Simultaneous neural machine translation with a reinforced attention mechanism
To translate in real time, a simultaneous translation system should determine when to stop reading source tokens and generate target tokens corresponding to a partial source sentence read up to that point. However, conventional attention‐based neural machine translation (NMT) models cannot produce t...
Saved in:
Published in | ETRI journal Vol. 43; no. 5; pp. 775 - 786 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
Electronics and Telecommunications Research Institute (ETRI)
01.10.2021
한국전자통신연구원 |
Subjects | |
Online Access | Get full text |
ISSN | 1225-6463 2233-7326 |
DOI | 10.4218/etrij.2020-0358 |
Cover
Abstract | To translate in real time, a simultaneous translation system should determine when to stop reading source tokens and generate target tokens corresponding to a partial source sentence read up to that point. However, conventional attention‐based neural machine translation (NMT) models cannot produce translations with adequate latency in online scenarios because they wait until a source sentence is completed to compute alignment between the source and target tokens. To address this issue, we propose a reinforced learning (RL)‐based attention mechanism, the reinforced attention mechanism, which allows a neural translation model to jointly train the stopping criterion and a partial translation model. The proposed attention mechanism comprises two modules, one to ensure translation quality and the other to address latency. Different from previous RL‐based simultaneous translation systems, which learn the stopping criterion from a fixed NMT model, the modules can be trained jointly with a novel reward function. In our experiments, the proposed model has better translation quality and comparable latency compared to previous models. |
---|---|
AbstractList | AbstractTo translate in real time, a simultaneous translation system should determine when to stop reading source tokens and generate target tokens corresponding to a partial source sentence read up to that point. However, conventional attention‐based neural machine translation (NMT) models cannot produce translations with adequate latency in online scenarios because they wait until a source sentence is completed to compute alignment between the source and target tokens. To address this issue, we propose a reinforced learning (RL)‐based attention mechanism, the reinforced attention mechanism, which allows a neural translation model to jointly train the stopping criterion and a partial translation model. The proposed attention mechanism comprises two modules, one to ensure translation quality and the other to address latency. Different from previous RL‐based simultaneous translation systems, which learn the stopping criterion from a fixed NMT model, the modules can be trained jointly with a novel reward function. In our experiments, the proposed model has better translation quality and comparable latency compared to previous models. To translate in real time, a simultaneous translation system should determine when to stop reading source tokens and generate target tokens corresponding to a partial source sentence read up to that point. However, conventional attention‐based neural machine translation (NMT) models cannot produce translations with adequate latency in online scenarios because they wait until a source sentence is completed to compute alignment between the source and target tokens. To address this issue, we propose a reinforced learning (RL)‐based attention mechanism, the reinforced attention mechanism, which allows a neural translation model to jointly train the stopping criterion and a partial translation model. The proposed attention mechanism comprises two modules, one to ensure translation quality and the other to address latency. Different from previous RL‐based simultaneous translation systems, which learn the stopping criterion from a fixed NMT model, the modules can be trained jointly with a novel reward function. In our experiments, the proposed model has better translation quality and comparable latency compared to previous models. KCI Citation Count: 0 To translate in real time, a simultaneous translation system should determine when to stop reading source tokens and generate target tokens corresponding to a partial source sentence read up to that point. However, conventional attention‐based neural machine translation (NMT) models cannot produce translations with adequate latency in online scenarios because they wait until a source sentence is completed to compute alignment between the source and target tokens. To address this issue, we propose a reinforced learning (RL)‐based attention mechanism, the reinforced attention mechanism, which allows a neural translation model to jointly train the stopping criterion and a partial translation model. The proposed attention mechanism comprises two modules, one to ensure translation quality and the other to address latency. Different from previous RL‐based simultaneous translation systems, which learn the stopping criterion from a fixed NMT model, the modules can be trained jointly with a novel reward function. In our experiments, the proposed model has better translation quality and comparable latency compared to previous models. |
Author | Lee, YoHan Shin, JongHun Kim, YoungKil |
Author_xml | – sequence: 1 givenname: YoHan orcidid: 0000-0001-8015-9609 surname: Lee fullname: Lee, YoHan email: carep@etri.re.kr organization: Electronics and Telecommunications Research Institutes – sequence: 2 givenname: JongHun orcidid: 0000-0002-4764-9371 surname: Shin fullname: Shin, JongHun organization: Electronics and Telecommunications Research Institutes – sequence: 3 givenname: YoungKil orcidid: 0000-0003-4560-0141 surname: Kim fullname: Kim, YoungKil organization: Electronics and Telecommunications Research Institutes |
BackLink | https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002771413$$DAccess content in National Research Foundation of Korea (NRF) |
BookMark | eNqFkc1LJDEQxYMoOH6cvfbVQ2s-Oun0UcTdHVAEHc-hkq52MnYnSzqD-N_b07NehMVTUVXv9yjqnZDDEAMScsHoVcWZvsac_OaKU05LKqQ-IAvOhShrwdUhWTDOZakqJY7JyThu6CSrpF6Qh2c_bPsMAeN2LAJuE_TFAG7tAxY5QRh7yD6G4t3ndQFFQh-6mBy2BeSMYd4N6NYQ_DickaMO-hHP_9VT8vLrbnX7p7x__L28vbkvXcUbUTaqbZGCdqpGKyUgcu0spR2rqRMWAKxrFKi2bjVXQLWeOl7b6WJmmWvFKbnc-4bUmTfnTQQ_19do3pK5eVotTaPrmspq0i732jbCxvxNfoD0MQPzIKZXAyl716NBZ5nExnauopXthKYopWstyrqx0InJS-69XIrjmLAzzuf5P9OrfG8YNbsszJyF2WVhdllM3PU37uuO_xNqT7z7Hj9-kpu71RNnXDRCfAK1PaJb |
CitedBy_id | crossref_primary_10_1007_s10489_023_04638_w crossref_primary_10_1016_j_patrec_2023_06_001 crossref_primary_10_2478_amns_2023_2_01496 crossref_primary_10_1109_ACCESS_2023_3305927 crossref_primary_10_1007_s10015_024_00964_5 crossref_primary_10_3233_IDT_240657 |
Cites_doi | 10.18653/v1/2020.iwslt-1.28 10.1162/neco.1997.9.8.1735 10.1007/BF00992696 10.1109/TNNLS.2019.2957276 10.4218/etrij.2017-0087 |
ContentType | Journal Article |
Copyright | 1225‐6463/$ © 2021 ETRI |
Copyright_xml | – notice: 1225‐6463/$ © 2021 ETRI |
DBID | AAYXX CITATION DOA ACYCR |
DOI | 10.4218/etrij.2020-0358 |
DatabaseName | CrossRef DOAJ Directory of Open Access Journals Korean Citation Index |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering |
EISSN | 2233-7326 |
EndPage | 786 |
ExternalDocumentID | oai_kci_go_kr_ARTI_9877054 oai_doaj_org_article_ecb15e9bfc404bf380e55cdbe579baf3 10_4218_etrij_2020_0358 ETR212393 |
Genre | article |
GrantInformation_xml | – fundername: Institute for Information & communications Technology Promotion (IITP) funderid: R7119‐16‐1001 |
GroupedDBID | -~X .4S .DC .UV 0R~ 1OC 29G 2WC 5GY 5VS 9ZL AAKPC AAYBS ACGFS ACXQS ACYCR ADBBV ADDVE AENEX ALMA_UNASSIGNED_HOLDINGS ARCSS AVUZU BCNDV DU5 E3Z EBS EDO EJD GROUPED_DOAJ IPNFZ ITG ITH JDI KQ8 KVFHK MK~ ML~ O9- OK1 P5Y RIG RNS TR2 TUS WIN XSB AAYXX ADMLS CITATION OVT AAMMB AEFGJ AGXDD AIDQK AIDYY 08R |
ID | FETCH-LOGICAL-c4293-96dde0a8c67eb55aee28cb00f170c3baaabc96a6d7d826a08896a27b4581b1cd3 |
IEDL.DBID | DOA |
ISSN | 1225-6463 |
IngestDate | Tue Nov 21 21:42:24 EST 2023 Wed Aug 27 01:31:22 EDT 2025 Tue Jul 01 02:03:20 EDT 2025 Thu Apr 24 22:53:20 EDT 2025 Wed Jan 22 16:28:29 EST 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 5 |
Language | English |
License | http://doi.wiley.com/10.1002/tdm_license_1.1 http://onlinelibrary.wiley.com/termsAndConditions#vor |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c4293-96dde0a8c67eb55aee28cb00f170c3baaabc96a6d7d826a08896a27b4581b1cd3 |
Notes | Funding information Institute for Information & communications Technology Promotion (IITP), Grant/Award Number: R7119‐16‐1001 https://doi.org/10.4218/etrij.2020-0358 |
ORCID | 0000-0002-4764-9371 0000-0001-8015-9609 0000-0003-4560-0141 |
OpenAccessLink | https://doaj.org/article/ecb15e9bfc404bf380e55cdbe579baf3 |
PageCount | 12 |
ParticipantIDs | nrf_kci_oai_kci_go_kr_ARTI_9877054 doaj_primary_oai_doaj_org_article_ecb15e9bfc404bf380e55cdbe579baf3 crossref_citationtrail_10_4218_etrij_2020_0358 crossref_primary_10_4218_etrij_2020_0358 wiley_primary_10_4218_etrij_2020_0358_ETR212393 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | October 2021 2021-10-00 2021-10-01 2021-10 |
PublicationDateYYYYMMDD | 2021-10-01 |
PublicationDate_xml | – month: 10 year: 2021 text: October 2021 |
PublicationDecade | 2020 |
PublicationTitle | ETRI journal |
PublicationYear | 2021 |
Publisher | Electronics and Telecommunications Research Institute (ETRI) 한국전자통신연구원 |
Publisher_xml | – name: Electronics and Telecommunications Research Institute (ETRI) – name: 한국전자통신연구원 |
References | 1992; 8 2020; 1 2020; 31 2019; 41 2020 2019 2018 2017 2016 2015 2014 2002 1997; 9 Luong T. (e_1_2_9_3_1) 2015 Chen M. (e_1_2_9_28_1) 2018 Papineni K. (e_1_2_9_29_1) 2002 Vaswani A. (e_1_2_9_20_1) 2017 Gehring J. (e_1_2_9_19_1) 2017 Cho K. (e_1_2_9_4_1) 2016 Zhang B. (e_1_2_9_16_1) 2018 Sennrich R. (e_1_2_9_25_1) 2015 Kudo T. (e_1_2_9_26_1) 2018 e_1_2_9_15_1 Satija H. (e_1_2_9_8_1) 2016 e_1_2_9_17_1 Schneider F. (e_1_2_9_34_1) 2020 Alinejad A. (e_1_2_9_6_1) 2018 Kingma D. P. (e_1_2_9_27_1) 2015 Grissom A. (e_1_2_9_5_1) 2014 Wu Y. (e_1_2_9_18_1) 2016 e_1_2_9_22_1 e_1_2_9_21_1 Ma X. (e_1_2_9_30_1) 2019 Ma M. (e_1_2_9_7_1) 2019 Gu J. (e_1_2_9_9_1) 2016 Arivazhagan N. (e_1_2_9_13_1) 2019 Luo Y. (e_1_2_9_11_1) 2017 Zheng B. (e_1_2_9_14_1) 2019 Cherry C. (e_1_2_9_23_1) 2019 Jang E. (e_1_2_9_32_1) 2017 Shen T. (e_1_2_9_33_1) 2018 Chiu C. C. (e_1_2_9_31_1) 2017 Chen Y. (e_1_2_9_10_1) 2019 Bahdanau D. (e_1_2_9_2_1) 2015 Hou J. (e_1_2_9_24_1) 2020; 1 Raffel C. (e_1_2_9_12_1) 2017 |
References_xml | – start-page: 1342 year: 2014 end-page: 1352 article-title: Don't until the final verb wait: Reinforcement learning for simultaneous machine translation publication-title: Proc. Conf. Empir. Methods Nat. Lang. Process – start-page: 1 year: 2017 end-page: 12 article-title: Categorical reparametrization with gumble‐softmax publication-title: Proc. Int. Conf. Learn. Representations (Toulon, France) – year: 2015 article-title: Neural machine translation of rare words with subword units publication-title: arXiv Preprint, CoRR – volume: 8 start-page: 229 issue: 3–4 year: 1992 end-page: 256 article-title: Simple statistical gradient‐following algorithms for connectionist reinforcement learning publication-title: Mach. Learn. – start-page: 3022 year: 2018 end-page: 3027 article-title: Prediction improves simultaneous neural machine translation publication-title: Proc. Conf. Empir. Methods Nat. Lang. Process – start-page: 2801 year: 2017 end-page: 2805 article-title: Learning online alignments with continuous rewards policy gradient publication-title: Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP) – year: 2019 article-title: Monotonic infinite lookback attention for simultaneous machine translation publication-title: arXiv Preprint, CoRR – year: 2017 article-title: Attention is all you need publication-title: arXiv Preprint, CoRR – year: 2019 article-title: Thinking slow about latency evaluation for simultaneous machine translation publication-title: arXiv Preprint, CoRR – volume: 31 start-page: 4688 issue: 11 year: 2020 end-page: 4698 article-title: Neural machine translation with GRU‐gated attention model publication-title: IEEE Trans. Neural Netw. Learn. Syst. – volume: 41 start-page: 109 issue: 1 year: 2019 end-page: 116 article-title: Fast speaker adaptation using extended diagonal linear transformation for deep neural networks publication-title: ETRI J. – volume: 1 start-page: 1 year: 2020 end-page: 16 article-title: Segment boundary detection directed attention for online end‐to‐end speech recognition publication-title: EURASIP J. Audio, Speech, Music Process. – start-page: 1 year: 2015 end-page: 15 article-title: Adam: A method for stochastic optimization publication-title: Proc. Int. Conf. Learn. Representations – start-page: 110 year: 2016 end-page: 119 article-title: Simultaneous machine translation using deep reinforcement learning publication-title: Proc. ICML 2016 Workshop Abstr. Reinf. Learn – year: 2016 article-title: Can neural machine translation do simultaneous translation? publication-title: arXiv Preprint, CoRR – volume: 9 start-page: 1735 issue: 8 year: 1997 end-page: 1780 article-title: Long short‐term memory publication-title: Neural Comput. – start-page: 66 year: 2018 end-page: 71 article-title: Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing publication-title: Proc. Conf. Empir. Methods Nat. Lang. Process. – start-page: 1 year: 2015 end-page: 15 article-title: Neural machine translation by jointly learning to align and translate publication-title: Proc. Int. Conf. Learn. Representations – year: 2016 article-title: Learning to translate in real‐time with neural machine translation publication-title: arXiv Preprint, CoRR – year: 2016 article-title: Google's neural machine translation system: Bridging the gap between human and machine translation publication-title: arXiv Preprint, CoRR – year: 2019 article-title: Simultaneous translation with flexible policy via restricted imitation learning publication-title: arXiv Preprint, CoRR – year: 2019 article-title: STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix‐to‐prefix framework publication-title: arXiv Preprint, CoRR – year: 2018 article-title: Accelerating neural transformer via an average attention network publication-title: arXiv Preprint, CoRR – year: 2018 article-title: The best of both worlds: Combining recent advances in neural machine translation publication-title: arXiv Preprint, CoRR – start-page: 4345 year: 2018 end-page: 4352 article-title: Reinforced self‐attention network: A hybrid of hard and soft attention for sequence modeling publication-title: Proc. Int. Joint Conf. Artif. Intell – start-page: 1 year: 2019 end-page: 11 article-title: Monotonic multihead attention publication-title: Proc. Int. Conf. Learn. Representations (Addis Ababa, Ethiopia) – start-page: 311 year: 2002 end-page: 318 article-title: Bleu: A method for automatic evaluation of machine translation publication-title: Proc. Assoc. Comput. Linguist – start-page: 1 year: 2017 end-page: 16 article-title: Monotonic chunkwise attention publication-title: Proc. Int. Conf. Learn. Representations (Vancouver, Canada) – year: 2019 article-title: How to do simultaneous translation better with consecutive neural machine translation? publication-title: arXiv Preprint, CoRR – start-page: 1412 year: 2015 end-page: 1421 article-title: Effective approaches to attention‐based neural machine translation publication-title: Proc. Empir. Methods Nat. Lang. Process – start-page: 228 year: 2020 end-page: 326 article-title: Towards stream translation: Adaptive computation time for simultaneous machine translation publication-title: Proc. Int. Conf. Spoken Lang. Transl. – start-page: 2837 year: 2017 end-page: 2846 article-title: Online and linear‐time attention by enforcing monotonic alignments publication-title: Proc. Int. Conf. Mach. Learn – start-page: 1243 year: 2017 end-page: 1252 article-title: Convolutional sequence to sequence learning publication-title: Proc. Int. Conf. Mach. Learn – start-page: 2801 year: 2017 ident: e_1_2_9_11_1 article-title: Learning online alignments with continuous rewards policy gradient publication-title: Proc. IEEE Int. Conf. Acoust., Speech Signal Process. (ICASSP) – start-page: 3022 year: 2018 ident: e_1_2_9_6_1 article-title: Prediction improves simultaneous neural machine translation publication-title: Proc. Conf. Empir. Methods Nat. Lang. Process – year: 2019 ident: e_1_2_9_13_1 article-title: Monotonic infinite lookback attention for simultaneous machine translation publication-title: arXiv Preprint, CoRR – year: 2019 ident: e_1_2_9_14_1 article-title: Simultaneous translation with flexible policy via restricted imitation learning publication-title: arXiv Preprint, CoRR – start-page: 110 year: 2016 ident: e_1_2_9_8_1 article-title: Simultaneous machine translation using deep reinforcement learning publication-title: Proc. ICML 2016 Workshop Abstr. Reinf. Learn – start-page: 4345 year: 2018 ident: e_1_2_9_33_1 article-title: Reinforced self‐attention network: A hybrid of hard and soft attention for sequence modeling publication-title: Proc. Int. Joint Conf. Artif. Intell – start-page: 228 year: 2020 ident: e_1_2_9_34_1 article-title: Towards stream translation: Adaptive computation time for simultaneous machine translation publication-title: Proc. Int. Conf. Spoken Lang. Transl. doi: 10.18653/v1/2020.iwslt-1.28 – year: 2017 ident: e_1_2_9_20_1 article-title: Attention is all you need publication-title: arXiv Preprint, CoRR – start-page: 2837 year: 2017 ident: e_1_2_9_12_1 article-title: Online and linear‐time attention by enforcing monotonic alignments publication-title: Proc. Int. Conf. Mach. Learn – year: 2015 ident: e_1_2_9_25_1 article-title: Neural machine translation of rare words with subword units publication-title: arXiv Preprint, CoRR – ident: e_1_2_9_21_1 doi: 10.1162/neco.1997.9.8.1735 – year: 2019 ident: e_1_2_9_10_1 article-title: How to do simultaneous translation better with consecutive neural machine translation? publication-title: arXiv Preprint, CoRR – start-page: 1342 year: 2014 ident: e_1_2_9_5_1 article-title: Don't until the final verb wait: Reinforcement learning for simultaneous machine translation publication-title: Proc. Conf. Empir. Methods Nat. Lang. Process – ident: e_1_2_9_22_1 doi: 10.1007/BF00992696 – year: 2018 ident: e_1_2_9_28_1 article-title: The best of both worlds: Combining recent advances in neural machine translation publication-title: arXiv Preprint, CoRR – year: 2018 ident: e_1_2_9_16_1 article-title: Accelerating neural transformer via an average attention network publication-title: arXiv Preprint, CoRR – start-page: 1 year: 2017 ident: e_1_2_9_32_1 article-title: Categorical reparametrization with gumble‐softmax publication-title: Proc. Int. Conf. Learn. Representations (Toulon, France) – start-page: 1412 year: 2015 ident: e_1_2_9_3_1 article-title: Effective approaches to attention‐based neural machine translation publication-title: Proc. Empir. Methods Nat. Lang. Process – start-page: 66 year: 2018 ident: e_1_2_9_26_1 article-title: Sentencepiece: A simple and language independent subword tokenizer and detokenizer for neural text processing publication-title: Proc. Conf. Empir. Methods Nat. Lang. Process. – start-page: 1 year: 2015 ident: e_1_2_9_27_1 article-title: Adam: A method for stochastic optimization publication-title: Proc. Int. Conf. Learn. Representations – start-page: 1243 year: 2017 ident: e_1_2_9_19_1 article-title: Convolutional sequence to sequence learning publication-title: Proc. Int. Conf. Mach. Learn – ident: e_1_2_9_15_1 doi: 10.1109/TNNLS.2019.2957276 – start-page: 1 year: 2015 ident: e_1_2_9_2_1 article-title: Neural machine translation by jointly learning to align and translate publication-title: Proc. Int. Conf. Learn. Representations – year: 2016 ident: e_1_2_9_9_1 article-title: Learning to translate in real‐time with neural machine translation publication-title: arXiv Preprint, CoRR – year: 2016 ident: e_1_2_9_18_1 article-title: Google's neural machine translation system: Bridging the gap between human and machine translation publication-title: arXiv Preprint, CoRR – start-page: 1 year: 2019 ident: e_1_2_9_30_1 article-title: Monotonic multihead attention publication-title: Proc. Int. Conf. Learn. Representations (Addis Ababa, Ethiopia) – year: 2019 ident: e_1_2_9_7_1 article-title: STACL: Simultaneous translation with implicit anticipation and controllable latency using prefix‐to‐prefix framework publication-title: arXiv Preprint, CoRR – start-page: 1 year: 2017 ident: e_1_2_9_31_1 article-title: Monotonic chunkwise attention publication-title: Proc. Int. Conf. Learn. Representations (Vancouver, Canada) – year: 2016 ident: e_1_2_9_4_1 article-title: Can neural machine translation do simultaneous translation? publication-title: arXiv Preprint, CoRR – ident: e_1_2_9_17_1 doi: 10.4218/etrij.2017-0087 – start-page: 311 year: 2002 ident: e_1_2_9_29_1 article-title: Bleu: A method for automatic evaluation of machine translation publication-title: Proc. Assoc. Comput. Linguist – volume: 1 start-page: 1 year: 2020 ident: e_1_2_9_24_1 article-title: Segment boundary detection directed attention for online end‐to‐end speech recognition publication-title: EURASIP J. Audio, Speech, Music Process. – year: 2019 ident: e_1_2_9_23_1 article-title: Thinking slow about latency evaluation for simultaneous machine translation publication-title: arXiv Preprint, CoRR |
SSID | ssj0020458 |
Score | 2.2911124 |
Snippet | To translate in real time, a simultaneous translation system should determine when to stop reading source tokens and generate target tokens corresponding to a... AbstractTo translate in real time, a simultaneous translation system should determine when to stop reading source tokens and generate target tokens... |
SourceID | nrf doaj crossref wiley |
SourceType | Open Website Enrichment Source Index Database Publisher |
StartPage | 775 |
SubjectTerms | attention mechanism neural network reinforcement learning simultaneous machine translation 전자/정보통신공학 |
Title | Simultaneous neural machine translation with a reinforced attention mechanism |
URI | https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.2020-0358 https://doaj.org/article/ecb15e9bfc404bf380e55cdbe579baf3 https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002771413 |
Volume | 43 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
ispartofPNX | ETRI Journal, 2021, 43(5), , pp.775-786 |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1Nb9QwELVQT-WA-BTLlyzEgUtYJ_6Kj4BatUjlAK3Um2VPxmgpm1bL8v-ZcdKqPVS99BQpiqPR8yTjlzy_EeKD0hZUV3TjAkJjbNZN3yXXBPCD8cEOpvB-56Pv7uDEfDu1p9dafbEmbLIHnoBbIuTWYsgFjDK56F6htTBktD7kVKrPpwrqkkzNVIt__zHVomxtnHF6MvUxVM-W3KjqNxFDok0UaH-jHlXbfqoy46bcXKzWarP_WDyal4ny8xTeE_EAx6fi4TXzwGfi6OeK1YBpRCLvkn0pacC6aiNRbrkETTI3yZ9aZZIbrCapgINkT82qcpRr5J2_q7_r5-Jkf-_460EzN0dogEqIboKjF5NKPTiP2dqE2PVAz1BpvQKdU0oZgktu8AMxiMRqJpc6nwmYNrcw6BdiZzwf8aWQCovtXM7YDs4A9Ing85BMdnTX3JWF-HQJUYTZOZwbWPyJxCAY01gxjYxpZEwX4uPVgIvJNOP2S78w5leXsdt1PUE5EOcciHflwEK8pxmLZ7Cq4_n46zyebSJxgsMYeu9pYboQyzqhd0UU945_cD0P-tV9xPZa7HYsg6n6vzdiZ7v5h29pHbPN72rK_gf39PGX |
linkProvider | Directory of Open Access Journals |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELZgewAOiKdYnhbiwCU0iV_xsaBWW-j2ALuo4mLZzrhaymZRWP4_M05YtUgIcYoUZZzos8cznzP-zNirUqhY1kkU2kIspAqiaGqvCxtNK41VrUy033l-qmdL-f5MnV3aCzPoQ-wW3Mgz8nxNDk4L0uTlEsMS9eK2X31Fhof8B9_YXGd7lNvUE7Z38Hn5ZbmjXfQrkGgXjtxCSy0GgR9qZP-PJq7EpizhjxGn69PVxDVHnqM77PaYMvKDoY_vsmvQ3WO3LgkJ3mfzTyuqDPQdIJHnpFGJButcJwl8S-FoKHnjtOzKPe8hC6ZGaDnpa-aKR74G2gW8-rF-wJZHh4t3s2I8KKGIGE5EYTVOUqVvojYQlPIAdRPRn1JlyiiC9z5Eq71uTYtswlNlk_a1CQhMFarYiods0m06eMR4CUnVOgSoWi1jbDzCZ6KXQWOroU5T9uY3RC6OKuJ0mMU3h2yCMHUZU0eYOsJ0yl7vDL4PAhp_f_QtYb57jJSv841Nf-5GR3IQQ6XAhhRlKUMSTQlKxTaAMjb4JKbsJfaYu4irbE_X84276B3yg2NnG2MwSZ2y_dyh__oid7j4SLHdisf_bfGC3Zgt5ifu5Pj0wxN2s6ZamFwE-JRNtv1PeIbJzDY8H0frLzgI8DA |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwELaglRAcUHmpC7REiAOX0CR-xccCXbVAKwRdhLhYfoyrpWy2Csv_Z8ZJVxSpQpwiRRknmvF4_DmfPzP2ouIyVE3ipTIQSiE9L9vGqdIEHYU2MopE-52PT9ThTLz7Ki_ZhLQXZtCHWC-4UWbk8ZoS_CImSnKBVYmCuOrn3xHgIfzBF7Y32SZp5WFX39z_Mvs2W6Mu-hNIqAs7bqmE4oO-DzWy91cTV0pTVvDHgtP16eq8NRee6Ra7O84Yi_0hxPfYDejuszt_6Ag-YMef50QMdB0gji9IohINFpkmCcWKqtHAeCto1bVwRQ9ZLzVALEheMxMeiwXQJuD5z8VDNpsenL45LMdzEsqA1YSXRuEYVbk2KA1eSgfQtAHTKdW6Ctw753wwyqmoI4IJR8Qm5Rrt0TG1r0Pkj9hGt-xgmxUVJNko76GOSoTQOnSfDk54ha36Jk3Yq0sX2TCKiNNZFj8sggnyqc0-teRTSz6dsJdrg4tBP-P6R1-Tz9ePkfB1vrHsz-yYRxaCryUYn4KohE-8rUDKED1IbbxLfMKeY8TseZhne7qeLe15bxEeHFnTao1z1AnbywH91xfZg9NPVNoNf_zfFs_YrY9vp_bD0cn7J-x2Q0yYTAF8yjZW_S_YwanMyu-OnfU3yOHvWQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Simultaneous+neural+machine+translation+with+a+reinforced+attention+mechanism&rft.jtitle=ETRI+journal&rft.au=Lee%2C+YoHan&rft.au=Shin%2C+JongHun&rft.au=Kim%2C+YoungKil&rft.date=2021-10-01&rft.issn=1225-6463&rft.eissn=2233-7326&rft.volume=43&rft.issue=5&rft.spage=775&rft.epage=786&rft_id=info:doi/10.4218%2Fetrij.2020-0358&rft.externalDBID=n%2Fa&rft.externalDocID=10_4218_etrij_2020_0358 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon |