HLA genotyping in the clinical laboratory: comparison of next-generation sequencing methods

Implementation of human leukocyte antigen (HLA) genotyping by next‐generation sequencing (NGS) in the clinical lab brings new challenges to the laboratories performing this testing. With the advent of commercially available HLA‐NGS typing kits, labs must make numerous decisions concerning capital eq...

Full description

Saved in:
Bibliographic Details
Published inHLA Vol. 88; no. 1-2; pp. 14 - 24
Main Authors Profaizer, T., Lázár-Molnár, E., Close, D.W., Delgado, J. C., Kumánovics, A.
Format Journal Article
LanguageEnglish
Published Oxford, UK Blackwell Publishing Ltd 01.07.2016
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Implementation of human leukocyte antigen (HLA) genotyping by next‐generation sequencing (NGS) in the clinical lab brings new challenges to the laboratories performing this testing. With the advent of commercially available HLA‐NGS typing kits, labs must make numerous decisions concerning capital equipment and address labor considerations. Therefore, careful and unbiased evaluation of available methods is imperative. In this report, we compared our in‐house developed HLA NGS typing with two commercially available kits from Illumina and Omixon using 10 International Histocompatibility Working Group (IHWG) and 36 clinical samples. Although all three methods employ long range polymerase chain reaction (PCR) and have been developed on the Illumina MiSeq platform, the methodologies for library preparation show significant variations. There was 100% typing concordance between all three methods at the first field when a HLA type could be assigned. Overall, HLA typing by NGS using in‐house or commercially available methods is now feasible in clinical laboratories. However, technical variables such as hands‐on time and indexing strategies are sufficiently different among these approaches to impact the workflow of the clinical laboratory.
AbstractList Abstract Implementation of human leukocyte antigen ( HLA ) genotyping by next‐generation sequencing ( NGS ) in the clinical lab brings new challenges to the laboratories performing this testing. With the advent of commercially available HLA‐NGS typing kits, labs must make numerous decisions concerning capital equipment and address labor considerations. Therefore, careful and unbiased evaluation of available methods is imperative. In this report, we compared our in‐house developed HLA NGS typing with two commercially available kits from Illumina and Omixon using 10 International Histocompatibility Working Group ( IHWG ) and 36 clinical samples. Although all three methods employ long range polymerase chain reaction ( PCR ) and have been developed on the Illumina MiSeq platform, the methodologies for library preparation show significant variations. There was 100% typing concordance between all three methods at the first field when a HLA type could be assigned. Overall, HLA typing by NGS using in‐house or commercially available methods is now feasible in clinical laboratories. However, technical variables such as hands‐on time and indexing strategies are sufficiently different among these approaches to impact the workflow of the clinical laboratory.
Implementation of human leukocyte antigen (HLA) genotyping by next‐generation sequencing (NGS) in the clinical lab brings new challenges to the laboratories performing this testing. With the advent of commercially available HLA‐NGS typing kits, labs must make numerous decisions concerning capital equipment and address labor considerations. Therefore, careful and unbiased evaluation of available methods is imperative. In this report, we compared our in‐house developed HLA NGS typing with two commercially available kits from Illumina and Omixon using 10 International Histocompatibility Working Group (IHWG) and 36 clinical samples. Although all three methods employ long range polymerase chain reaction (PCR) and have been developed on the Illumina MiSeq platform, the methodologies for library preparation show significant variations. There was 100% typing concordance between all three methods at the first field when a HLA type could be assigned. Overall, HLA typing by NGS using in‐house or commercially available methods is now feasible in clinical laboratories. However, technical variables such as hands‐on time and indexing strategies are sufficiently different among these approaches to impact the workflow of the clinical laboratory.
Author Close, D.W.
Profaizer, T.
Lázár-Molnár, E.
Delgado, J. C.
Kumánovics, A.
Author_xml – sequence: 1
  givenname: T.
  surname: Profaizer
  fullname: Profaizer, T.
  email: tracie.profaizer@aruplab.com
  organization: ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, UT 84132, Salt Lake City, USA
– sequence: 2
  givenname: E.
  surname: Lázár-Molnár
  fullname: Lázár-Molnár, E.
  organization: ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, UT 84132, Salt Lake City, USA
– sequence: 3
  givenname: D.W.
  surname: Close
  fullname: Close, D.W.
  organization: ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, UT 84132, Salt Lake City, USA
– sequence: 4
  givenname: J. C.
  surname: Delgado
  fullname: Delgado, J. C.
  organization: ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, UT 84132, Salt Lake City, USA
– sequence: 5
  givenname: A.
  surname: Kumánovics
  fullname: Kumánovics, A.
  organization: ARUP Institute for Clinical and Experimental Pathology, Department of Pathology, University of Utah School of Medicine, UT 84132, Salt Lake City, USA
BackLink https://www.ncbi.nlm.nih.gov/pubmed/27524804$$D View this record in MEDLINE/PubMed
BookMark eNp1kE1PAjEQhhujEUQO_gGzVw8L_diveiMoYEKQA8aDh6bbdqFxt123S4R_bxHh5lxmMvO8bzLvDbg01igA7hAcIF_DlpsBwlkML0AXw5iGmCB4eZ4h7oC-czqHOKEpTFJ6DTo4jXGUwagLPmbzUbBWxrb7Wpt1oE3QblQgSm204GVQ8tw2vLXN_jEQtqp5o501gS0Co3Zt6JXKn7VfOfW1VUYcTCrVbqx0t-Cq4KVT_b_eA2-T59V4Fs5fpy_j0TwUEaYw5BlRkhZxThUtBE9JikUicUoIzCUVBGeYJ4QLxCOeYSF5QaFEqSxQSv1LkvTAw9FXNNa5RhWsbnTFmz1DkB0yYj4j9puRZ--PbL3NKyXP5CkRDwyPwLcu1f5_J7YaLU6W4VGhXat2ZwVvPlnin4nZ-2LKltGULp-WE4bIDwu9gtQ
CitedBy_id crossref_primary_10_1182_bloodadvances_2018017871
crossref_primary_10_1111_iji_12322
crossref_primary_10_5858_arpa_2016_0537_RA
crossref_primary_10_1016_j_humimm_2020_02_003
crossref_primary_10_1016_j_humimm_2017_08_003
crossref_primary_10_1111_tan_13065
crossref_primary_10_3390_jcm10153334
crossref_primary_10_1007_s00439_019_02064_y
crossref_primary_10_1016_j_humimm_2020_06_010
crossref_primary_10_1159_000502487
crossref_primary_10_1016_j_transproceed_2018_05_005
crossref_primary_10_1111_tan_14611
crossref_primary_10_1186_s43042_023_00447_5
crossref_primary_10_1016_j_tracli_2017_05_011
crossref_primary_10_1080_00365521_2022_2147801
crossref_primary_10_1016_j_humimm_2018_12_002
crossref_primary_10_1016_j_humimm_2017_01_006
crossref_primary_10_1016_j_jid_2017_11_027
crossref_primary_10_1038_nrg_2017_12
crossref_primary_10_1111_tan_13133
Cites_doi 10.1016/j.humimm.2015.05.001
10.1016/j.humimm.2015.03.022
10.1016/j.humimm.2015.07.181
10.1159/000332433
10.1111/tan.12736
10.1186/1471-2164-15-63
10.1016/j.humimm.2015.09.015
10.1073/pnas.1206614109
10.1016/j.humimm.2009.08.009
10.1186/1471-2164-12-42
10.1111/j.1399-0039.2012.01941.x
10.1186/1471-2164-14-355
10.1007/978-1-62703-493-7_10
10.1111/j.1399-0039.2009.01345.x
10.1038/jhg.2015.102
10.1111/iji.12024
10.1111/tan.12298
10.1016/j.humimm.2015.10.003
10.1111/tan.12093
10.1111/j.1399-0039.2010.01606.x
10.1016/j.humimm.2010.06.016
10.1016/j.humimm.2015.09.014
10.1186/1471-2164-14-221
10.1016/j.humimm.2015.08.002
10.2353/jmoldx.2010.100043
10.1016/j.humimm.2015.03.001
10.1371/journal.pone.0127153
10.2144/000114133
10.1016/j.humimm.2014.08.206
10.1016/j.humimm.2012.12.007
10.1186/gb-2011-12-2-r18
10.1093/nar/22.21.4543
10.1016/j.humimm.2015.05.002
10.1111/tan.12071
10.1093/nar/gku1161
10.1186/1471-2164-15-864
10.1002/gepi.20575
10.1016/j.yexcr.2010.02.036
10.1111/iji.12213
10.1186/1471-2164-15-68
ContentType Journal Article
Copyright 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
Copyright_xml – notice: 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd
– notice: 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
DBID BSCLL
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
DOI 10.1111/tan.12850
DatabaseName Istex
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
CrossRef
DatabaseTitle MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
CrossRef
DatabaseTitleList CrossRef

MEDLINE
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
EISSN 2059-2310
EndPage 24
ExternalDocumentID 10_1111_tan_12850
27524804
TAN12850
ark_67375_WNG_P4G9PDPF_1
Genre article
Journal Article
Comparative Study
GroupedDBID 0R~
1OC
33P
53G
5VS
8-0
8-1
8-4
AAEVG
AAHHS
AANLZ
AASGY
AAXRX
AAZKR
ABCUV
ABDBF
ABJNI
ABQWH
ABXGK
ACAHQ
ACCFJ
ACCZN
ACGFS
ACGOF
ACMXC
ACPOU
ACXBN
ACXQS
ADBBV
ADBTR
ADEOM
ADIZJ
ADKYN
ADMGS
ADOZA
ADXAS
ADZMN
ADZOD
AEEZP
AEIGN
AEIMD
AEQDE
AEUYR
AFBPY
AFFPM
AFGKR
AFPWT
AFZJQ
AHBTC
AIACR
AITYG
AIURR
AIWBW
AJBDE
ALMA_UNASSIGNED_HOLDINGS
ALUQN
AMBMR
AMYDB
AZFZN
BMXJE
BSCLL
BY8
C45
DCZOG
DRFUL
DRMAN
DRSTM
EAD
EAP
EBC
EBD
EBS
EJD
EMB
EMK
EMOBN
ESX
FUBAC
HGLYW
KBYEO
LATKE
LEEKS
LITHE
LOXES
LUTES
LYRES
MEWTI
MRFUL
MRMAN
MRSTM
MSFUL
MSMAN
MSSTM
MXFUL
MXMAN
MXSTM
O66
OVD
P2W
R9-
ROL
SUPJJ
SV3
TEORI
TUS
WIH
WIJ
WIK
WOHZO
WXSBR
BFHJK
CGR
CUY
CVF
ECM
EIF
NPM
AAYXX
CITATION
ID FETCH-LOGICAL-c4290-a83ed9f5b9e9fca7372c6d27330bd9c3282a63ac1a4a82cdaf90d17df179697d3
ISSN 2059-2302
IngestDate Fri Aug 23 02:26:22 EDT 2024
Wed Oct 16 01:00:42 EDT 2024
Sat Aug 24 00:49:53 EDT 2024
Wed Oct 30 09:51:47 EDT 2024
IsPeerReviewed true
IsScholarly true
Issue 1-2
Keywords human leukocyte antigens (HLA)
size selection
next-generation sequencing (NGS)
paired-end sequencing
Language English
License 2016 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c4290-a83ed9f5b9e9fca7372c6d27330bd9c3282a63ac1a4a82cdaf90d17df179697d3
Notes ark:/67375/WNG-P4G9PDPF-1
Table S1. Results of 10 International Histocompatibility Working Group (IHWG) samples.
istex:12B5550EDDB2E9BC9F8DCBB6B1A17FB2E9204B5E
ArticleID:TAN12850
PMID 27524804
PageCount 11
ParticipantIDs crossref_primary_10_1111_tan_12850
pubmed_primary_27524804
wiley_primary_10_1111_tan_12850_TAN12850
istex_primary_ark_67375_WNG_P4G9PDPF_1
PublicationCentury 2000
PublicationDate 2016-07
July/August 2016
2016-Jul
2016-07-00
PublicationDateYYYYMMDD 2016-07-01
PublicationDate_xml – month: 07
  year: 2016
  text: 2016-07
PublicationDecade 2010
PublicationPlace Oxford, UK
PublicationPlace_xml – name: Oxford, UK
– name: England
PublicationTitle HLA
PublicationTitleAlternate HLA
PublicationYear 2016
Publisher Blackwell Publishing Ltd
Publisher_xml – name: Blackwell Publishing Ltd
References Ehrenberg PK, Geretz A, Baldwin KM et al. High-throughput multiplex HLA genotyping by next-generation sequencing using multi-locus individual tagging. BMC Genomics 2014: 15: 864.
Robinson J, Halliwell JA, Hayhurst JD, Flicek P, Parham P, Marsh SG. The IPD and IMGT/HLA database: allele variant databases. Nucleic Acids Res 2015: 43 (Database issue): D423-31.
Head SR, Komori HK, LaMere SA et al. Library construction for next-generation sequencing: overviews and challenges. BioTechniques 2014: 56: 61-4, 6, 8, passim.
Clark PM, Duke J, Ferriola D, Papazoglou A, Hassan A, Monos D. Generation of high confidence HLA genotyping and consensus sequences for class I HLA loci using the NGS-based Omixon Holotype HLA typing system and the Illumina Miseq platform. Hum Immunol 2015: 76 (Supplement): 130.
Danzer M, Niklas N, Stabentheiner S et al. Rapid, scalable and highly automated HLA genotyping using next-generation sequencing: a transition from research to diagnostics. BMC Genomics 2013: 14: 221.
Trachtenberg EA, Holcomb CL. Next-generation HLA sequencing using the 454 GS FLX system. Methods Mol Biol 2013: 1034: 197-219.
Aird D, Ross MG, Chen WS et al. Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries. Genome Biol 2011: 12: R18.
Linnarsson S. Recent advances in DNA sequencing methods - general principles of sample preparation. Exp Cell Res 2010: 316: 1339-43.
Mayor NP, Robinson J, McWhinnie AJM et al. HLA Typing for the Next Generation. PLoS One 2015: 10: e0127153.
De Santis D, Dinauer D, Duke J et al. 16(th) IHIW: review of HLA typing by NGS. Int J Immunogenet 2013: 40: 72-6.
Mack SJ, Cano P, Hollenbach JA et al. Common and well-documented HLA alleles: 2012 update to the CWD catalogue. Tissue Antigens 2013: 81: 194-203.
Duke JL, Lind C, Mackiewicz K et al. Determining performance characteristics of an NGS-based HLA typing method for clinical applications. HLA 2016: 87: 141-52.
Lind C, Ferriola D, Mackiewicz K, Papazoglou A, Sasson A, Monos D. Filling the gaps - the generation of full genomic sequences for 15 common and well-documented HLA class I alleles using next-generation sequencing technology. Hum Immunol 2013: 74: 325-9.
Hosomichi K, Jinam TA, Mitsunaga S, Nakaoka H, Inoue I. Phase-defined complete sequencing of the HLA genes by next-generation sequencing. BMC Genomics 2013: 14: 355.
Shiina T, Suzuki S, Ozaki Y et al. Super high resolution for single molecule-sequence-based typing of classical HLA loci at the 8-digit level using next generation sequencers. Tissue Antigens 2012: 80: 305-16.
Lind C, Ferriola D, Mackiewicz K et al. Next-generation sequencing: the solution for high-resolution, unambiguous human leukocyte antigen typing. Hum Immunol 2010: 71: 1033-42.
Erlich RL, Jia X, Anderson S et al. Next-generation sequencing for HLA typing of class I loci. BMC Genomics 2011: 12: 42.
Profaizer T, Coonrod EM, Delgado JC, Kumanovics A. Report on the effects of fragment size, indexing, and read length on HLA sequencing on the Illumina MiSeq. Hum Immunol 2015: 76: 897-902.
Voelkerding KV, Dames S, Durtschi JD. Next generation sequencing for clinical diagnostics-principles and application to targeted resequencing for hypertrophic cardiomyopathy: a paper from the 2009 William Beaumont Hospital Symposium on Molecular Pathology. J Mol Diagn 2010: 12: 539-51.
Gabriel C, Stabentheiner S, Danzer M, Proll J. What next? the next transit from biology to diagnostics: next generation sequencing for immunogenetics. Transfus Med Hemother 2011: 38: 308-17.
Gabriel C, Furst D, Fae I et al. HLA typing by next-generation sequencing - getting closer to reality. Tissue Antigens 2014: 83: 65-75.
Sampson J, Jacobs K, Yeager M, Chanock S, Chatterjee N. Efficient study design for next generation sequencing. Genet Epidemiol 2011: 35: 269-77.
Duke JL, Lind C, Mackiewicz K et al. Towards allele-level human leucocyte antigens genotyping - assessing two next-generation sequencing platforms: Ion Torrent Personal Genome Machine and Illumina MiSeq. Int J Immunogenet 2015: 42: 346-58.
Clarke AC, Prost S, Stanton JA, White WT, Kaplan ME, Matisoo-Smith EA. From cheek swabs to consensus sequences: an A to Z protocol for high-throughput DNA sequencing of complete human mitochondrial genomes. BMC Genomics 2014: 15: 68.
Hosomichi K, Shiina T, Tajima A, Inoue I. The impact of next-generation sequencing technologies on HLA research. J Hum Genet 2015: 60: 665-73.
Moonsamy PV, Williams T, Bonella P et al. High throughput HLA genotyping using 454 sequencing and the Fluidigm Access Array System for simplified amplicon library preparation. Tissue Antigens 2013: 81: 141-9.
Yamamoto F, Hoglund B, Fernandez-Vina M et al. Very high resolution single pass HLA genotyping using amplicon sequencing on the 454 next generation DNA sequencers: comparison with Sanger sequencing. Hum Immunol 2015: 76: 910-6.
Nelson WC, Pyo CW, Vogan D et al. An integrated genotyping approach for HLA and other complex genetic systems. Hum Immunol 2015: 76: 928-38.
Holcomb CL, Hoglund B, Anderson MW et al. A multi-site study using high-resolution HLA genotyping by next generation sequencing. Tissue Antigens 2011: 77: 206-17.
Lange V, Bohme I, Hofmann J et al. Cost-efficient high-throughput HLA typing by MiSeq amplicon sequencing. BMC Genomics 2014: 15: 63.
Wang C, Krishnakumar S, Wilhelmy J et al. High-throughput, high-fidelity HLA genotyping with deep sequencing. Proc Natl Acad Sci USA 2012: 109: 8676-81.
Erlich HA. HLA typing using next generation sequencing: an overview. Hum Immunol 2015: 76: 887-90.
Smith AG, Pyo CW, Nelson W et al. Next generation sequencing to determine HLA class II genotypes in a cohort of hematopoietic cell transplant patients and donors. Hum Immunol 2014: 75: 1040-6.
Westbrook CJ, Karl JA, Wiseman RW et al. No assembly required: full-length MHC class I allele discovery by PacBio circular consensus sequencing. Hum Immunol 2015: 76: 891-6.
Gabriel C, Danzer M, Hackl C et al. Rapid high-throughput human leukocyte antigen typing by massively parallel pyrosequencing for high-resolution allele identification. Hum Immunol 2009: 70: 960-4.
Monos D, Maiers MJ. Progressing towards the complete and thorough characterization of the HLA genes by NGS (or single-molecule DNA sequencing): consequences, opportunities and challenges. Hum Immunol 2015: 76: 883-6.
Bentley G, Higuchi R, Hoglund B et al. High-resolution, high-throughput HLA genotyping by next-generation sequencing. Tissue Antigens 2009: 74: 393-403.
Barone JC, Saito K, Beutner K et al. HLA-genotyping of clinical specimens using Ion Torrent-based NGS. Hum Immunol 2015: 76: 903-9.
Hawkins TL, O'Connor-Morin T, Roy A, Santillan C. DNA purification and isolation using a solid-phase. Nucleic Acids Res 1994: 22: 4543-4.
Cereb N, Kim HR, Ryu J, Yang SY. Advances in DNA sequencing technologies for high resolution HLA typing. Hum Immunol 2015: 76: 923-7.
2010; 12
2012; 80
2013; 1034
2013; 40
2015; 76
2015; 10
1994; 22
2011; 77
2011; 35
2011; 12
2011; 38
2014; 83
2012; 109
2009; 74
2013; 14
2015; 60
2010; 316
2009; 70
2015; 42
2015; 43
2013; 74
2016; 87
2014; 15
2013; 81
2014; 56
2014; 75
2010; 71
e_1_2_6_32_1
e_1_2_6_10_1
e_1_2_6_31_1
e_1_2_6_30_1
e_1_2_6_19_1
e_1_2_6_13_1
e_1_2_6_36_1
e_1_2_6_14_1
e_1_2_6_35_1
e_1_2_6_11_1
e_1_2_6_34_1
e_1_2_6_12_1
e_1_2_6_33_1
e_1_2_6_17_1
e_1_2_6_18_1
e_1_2_6_39_1
e_1_2_6_15_1
e_1_2_6_38_1
e_1_2_6_16_1
e_1_2_6_37_1
e_1_2_6_42_1
e_1_2_6_43_1
e_1_2_6_21_1
e_1_2_6_20_1
e_1_2_6_41_1
e_1_2_6_40_1
e_1_2_6_9_1
e_1_2_6_8_1
e_1_2_6_5_1
e_1_2_6_4_1
e_1_2_6_7_1
e_1_2_6_6_1
e_1_2_6_25_1
e_1_2_6_24_1
e_1_2_6_3_1
e_1_2_6_23_1
e_1_2_6_2_1
e_1_2_6_22_1
e_1_2_6_29_1
e_1_2_6_44_1
e_1_2_6_28_1
e_1_2_6_27_1
e_1_2_6_26_1
References_xml – volume: 35
  start-page: 269
  year: 2011
  end-page: 77
  article-title: Efficient study design for next generation sequencing
  publication-title: Genet Epidemiol
– volume: 76
  start-page: 923
  year: 2015
  end-page: 7
  article-title: Advances in DNA sequencing technologies for high resolution HLA typing
  publication-title: Hum Immunol
– volume: 42
  start-page: 346
  year: 2015
  end-page: 58
  article-title: Towards allele‐level human leucocyte antigens genotyping – assessing two next‐generation sequencing platforms: Ion Torrent Personal Genome Machine and Illumina MiSeq
  publication-title: Int J Immunogenet
– volume: 71
  start-page: 1033
  year: 2010
  end-page: 42
  article-title: Next‐generation sequencing: the solution for high‐resolution, unambiguous human leukocyte antigen typing
  publication-title: Hum Immunol
– volume: 12
  start-page: 42
  year: 2011
  article-title: Next‐generation sequencing for HLA typing of class I loci
  publication-title: BMC Genomics
– volume: 75
  start-page: 1040
  year: 2014
  end-page: 6
  article-title: Next generation sequencing to determine HLA class II genotypes in a cohort of hematopoietic cell transplant patients and donors
  publication-title: Hum Immunol
– volume: 76
  start-page: 891
  year: 2015
  end-page: 6
  article-title: No assembly required: full‐length MHC class I allele discovery by PacBio circular consensus sequencing
  publication-title: Hum Immunol
– volume: 81
  start-page: 141
  year: 2013
  end-page: 9
  article-title: High throughput HLA genotyping using 454 sequencing and the Fluidigm Access Array System for simplified amplicon library preparation
  publication-title: Tissue Antigens
– volume: 40
  start-page: 72
  year: 2013
  end-page: 6
  article-title: 16(th) IHIW: review of HLA typing by NGS
  publication-title: Int J Immunogenet
– volume: 76
  start-page: 903
  year: 2015
  end-page: 9
  article-title: HLA‐genotyping of clinical specimens using Ion Torrent‐based NGS
  publication-title: Hum Immunol
– volume: 15
  start-page: 63
  year: 2014
  article-title: Cost‐efficient high‐throughput HLA typing by MiSeq amplicon sequencing
  publication-title: BMC Genomics
– volume: 83
  start-page: 65
  year: 2014
  end-page: 75
  article-title: HLA typing by next‐generation sequencing – getting closer to reality
  publication-title: Tissue Antigens
– volume: 74
  start-page: 393
  year: 2009
  end-page: 403
  article-title: High‐resolution, high‐throughput HLA genotyping by next‐generation sequencing
  publication-title: Tissue Antigens
– volume: 76
  start-page: 910
  year: 2015
  end-page: 6
  article-title: Very high resolution single pass HLA genotyping using amplicon sequencing on the 454 next generation DNA sequencers: comparison with Sanger sequencing
  publication-title: Hum Immunol
– volume: 80
  start-page: 305
  year: 2012
  end-page: 16
  article-title: Super high resolution for single molecule‐sequence‐based typing of classical HLA loci at the 8‐digit level using next generation sequencers
  publication-title: Tissue Antigens
– volume: 15
  start-page: 864
  year: 2014
  article-title: High‐throughput multiplex HLA genotyping by next‐generation sequencing using multi‐locus individual tagging
  publication-title: BMC Genomics
– volume: 77
  start-page: 206
  year: 2011
  end-page: 17
  article-title: A multi‐site study using high‐resolution HLA genotyping by next generation sequencing
  publication-title: Tissue Antigens
– volume: 14
  start-page: 355
  year: 2013
  article-title: Phase‐defined complete sequencing of the HLA genes by next‐generation sequencing
  publication-title: BMC Genomics
– volume: 38
  start-page: 308
  year: 2011
  end-page: 17
  article-title: What next? the next transit from biology to diagnostics: next generation sequencing for immunogenetics
  publication-title: Transfus Med Hemother
– volume: 316
  start-page: 1339
  year: 2010
  end-page: 43
  article-title: Recent advances in DNA sequencing methods – general principles of sample preparation
  publication-title: Exp Cell Res
– volume: 15
  start-page: 68
  year: 2014
  article-title: From cheek swabs to consensus sequences: an A to Z protocol for high‐throughput DNA sequencing of complete human mitochondrial genomes
  publication-title: BMC Genomics
– volume: 76
  start-page: 928
  year: 2015
  end-page: 38
  article-title: An integrated genotyping approach for HLA and other complex genetic systems
  publication-title: Hum Immunol
– volume: 10
  start-page: e0127153
  year: 2015
  article-title: HLA Typing for the Next Generation
  publication-title: PLoS One
– volume: 70
  start-page: 960
  year: 2009
  end-page: 4
  article-title: Rapid high‐throughput human leukocyte antigen typing by massively parallel pyrosequencing for high‐resolution allele identification
  publication-title: Hum Immunol
– volume: 1034
  start-page: 197
  year: 2013
  end-page: 219
  article-title: Next‐generation HLA sequencing using the 454 GS FLX system
  publication-title: Methods Mol Biol
– volume: 76
  start-page: 883
  year: 2015
  end-page: 6
  article-title: Progressing towards the complete and thorough characterization of the HLA genes by NGS (or single‐molecule DNA sequencing): consequences, opportunities and challenges
  publication-title: Hum Immunol
– volume: 12
  start-page: R18
  year: 2011
  article-title: Analyzing and minimizing PCR amplification bias in Illumina sequencing libraries
  publication-title: Genome Biol
– volume: 22
  start-page: 4543
  year: 1994
  end-page: 4
  article-title: DNA purification and isolation using a solid‐phase
  publication-title: Nucleic Acids Res
– volume: 56
  start-page: 61
  year: 2014
  end-page: 4
  article-title: Library construction for next‐generation sequencing: overviews and challenges
  publication-title: BioTechniques
– volume: 12
  start-page: 539
  year: 2010
  end-page: 51
  article-title: Next generation sequencing for clinical diagnostics‐principles and application to targeted resequencing for hypertrophic cardiomyopathy: a paper from the 2009 William Beaumont Hospital Symposium on Molecular Pathology
  publication-title: J Mol Diagn
– volume: 109
  start-page: 8676
  year: 2012
  end-page: 81
  article-title: High‐throughput, high‐fidelity HLA genotyping with deep sequencing
  publication-title: Proc Natl Acad Sci USA
– volume: 76
  start-page: 887
  year: 2015
  end-page: 90
  article-title: HLA typing using next generation sequencing: an overview
  publication-title: Hum Immunol
– volume: 74
  start-page: 325
  year: 2013
  end-page: 9
  article-title: Filling the gaps – the generation of full genomic sequences for 15 common and well‐documented HLA class I alleles using next‐generation sequencing technology
  publication-title: Hum Immunol
– volume: 60
  start-page: 665
  year: 2015
  end-page: 73
  article-title: The impact of next‐generation sequencing technologies on HLA research
  publication-title: J Hum Genet
– volume: 76
  start-page: 130
  issue: Supplement
  year: 2015
  article-title: Generation of high confidence HLA genotyping and consensus sequences for class I HLA loci using the NGS‐based Omixon Holotype HLA typing system and the Illumina Miseq platform
  publication-title: Hum Immunol
– volume: 76
  start-page: 897
  year: 2015
  end-page: 902
  article-title: Report on the effects of fragment size, indexing, and read length on HLA sequencing on the Illumina MiSeq
  publication-title: Hum Immunol
– volume: 14
  start-page: 221
  year: 2013
  article-title: Rapid, scalable and highly automated HLA genotyping using next‐generation sequencing: a transition from research to diagnostics
  publication-title: BMC Genomics
– volume: 87
  start-page: 141
  year: 2016
  end-page: 52
  article-title: Determining performance characteristics of an NGS‐based HLA typing method for clinical applications
  publication-title: HLA
– volume: 43
  start-page: D423
  issue: Database issue
  year: 2015
  end-page: 31
  article-title: The IPD and IMGT/HLA database: allele variant databases
  publication-title: Nucleic Acids Res
– volume: 81
  start-page: 194
  year: 2013
  end-page: 203
  article-title: Common and well‐documented HLA alleles: 2012 update to the CWD catalogue
  publication-title: Tissue Antigens
– ident: e_1_2_6_26_1
  doi: 10.1016/j.humimm.2015.05.001
– ident: e_1_2_6_30_1
  doi: 10.1016/j.humimm.2015.03.022
– ident: e_1_2_6_10_1
  doi: 10.1016/j.humimm.2015.07.181
– ident: e_1_2_6_11_1
  doi: 10.1159/000332433
– ident: e_1_2_6_2_1
  doi: 10.1111/tan.12736
– ident: e_1_2_6_8_1
  doi: 10.1186/1471-2164-15-63
– ident: e_1_2_6_31_1
  doi: 10.1016/j.humimm.2015.09.015
– ident: e_1_2_6_4_1
  doi: 10.1073/pnas.1206614109
– ident: e_1_2_6_33_1
  doi: 10.1016/j.humimm.2009.08.009
– ident: e_1_2_6_29_1
– ident: e_1_2_6_36_1
  doi: 10.1186/1471-2164-12-42
– ident: e_1_2_6_5_1
  doi: 10.1111/j.1399-0039.2012.01941.x
– ident: e_1_2_6_6_1
  doi: 10.1186/1471-2164-14-355
– ident: e_1_2_6_37_1
  doi: 10.1007/978-1-62703-493-7_10
– ident: e_1_2_6_27_1
  doi: 10.1111/j.1399-0039.2009.01345.x
– ident: e_1_2_6_15_1
  doi: 10.1038/jhg.2015.102
– ident: e_1_2_6_41_1
  doi: 10.1111/iji.12024
– ident: e_1_2_6_9_1
  doi: 10.1111/tan.12298
– ident: e_1_2_6_12_1
  doi: 10.1016/j.humimm.2015.10.003
– ident: e_1_2_6_23_1
  doi: 10.1111/tan.12093
– ident: e_1_2_6_35_1
  doi: 10.1111/j.1399-0039.2010.01606.x
– ident: e_1_2_6_34_1
  doi: 10.1016/j.humimm.2010.06.016
– ident: e_1_2_6_42_1
  doi: 10.1016/j.humimm.2015.09.014
– ident: e_1_2_6_38_1
  doi: 10.1186/1471-2164-14-221
– ident: e_1_2_6_16_1
  doi: 10.1016/j.humimm.2015.08.002
– ident: e_1_2_6_44_1
– ident: e_1_2_6_17_1
  doi: 10.2353/jmoldx.2010.100043
– ident: e_1_2_6_3_1
  doi: 10.1016/j.humimm.2015.03.001
– ident: e_1_2_6_32_1
  doi: 10.1371/journal.pone.0127153
– ident: e_1_2_6_43_1
  doi: 10.2144/000114133
– ident: e_1_2_6_24_1
– ident: e_1_2_6_7_1
  doi: 10.1016/j.humimm.2014.08.206
– ident: e_1_2_6_14_1
  doi: 10.1016/j.humimm.2012.12.007
– ident: e_1_2_6_22_1
  doi: 10.1186/gb-2011-12-2-r18
– ident: e_1_2_6_20_1
  doi: 10.1093/nar/22.21.4543
– ident: e_1_2_6_40_1
  doi: 10.1016/j.humimm.2015.05.002
– ident: e_1_2_6_39_1
  doi: 10.1111/tan.12071
– ident: e_1_2_6_13_1
  doi: 10.1093/nar/gku1161
– ident: e_1_2_6_25_1
  doi: 10.1186/1471-2164-15-864
– ident: e_1_2_6_28_1
  doi: 10.1002/gepi.20575
– ident: e_1_2_6_18_1
  doi: 10.1016/j.yexcr.2010.02.036
– ident: e_1_2_6_19_1
  doi: 10.1111/iji.12213
– ident: e_1_2_6_21_1
  doi: 10.1186/1471-2164-15-68
SSID ssib026970679
ssj0001619794
Score 2.3220034
Snippet Implementation of human leukocyte antigen (HLA) genotyping by next‐generation sequencing (NGS) in the clinical lab brings new challenges to the laboratories...
Implementation of human leukocyte antigen (HLA) genotyping by next-generation sequencing (NGS) in the clinical lab brings new challenges to the laboratories...
Abstract Implementation of human leukocyte antigen ( HLA ) genotyping by next‐generation sequencing ( NGS ) in the clinical lab brings new challenges to the...
SourceID crossref
pubmed
wiley
istex
SourceType Aggregation Database
Index Database
Publisher
StartPage 14
SubjectTerms Alleles
Gene Library
Genotype
Genotyping Techniques - instrumentation
Genotyping Techniques - standards
High-Throughput Nucleotide Sequencing - methods
Histocompatibility Testing - instrumentation
Histocompatibility Testing - methods
Histocompatibility Testing - standards
HLA Antigens - classification
HLA Antigens - genetics
HLA Antigens - immunology
human leukocyte antigens (HLA)
Humans
Molecular Sequence Annotation - standards
next-generation sequencing (NGS)
paired-end sequencing
Polymerase Chain Reaction - methods
Reproducibility of Results
Sequence Analysis, DNA - statistics & numerical data
size selection
Time Factors
Title HLA genotyping in the clinical laboratory: comparison of next-generation sequencing methods
URI https://api.istex.fr/ark:/67375/WNG-P4G9PDPF-1/fulltext.pdf
https://onlinelibrary.wiley.com/doi/abs/10.1111%2Ftan.12850
https://www.ncbi.nlm.nih.gov/pubmed/27524804
Volume 88
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3da9swEBdZ87KXsbGvbF0RY4xBsfG35L2lydIwluCHlBb2YCTLLqHBLlkKXf63_W87fUR2SwPdXmwhhJTc_XS6O9_pEPoEan1agORzAgEiMKoi3-G0Ig4JqceYX_KKy9zh2TyZnkXfL-KLXu9PJ2rpZsPdYvtgXsn_cBX6gK8yS_YfOGsnhQ5oA3_hCRyG56N4PP0xlCWQm83va5OaItVIm-xoGNys1a1ORbfi4HEtLd5Ldee0QoAJqZbT6KLSv7pqq1xIzrGU2SSy0IoKrC3l4jIJ0urlGUh1ttwaGLg22kd9jve3-rV2Zs2qNm0li-3A0coUehy757ZzXK4umdBfiNzjkdt1VPiJDWp90CGpHWxt6BIIvABUPQdMIi2dy26fCX01EpvSLjJN-qQWwDoj1RzlOjt7zyEBurcLh7O-9vbuRdz3DkgbtsjWVzIOjsT5-fw0z6LTNBtnkxyM734Acg4EbH94Mj6Z7AQa7AMiHXWt0w_MVaKKc9r_am67ktFl9hfd0ZH6crvfdhSkrhGltKDFc_TMmC94qLH4AvXK-iX6CfDALQ7xssaAQ7zDIW5x-BW3KMRNhe-hELcoxAaFr9DZ5NtiNHVM0Q6nANXGcxgNS5FWMU_LtCqYrIJUJAKU5NDjIi1CMPFZErLCZxGjQSFYlXogJkQFJwOQS4Sv0UHd1OVbhDn1SEV8EUs3BOOUR0SwWMRJCG8SBgP0cUem_FrfzZLvbFqgZa5oOUCfFQHtiH1MHKA3msJ2ZEDiIKJeNEBfFMn3L5IvhnPVePfY1d6jp-0eOUQHm_VN-QHU2w0_MiA6Qk_m2ewvlM2iOg
link.rule.ids 315,783,787,27936,27937
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=HLA+genotyping+in+the+clinical+laboratory%3A+comparison+of+next-generation+sequencing+methods&rft.jtitle=HLA+%3A+immune+response+genetics&rft.au=Profaizer%2C+T.&rft.au=L%C3%A1z%C3%A1r-Moln%C3%A1r%2C+E.&rft.au=Close%2C+D.W.&rft.au=Delgado%2C+J.+C.&rft.date=2016-07-01&rft.pub=Blackwell+Publishing+Ltd&rft.issn=2059-2302&rft.eissn=2059-2310&rft.volume=88&rft.issue=1-2&rft.spage=14&rft.epage=24&rft_id=info:doi/10.1111%2Ftan.12850&rft.externalDBID=n%2Fa&rft.externalDocID=ark_67375_WNG_P4G9PDPF_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2059-2302&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2059-2302&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2059-2302&client=summon