0XYFHJa_enPKBrWWIdFp3mGz1Gn0s-wBUf4CjEFR9g8an4AAMf4JwPcMkHeLHGwAe4wQdP0Plx_-xoqMimIQoH1cpUfM03bdUPiRZy0yCGb1HiMEo0zmzODJWBSRHqAQ9DEjigrupqGBDHV33DoszohcZT1F5H62APYV2lJtN6rMctH6wG2_a5Bepx6HCdGAHROqhbYMTjsqK-aOyy9LLIDt3x6vjroNfl7E1eSeYX8w4y5JaTaPxFRF9apvdpMvBG80Pzcn5JPKeD9hvYLxcUxN1BbzJy-O3tvJPBTJS-JuazP-33HN2rmPwFaqfxNngJKnnK9iX7_ACYNNNB
linkProvider ProQuest
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+mechanisms+of+lower-band+and+upper-band+VLF+chorus+emissions+in+the+magnetosphere&rft.jtitle=Journal+of+geophysical+research&rft.au=OMURA%2C+Yoshiharu&rft.au=HIKISHIMA%2C+Mitsuru&rft.au=KATOH%2C+Yuto&rft.au=SUMMERS%2C+Danny&rft.date=2009-07-01&rft.pub=American+Geophysical+Union&rft.issn=0148-0227&rft.volume=114&rft.issue=A7&rft_id=info:doi/10.1029%2F2009JA014206&rft.externalDBID=n%2Fa&rft.externalDocID=21885225
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon