DG‐based SPO tuple recognition using self‐attention M‐Bi‐LSTM

This study proposes a dependency grammar‐based self‐attention multilayered bidirectional long short‐term memory (DG‐M‐Bi‐LSTM) model for subject–predicate–object (SPO) tuple recognition from natural language (NL) sentences. To add recent knowledge to the knowledge base autonomously, it is essential...

Full description

Saved in:
Bibliographic Details
Published inETRI journal Vol. 44; no. 3; pp. 438 - 449
Main Author Jung, Joon‐young
Format Journal Article
LanguageEnglish
Published Electronics and Telecommunications Research Institute (ETRI) 01.06.2022
한국전자통신연구원
Subjects
Online AccessGet full text

Cover

Loading…
Abstract This study proposes a dependency grammar‐based self‐attention multilayered bidirectional long short‐term memory (DG‐M‐Bi‐LSTM) model for subject–predicate–object (SPO) tuple recognition from natural language (NL) sentences. To add recent knowledge to the knowledge base autonomously, it is essential to extract knowledge from numerous NL data. Therefore, this study proposes a high‐accuracy SPO tuple recognition model that requires a small amount of learning data to extract knowledge from NL sentences. The accuracy of SPO tuple recognition using DG‐M‐Bi‐LSTM is compared with that using NL‐based self‐attention multilayered bidirectional LSTM, DG‐based bidirectional encoder representations from transformers (BERT), and NL‐based BERT to evaluate its effectiveness. The DG‐M‐Bi‐LSTM model achieves the best results in terms of recognition accuracy for extracting SPO tuples from NL sentences even if it has fewer deep neural network (DNN) parameters than BERT. In particular, its accuracy is better than that of BERT when the learning data are limited. Additionally, its pretrained DNN parameters can be applied to other domains because it learns the structural relations in NL sentences.
AbstractList This study proposes a dependency grammar-based self-attention multilayered bidirectional long short-term memory (DG-M-Bi-LSTM) model for subject–predicate–object (SPO) tuple recognition from natural language (NL) sentences. To add recent knowledge to the knowledge base autonomously, it is essential to extract knowledge from numerous NL data. Therefore, this study proposes a high-accuracy SPO tuple recognition model that requires a small amount of learning data to extract knowledge from NL sentences. The accuracy of SPO tuple recognition using DG-M-Bi-LSTM is compared with that using NL-based self-attention multilayered bidirectional LSTM, DG-based bidirectional encoder representations from transformers (BERT), and NL-based BERT to evaluate its effectiveness. The DG-M-Bi-LSTM model achieves the best results in terms of recognition accuracy for extracting SPO tuples from NL sentences even if it has fewer deep neural network (DNN) parameters than BERT. In particular, its accuracy is better than that of BERT when the learning data are limited. Additionally, its pretrained DNN parameters can be applied to other domains because it learns the structural relations in NL sentences. KCI Citation Count: 0
This study proposes a dependency grammar‐based self‐attention multilayered bidirectional long short‐term memory (DG‐M‐Bi‐LSTM) model for subject–predicate–object (SPO) tuple recognition from natural language (NL) sentences. To add recent knowledge to the knowledge base autonomously, it is essential to extract knowledge from numerous NL data. Therefore, this study proposes a high‐accuracy SPO tuple recognition model that requires a small amount of learning data to extract knowledge from NL sentences. The accuracy of SPO tuple recognition using DG‐M‐Bi‐LSTM is compared with that using NL‐based self‐attention multilayered bidirectional LSTM, DG‐based bidirectional encoder representations from transformers (BERT), and NL‐based BERT to evaluate its effectiveness. The DG‐M‐Bi‐LSTM model achieves the best results in terms of recognition accuracy for extracting SPO tuples from NL sentences even if it has fewer deep neural network (DNN) parameters than BERT. In particular, its accuracy is better than that of BERT when the learning data are limited. Additionally, its pretrained DNN parameters can be applied to other domains because it learns the structural relations in NL sentences.
Author Jung, Joon‐young
Author_xml – sequence: 1
  givenname: Joon‐young
  orcidid: 0000-0001-6964-4005
  surname: Jung
  fullname: Jung, Joon‐young
  email: jyjung21@etri.re.kr
  organization: Electronics and Telecommunications Research Institute
BackLink https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002848612$$DAccess content in National Research Foundation of Korea (NRF)
BookMark eNqFkU9LwzAYh4NMcFPPXnv10C3_mxynTh1MJjrPIUmTkVlbSTtkNz-Cn9FPYtvpRRAvecnL8_wI-Y3AoKxKB8AZgmOKkZi4JobNGEMMU0g5PABDjAlJM4L5AAwRxizllJMjMKrrDWwxysQQzK5uPt8_jK5dnjzeL5Nm-1q4JDpbrcvQhKpMtnUo10ntCt-Cumlc2a_v2ttFaI_F4-ruBBx6XdTu9Hseg6fr2eryNl0sb-aX00VqKZYwJZnPqeVEE4kyYbkzhgkvmMHMcyYFQ554nAmJDRfUGu6lZDhDKHNW51CSY3C-zy2jV882qEqHfq4r9RzV9GE1V1IKKjls2fmezSu9Ua8xvOi464V-UcW10rEJtnDKUJcTa6nOGKOWCN1lCMMQ8V4bwtosts-ysarr6LyyodHdPzRRh0IhqLoOVN-B6jpQXQetN_nl_bzjb4PvjbdQuN1_uJqtHjDCFEPyBXfKnwM
CitedBy_id crossref_primary_10_4218_etrij_2023_0308
Cites_doi 10.4218/etrij.16.0115.0542
10.18653/v1/D17-1278
10.18653/v1/P19-1023
10.1016/j.neunet.2018.08.016
10.1145/3159652.3159712
10.18653/v1/P18-2065
10.1109/ACCESS.2020.2976744
10.1609/aaai.v33i01.3301297
10.18653/v1/K18-1050
10.3115/v1/D14-1082
10.18653/v1/D15-1203
10.4218/etrij.2018-0553
10.18653/v1/D19-6108
10.18653/v1/P19-1523
10.1145/2872518.2889386
10.1109/72.279181
10.1049/cp:19991218
10.1109/IJCNN.2000.861302
10.1162/neco.1997.9.8.1735
10.1109/ACCESS.2019.2963045
10.18653/v1/D15-1044
10.3115/v1/D14-1162
10.18653/v1/D16-1244
10.1007/978-3-642-15939-8_10
10.3115/1690219.1690287
10.1016/j.neucom.2017.09.080
10.1016/j.neunet.2005.06.042
10.18653/v1/D16-1053
10.3115/1075096.1075150
10.1109/78.650093
10.1145/2629489
10.14778/1453856.1453916
10.1145/1242572.1242667
10.1109/ASRU.2013.6707742
10.18653/v1/P16-1200
10.1016/j.neucom.2019.01.078
10.1145/3308558.3313629
10.18653/v1/P18-1151
10.1007/978-3-540-76298-0_52
ContentType Journal Article
Copyright 1225‐6463/$ © 2021 ETRI
Copyright_xml – notice: 1225‐6463/$ © 2021 ETRI
DBID AAYXX
CITATION
DOA
ACYCR
DOI 10.4218/etrij.2020-0460
DatabaseName CrossRef
DOAJ Directory of Open Access Journals
Korean Citation Index
DatabaseTitle CrossRef
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
EISSN 2233-7326
EndPage 449
ExternalDocumentID oai_kci_go_kr_ARTI_9984960
oai_doaj_org_article_b4ed3cc4a7554c38a99848b513ffab35
10_4218_etrij_2020_0460
ETR212420
Genre article
GrantInformation_xml – fundername: Electronics and Telecommunications Research Institute
  funderid: 21ZS1100
GroupedDBID -~X
.4S
.DC
.UV
0R~
1OC
29G
2WC
5GY
5VS
9ZL
AAKPC
AAYBS
ACGFS
ACXQS
ACYCR
ADBBV
ADDVE
AENEX
ALMA_UNASSIGNED_HOLDINGS
ARCSS
AVUZU
BCNDV
DU5
E3Z
EBS
EDO
EJD
GROUPED_DOAJ
IPNFZ
ITG
ITH
JDI
KQ8
KVFHK
MK~
ML~
O9-
OK1
P5Y
RIG
RNS
TR2
TUS
WIN
XSB
AAYXX
ADMLS
CITATION
OVT
AAMMB
AEFGJ
AGXDD
AIDQK
AIDYY
ID FETCH-LOGICAL-c4290-37fd4c63a39178c6ebb58f85b25f659851f3f27892b684cb6f99527117ecad093
IEDL.DBID DOA
ISSN 1225-6463
IngestDate Sun Mar 09 07:51:04 EDT 2025
Wed Aug 27 01:26:42 EDT 2025
Thu Apr 24 23:03:17 EDT 2025
Tue Jul 01 02:03:20 EDT 2025
Wed Jan 22 16:22:50 EST 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 3
Language English
License http://doi.wiley.com/10.1002/tdm_license_1.1
http://onlinelibrary.wiley.com/termsAndConditions#vor
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c4290-37fd4c63a39178c6ebb58f85b25f659851f3f27892b684cb6f99527117ecad093
Notes Funding information
Electronics and Telecommunications Research Institute, Grant/Award Number: 21ZS1100
https://doi.org/10.4218/etrij.2020-0460
ORCID 0000-0001-6964-4005
OpenAccessLink https://doaj.org/article/b4ed3cc4a7554c38a99848b513ffab35
PageCount 12
ParticipantIDs nrf_kci_oai_kci_go_kr_ARTI_9984960
doaj_primary_oai_doaj_org_article_b4ed3cc4a7554c38a99848b513ffab35
crossref_citationtrail_10_4218_etrij_2020_0460
crossref_primary_10_4218_etrij_2020_0460
wiley_primary_10_4218_etrij_2020_0460_ETR212420
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2022
2022-06-00
2022-06-01
2022-06
PublicationDateYYYYMMDD 2022-06-01
PublicationDate_xml – month: 06
  year: 2022
  text: June 2022
PublicationDecade 2020
PublicationTitle ETRI journal
PublicationYear 2022
Publisher Electronics and Telecommunications Research Institute (ETRI)
한국전자통신연구원
Publisher_xml – name: Electronics and Telecommunications Research Institute (ETRI)
– name: 한국전자통신연구원
References 2019; 8
2020; 8
34
2018; 275
2020; 42
2018; 108
1997; 45
2019
2008
2007
2018
2014; 57
2016
2019; 337
2016; 38
2005; 18
1994; 5
1997; 9
e_1_2_7_5_1
e_1_2_7_3_1
e_1_2_7_9_1
e_1_2_7_7_1
e_1_2_7_19_1
e_1_2_7_17_1
e_1_2_7_15_1
e_1_2_7_41_1
e_1_2_7_13_1
e_1_2_7_43_1
e_1_2_7_11_1
e_1_2_7_45_1
e_1_2_7_47_1
e_1_2_7_26_1
e_1_2_7_49_1
e_1_2_7_28_1
e_1_2_7_50_1
e_1_2_7_25_1
e_1_2_7_31_1
e_1_2_7_52_1
e_1_2_7_23_1
e_1_2_7_33_1
e_1_2_7_54_1
e_1_2_7_21_1
e_1_2_7_35_1
e_1_2_7_56_1
e_1_2_7_37_1
e_1_2_7_58_1
e_1_2_7_39_1
e_1_2_7_6_1
e_1_2_7_4_1
e_1_2_7_8_1
e_1_2_7_18_1
e_1_2_7_16_1
e_1_2_7_40_1
e_1_2_7_2_1
e_1_2_7_14_1
e_1_2_7_42_1
e_1_2_7_12_1
e_1_2_7_44_1
e_1_2_7_10_1
e_1_2_7_46_1
e_1_2_7_48_1
e_1_2_7_27_1
e_1_2_7_29_1
e_1_2_7_51_1
e_1_2_7_30_1
e_1_2_7_53_1
e_1_2_7_24_1
e_1_2_7_32_1
e_1_2_7_55_1
e_1_2_7_22_1
e_1_2_7_34_1
e_1_2_7_57_1
e_1_2_7_20_1
e_1_2_7_36_1
e_1_2_7_59_1
e_1_2_7_38_1
References_xml – start-page: 722
  year: 2007
  end-page: 735
– start-page: 519
  year: 2018
  end-page: 529
– start-page: 5295
  year: 2019
  end-page: 5300
– start-page: 1627
  year: 2018
  end-page: 1637
– start-page: 697
  year: 2007
  end-page: 706
– volume: 18
  start-page: 602
  issue: 5–6
  year: 2005
  end-page: 610
  article-title: Framewise phoneme classification with bidirectional LSTM and other neural network architectures
  publication-title: Neural Netw.
– start-page: 538
  year: 2008
  end-page: 549
– volume: 8
  start-page: 123369
  year: 2019
  end-page: 123380
  article-title: Short‐term prediction of residential power energy consumption via CNN and multilayer bi‐directional LSTM Networks
  publication-title: IEEE Access
– volume: 38
  start-page: 703
  issue: 4
  year: 2016
  end-page: 713
  article-title: Sub‐word based offline handwritten farsi word recognition using recurrent neural network
  publication-title: ETRI J.
– volume: 337
  start-page: 325
  year: 2019
  end-page: 338
  article-title: Bidirectional LSTM with attention mechanism and convolutional layer for text classification
  publication-title: Neurocomputing
– start-page: 297
  year: 2019
  end-page: 304
– volume: 45
  start-page: 2673
  issue: 11
  year: 1997
  end-page: 2681
  article-title: Bidirectional recurrent neural networks
  publication-title: IEEE Trans. Signal Process.
– volume: 42
  start-page: 90
  issue: 1
  year: 2020
  end-page: 100
  article-title: Deep recurrent neural networks with word embeddings for Urdu named entity recognition
  publication-title: ETRI J.
– volume: 34
– volume: 8
  start-page: 42689
  year: 2020
  end-page: 42707
  article-title: Document‐level text classification using single‐layer multisize filters convolutional neural network
  publication-title: IEEE Access
– start-page: 4171
  year: 2019
  end-page: 4186
– volume: 9
  start-page: 1735
  issue: 8
  year: 1997
  end-page: 1780
  article-title: Long short‐term memory
  publication-title: Neural Comput.
– volume: 57
  start-page: 78
  issue: 10
  year: 2014
  end-page: 85
  article-title: Wikidata: A free collaborative knowledgebase
  publication-title: Commun. ACM
– volume: 5
  start-page: 157
  issue: 2
  year: 1994
  end-page: 166
  article-title: Learning long‐term dependencies with gradient descent is difficult
  publication-title: IEEE Trans. Neural Netw.
– volume: 275
  start-page: 1407
  year: 2018
  end-page: 1415
  article-title: Textual sentiment analysis via three different attention convolutional neural networks and cross‐modality consistent regression
  publication-title: Neurocomputing
– start-page: 75
  year: 2016
  end-page: 76
– volume: 108
  start-page: 240
  year: 2018
  end-page: 247
  article-title: Distant supervision for relation extraction with hierarchical selective attention
  publication-title: Neural Netw.
– start-page: 229
  year: 2019
  end-page: 240
– ident: e_1_2_7_34_1
– ident: e_1_2_7_41_1
  doi: 10.4218/etrij.16.0115.0542
– ident: e_1_2_7_20_1
– ident: e_1_2_7_21_1
  doi: 10.18653/v1/D17-1278
– ident: e_1_2_7_28_1
  doi: 10.18653/v1/P19-1023
– ident: e_1_2_7_51_1
– ident: e_1_2_7_16_1
  doi: 10.1016/j.neunet.2018.08.016
– ident: e_1_2_7_25_1
  doi: 10.1145/3159652.3159712
– ident: e_1_2_7_24_1
  doi: 10.18653/v1/P18-2065
– ident: e_1_2_7_56_1
  doi: 10.1109/ACCESS.2020.2976744
– ident: e_1_2_7_6_1
  doi: 10.1609/aaai.v33i01.3301297
– ident: e_1_2_7_5_1
  doi: 10.18653/v1/K18-1050
– ident: e_1_2_7_17_1
– ident: e_1_2_7_33_1
– ident: e_1_2_7_36_1
  doi: 10.3115/v1/D14-1082
– ident: e_1_2_7_14_1
  doi: 10.18653/v1/D15-1203
– ident: e_1_2_7_42_1
  doi: 10.4218/etrij.2018-0553
– ident: e_1_2_7_30_1
  doi: 10.18653/v1/D19-6108
– ident: e_1_2_7_27_1
  doi: 10.18653/v1/P19-1523
– ident: e_1_2_7_52_1
– ident: e_1_2_7_9_1
  doi: 10.1145/2872518.2889386
– ident: e_1_2_7_43_1
  doi: 10.1109/72.279181
– ident: e_1_2_7_45_1
  doi: 10.1049/cp:19991218
– ident: e_1_2_7_46_1
  doi: 10.1109/IJCNN.2000.861302
– ident: e_1_2_7_13_1
– ident: e_1_2_7_38_1
– ident: e_1_2_7_32_1
– ident: e_1_2_7_19_1
– ident: e_1_2_7_44_1
  doi: 10.1162/neco.1997.9.8.1735
– ident: e_1_2_7_50_1
  doi: 10.1109/ACCESS.2019.2963045
– ident: e_1_2_7_53_1
  doi: 10.18653/v1/D15-1044
– ident: e_1_2_7_39_1
  doi: 10.3115/v1/D14-1162
– ident: e_1_2_7_59_1
  doi: 10.18653/v1/D16-1244
– ident: e_1_2_7_12_1
  doi: 10.1007/978-3-642-15939-8_10
– ident: e_1_2_7_57_1
– ident: e_1_2_7_11_1
  doi: 10.3115/1690219.1690287
– ident: e_1_2_7_54_1
  doi: 10.1016/j.neucom.2017.09.080
– ident: e_1_2_7_37_1
– ident: e_1_2_7_47_1
  doi: 10.1016/j.neunet.2005.06.042
– ident: e_1_2_7_29_1
– ident: e_1_2_7_40_1
– ident: e_1_2_7_58_1
  doi: 10.18653/v1/D16-1053
– ident: e_1_2_7_35_1
  doi: 10.3115/1075096.1075150
– ident: e_1_2_7_22_1
– ident: e_1_2_7_48_1
  doi: 10.1109/78.650093
– ident: e_1_2_7_3_1
  doi: 10.1145/2629489
– ident: e_1_2_7_8_1
  doi: 10.14778/1453856.1453916
– ident: e_1_2_7_4_1
  doi: 10.1145/1242572.1242667
– ident: e_1_2_7_49_1
  doi: 10.1109/ASRU.2013.6707742
– ident: e_1_2_7_15_1
  doi: 10.18653/v1/P16-1200
– ident: e_1_2_7_55_1
  doi: 10.1016/j.neucom.2019.01.078
– ident: e_1_2_7_10_1
  doi: 10.1145/3308558.3313629
– ident: e_1_2_7_18_1
– ident: e_1_2_7_7_1
  doi: 10.18653/v1/P18-1151
– ident: e_1_2_7_26_1
– ident: e_1_2_7_2_1
  doi: 10.1007/978-3-540-76298-0_52
– ident: e_1_2_7_23_1
– ident: e_1_2_7_31_1
SSID ssj0020458
Score 2.2895465
Snippet This study proposes a dependency grammar‐based self‐attention multilayered bidirectional long short‐term memory (DG‐M‐Bi‐LSTM) model for...
This study proposes a dependency grammar-based self-attention multilayered bidirectional long short-term memory (DG-M-Bi-LSTM) model for...
SourceID nrf
doaj
crossref
wiley
SourceType Open Website
Enrichment Source
Index Database
Publisher
StartPage 438
SubjectTerms dependency grammar
information extraction
long short-term memory
SPO tuple
전자/정보통신공학
Title DG‐based SPO tuple recognition using self‐attention M‐Bi‐LSTM
URI https://onlinelibrary.wiley.com/doi/abs/10.4218%2Fetrij.2020-0460
https://doaj.org/article/b4ed3cc4a7554c38a99848b513ffab35
https://www.kci.go.kr/kciportal/ci/sereArticleSearch/ciSereArtiView.kci?sereArticleSearchBean.artiId=ART002848612
Volume 44
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
ispartofPNX ETRI Journal, 2022, 44(3), , pp.438-449
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1NT9wwELUqTvSACm3V5UtRxaEXs4m_Eh848E2rbqnKInGzPE6MgFUWLcv_Z8YJKzggLj1FimzFemPlzUvGbxjbqX3IPdIct6VFgQI1cJ-D4CHaIAD3gJd0UHj0x5xdql9X-upFqy-qCevsgTvghqCaWoagfInEF2TlUR-oCnQhY_Qgk3spct6zmOqlFv3-I6mFu5UbZWRn6qOQz4bUqOoWhaHoyhpf8VGy7UeWaWfxdbKa2ObkE1vp08Rsv1veKvvQtGvs4wvzwM9s7-iUEwfV2cXf82z-eD9pskU50LTNqKL9OntoJpGTh2aqasxG_OCG_74Yj76wy5Pj8eEZ75sh8ICUge_KMtYqGOklCqwqmAZAV7HSIHQ02mLiFGWkY60CTKUCmGitFmVRlE3wdW7lV7bUTtvmG8sgB_C6gsKQHaHVoIoiKlCm1iJUMh-w3WdIXOidwqlhxcShYiAMXcLQEYaOMBywH4sJ951JxttDDwjjxTByt043MOauj7l7L-YD9h0j5O7CTZpP1-upu5s51AA_HQ229KRhCuB7K3LH43_I30rk6_9jbRtsWdAJifShZpMtzWePzRbmLXPYTlv0CXaP5QI
linkProvider Directory of Open Access Journals
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3NbtQwELZgewAOqPyJLRQixIFLaBL_xD62sGULuwXRXVRxsTxOvNp2la3C9s4j8Iw8CTNJiFokhLgkSjROohmPvxnH85mxl4XziUOYi01uMEGBAmKXQBb7YHwG2Accp0Lh6bEaz8X7U3l6pRam5YfoJ9zIM5rxmhycJqTJywXCEllxUy_PMMPL2vWJN9kWxTZ6wLb2v8y_zvu0i34FUtqFPTdWQvGW4IcesvfHI65hU0Phj4hT1eF64Nogz-E2u9uFjNF-a-N77EZZ3Wd3rhAJPmCjt-9-fv9BiFREJ58-RpvLi1UZ9YuD1lVE69sX0bdyFVCQODWbVY7RFK8OlniYnMymD9n8cDR7M467DRJijzCC42ceCuEVdxyTLu1VCSB10BIyGZQ0GEwFHqjUNQOlhQcVjJFZnqZ56V2RGP6IDap1VT5mESQATmpIFVEUGgkiTYMAoQqZec2TIXv9WzXWd-zhtInFymIWQbq0jS4t6dKSLofsVd_goiXO-LvoAem6FyPG6-bGul7YzoEsiLLg3guXYwDkuXaYJwoNMuUhOOByyF6gpey5Xzbt6bxY2_PaYl5wZEnY0Jv2GkP-64vsaPYZMV1kyc5_t3jObo1n04mdHB1_eMJuZ1Qu0czaPGWDTX1Z7mIQs4FnXS_9BVSd7Bk
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEF5BKyE4VDzV8LQQBy6m9r5sH_tIaKEpFU0Q4rLaWXuj0MiJ3PTOT-A38ks6s3YtioQQF1u2Zm1rHjsz65lvGXtTWpdYdHNxkRWYoEAJsU2Ax84XjgPqgBXUKDw-0YdT-eGruq4mpF6YFh-iX3AjywjzNRn4qvRk5BK9Eglx3cy_Y4LH2_LE22yTsPJQsTd3v0y_Tfusi_4EUtaFihtrqUWL70MP2fnjETdcU0DwR4dTN_5m3Bocz-g-2-oixmi3FfEDdquqH7J7v-EIPmLDg_e_fvwkh1RGZ6efovXlalFFfW3Qso6ovH0WXVQLj4QEqRmKHKMxXu3N8XB8Nhk_ZtPRcLJ_GHf7I8QOvQhOn5kvpdPCCsy5cqcrAJX7XAFXXqsCYykvPHW6ctC5dKB9USiepWlWOVsmhXjCNuplXW2zCBIAq3JINSEUFgpkmnoJUpeKu1wkA_bumjXGdeDhtIfFwmASQbw0gZeGeGmIlwP2th-wanEz_k66R7zuyQjwOtxYNjPT2Y8BWZXCOWkzjH-cyC2miTIHlQrvLQg1YK9RUubczcN4Os-W5rwxmBYcGSIu6E07QZD_-iIznHxGly558vS_R7xid04PRub46OTjM3aXU7NEWLN5zjbWzWX1AkOYNbzslPQK7MvrQg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=DG%E2%80%90based+SPO+tuple+recognition+using+self%E2%80%90attention+M%E2%80%90Bi%E2%80%90LSTM&rft.jtitle=ETRI+journal&rft.au=Jung%2C+Joon%E2%80%90young&rft.date=2022-06-01&rft.issn=1225-6463&rft.eissn=2233-7326&rft.volume=44&rft.issue=3&rft.spage=438&rft.epage=449&rft_id=info:doi/10.4218%2Fetrij.2020-0460&rft.externalDBID=n%2Fa&rft.externalDocID=10_4218_etrij_2020_0460
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1225-6463&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1225-6463&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1225-6463&client=summon