Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere
We develop a nonlinear wave growth theory of magnetospheric chorus emissions, taking into account the spatial inhomogeneity of the static magnetic field and the plasma density variation along the magnetic field line. We derive theoretical expressions for the nonlinear growth rate and the amplitude t...
Saved in:
Published in | Journal of Geophysical Research: Space Physics Vol. 114; no. A7 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Washington, DC
Blackwell Publishing Ltd
01.07.2009
American Geophysical Union |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | We develop a nonlinear wave growth theory of magnetospheric chorus emissions, taking into account the spatial inhomogeneity of the static magnetic field and the plasma density variation along the magnetic field line. We derive theoretical expressions for the nonlinear growth rate and the amplitude threshold for the generation of self‐sustaining chorus emissions. We assume that nonlinear growth of a whistler mode wave is initiated at the magnetic equator where the linear growth rate maximizes. Self‐sustaining emissions become possible when the wave propagates away from the equator during which process the increasing gradients of the static magnetic field and electron density provide the conditions for nonlinear growth. The amplitude threshold is tested against both observational data and self‐consistent particle simulations of the chorus emissions. The self‐sustaining mechanism can result in a rising tone emission covering the frequency range of 0.1–0.7 Ωe0, where Ωe0 is the equatorial electron gyrofrequency. During propagation, higher frequencies are subject to stronger dispersion effects that can destroy the self‐sustaining mechanism. We obtain a pair of coupled differential equations for the wave amplitude and frequency. Solving the equations numerically, we reproduce a rising tone of VLF whistler mode emissions that is continuous in frequency. Chorus emissions, however, characteristically occur in two distinct frequency ranges, a lower band and an upper band, separated at half the electron gyrofrequency. We explain the gap by means of the nonlinear damping of the longitudinal component of a slightly oblique whistler mode wave packet propagating along the inhomogeneous static magnetic field. |
---|---|
AbstractList | We develop a nonlinear wave growth theory of magnetospheric chorus emissions, taking into account the spatial inhomogeneity of the static magnetic field and the plasma density variation along the magnetic field line. We derive theoretical expressions for the nonlinear growth rate and the amplitude threshold for the generation of self‐sustaining chorus emissions. We assume that nonlinear growth of a whistler mode wave is initiated at the magnetic equator where the linear growth rate maximizes. Self‐sustaining emissions become possible when the wave propagates away from the equator during which process the increasing gradients of the static magnetic field and electron density provide the conditions for nonlinear growth. The amplitude threshold is tested against both observational data and self‐consistent particle simulations of the chorus emissions. The self‐sustaining mechanism can result in a rising tone emission covering the frequency range of 0.1–0.7 Ωe0, where Ωe0 is the equatorial electron gyrofrequency. During propagation, higher frequencies are subject to stronger dispersion effects that can destroy the self‐sustaining mechanism. We obtain a pair of coupled differential equations for the wave amplitude and frequency. Solving the equations numerically, we reproduce a rising tone of VLF whistler mode emissions that is continuous in frequency. Chorus emissions, however, characteristically occur in two distinct frequency ranges, a lower band and an upper band, separated at half the electron gyrofrequency. We explain the gap by means of the nonlinear damping of the longitudinal component of a slightly oblique whistler mode wave packet propagating along the inhomogeneous static magnetic field. We develop a nonlinear wave growth theory of magnetospheric chorus emissions, taking into account the spatial inhomogeneity of the static magnetic field and the plasma density variation along the magnetic field line. We derive theoretical expressions for the nonlinear growth rate and the amplitude threshold for the generation of self‐sustaining chorus emissions. We assume that nonlinear growth of a whistler mode wave is initiated at the magnetic equator where the linear growth rate maximizes. Self‐sustaining emissions become possible when the wave propagates away from the equator during which process the increasing gradients of the static magnetic field and electron density provide the conditions for nonlinear growth. The amplitude threshold is tested against both observational data and self‐consistent particle simulations of the chorus emissions. The self‐sustaining mechanism can result in a rising tone emission covering the frequency range of 0.1–0.7 Ω e 0 , where Ω e 0 is the equatorial electron gyrofrequency. During propagation, higher frequencies are subject to stronger dispersion effects that can destroy the self‐sustaining mechanism. We obtain a pair of coupled differential equations for the wave amplitude and frequency. Solving the equations numerically, we reproduce a rising tone of VLF whistler mode emissions that is continuous in frequency. Chorus emissions, however, characteristically occur in two distinct frequency ranges, a lower band and an upper band, separated at half the electron gyrofrequency. We explain the gap by means of the nonlinear damping of the longitudinal component of a slightly oblique whistler mode wave packet propagating along the inhomogeneous static magnetic field. |
Author | Katoh, Yuto Omura, Yoshiharu Hikishima, Mitsuru Summers, Danny Yagitani, Satoshi |
Author_xml | – sequence: 1 givenname: Yoshiharu surname: Omura fullname: Omura, Yoshiharu organization: Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan – sequence: 2 givenname: Mitsuru surname: Hikishima fullname: Hikishima, Mitsuru organization: Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan – sequence: 3 givenname: Yuto surname: Katoh fullname: Katoh, Yuto organization: Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan – sequence: 4 givenname: Danny surname: Summers fullname: Summers, Danny organization: Research Institute for Sustainable Humanosphere, Kyoto University, Kyoto, Japan – sequence: 5 givenname: Satoshi surname: Yagitani fullname: Yagitani, Satoshi organization: Graduate School of Natural Science and Technology, Kanazawa University, Kanazawa, Japan |
BackLink | http://pascal-francis.inist.fr/vibad/index.php?action=getRecordDetail&idt=21885225$$DView record in Pascal Francis |
BookMark | eNp9kFtLwzAUx4NMcF7e_AB58c1qrm3zOMXNy1AQnaAPIU0TF23TklSm396O6RBBDxwO5_D7n9s2GPjGGwD2MTrCiIhjgpC4HCHMCEo3wJBgniaEIDIAw76YJ4iQbAvsxfiCemM8ZQgPwdN14yvnjQqwNnquvIt1hI2FVbMwISmUL-HS39r2O51Nx1DPm_AWoaldjK7xEToPu7mBtXr2pmtiOzfB7IJNq6po9r7iDrgfn92dnifTm8nF6WiaaEYET0pc8hyVlmGrOWW0zBQThWJYF7kuKCoEx5YYbS0zguaYIGuYKFFJM1XQ1NIdcLDq26qoVWWD8tpF2QZXq_AhCc5zTgjvucMVp0MTYzB2jWAklz-UP3_Y4-QXrl2nuv7cLihX_SWiK9HCVebj3wHycnI7wkKw5WbJSuViZ97XKhVeZZrRjMuH64m8mp3wx9kjk4J-Am2Dk9g |
CitedBy_id | crossref_primary_10_1029_2019JA027488 crossref_primary_10_1002_2016JA022775 crossref_primary_10_1029_2010JA016280 crossref_primary_10_1063_1_4927774 crossref_primary_10_1002_2017JA024211 crossref_primary_10_5194_angeo_31_665_2013 crossref_primary_10_5194_angeo_36_867_2018 crossref_primary_10_1029_2022JA030438 crossref_primary_10_11728_cjss2024_06_2024_yg27 crossref_primary_10_1002_2013JA019146 crossref_primary_10_1002_2015JA021135 crossref_primary_10_1002_jgra_50395 crossref_primary_10_1029_2019GL083115 crossref_primary_10_1002_2015JA022223 crossref_primary_10_1016_j_jastp_2012_03_004 crossref_primary_10_1029_2019GL082140 crossref_primary_10_13074_jent_2013_09_132029 crossref_primary_10_1029_2021GL097597 crossref_primary_10_3934_krm_2017015 crossref_primary_10_1186_s40623_022_01646_x crossref_primary_10_1002_2014JA020898 crossref_primary_10_1029_2020GL091762 crossref_primary_10_1029_2011JA017428 crossref_primary_10_1002_2015JA022219 crossref_primary_10_1029_2012JA017842 crossref_primary_10_1007_s10712_023_09792_x crossref_primary_10_1029_2010JA015860 crossref_primary_10_1002_2013JA019371 crossref_primary_10_1029_2019JA026951 crossref_primary_10_1002_jgra_50165 crossref_primary_10_1029_2019JA026493 crossref_primary_10_1103_PhysRevLett_114_245002 crossref_primary_10_1002_2017JA023949 crossref_primary_10_1029_2019JA027465 crossref_primary_10_1007_s11430_019_9384_6 crossref_primary_10_1029_2020JA028216 crossref_primary_10_1029_2012JA017708 crossref_primary_10_1088_1674_1056_27_1_015201 crossref_primary_10_1186_s40623_021_01380_w crossref_primary_10_1002_2014JA020440 crossref_primary_10_1016_j_jastp_2013_01_013 crossref_primary_10_1029_2012JA018242 crossref_primary_10_1029_2020JA027913 crossref_primary_10_1002_2017JA024801 crossref_primary_10_1029_2020GL086958 crossref_primary_10_1029_2024GL110539 crossref_primary_10_1063_1_5096537 crossref_primary_10_1007_s11214_025_01144_y crossref_primary_10_1007_s11214_016_0252_5 crossref_primary_10_1016_j_asr_2024_10_002 crossref_primary_10_1002_2014JA020437 crossref_primary_10_1002_2016GL070333 crossref_primary_10_1002_2015JA021902 crossref_primary_10_1002_2016GL069473 crossref_primary_10_1088_0031_8949_81_03_035901 crossref_primary_10_1029_2011JA016913 crossref_primary_10_1029_2021JA029624 crossref_primary_10_1029_2012JA017943 crossref_primary_10_1063_1_4816022 crossref_primary_10_1029_2019JA026810 crossref_primary_10_1029_2022GL100385 crossref_primary_10_1186_s40623_024_02109_1 crossref_primary_10_1002_2016JA022696 crossref_primary_10_1002_2016JA023429 crossref_primary_10_1002_2017GL073829 crossref_primary_10_3390_atmos11020177 crossref_primary_10_1029_2020JA028631 crossref_primary_10_1016_j_rinp_2020_103004 crossref_primary_10_1134_S0016793217060135 crossref_primary_10_1186_s40623_016_0568_0 crossref_primary_10_1029_2018JA025875 crossref_primary_10_1186_s40623_017_0771_7 crossref_primary_10_1029_2011GL048375 crossref_primary_10_1029_2021GL094979 crossref_primary_10_1002_jgra_50594 crossref_primary_10_1002_jgra_50477 crossref_primary_10_1029_2009JA014885 crossref_primary_10_1029_2019GL082292 crossref_primary_10_1063_1_4993238 crossref_primary_10_1002_2017JA024540 crossref_primary_10_1002_2015GL066004 crossref_primary_10_1063_1_5037763 crossref_primary_10_1002_2014JA020736 crossref_primary_10_1002_2015GL064182 crossref_primary_10_1029_2017JA024782 crossref_primary_10_1029_2010JA015300 crossref_primary_10_23919_URSIRSB_2019_9117240 crossref_primary_10_1029_2021JA029768 crossref_primary_10_1002_2015JA021563 crossref_primary_10_1029_2019GL082161 crossref_primary_10_1002_2014JA020092 crossref_primary_10_1029_2011JA017095 crossref_primary_10_1029_2010JA016181 crossref_primary_10_1029_2010JA016183 crossref_primary_10_1029_2023GL102748 crossref_primary_10_1186_s40623_023_01871_y crossref_primary_10_1029_2020JA028094 crossref_primary_10_1029_2022JA030582 crossref_primary_10_1029_2020JA028090 crossref_primary_10_1002_2013JA019281 crossref_primary_10_1002_2014JA020523 crossref_primary_10_1029_2017JA025050 crossref_primary_10_1029_2009JA014428 crossref_primary_10_1063_1_4978555 crossref_primary_10_1541_jae_33 crossref_primary_10_1002_2015GL066107 crossref_primary_10_1186_s40623_018_0785_9 crossref_primary_10_1029_2021GL095714 crossref_primary_10_1002_2013GL058889 crossref_primary_10_1002_2014JA019891 crossref_primary_10_1002_jgra_50264 crossref_primary_10_1007_s12648_015_0680_1 crossref_primary_10_1029_2019JA027088 crossref_primary_10_1038_s41467_019_12561_3 crossref_primary_10_1029_2022GL097941 crossref_primary_10_1029_2018GL081391 crossref_primary_10_1029_2009JA014837 crossref_primary_10_4236_jmp_2022_136050 crossref_primary_10_1029_2023JA031676 crossref_primary_10_1029_2020JA028276 crossref_primary_10_1109_TPS_2022_3208906 crossref_primary_10_1029_2018JA026374 crossref_primary_10_1029_2023JA031307 crossref_primary_10_1029_2023JA031787 crossref_primary_10_5194_angeo_31_503_2013 crossref_primary_10_1002_2015JA021530 crossref_primary_10_1002_2015JA021772 crossref_primary_10_1029_2020JA028149 crossref_primary_10_1029_2022JA030967 crossref_primary_10_1002_2017JA024501 crossref_primary_10_1029_2020JA027973 crossref_primary_10_3389_fspas_2019_00002 crossref_primary_10_1029_2018JA025848 crossref_primary_10_3847_1538_4357_abbeee crossref_primary_10_1029_2022JA031024 crossref_primary_10_1063_1_4986225 crossref_primary_10_1029_2018JA025963 crossref_primary_10_1029_2010JA016312 crossref_primary_10_1029_2021JA029569 crossref_primary_10_1002_2016GL072251 crossref_primary_10_1063_5_0127471 crossref_primary_10_1088_0741_3335_59_1_014016 crossref_primary_10_1002_2015JA021520 crossref_primary_10_5194_angeo_32_889_2014 crossref_primary_10_1029_2010JA015468 crossref_primary_10_1002_grl_50787 crossref_primary_10_1029_2011JA016730 crossref_primary_10_1029_2010GL042678 crossref_primary_10_1029_2023GL105253 crossref_primary_10_1186_s40623_018_0862_0 crossref_primary_10_1002_2016JA023446 crossref_primary_10_1186_s40623_020_1134_3 crossref_primary_10_1002_2015GL067126 crossref_primary_10_1002_2016GL068313 crossref_primary_10_1002_2016JA022915 crossref_primary_10_1002_2017JA024513 crossref_primary_10_1029_2012JA017557 crossref_primary_10_1002_2014JA020161 crossref_primary_10_1063_1_5018084 crossref_primary_10_1002_2013JA019507 crossref_primary_10_1063_1_5078604 crossref_primary_10_1029_2020GL091100 crossref_primary_10_1029_2022JA031127 crossref_primary_10_1002_2016GL068780 crossref_primary_10_1029_2011JA016638 crossref_primary_10_1029_2020GL088853 crossref_primary_10_3389_fspas_2022_1063329 crossref_primary_10_1103_PhysRevE_95_023204 crossref_primary_10_1029_2012JA018076 crossref_primary_10_1186_s40623_021_01549_3 crossref_primary_10_1063_5_0026220 crossref_primary_10_1002_2016JA023389 crossref_primary_10_1002_2015GL065565 crossref_primary_10_1002_2014JA019914 crossref_primary_10_1002_2017RS006245 crossref_primary_10_1016_j_icarus_2013_04_016 crossref_primary_10_1029_2010JA016245 crossref_primary_10_1029_2012JA018187 crossref_primary_10_1002_2016GL070386 crossref_primary_10_1029_2009JA015218 crossref_primary_10_1002_jgra_50529 crossref_primary_10_1186_s40623_021_01467_4 crossref_primary_10_1007_s11214_019_0629_3 crossref_primary_10_1002_2015JA021728 crossref_primary_10_1029_2010JA016233 crossref_primary_10_1002_2013JA019696 crossref_primary_10_1029_2018JA025803 crossref_primary_10_1002_2013JA019695 crossref_primary_10_1029_2010JA016351 crossref_primary_10_1029_2018JA026337 crossref_primary_10_1029_2012JA017765 crossref_primary_10_1029_2021JA029802 crossref_primary_10_1186_s40645_021_00413_y crossref_primary_10_1029_2009JA014371 crossref_primary_10_1029_2011JA016496 crossref_primary_10_1002_2014JA020575 crossref_primary_10_1002_jgra_50523 crossref_primary_10_1029_2011JA016499 crossref_primary_10_1029_2009JA014932 crossref_primary_10_1029_2021JA030119 crossref_primary_10_1029_2023JA031893 crossref_primary_10_1002_2017JA024399 crossref_primary_10_1002_2014JA019935 crossref_primary_10_1029_2021GL092850 crossref_primary_10_1029_2011JA016602 crossref_primary_10_1029_2020GL087791 crossref_primary_10_1029_2021JA029258 crossref_primary_10_1063_5_0106004 crossref_primary_10_1002_2014JA020364 crossref_primary_10_1002_2014JA020366 crossref_primary_10_1029_2010JA015919 crossref_primary_10_1029_2019JA027154 crossref_primary_10_1002_2016JA023255 crossref_primary_10_1029_2018JA025393 crossref_primary_10_1029_2020JA027953 crossref_primary_10_5194_angeo_31_1619_2013 crossref_primary_10_5194_angeo_33_583_2015 crossref_primary_10_1029_2020JA028484 crossref_primary_10_1002_2013JA019678 crossref_primary_10_1029_2021JA029826 crossref_primary_10_1029_2010GL042648 crossref_primary_10_1029_2019JA026735 |
Cites_doi | 10.1029/2006GL028594 10.1029/2007JA012856 10.1029/2005GL024553 10.1029/2008JA013625 10.5194/npg-15-621-2008 10.1029/JA086iA02p00779 10.1029/95JA00843 10.1029/97JA02518 10.1007/s00585-999-0631-2 10.1029/2007GL029758 10.1063/1.1757457 10.1029/JA079i001p00118 10.1029/2008JA013237 10.1029/2006JA011704 10.1029/2007JA012622 10.1029/RG026i003p00551 10.1029/GM105p0259 10.5194/angeo-26-3451-2008 10.1007/3-540-36530-3_4 10.1029/2001JA007542 10.1029/2001GL013941 10.1029/2004JA010811 10.1029/2008GL036454 10.1029/98JA01740 10.1029/1999JA900444 10.1007/s00585-999-0095-4 10.1029/2006JA011993 10.5194/angeo-22-2555-2004 10.1029/2002JA009791 10.1029/2006JA012243 10.1029/2004JA010437 10.1029/2000JA003019 10.1029/2006JA011600 10.1016/j.jastp.2003.09.013 10.1029/98GL01425 10.1016/0021-9169(91)90031-2 10.1029/GM053p0081 10.1029/2008JA013157 10.1029/2006JA011801 10.1029/JA089iA06p03801 10.1029/2007JA012478 10.1029/2000JA000008 10.1016/0032-0633(74)90070-1 10.1029/JA087iA06p04435 10.1029/2003GL018757 10.1029/2002GL016039 10.1029/2004JA010654 10.1029/2007GL032226 |
ContentType | Journal Article |
Copyright | Copyright 2009 by the American Geophysical Union. 2009 INIST-CNRS |
Copyright_xml | – notice: Copyright 2009 by the American Geophysical Union. – notice: 2009 INIST-CNRS |
DBID | BSCLL AAYXX CITATION IQODW |
DOI | 10.1029/2009JA014206 |
DatabaseName | Istex CrossRef Pascal-Francis |
DatabaseTitle | CrossRef |
DatabaseTitleList | CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Meteorology & Climatology Biology Oceanography Geology Astronomy & Astrophysics Physics |
EISSN | 2156-2202 |
EndPage | n/a |
ExternalDocumentID | 21885225 10_1029_2009JA014206 JGRA19945 ark_67375_WNG_KVB5ZVZ4_9 |
Genre | article |
GroupedDBID | 12K 1OC 24P 7XC 88I 8FE 8FH 8G5 8R4 8R5 AANLZ AAXRX ABUWG ACAHQ ACCZN ACXBN AEIGN AEUYR AFFPM AHBTC AITYG ALMA_UNASSIGNED_HOLDINGS AMYDB ATCPS BBNVY BENPR BHPHI BKSAR BPHCQ BRXPI BSCLL DCZOG DRFUL DRSTM DU5 DWQXO GNUQQ GUQSH HCIFZ LATKE LITHE LOXES LUTES LYRES M2O M2P MEWTI MSFUL MSSTM MXFUL MXSTM P-X Q2X RNS WHG WIN WXSBR XSW ~OA ~~A AAHQN AAMNL AAYXX AGYGG CITATION IQODW |
ID | FETCH-LOGICAL-c4295-d1d580df41fc5343d7a49ba41cb8cb30b951f2ecff4e938120fe49d0d37ab36f3 |
ISSN | 0148-0227 |
IngestDate | Mon Jul 21 09:11:53 EDT 2025 Thu Apr 24 23:01:47 EDT 2025 Tue Jul 01 02:41:48 EDT 2025 Wed Jan 22 16:16:19 EST 2025 Wed Oct 30 09:57:14 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | A7 |
Keywords | magnetic field Field line growth rates Differential equation Plasma density electrons Whistler wave amplitude magnetosphere propagation Non linear damping Particle code Wave packet inhomogeneity growth Dawn chorus electron density dispersion Gyrofrequency theory Non linear wave |
Language | English |
License | http://onlinelibrary.wiley.com/termsAndConditions#vor CC BY 4.0 |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c4295-d1d580df41fc5343d7a49ba41cb8cb30b951f2ecff4e938120fe49d0d37ab36f3 |
Notes | istex:69843672CFBCC4FEA701FD797E41CF5CA0237676 ark:/67375/WNG-KVB5ZVZ4-9 ArticleID:2009JA014206 |
OpenAccessLink | http://hdl.handle.net/2433/91257 |
PageCount | 15 |
ParticipantIDs | pascalfrancis_primary_21885225 crossref_primary_10_1029_2009JA014206 crossref_citationtrail_10_1029_2009JA014206 wiley_primary_10_1029_2009JA014206_JGRA19945 istex_primary_ark_67375_WNG_KVB5ZVZ4_9 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | July 2009 |
PublicationDateYYYYMMDD | 2009-07-01 |
PublicationDate_xml | – month: 07 year: 2009 text: July 2009 |
PublicationDecade | 2000 |
PublicationPlace | Washington, DC |
PublicationPlace_xml | – name: Washington, DC |
PublicationTitle | Journal of Geophysical Research: Space Physics |
PublicationTitleAlternate | J. Geophys. Res |
PublicationYear | 2009 |
Publisher | Blackwell Publishing Ltd American Geophysical Union |
Publisher_xml | – name: Blackwell Publishing Ltd – name: American Geophysical Union |
References | Hikishima, M., S. Yagitani, Y. Omura, and I. Nagano (2009), Full particle simulation of whistler-mode rising chorus emissions in the magnetosphere, J. Geophys. Res., 114, A01203, doi:10.1029/2008JA013625. Omura, Y., N. Furuya, and D. Summers (2007), Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field, J. Geophys. Res., 112, A06236, doi:10.1029/2006JA012243. Matsumoto, H., and Y. Omura (1981), Cluster and channel effect phase bunching by whistler waves in the nonuniform geomagnetic field, J. Geophys. Res., 86(A2), 779. Summers, D., C. Ma, N. P. Meredith, R. B. Horne, R. M. Thorne, D. Heynderickx, and R. R. Anderson (2002), Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm, Geophys. Res. Lett., 29(24), 2174, doi:10.1029/2002GL016039. Lauben, D. S., U. S. Inan, T. F. Bell, D. L. Kirchner, S. B. Hospodarsky, and J. S. Pickett (1998), VLF chorus emissions observed by Polar during the January 10, 1997, magnetic cloud, Geophys. Res. Lett., 25(15), 2995. Katoh, Y., and Y. Omura (2004), Acceleration of relativistic electrons due to resonant scattering by whistler mode waves generated by temperature anisotropy in the inner magnetosphere, J. Geophys. Res., 109, A12214, doi:10.1029/2004JA010654. Nunn, D. (1974), A self-consistent theory of triggered VLF emissions, Planet. Space Sci., 22, 349-378. Trakhtengerts, V. Y. (1995), Magnetosphere cyclotron maser: Backward wave oscillator generation regime, J. Geophys. Res., 100(A9), 17,205. Omura, Y., and H. Matsumoto (1982), Computer simulations of basic processes of coherent whistler wave-particle interactions in the magnetosphere, J. Geophys. Res., 87(A6), 4435. Summers, D., B. Ni, and N. P. Meredith (2007b), Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and EMIC waves, J. Geophys. Res., 112, A04207, doi:10.1029/2006JA011993. Santolik, O., D. A. Gurnett, J. S. Pickett, and N. Cornilleau-Wehrlin (2004b), A microscopic and nanoscopic view of storm-time chorus on 31 March 2001, Geophys. Res. Lett., 31, L02801, doi:10.1029/2003GL018757. Omura, Y., and D. Summers (2004), Computer simulations of relativistic whistler-mode wave-particle interactions, Phys. Plasmas, 11, 3530-3534. Lauben, D. S., U. S. Inan, T. F. Bell, and D. A. Gurnett (2002), Source characteristics of ELF/VLF chorus, J. Geophys. Res., 107(A12), 1429, doi:10.1029/2000JA003019. Helliwell, R. A. (1988), VLF wave simulation experiments in the magnetosphere from Siple Station, Antarctica, Rev. Geophys., 26(3), 551. Kasahara, Y., Y. Miyoshi, Y. Omura, O. P. Verkhoglyadova, I. Nagano, I. Kimura, and B. T. Tsurutani (2009), Simultaneous satellite observations of VLF chorus, hot and relativistic electrons in a magnetic storm "recovery" phase, Geophys. Res. Lett., 36, L01106, doi:10.1029/2008GL036454. Katoh, Y., and Y. Omura (2007b), Computer simulation of chorus wave generation in the Earth's inner magnetosphere, Geophys. Res. Lett., 34, L03102, doi:10.1029/2006GL028594. Summers, D., and C. Ma (2000), A model for generating relativistic electrons in the Earth's inner magnetosphere based on gyroresonant wave-particle interactions, J. Geophys. Res., 105(A2), 2625. Roth, I., M. Temerin, and M. K. Hudson (1999), Resonant enhancement of relativistic electron fluxes during geomagnetically active periods, Ann. Geophys., 17, 631-638. Miyoshi, Y., A. Morioka, T. Obara, H. Misawa, T. Nagai, and Y. Kasahara (2003), Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations, J. Geophys. Res., 108(A1), 1004, doi:10.1029/2001JA007542. Albert, J. M. (2002), Nonlinear interaction of outer zone electrons with VLF waves, Geophys. Res. Lett., 29(8), 1275, doi:10.1029/2001GL013941. Omura, Y., and D. Summers (2006), Dynamics of high-energy electrons interacting with whistler mode chorus emissions in the magnetosphere, J. Geophys. Res., 111, A09222, doi:10.1029/2006JA011600. Stix, T. H. (1992), Waves in Plasmas, Am. Inst. Phys., New York. Hospodarsky, G. B., T. F. Averkamp, W. S. Kurth, D. A. Gurnett, J. D. Menietti, O. Santolik, and M. K. Dougherty (2008), Observations of chorus at Saturn using the Cassini Radio and Plasma Wave Science instrument, J. Geophys. Res., 113, A12206, doi:10.1029/2008JA013237. Summers, D., and Y. Omura (2007), Ultra-relativistic acceleration of electrons in planetary magnetospheres, Geophys. Res. Lett., 34, L24205, doi:10.1029/2007GL032226. Golkowski, M., U. S. Inan, A. R. Gibby, and M. B. Cohen (2008), Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater, J. Geophys. Res., 113, A10201, doi:10.1029/2008JA013157. Coroniti, F. V., F. L. Scarf, C. F. Kennel, and W. S. Kurth (1984), Analysis of chorus emissions at Jupiter, J. Geophys. Res., 89(A6), 3801. Omura, Y., D. Nunn, H. Matsumoto, and M. J. Rycroft (1991), A review of observational, theoretical and numerical studies of VLF triggered emissions, J. Atmos. Terr. Phys., 53, 351-368. Omura, Y., Y. Katoh, and D. Summers (2008), Theory and simulation of the generation of whistler-mode chorus, J. Geophys. Res., 113, A04223, doi:10.1029/2007JA012622. Katoh, Y., and Y. Omura (2006), A study of generation mechanism of VLF triggered emission by self-consistent particle code, J. Geophys. Res., 111, A12207, doi:10.1029/2006JA011704. Santolik, O., D. A. Gurnett, J. S. Pickett, M. Parrot, and N. Cornilleau-Wehrlin (2003), Spatio-temporal structure of storm-time chorus, J. Geophys. Res., 108(A7), 1278, doi:10.1029/2002JA009791. Santolik, O., D. A. Gurnett, and J. S. Pickett (2004a), Multipoint investigation of the source region of storm-time chorus, Ann. Geophys., 22, 2255. Summers, D., C. Ma, N. P. Meredith, R. B. Horne, R. M. Thorne, and R. R. Anderson (2004a), Modeling outer-zone relativistic electron response to whistler-mode chorus activity during substorms, J. Atmos. Sol. Terr. Phys., 66, 133-146. Summers, D., R. M. Thorne, and F. Xiao (1998), Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere, J. Geophys. Res., 103(A9), 20,487. Summers, D., B. Ni, and N. P. Meredith (2007a), Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory, J. Geophys. Res., 112, A04206, doi:10.1029/2006JA011801. Santolik, O. (2008), New results of investigations of whistler-mode chorus emissions, Nonlinear Processes Geophys., 15, 621-630. Albert, J. M. (2000), Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave, J. Geophys. Res., 105(A9), 21,191. Katoh, Y., and Y. Omura (2007a), Relativistic particle acceleration in the process of whistler-mode chorus wave generation, Geophys. Res. Lett., 34, L13102, doi:10.1029/2007GL029758. Katoh, Y., Y. Omura, and D. Summers (2008), Rapid energization of radiation belt electrons by nonlinear wave trapping, Ann. Geophys., 26, 3451-3456. Menietti, J. D., O. Santolik, A. M. Rymer, G. B. Hospodarsky, A. M. Persoon, D. A. Gurnett, and D. T. Young (2008), Analysis of plasma waves observed within local plasma injections seen in Saturn's magnetosphere, J. Geophys. Res., 113, A05213, doi:10.1029/2007JA012856. Horne, R. B., R. M. Thorne, S. A. Glauert, J. M. Albert, N. P. Meredith, and R. R. Anderson (2005), Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110(A12), A03225, doi:10.1029/2004JA010811. Trakhtengerts, V. Y. (1999), A generation mechanism for chorus emission, Ann. Geophys., 17, 95-100. Tsurutani, B. T., and E. J. Smith (1974), Postmidnight chorus: A substorm phenomenon, J. Geophys. Res., 79(1), 118. Summers, D., C. Ma, and T. Mukai (2004b), Competition between acceleration and loss mechanisms of relativistic electrons during geomagnetic storms, J. Geophys. Res., 109, A04221, doi:10.1029/2004JA010437. Nunn, D., Y. Omura, H. Matsumoto, I. Nagano, and S. Yagitani (1997), The numerical simulation of VLF chorus and discrete emissions observed on the Geotail satellite using a Vlasov code, J. Geophys. Res., 102(A12), 27,083. Bortnik, J., U. S. Inan, and T. F. Bell (2006), Landau damping and resultant unidirectional propagation of chorus waves, Geophys. Res. Lett., 33, L03102, doi:10.1029/2005GL024553. Furuya, N., Y. Omura, and D. Summers (2008), Relativistic turning acceleration of radiation belt electrons by whistler mode chorus, J. Geophys. Res., 113, A04224, doi:10.1029/2007JA012478. 2004; 22 2004; 66 1974; 79 2005; 110 2006; 33 1991; 53 1984; 89 2008; 15 2003 1992 2004; 109 2007; 34 2009; 114 2006; 111 1981; 86 1998; 25 1997; 102 2004; 11 2009; 36 2007; 112 2004; 31 2003; 108 1974; 22 2002; 29 1989; 53 2000; 105 1999; 17 1988; 26 1982; 87 2008; 26 2002; 107 1998; 103 1995; 100 2008; 113 1998; 105 e_1_2_13_24_1 e_1_2_13_49_1 e_1_2_13_26_1 e_1_2_13_47_1 e_1_2_13_20_1 e_1_2_13_45_1 e_1_2_13_22_1 e_1_2_13_43_1 e_1_2_13_8_1 e_1_2_13_41_1 e_1_2_13_6_1 e_1_2_13_17_1 e_1_2_13_19_1 e_1_2_13_13_1 e_1_2_13_36_1 e_1_2_13_15_1 e_1_2_13_38_1 e_1_2_13_32_1 e_1_2_13_11_1 e_1_2_13_34_1 e_1_2_13_30_1 e_1_2_13_4_1 e_1_2_13_2_1 e_1_2_13_29_1 e_1_2_13_25_1 e_1_2_13_48_1 e_1_2_13_27_1 e_1_2_13_46_1 e_1_2_13_21_1 e_1_2_13_44_1 e_1_2_13_23_1 e_1_2_13_42_1 e_1_2_13_9_1 e_1_2_13_40_1 e_1_2_13_7_1 Stix T. H. (e_1_2_13_39_1) 1992 e_1_2_13_18_1 e_1_2_13_14_1 e_1_2_13_35_1 e_1_2_13_16_1 e_1_2_13_37_1 e_1_2_13_10_1 e_1_2_13_31_1 e_1_2_13_12_1 e_1_2_13_33_1 e_1_2_13_50_1 e_1_2_13_5_1 e_1_2_13_3_1 e_1_2_13_28_1 |
References_xml | – reference: Golkowski, M., U. S. Inan, A. R. Gibby, and M. B. Cohen (2008), Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater, J. Geophys. Res., 113, A10201, doi:10.1029/2008JA013157. – reference: Coroniti, F. V., F. L. Scarf, C. F. Kennel, and W. S. Kurth (1984), Analysis of chorus emissions at Jupiter, J. Geophys. Res., 89(A6), 3801. – reference: Lauben, D. S., U. S. Inan, T. F. Bell, D. L. Kirchner, S. B. Hospodarsky, and J. S. Pickett (1998), VLF chorus emissions observed by Polar during the January 10, 1997, magnetic cloud, Geophys. Res. Lett., 25(15), 2995. – reference: Omura, Y., N. Furuya, and D. Summers (2007), Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field, J. Geophys. Res., 112, A06236, doi:10.1029/2006JA012243. – reference: Horne, R. B., R. M. Thorne, S. A. Glauert, J. M. Albert, N. P. Meredith, and R. R. Anderson (2005), Timescale for radiation belt electron acceleration by whistler mode chorus waves, J. Geophys. Res., 110(A12), A03225, doi:10.1029/2004JA010811. – reference: Hikishima, M., S. Yagitani, Y. Omura, and I. Nagano (2009), Full particle simulation of whistler-mode rising chorus emissions in the magnetosphere, J. Geophys. Res., 114, A01203, doi:10.1029/2008JA013625. – reference: Omura, Y., Y. Katoh, and D. Summers (2008), Theory and simulation of the generation of whistler-mode chorus, J. Geophys. Res., 113, A04223, doi:10.1029/2007JA012622. – reference: Kasahara, Y., Y. Miyoshi, Y. Omura, O. P. Verkhoglyadova, I. Nagano, I. Kimura, and B. T. Tsurutani (2009), Simultaneous satellite observations of VLF chorus, hot and relativistic electrons in a magnetic storm "recovery" phase, Geophys. Res. Lett., 36, L01106, doi:10.1029/2008GL036454. – reference: Summers, D., C. Ma, and T. Mukai (2004b), Competition between acceleration and loss mechanisms of relativistic electrons during geomagnetic storms, J. Geophys. Res., 109, A04221, doi:10.1029/2004JA010437. – reference: Albert, J. M. (2000), Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave, J. Geophys. Res., 105(A9), 21,191. – reference: Nunn, D., Y. Omura, H. Matsumoto, I. Nagano, and S. Yagitani (1997), The numerical simulation of VLF chorus and discrete emissions observed on the Geotail satellite using a Vlasov code, J. Geophys. Res., 102(A12), 27,083. – reference: Roth, I., M. Temerin, and M. K. Hudson (1999), Resonant enhancement of relativistic electron fluxes during geomagnetically active periods, Ann. Geophys., 17, 631-638. – reference: Summers, D., C. Ma, N. P. Meredith, R. B. Horne, R. M. Thorne, and R. R. Anderson (2004a), Modeling outer-zone relativistic electron response to whistler-mode chorus activity during substorms, J. Atmos. Sol. Terr. Phys., 66, 133-146. – reference: Stix, T. H. (1992), Waves in Plasmas, Am. Inst. Phys., New York. – reference: Summers, D., B. Ni, and N. P. Meredith (2007b), Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and EMIC waves, J. Geophys. Res., 112, A04207, doi:10.1029/2006JA011993. – reference: Matsumoto, H., and Y. Omura (1981), Cluster and channel effect phase bunching by whistler waves in the nonuniform geomagnetic field, J. Geophys. Res., 86(A2), 779. – reference: Trakhtengerts, V. Y. (1995), Magnetosphere cyclotron maser: Backward wave oscillator generation regime, J. Geophys. Res., 100(A9), 17,205. – reference: Santolik, O. (2008), New results of investigations of whistler-mode chorus emissions, Nonlinear Processes Geophys., 15, 621-630. – reference: Helliwell, R. A. (1988), VLF wave simulation experiments in the magnetosphere from Siple Station, Antarctica, Rev. Geophys., 26(3), 551. – reference: Katoh, Y., Y. Omura, and D. Summers (2008), Rapid energization of radiation belt electrons by nonlinear wave trapping, Ann. Geophys., 26, 3451-3456. – reference: Trakhtengerts, V. Y. (1999), A generation mechanism for chorus emission, Ann. Geophys., 17, 95-100. – reference: Furuya, N., Y. Omura, and D. Summers (2008), Relativistic turning acceleration of radiation belt electrons by whistler mode chorus, J. Geophys. Res., 113, A04224, doi:10.1029/2007JA012478. – reference: Albert, J. M. (2002), Nonlinear interaction of outer zone electrons with VLF waves, Geophys. Res. Lett., 29(8), 1275, doi:10.1029/2001GL013941. – reference: Summers, D., and Y. Omura (2007), Ultra-relativistic acceleration of electrons in planetary magnetospheres, Geophys. Res. Lett., 34, L24205, doi:10.1029/2007GL032226. – reference: Katoh, Y., and Y. Omura (2007b), Computer simulation of chorus wave generation in the Earth's inner magnetosphere, Geophys. Res. Lett., 34, L03102, doi:10.1029/2006GL028594. – reference: Summers, D., B. Ni, and N. P. Meredith (2007a), Timescales for radiation belt electron acceleration and loss due to resonant wave-particle interactions: 1. Theory, J. Geophys. Res., 112, A04206, doi:10.1029/2006JA011801. – reference: Nunn, D. (1974), A self-consistent theory of triggered VLF emissions, Planet. Space Sci., 22, 349-378. – reference: Summers, D., R. M. Thorne, and F. Xiao (1998), Relativistic theory of wave-particle resonant diffusion with application to electron acceleration in the magnetosphere, J. Geophys. Res., 103(A9), 20,487. – reference: Bortnik, J., U. S. Inan, and T. F. Bell (2006), Landau damping and resultant unidirectional propagation of chorus waves, Geophys. Res. Lett., 33, L03102, doi:10.1029/2005GL024553. – reference: Miyoshi, Y., A. Morioka, T. Obara, H. Misawa, T. Nagai, and Y. Kasahara (2003), Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos-D observations, J. Geophys. Res., 108(A1), 1004, doi:10.1029/2001JA007542. – reference: Summers, D., C. Ma, N. P. Meredith, R. B. Horne, R. M. Thorne, D. Heynderickx, and R. R. Anderson (2002), Model of the energization of outer-zone electrons by whistler-mode chorus during the October 9, 1990 geomagnetic storm, Geophys. Res. Lett., 29(24), 2174, doi:10.1029/2002GL016039. – reference: Omura, Y., and D. Summers (2004), Computer simulations of relativistic whistler-mode wave-particle interactions, Phys. Plasmas, 11, 3530-3534. – reference: Omura, Y., and D. Summers (2006), Dynamics of high-energy electrons interacting with whistler mode chorus emissions in the magnetosphere, J. Geophys. Res., 111, A09222, doi:10.1029/2006JA011600. – reference: Omura, Y., D. Nunn, H. Matsumoto, and M. J. Rycroft (1991), A review of observational, theoretical and numerical studies of VLF triggered emissions, J. Atmos. Terr. Phys., 53, 351-368. – reference: Katoh, Y., and Y. Omura (2007a), Relativistic particle acceleration in the process of whistler-mode chorus wave generation, Geophys. Res. Lett., 34, L13102, doi:10.1029/2007GL029758. – reference: Santolik, O., D. A. Gurnett, J. S. Pickett, M. Parrot, and N. Cornilleau-Wehrlin (2003), Spatio-temporal structure of storm-time chorus, J. Geophys. Res., 108(A7), 1278, doi:10.1029/2002JA009791. – reference: Santolik, O., D. A. Gurnett, and J. S. Pickett (2004a), Multipoint investigation of the source region of storm-time chorus, Ann. Geophys., 22, 2255. – reference: Lauben, D. S., U. S. Inan, T. F. Bell, and D. A. Gurnett (2002), Source characteristics of ELF/VLF chorus, J. Geophys. Res., 107(A12), 1429, doi:10.1029/2000JA003019. – reference: Katoh, Y., and Y. Omura (2004), Acceleration of relativistic electrons due to resonant scattering by whistler mode waves generated by temperature anisotropy in the inner magnetosphere, J. Geophys. Res., 109, A12214, doi:10.1029/2004JA010654. – reference: Santolik, O., D. A. Gurnett, J. S. Pickett, and N. Cornilleau-Wehrlin (2004b), A microscopic and nanoscopic view of storm-time chorus on 31 March 2001, Geophys. Res. Lett., 31, L02801, doi:10.1029/2003GL018757. – reference: Hospodarsky, G. B., T. F. Averkamp, W. S. Kurth, D. A. Gurnett, J. D. Menietti, O. Santolik, and M. K. Dougherty (2008), Observations of chorus at Saturn using the Cassini Radio and Plasma Wave Science instrument, J. Geophys. Res., 113, A12206, doi:10.1029/2008JA013237. – reference: Menietti, J. D., O. Santolik, A. M. Rymer, G. B. Hospodarsky, A. M. Persoon, D. A. Gurnett, and D. T. Young (2008), Analysis of plasma waves observed within local plasma injections seen in Saturn's magnetosphere, J. Geophys. Res., 113, A05213, doi:10.1029/2007JA012856. – reference: Summers, D., and C. Ma (2000), A model for generating relativistic electrons in the Earth's inner magnetosphere based on gyroresonant wave-particle interactions, J. Geophys. Res., 105(A2), 2625. – reference: Tsurutani, B. T., and E. J. Smith (1974), Postmidnight chorus: A substorm phenomenon, J. Geophys. Res., 79(1), 118. – reference: Katoh, Y., and Y. Omura (2006), A study of generation mechanism of VLF triggered emission by self-consistent particle code, J. Geophys. Res., 111, A12207, doi:10.1029/2006JA011704. – reference: Omura, Y., and H. Matsumoto (1982), Computer simulations of basic processes of coherent whistler wave-particle interactions in the magnetosphere, J. Geophys. Res., 87(A6), 4435. – volume: 34 year: 2007 article-title: Relativistic particle acceleration in the process of whistler‐mode chorus wave generation publication-title: Geophys. Res. Lett. – volume: 34 year: 2007 article-title: Computer simulation of chorus wave generation in the Earth's inner magnetosphere publication-title: Geophys. Res. Lett. – volume: 86 start-page: 779 issue: A2 year: 1981 article-title: Cluster and channel effect phase bunching by whistler waves in the nonuniform geomagnetic field publication-title: J. Geophys. Res. – volume: 114 year: 2009 article-title: Full particle simulation of whistler‐mode rising chorus emissions in the magnetosphere publication-title: J. Geophys. Res. – volume: 53 start-page: 351 year: 1991 end-page: 368 article-title: A review of observational, theoretical and numerical studies of VLF triggered emissions publication-title: J. Atmos. Terr. Phys. – volume: 102 start-page: 27,083 issue: A12 year: 1997 article-title: The numerical simulation of VLF chorus and discrete emissions observed on the Geotail satellite using a Vlasov code publication-title: J. Geophys. Res. – volume: 29 issue: 8 year: 2002 article-title: Nonlinear interaction of outer zone electrons with VLF waves publication-title: Geophys. Res. Lett. – volume: 22 start-page: 2255 year: 2004 article-title: Multipoint investigation of the source region of storm‐time chorus publication-title: Ann. Geophys. – volume: 25 start-page: 2995 issue: 15 year: 1998 article-title: VLF chorus emissions observed by Polar during the January 10, 1997, magnetic cloud publication-title: Geophys. Res. Lett. – volume: 112 year: 2007 article-title: Relativistic turning acceleration of resonant electrons by coherent whistler mode waves in a dipole magnetic field publication-title: J. Geophys. Res. – volume: 34 year: 2007 article-title: Ultra‐relativistic acceleration of electrons in planetary magnetospheres publication-title: Geophys. Res. Lett. – volume: 108 issue: A7 year: 2003 article-title: Spatio‐temporal structure of storm‐time chorus publication-title: J. Geophys. Res. – volume: 100 start-page: 17,205 issue: A9 year: 1995 article-title: Magnetosphere cyclotron maser: Backward wave oscillator generation regime publication-title: J. Geophys. Res. – volume: 87 start-page: 4435 issue: A6 year: 1982 article-title: Computer simulations of basic processes of coherent whistler wave‐particle interactions in the magnetosphere publication-title: J. Geophys. Res. – volume: 103 start-page: 20,487 issue: A9 year: 1998 article-title: Relativistic theory of wave‐particle resonant diffusion with application to electron acceleration in the magnetosphere publication-title: J. Geophys. Res. – start-page: 79 year: 2003 end-page: 92 – volume: 89 start-page: 3801 issue: A6 year: 1984 article-title: Analysis of chorus emissions at Jupiter publication-title: J. Geophys. Res. – volume: 111 year: 2006 article-title: A study of generation mechanism of VLF triggered emission by self‐consistent particle code publication-title: J. Geophys. Res. – volume: 105 start-page: 259 year: 1998 – volume: 113 year: 2008 article-title: Theory and simulation of the generation of whistler‐mode chorus publication-title: J. Geophys. Res. – volume: 108 issue: A1 year: 2003 article-title: Rebuilding process of the outer radiation belt during the 3 November 1993 magnetic storm: NOAA and Exos‐D observations publication-title: J. Geophys. Res. – volume: 15 start-page: 621 year: 2008 end-page: 630 article-title: New results of investigations of whistler‐mode chorus emissions publication-title: Nonlinear Processes Geophys. – volume: 110 issue: A12 year: 2005 article-title: Timescale for radiation belt electron acceleration by whistler mode chorus waves publication-title: J. Geophys. Res. – volume: 29 issue: 24 year: 2002 article-title: Model of the energization of outer‐zone electrons by whistler‐mode chorus during the October 9, 1990 geomagnetic storm publication-title: Geophys. Res. Lett. – volume: 105 start-page: 2625 issue: A2 year: 2000 article-title: A model for generating relativistic electrons in the Earth's inner magnetosphere based on gyroresonant wave‐particle interactions publication-title: J. Geophys. Res. – volume: 112 year: 2007 article-title: Timescales for radiation belt electron acceleration and loss due to resonant wave‐particle interactions: 1. Theory publication-title: J. Geophys. Res. – volume: 36 year: 2009 article-title: Simultaneous satellite observations of VLF chorus, hot and relativistic electrons in a magnetic storm “recovery” phase publication-title: Geophys. Res. Lett. – volume: 79 start-page: 118 issue: 1 year: 1974 article-title: Postmidnight chorus: A substorm phenomenon publication-title: J. Geophys. Res. – volume: 111 year: 2006 article-title: Dynamics of high‐energy electrons interacting with whistler mode chorus emissions in the magnetosphere publication-title: J. Geophys. Res. – volume: 17 start-page: 95 year: 1999 end-page: 100 article-title: A generation mechanism for chorus emission publication-title: Ann. Geophys. – volume: 31 year: 2004 article-title: A microscopic and nanoscopic view of storm‐time chorus on 31 March 2001 publication-title: Geophys. Res. Lett. – volume: 26 start-page: 3451 year: 2008 end-page: 3456 article-title: Rapid energization of radiation belt electrons by nonlinear wave trapping publication-title: Ann. Geophys. – year: 1992 – volume: 11 start-page: 3530 year: 2004 end-page: 3534 article-title: Computer simulations of relativistic whistler‐mode wave‐particle interactions publication-title: Phys. Plasmas – volume: 113 year: 2008 article-title: Observations of chorus at Saturn using the Cassini Radio and Plasma Wave Science instrument publication-title: J. Geophys. Res. – volume: 109 year: 2004 article-title: Competition between acceleration and loss mechanisms of relativistic electrons during geomagnetic storms publication-title: J. Geophys. Res. – volume: 113 year: 2008 article-title: Magnetospheric amplification and emission triggering by ELF/VLF waves injected by the 3.6 MW HAARP ionospheric heater publication-title: J. Geophys. Res. – volume: 17 start-page: 631 year: 1999 end-page: 638 article-title: Resonant enhancement of relativistic electron fluxes during geomagnetically active periods publication-title: Ann. Geophys. – volume: 33 year: 2006 article-title: Landau damping and resultant unidirectional propagation of chorus waves publication-title: Geophys. Res. Lett. – volume: 113 year: 2008 article-title: Relativistic turning acceleration of radiation belt electrons by whistler mode chorus publication-title: J. Geophys. Res. – volume: 113 year: 2008 article-title: Analysis of plasma waves observed within local plasma injections seen in Saturn's magnetosphere publication-title: J. Geophys. Res. – volume: 105 start-page: 21,191 issue: A9 year: 2000 article-title: Gyroresonant interactions of radiation belt particles with a monochromatic electromagnetic wave publication-title: J. Geophys. Res. – volume: 22 start-page: 349 year: 1974 end-page: 378 article-title: A self‐consistent theory of triggered VLF emissions publication-title: Planet. Space Sci. – volume: 109 year: 2004 article-title: Acceleration of relativistic electrons due to resonant scattering by whistler mode waves generated by temperature anisotropy in the inner magnetosphere publication-title: J. Geophys. Res. – volume: 26 start-page: 551 issue: 3 year: 1988 article-title: VLF wave simulation experiments in the magnetosphere from Siple Station publication-title: Rev. Geophys. – volume: 107 issue: A12 year: 2002 article-title: Source characteristics of ELF/VLF chorus publication-title: J. Geophys. Res. – volume: 66 start-page: 133 year: 2004 end-page: 146 article-title: Modeling outer‐zone relativistic electron response to whistler‐mode chorus activity during substorms publication-title: J. Atmos. Sol. Terr. Phys. – volume: 112 year: 2007 article-title: Timescales for radiation belt electron acceleration and loss due to resonant wave‐particle interactions: 2. Evaluation for VLF chorus, ELF hiss, and EMIC waves publication-title: J. Geophys. Res. – volume: 53 start-page: 81 year: 1989 – ident: e_1_2_13_17_1 doi: 10.1029/2006GL028594 – ident: e_1_2_13_23_1 doi: 10.1029/2007JA012856 – ident: e_1_2_13_5_1 doi: 10.1029/2005GL024553 – ident: e_1_2_13_10_1 doi: 10.1029/2008JA013625 – ident: e_1_2_13_35_1 doi: 10.5194/npg-15-621-2008 – ident: e_1_2_13_21_1 doi: 10.1029/JA086iA02p00779 – ident: e_1_2_13_48_1 doi: 10.1029/95JA00843 – ident: e_1_2_13_26_1 doi: 10.1029/97JA02518 – ident: e_1_2_13_34_1 doi: 10.1007/s00585-999-0631-2 – ident: e_1_2_13_16_1 doi: 10.1029/2007GL029758 – ident: e_1_2_13_28_1 doi: 10.1063/1.1757457 – ident: e_1_2_13_50_1 doi: 10.1029/JA079i001p00118 – ident: e_1_2_13_12_1 doi: 10.1029/2008JA013237 – ident: e_1_2_13_15_1 doi: 10.1029/2006JA011704 – ident: e_1_2_13_33_1 doi: 10.1029/2007JA012622 – ident: e_1_2_13_9_1 doi: 10.1029/RG026i003p00551 – ident: e_1_2_13_22_1 doi: 10.1029/GM105p0259 – ident: e_1_2_13_18_1 doi: 10.5194/angeo-26-3451-2008 – ident: e_1_2_13_31_1 doi: 10.1007/3-540-36530-3_4 – ident: e_1_2_13_24_1 doi: 10.1029/2001JA007542 – ident: e_1_2_13_3_1 doi: 10.1029/2001GL013941 – ident: e_1_2_13_11_1 doi: 10.1029/2004JA010811 – ident: e_1_2_13_13_1 doi: 10.1029/2008GL036454 – ident: e_1_2_13_42_1 doi: 10.1029/98JA01740 – ident: e_1_2_13_40_1 doi: 10.1029/1999JA900444 – ident: e_1_2_13_49_1 doi: 10.1007/s00585-999-0095-4 – ident: e_1_2_13_47_1 doi: 10.1029/2006JA011993 – ident: e_1_2_13_37_1 doi: 10.5194/angeo-22-2555-2004 – ident: e_1_2_13_36_1 doi: 10.1029/2002JA009791 – ident: e_1_2_13_32_1 doi: 10.1029/2006JA012243 – ident: e_1_2_13_45_1 doi: 10.1029/2004JA010437 – ident: e_1_2_13_20_1 doi: 10.1029/2000JA003019 – ident: e_1_2_13_29_1 doi: 10.1029/2006JA011600 – ident: e_1_2_13_44_1 doi: 10.1016/j.jastp.2003.09.013 – ident: e_1_2_13_19_1 doi: 10.1029/98GL01425 – volume-title: Waves in Plasmas year: 1992 ident: e_1_2_13_39_1 – ident: e_1_2_13_30_1 doi: 10.1016/0021-9169(91)90031-2 – ident: e_1_2_13_4_1 doi: 10.1029/GM053p0081 – ident: e_1_2_13_8_1 doi: 10.1029/2008JA013157 – ident: e_1_2_13_46_1 doi: 10.1029/2006JA011801 – ident: e_1_2_13_6_1 doi: 10.1029/JA089iA06p03801 – ident: e_1_2_13_7_1 doi: 10.1029/2007JA012478 – ident: e_1_2_13_2_1 doi: 10.1029/2000JA000008 – ident: e_1_2_13_25_1 doi: 10.1016/0032-0633(74)90070-1 – ident: e_1_2_13_27_1 doi: 10.1029/JA087iA06p04435 – ident: e_1_2_13_38_1 doi: 10.1029/2003GL018757 – ident: e_1_2_13_43_1 doi: 10.1029/2002GL016039 – ident: e_1_2_13_14_1 doi: 10.1029/2004JA010654 – ident: e_1_2_13_41_1 doi: 10.1029/2007GL032226 |
SSID | ssj0000456401 ssj0014561 ssj0030581 ssj0030583 ssj0043761 ssj0030582 ssj0030585 ssj0030584 ssj0030586 |
Score | 2.4443047 |
Snippet | We develop a nonlinear wave growth theory of magnetospheric chorus emissions, taking into account the spatial inhomogeneity of the static magnetic field and... |
SourceID | pascalfrancis crossref wiley istex |
SourceType | Index Database Enrichment Source Publisher |
SubjectTerms | chorus Earth sciences Earth, ocean, space Exact sciences and technology nonlinear whistler mode |
Title | Nonlinear mechanisms of lower-band and upper-band VLF chorus emissions in the magnetosphere |
URI | https://api.istex.fr/ark:/67375/WNG-KVB5ZVZ4-9/fulltext.pdf https://onlinelibrary.wiley.com/doi/abs/10.1029%2F2009JA014206 |
Volume | 114 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR3ZbtNAcBVSISEkBAXUcFT7AH0JBh_r2H50qzShIUkV2lCVB2t3bbcRSRzZjqB8PbP2-kLlfIi1Y--uY8-RmckcCL1imkU1qvoKZaooqk25QjVmKgangH_fNv3MmTOe9Ibn5OTCvGi1vtazS1L2ln-_Na_kf7AK5wCvIkv2HzBbbgonYAz4hSNgGI5_heNJXueCxt1VIDJ4F8kqi8xYitZnCpN1WLvbzaYA5x-OuyDw4m3SFY3ekiKQXKifK3q1DtIoEYUGmgFCldJ6FUSbArOyTlDpT56Oz2duJtKj5HpxTeNtSTPvR8IvNnbzQP002VbXRu7ZdJit2qZR6e8BWd-ffZQ58FJcFb4Jp4xjTWvpACCnBrUvB7q0JLjKoynqGDZEcp5YKmnPtW6V9aouSqWK2564sIuu3lJS-6efujIAERQbGzRP8w7a0cG-0Nto57A_OZ2V7rmszE4VLaSRLP83B0BE2g1ArwNGHSB1wKwDvQIgIOLzrpnyRcj0DHi8d_WHayhOO0IGfBOBvDSBlxrmTViaBlamIZ09RA8klWA3p9NHqBWsd9Gem4g_W6LVDT7A2ThHUbKL7uZ9UG9gNAjkqDMGIy6KMwgWHC0XYFHJa_enPKBrWWIdFp3mGz1Gn0s-wBUf4CjEFR9g8an4AAMf4JwPcMkHeLHGwAe4wQdP0Plx_-xoqMimIQoH1cpUfM03bdUPiRZy0yCGb1HiMEo0zmzODJWBSRHqAQ9DEjigrupqGBDHV33DoszohcZT1F5H62APYV2lJtN6rMctH6wG2_a5Bepx6HCdGAHROqhbYMTjsqK-aOyy9LLIDt3x6vjroNfl7E1eSeYX8w4y5JaTaPxFRF9apvdpMvBG80Pzcn5JPKeD9hvYLxcUxN1BbzJy-O3tvJPBTJS-JuazP-33HN2rmPwFaqfxNngJKnnK9iX7_ACYNNNB |
linkProvider | ProQuest |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Nonlinear+mechanisms+of+lower-band+and+upper-band+VLF+chorus+emissions+in+the+magnetosphere&rft.jtitle=Journal+of+geophysical+research&rft.au=OMURA%2C+Yoshiharu&rft.au=HIKISHIMA%2C+Mitsuru&rft.au=KATOH%2C+Yuto&rft.au=SUMMERS%2C+Danny&rft.date=2009-07-01&rft.pub=American+Geophysical+Union&rft.issn=0148-0227&rft.volume=114&rft.issue=A7&rft_id=info:doi/10.1029%2F2009JA014206&rft.externalDBID=n%2Fa&rft.externalDocID=21885225 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0148-0227&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0148-0227&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0148-0227&client=summon |