Spatial transcriptomics reveals human cortical layer and area specification

The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct 1 , 2 , 3 – 4 . Although single-cell transcriptomic studies have advanced the molecular characterization of human cortical development, a substantial gap exists owing to the loss of...

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 644; no. 8075; pp. 153 - 163
Main Authors Qian, Xuyu, Coleman, Kyle, Jiang, Shunzhou, Kriz, Andrea J., Marciano, Jack H., Luo, Chunyu, Cai, Chunhui, Manam, Monica Devi, Caglayan, Emre, Lai, Abbe, Exposito-Alonso, David, Otani, Aoi, Ghosh, Urmi, Shao, Diane D., Andersen, Rebecca E., Neil, Jennifer E., Johnson, Robert, LeFevre, Alexandra, Hecht, Jonathan L., Micali, Nicola, Sestan, Nenad, Rakic, Pasko, Miller, Michael B., Sun, Liang, Stringer, Carsen, Li, Mingyao, Walsh, Christopher A.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 07.08.2025
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct 1 , 2 , 3 – 4 . Although single-cell transcriptomic studies have advanced the molecular characterization of human cortical development, a substantial gap exists owing to the loss of spatial context during cell dissociation 5 , 6 , 7 – 8 . Here we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) 9 , augmented with deep-learning-based nucleus segmentation, to examine the molecular, cellular and cytoarchitectural development of the human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing more than 18 million single cells, spans eight cortical areas across seven developmental time points. We uncovered the early establishment of the six-layer structure, identifiable by the laminar distribution of excitatory neuron subtypes, 3 months before the emergence of cytoarchitectural layers. Notably, we discovered two distinct modes of cortical areal specification during mid-gestation: (1) a continuous, gradual transition observed across most cortical areas along the anterior–posterior axis and (2) a discrete, abrupt boundary specifically identified between the primary (V1) and secondary (V2) visual cortices as early as gestational week 20. This sharp binary transition in V1–V2 neuronal subtypes challenges the notion that mid-gestation cortical arealization involves only gradient-like transitions 6 , 10 . Furthermore, integrating single-nucleus RNA sequencing with MERFISH revealed an early upregulation of synaptogenesis in V1-specific layer 4 neurons. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This study establishes a spatially resolved single-cell analysis paradigm and paves the way for the construction of a comprehensive developmental atlas of the human brain. Multiplexed error-robust fluorescence in situ hybridization (MERFISH) together with deep-learning-based nucleus segmentation enabled the construction of a highly detailed and informative spatially resolved single-cell atlas of human fetal cortical development.
AbstractList The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct . Although single-cell transcriptomic studies have advanced the molecular characterization of human cortical development, a substantial gap exists owing to the loss of spatial context during cell dissociation . Here we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) , augmented with deep-learning-based nucleus segmentation, to examine the molecular, cellular and cytoarchitectural development of the human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing more than 18 million single cells, spans eight cortical areas across seven developmental time points. We uncovered the early establishment of the six-layer structure, identifiable by the laminar distribution of excitatory neuron subtypes, 3 months before the emergence of cytoarchitectural layers. Notably, we discovered two distinct modes of cortical areal specification during mid-gestation: (1) a continuous, gradual transition observed across most cortical areas along the anterior-posterior axis and (2) a discrete, abrupt boundary specifically identified between the primary (V1) and secondary (V2) visual cortices as early as gestational week 20. This sharp binary transition in V1-V2 neuronal subtypes challenges the notion that mid-gestation cortical arealization involves only gradient-like transitions . Furthermore, integrating single-nucleus RNA sequencing with MERFISH revealed an early upregulation of synaptogenesis in V1-specific layer 4 neurons. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This study establishes a spatially resolved single-cell analysis paradigm and paves the way for the construction of a comprehensive developmental atlas of the human brain.
The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct 1 , 2 , 3 – 4 . Although single-cell transcriptomic studies have advanced the molecular characterization of human cortical development, a substantial gap exists owing to the loss of spatial context during cell dissociation 5 , 6 , 7 – 8 . Here we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) 9 , augmented with deep-learning-based nucleus segmentation, to examine the molecular, cellular and cytoarchitectural development of the human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing more than 18 million single cells, spans eight cortical areas across seven developmental time points. We uncovered the early establishment of the six-layer structure, identifiable by the laminar distribution of excitatory neuron subtypes, 3 months before the emergence of cytoarchitectural layers. Notably, we discovered two distinct modes of cortical areal specification during mid-gestation: (1) a continuous, gradual transition observed across most cortical areas along the anterior–posterior axis and (2) a discrete, abrupt boundary specifically identified between the primary (V1) and secondary (V2) visual cortices as early as gestational week 20. This sharp binary transition in V1–V2 neuronal subtypes challenges the notion that mid-gestation cortical arealization involves only gradient-like transitions 6 , 10 . Furthermore, integrating single-nucleus RNA sequencing with MERFISH revealed an early upregulation of synaptogenesis in V1-specific layer 4 neurons. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This study establishes a spatially resolved single-cell analysis paradigm and paves the way for the construction of a comprehensive developmental atlas of the human brain. Multiplexed error-robust fluorescence in situ hybridization (MERFISH) together with deep-learning-based nucleus segmentation enabled the construction of a highly detailed and informative spatially resolved single-cell atlas of human fetal cortical development.
The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct 1 – 4 . Although single-cell transcriptomic studies have advanced the molecular characterization of human cortical development, a substantial gap exists owing to the loss of spatial context during cell dissociation 5 – 8 . Here we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) 9 , augmented with deep-learning-based nucleus segmentation, to examine the molecular, cellular and cytoarchitectural development of the human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing more than 18 million single cells, spans eight cortical areas across seven developmental time points. We uncovered the early establishment of the six-layer structure, identifiable by the laminar distribution of excitatory neuron subtypes, 3 months before the emergence of cytoarchitectural layers. Notably, we discovered two distinct modes of cortical areal specification during mid-gestation: (1) a continuous, gradual transition observed across most cortical areas along the anterior–posterior axis and (2) a discrete, abrupt boundary specifically identified between the primary (V1) and secondary (V2) visual cortices as early as gestational week 20. This sharp binary transition in V1–V2 neuronal subtypes challenges the notion that mid-gestation cortical arealization involves only gradient-like transitions 6 , 10 . Furthermore, integrating single-nucleus RNA sequencing with MERFISH revealed an early upregulation of synaptogenesis in V1-specific layer 4 neurons. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This study establishes a spatially resolved single-cell analysis paradigm and paves the way for the construction of a comprehensive developmental atlas of the human brain. Multiplexed error-robust fluorescence in situ hybridization (MERFISH) together with deep-learning-based nucleus segmentation enabled the construction of a highly detailed and informative spatially resolved single-cell atlas of human fetal cortical development.
The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct1-4. Although single-cell transcriptomic studies have advanced the molecular characterization of human cortical development, a substantial gap exists owing to the loss of spatial context during cell dissociation5-8. Here we used multiplexed error-robust fluorescence in situ hybridization (MERFISH)9, augmented with deep-learning-based nucleus segmentation, to examine the molecular, cellular and cytoarchitectural development of the human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing more than 18 million single cells, spans eight cortical areas across seven developmental time points. We uncovered the early establishment of the six-layer structure, identifiable by the laminar distribution of excitatory neuron subtypes, 3 months before the emergence of cytoarchitectural layers. Notably, we discovered two distinct modes of cortical areal specification during mid-gestation: (1) a continuous, gradual transition observed across most cortical areas along the anterior-posterior axis and (2) a discrete, abrupt boundary specifically identified between the primary (V1) and secondary (V2) visual cortices as early as gestational week 20. This sharp binary transition in V1-V2 neuronal subtypes challenges the notion that mid-gestation cortical arealization involves only gradient-like transitions6,10. Furthermore, integrating single-nucleus RNA sequencing with MERFISH revealed an early upregulation of synaptogenesis in V1-specific layer 4 neurons. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This study establishes a spatially resolved single-cell analysis paradigm and paves the way for the construction of a comprehensive developmental atlas of the human brain.The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct1-4. Although single-cell transcriptomic studies have advanced the molecular characterization of human cortical development, a substantial gap exists owing to the loss of spatial context during cell dissociation5-8. Here we used multiplexed error-robust fluorescence in situ hybridization (MERFISH)9, augmented with deep-learning-based nucleus segmentation, to examine the molecular, cellular and cytoarchitectural development of the human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing more than 18 million single cells, spans eight cortical areas across seven developmental time points. We uncovered the early establishment of the six-layer structure, identifiable by the laminar distribution of excitatory neuron subtypes, 3 months before the emergence of cytoarchitectural layers. Notably, we discovered two distinct modes of cortical areal specification during mid-gestation: (1) a continuous, gradual transition observed across most cortical areas along the anterior-posterior axis and (2) a discrete, abrupt boundary specifically identified between the primary (V1) and secondary (V2) visual cortices as early as gestational week 20. This sharp binary transition in V1-V2 neuronal subtypes challenges the notion that mid-gestation cortical arealization involves only gradient-like transitions6,10. Furthermore, integrating single-nucleus RNA sequencing with MERFISH revealed an early upregulation of synaptogenesis in V1-specific layer 4 neurons. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This study establishes a spatially resolved single-cell analysis paradigm and paves the way for the construction of a comprehensive developmental atlas of the human brain.
The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct 1–4 . Although single-cell transcriptomic studies have advanced the molecular characterization of human cortical development, a substantial gap exists owing to the loss of spatial context during cell dissociation 5–8 . Here we used multiplexed error-robust fluorescence in situ hybridization (MERFISH) 9 , augmented with deep-learning-based nucleus segmentation, to examine the molecular, cellular and cytoarchitectural development of the human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing more than 18 million single cells, spans eight cortical areas across seven developmental time points. We uncovered the early establishment of the six-layer structure, identifiable by the laminar distribution of excitatory neuron subtypes, 3 months before the emergence of cytoarchitectural layers. Notably, we discovered two distinct modes of cortical areal specification during mid-gestation: (1) a continuous, gradual transition observed across most cortical areas along the anterior–posterior axis and (2) a discrete, abrupt boundary specifically identified between the primary (V1) and secondary (V2) visual cortices as early as gestational week 20. This sharp binary transition in V1–V2 neuronal subtypes challenges the notion that mid-gestation cortical arealization involves only gradient-like transitions 6,10 . Furthermore, integrating single-nucleus RNA sequencing with MERFISH revealed an early upregulation of synaptogenesis in V1-specific layer 4 neurons. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This study establishes a spatially resolved single-cell analysis paradigm and paves the way for the construction of a comprehensive developmental atlas of the human brain.
The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct1, 2, 3–4. Although single-cell transcriptomic studies have advanced the molecular characterization of human cortical development, a substantial gap exists owing to the loss of spatial context during cell dissociation5, 6, 7–8. Here we used multiplexed error-robust fluorescence in situ hybridization (MERFISH)9, augmented with deep-learning-based nucleus segmentation, to examine the molecular, cellular and cytoarchitectural development of the human fetal cortex with spatially resolved single-cell resolution. Our extensive spatial atlas, encompassing more than 18 million single cells, spans eight cortical areas across seven developmental time points. We uncovered the early establishment of the six-layer structure, identifiable by the laminar distribution of excitatory neuron subtypes, 3 months before the emergence of cytoarchitectural layers. Notably, we discovered two distinct modes of cortical areal specification during mid-gestation: (1) a continuous, gradual transition observed across most cortical areas along the anterior–posterior axis and (2) a discrete, abrupt boundary specifically identified between the primary (V1) and secondary (V2) visual cortices as early as gestational week 20. This sharp binary transition in V1–V2 neuronal subtypes challenges the notion that mid-gestation cortical arealization involves only gradient-like transitions6,10. Furthermore, integrating single-nucleus RNA sequencing with MERFISH revealed an early upregulation of synaptogenesis in V1-specific layer 4 neurons. Collectively, our findings underscore the crucial role of spatial relationships in determining the molecular specification of cortical layers and areas. This study establishes a spatially resolved single-cell analysis paradigm and paves the way for the construction of a comprehensive developmental atlas of the human brain.Multiplexed error-robust fluorescence in situ hybridization (MERFISH) together with deep-learning-based nucleus segmentation enabled the construction of a highly detailed and informative spatially resolved single-cell atlas of human fetal cortical development.
Author Walsh, Christopher A.
Otani, Aoi
Kriz, Andrea J.
Johnson, Robert
Sestan, Nenad
Manam, Monica Devi
Hecht, Jonathan L.
Marciano, Jack H.
Cai, Chunhui
Andersen, Rebecca E.
Coleman, Kyle
Sun, Liang
Stringer, Carsen
Qian, Xuyu
Neil, Jennifer E.
Micali, Nicola
Lai, Abbe
Shao, Diane D.
Miller, Michael B.
Ghosh, Urmi
Exposito-Alonso, David
LeFevre, Alexandra
Rakic, Pasko
Jiang, Shunzhou
Luo, Chunyu
Li, Mingyao
Caglayan, Emre
Author_xml – sequence: 1
  givenname: Xuyu
  orcidid: 0000-0001-5944-3816
  surname: Qian
  fullname: Qian, Xuyu
  email: qianxuyu@gmail.com
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School
– sequence: 2
  givenname: Kyle
  surname: Coleman
  fullname: Coleman, Kyle
  organization: Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania
– sequence: 3
  givenname: Shunzhou
  orcidid: 0009-0000-7309-2389
  surname: Jiang
  fullname: Jiang, Shunzhou
  organization: Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania
– sequence: 4
  givenname: Andrea J.
  surname: Kriz
  fullname: Kriz, Andrea J.
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School
– sequence: 5
  givenname: Jack H.
  orcidid: 0000-0002-0238-9916
  surname: Marciano
  fullname: Marciano, Jack H.
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School
– sequence: 6
  givenname: Chunyu
  orcidid: 0009-0004-7047-0857
  surname: Luo
  fullname: Luo, Chunyu
  organization: Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania
– sequence: 7
  givenname: Chunhui
  surname: Cai
  fullname: Cai, Chunhui
  organization: Research Computing, Department of Information Technology, Boston Children’s Hospital
– sequence: 8
  givenname: Monica Devi
  surname: Manam
  fullname: Manam, Monica Devi
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School
– sequence: 9
  givenname: Emre
  orcidid: 0000-0001-5340-8614
  surname: Caglayan
  fullname: Caglayan, Emre
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School
– sequence: 10
  givenname: Abbe
  surname: Lai
  fullname: Lai, Abbe
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School
– sequence: 11
  givenname: David
  orcidid: 0000-0002-4950-2744
  surname: Exposito-Alonso
  fullname: Exposito-Alonso, David
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School
– sequence: 12
  givenname: Aoi
  surname: Otani
  fullname: Otani, Aoi
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School
– sequence: 13
  givenname: Urmi
  surname: Ghosh
  fullname: Ghosh, Urmi
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School
– sequence: 14
  givenname: Diane D.
  orcidid: 0000-0003-2087-4082
  surname: Shao
  fullname: Shao, Diane D.
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Department of Neurology, Boston Children’s Hospital, Broad Institute of MIT and Harvard
– sequence: 15
  givenname: Rebecca E.
  orcidid: 0000-0002-0702-3120
  surname: Andersen
  fullname: Andersen, Rebecca E.
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Broad Institute of MIT and Harvard
– sequence: 16
  givenname: Jennifer E.
  surname: Neil
  fullname: Neil, Jennifer E.
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School
– sequence: 17
  givenname: Robert
  surname: Johnson
  fullname: Johnson, Robert
  organization: University of Maryland Brain and Tissue Bank, Department of Pediatrics, University of Maryland School of Medicine
– sequence: 18
  givenname: Alexandra
  surname: LeFevre
  fullname: LeFevre, Alexandra
  organization: University of Maryland Brain and Tissue Bank, Department of Pediatrics, University of Maryland School of Medicine
– sequence: 19
  givenname: Jonathan L.
  surname: Hecht
  fullname: Hecht, Jonathan L.
  organization: Department of Pathology, Beth Israel Deaconess Medical Center
– sequence: 20
  givenname: Nicola
  orcidid: 0009-0002-2936-4708
  surname: Micali
  fullname: Micali, Nicola
  organization: Department of Neuroscience, Yale School of Medicine
– sequence: 21
  givenname: Nenad
  orcidid: 0000-0003-0966-9619
  surname: Sestan
  fullname: Sestan, Nenad
  organization: Department of Neuroscience, Yale School of Medicine, Department of Psychiatry, Yale School of Medicine, Kavli Institute for Neuroscience, Yale School of Medicine, Wu Tsai Institute, Yale University
– sequence: 22
  givenname: Pasko
  orcidid: 0000-0002-6963-0508
  surname: Rakic
  fullname: Rakic, Pasko
  organization: Department of Neuroscience, Yale School of Medicine
– sequence: 23
  givenname: Michael B.
  orcidid: 0000-0002-6205-3314
  surname: Miller
  fullname: Miller, Michael B.
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Broad Institute of MIT and Harvard, Division of Neuropathology, Department of Pathology, Brigham and Women’s Hospital, Harvard Medical School, Department of Neurology, Brigham and Women’s Hospital
– sequence: 24
  givenname: Liang
  surname: Sun
  fullname: Sun, Liang
  organization: Research Computing, Department of Information Technology, Boston Children’s Hospital
– sequence: 25
  givenname: Carsen
  orcidid: 0000-0002-9229-4100
  surname: Stringer
  fullname: Stringer, Carsen
  organization: Janelia Research Campus, Howard Hughes Medical Institute
– sequence: 26
  givenname: Mingyao
  orcidid: 0000-0001-8180-0621
  surname: Li
  fullname: Li, Mingyao
  email: mingyao@pennmedicine.upenn.edu
  organization: Statistical Center for Single-Cell and Spatial Genomics, Department of Biostatistics, Epidemiology and Informatics, Perelman School of Medicine, University of Pennsylvania, Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania
– sequence: 27
  givenname: Christopher A.
  orcidid: 0000-0002-0156-2238
  surname: Walsh
  fullname: Walsh, Christopher A.
  email: christopher.walsh@childrens.harvard.edu
  organization: Division of Genetics and Genomics, Department of Pediatrics, Boston Children’s Hospital, Harvard Medical School, Howard Hughes Medical Institute, Boston Children’s Hospital, Harvard Medical School, Department of Neurology, Boston Children’s Hospital, Broad Institute of MIT and Harvard, Departments of Pediatrics and Neurology, Harvard Medical School
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40369074$$D View this record in MEDLINE/PubMed
BookMark eNp9kU1P3DAYhC1EVRbaP9BDFakXLmlff8SxT1W1olAViQNwthzvGzBK7NROkPj39XYptBw4-TDPjMeeQ7IfYkBCPlD4TIGrL1nQRskaWFODBgo13SMrKlpZC6nafbICYKoGxeUBOcz5DgAa2oq35EAAlxpasSI_Lyc7eztUc7Ihu-SnOY7e5SrhPdohV7fLaEPlYpq9K9hgHzBVNmwqm9BWeULn-6LMPoZ35E1fLPj-8Twi199PrtZn9fnF6Y_1t_PaCabmuteuawG564Tq-tZpDT0D6KXcFF11kltpwVnddMAk54xb1SAqhi0ic5ofka-73GnpRtw4DKX8YKbkR5seTLTe_K8Ef2tu4r2hjDPFGC8Jx48JKf5aMM9m9NnhMNiAccmGMxCcaU236KcX6F1cUijvKxRvKVAltpU-_lvpqcvfjy4A2wEuxZwT9k8IBbNd0-zWNGVN82dNQ4uJ70y5wOEG0_Pdr7h-A3SEom8
Cites_doi 10.1126/science.aau5324
10.1186/2040-2392-4-36
10.1038/s41592-020-01018-x
10.1126/science.aav7617
10.1038/s41586-021-04230-7
10.1126/science.aap8809
10.1016/0166-2236(89)90080-5
10.1126/science.adf1226
10.1111/j.1469-7610.2010.02307.x
10.1002/cne.902970309
10.1038/s41590-018-0276-y
10.1038/s41586-019-1506-7
10.1038/ncomms14172
10.1038/s41586-022-04510-w
10.1038/s41592-023-01933-9
10.1016/j.cell.2021.12.022
10.1002/(SICI)1096-9861(19961216)376:3<386::AID-CNE3>3.0.CO;2-Z
10.5281/zenodo.15127709
10.3389/fncel.2023.1257803
10.1038/s41592-024-02371-x
10.1145/2939672.2939785
10.1093/cercor/bhq238
10.1038/s41587-024-02193-4
10.1126/science.3291116
10.1038/s41586-021-03910-8
10.1016/j.semcdb.2017.08.033
10.1126/science.adf3786
10.1016/j.cell.2021.07.039
10.1016/j.cell.2023.11.016
10.3389/fnins.2017.00233
10.1016/j.neuron.2013.10.045
10.1093/cercor/bhq125
10.1038/s41586-024-07221-6
10.1097/nen.0b013e3180301c06
10.17504/protocols.io.y6rfzd6
10.1038/s41592-024-02184-y
10.1002/cne.24130
10.1126/science.aaw1219
10.1038/192766b0
10.5281/zenodo.14422018
10.1016/j.neuron.2015.12.001
10.1038/s41586-021-03952-y
10.1073/pnas.88.6.2083
10.1038/s41586-024-07895-y
10.1038/nature07456
10.1038/nature13185
10.1038/s41586-024-07292-5
10.1038/s41586-021-03953-x
10.1093/cercor/bhz018
10.1016/S0306-4522(02)00418-9
10.1038/nature11405
10.1038/s41592-020-01038-7
10.1093/cercor/bhy327
10.1038/s41592-022-01663-4
10.1016/j.stem.2023.08.009
10.1126/science.aas9435
10.1038/nrn3586
10.1523/JNEUROSCI.5786-12.2013
10.1038/nrn2252
10.1002/cne.25243
10.1101/2023.11.06.565899
10.1016/j.cell.2012.02.052
10.1016/S0012-1606(03)00070-8
10.1016/j.tins.2009.01.007
10.1016/j.conb.2008.05.011
10.1016/j.neuron.2019.07.009
10.1038/s41592-020-01037-8
10.1038/s41586-018-0654-5
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the "License"). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
KL.
M7N
NAPCQ
P64
RC3
SOI
7X8
5PM
DOI 10.1038/s41586-025-09010-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Nursing & Allied Health Premium
Genetics Abstracts
Meteorological & Geoastrophysical Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
DatabaseTitleList MEDLINE


MEDLINE - Academic
CrossRef
Virology and AIDS Abstracts
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 163
ExternalDocumentID PMC12328223
40369074
10_1038_s41586_025_09010_1
Genre Journal Article
GrantInformation_xml – fundername: NLM NIH HHS
  grantid: R01 LM014592
– fundername: NIGMS NIH HHS
  grantid: T32 GM007748
– fundername: NHGRI NIH HHS
  grantid: R01 HG013185
– fundername: NINDS NIH HHS
  grantid: K08 NS128074
– fundername: NIA NIH HHS
  grantid: R01 AG082346
– fundername: NIDA NIH HHS
  grantid: R37 DA023999
– fundername: NIA NIH HHS
  grantid: DP2 AG086138
– fundername: NINDS NIH HHS
  grantid: R01 NS032457
– fundername: NINDS NIH HHS
  grantid: K99 NS135123
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
123
186
1OL
29M
2KS
39C
5RE
6TJ
70F
7RV
85S
8WZ
97F
A6W
A7Z
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
ABDQB
ABFSG
ABFSI
ABIVO
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMJI
ACNCT
ACPRK
ACSTC
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AEZWR
AFANA
AFBBN
AFFNX
AFHIU
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGSOS
AHMBA
AHSBF
AHWEU
AIDUJ
AIXLP
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATHPR
ATWCN
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BIN
BKKNO
C6C
CJ0
CS3
DU5
E.-
E.L
EAP
EBS
EE.
EPS
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
HCIFZ
HG6
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
IOF
IPY
KOO
L7B
LGEZI
LOTEE
LSO
M0K
M2O
M7P
N9A
NADUK
NAPCQ
NEPJS
NFIDA
NXXTH
O9-
OBC
ODYON
OES
OHH
OMK
OVD
P2P
PV9
RND
RNS
RNT
RNTTT
RXW
SC5
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TEORI
TN5
TSG
TWZ
U5U
UKR
UMD
UQL
VVN
WH7
X7M
XIH
XKW
XZL
Y6R
YAE
YFH
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
ZCA
~02
~88
~KM
AAYXX
CITATION
.-4
.GJ
.HR
00M
08P
0WA
1CY
1VR
1VW
2XV
354
3EH
3O-
4.4
41X
41~
42X
4R4
53G
663
79B
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
97L
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABNNU
ABUWG
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AEUYN
AFFDN
AFHKK
AFKRA
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BES
BGLVJ
BKEYQ
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
CGR
CUY
CVF
D1I
D1J
D1K
DB5
DO4
DWQXO
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
ECM
EIF
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
ESE
ESN
ESX
EX3
FA8
FYUFA
GNUQQ
GUQSH
HMCUK
I-F
INR
ISR
ITC
J5H
K6-
KB.
L-9
L6V
LK5
LK8
M1P
M2M
M2P
M7R
M7S
MVM
N4W
NEJ
NPM
OHT
P-O
P62
PATMY
PCBAR
PDBOC
PEA
PHGZM
PHGZT
PJZUB
PM3
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
QS-
R05
R4F
RHI
S0X
SJFOW
SKT
SV3
TH9
TUD
TUS
UBY
UHB
UKHRP
USG
VOH
WOW
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~7V
~8M
~G0
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
AARCD
AFKWF
C1K
FR3
H94
K9.
KL.
M7N
P64
RC3
SOI
7X8
ACMFV
5PM
ID FETCH-LOGICAL-c428t-f9cb70e3cb48bf7c990f200f66d4288b63a6a0ca95b0263323a85ee82e7ee2c93
IEDL.DBID C6C
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:29:12 EDT 2025
Wed Jul 02 04:10:11 EDT 2025
Sat Aug 23 13:28:09 EDT 2025
Thu Aug 14 01:43:27 EDT 2025
Thu Aug 14 00:09:51 EDT 2025
Sat Aug 09 01:10:32 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8075
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-f9cb70e3cb48bf7c990f200f66d4288b63a6a0ca95b0263323a85ee82e7ee2c93
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0003-0966-9619
0000-0002-0156-2238
0009-0002-2936-4708
0000-0001-5340-8614
0000-0002-0702-3120
0000-0001-8180-0621
0000-0001-5944-3816
0000-0002-6205-3314
0009-0000-7309-2389
0000-0002-6963-0508
0000-0003-2087-4082
0000-0002-9229-4100
0000-0002-0238-9916
0000-0002-4950-2744
0009-0004-7047-0857
OpenAccessLink https://www.nature.com/articles/s41586-025-09010-1
PMID 40369074
PQID 3237101849
PQPubID 40569
PageCount 11
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12328223
proquest_miscellaneous_3204329913
proquest_journals_3237101849
pubmed_primary_40369074
crossref_primary_10_1038_s41586_025_09010_1
springer_journals_10_1038_s41586_025_09010_1
PublicationCentury 2000
PublicationDate 20250807
PublicationDateYYYYMMDD 2025-08-07
PublicationDate_xml – month: 8
  year: 2025
  text: 20250807
  day: 7
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References M Shibata (9010_CR39) 2021; 598
KH Chen (9010_CR22) 2015; 348
BS Abrahams (9010_CR64) 2013; 4
T Li (9010_CR70) 2025; 22
RD Hodge (9010_CR35) 2019; 573
Y Li (9010_CR52) 2023; 186
CN Kim (9010_CR67) 2023; 382
DD O’Leary (9010_CR11) 2008; 18
A Alzu’bi (9010_CR16) 2019; 29
Y Shi (9010_CR66) 2021; 374
I Holguera (9010_CR42) 2018; 362
JB Angevine Jr. (9010_CR37) 1961; 192
RN Delgado (9010_CR26) 2022; 601
Z Krsnik (9010_CR54) 2017; 11
SL Ding (9010_CR63) 2017; 525
DD O’Leary (9010_CR17) 1989; 12
T Saito (9010_CR33) 2011; 21
S Cheng (9010_CR51) 2022; 185
S Higashi (9010_CR62) 2002; 115
9010_CR41
JR Moffitt (9010_CR9) 2018; 362
I Reillo (9010_CR56) 2011; 21
D Haviv (9010_CR47) 2024; 43
TY Vue (9010_CR55) 2013; 33
P Abe (9010_CR18) 2024; 634
H Zeng (9010_CR38) 2012; 149
I Bystron (9010_CR2) 2008; 9
SG Rodriques (9010_CR20) 2019; 363
T Guo (9010_CR25) 2019; 29
E Braun (9010_CR53) 2023; 382
GJ Clowry (9010_CR14) 2018; 76
X Zhuang (9010_CR21) 2021; 18
RF Hevner (9010_CR31) 2007; 66
C Dehay (9010_CR58) 1996; 376
DH Geschwind (9010_CR5) 2013; 80
M Shibata (9010_CR13) 2021; 598
MG Andrews (9010_CR27) 2023; 30
S Jin (9010_CR49) 2021; 12
JL Rubenstein (9010_CR1) 2011; 52
LC Greig (9010_CR36) 2013; 14
N Anton-Bolanos (9010_CR57) 2019; 364
D Feldmeyer (9010_CR43) 2023; 17
TC Sudhof (9010_CR50) 2008; 455
P Rakic (9010_CR15) 1988; 241
D Aran (9010_CR68) 2019; 20
JA Miller (9010_CR32) 2014; 508
AE Trevino (9010_CR8) 2021; 184
P Rakic (9010_CR59) 1991; 88
C Stringer (9010_CR24) 2021; 18
9010_CR69
A Bhaduri (9010_CR6) 2021; 598
I Kostovic (9010_CR34) 1990; 297
9010_CR28
C Chung (9010_CR29) 2024; 629
N Micali (9010_CR46) 2023; 382
9010_CR61
K Amunts (9010_CR3) 2015; 88
C Job (9010_CR12) 2003; 257
MT Schmitz (9010_CR65) 2022; 603
TJ Nowakowski (9010_CR7) 2017; 358
B Tasic (9010_CR44) 2018; 563
SL Ding (9010_CR30) 2022; 530
IN Grabski (9010_CR40) 2023; 20
P Rakic (9010_CR4) 2009; 32
ED Sun (9010_CR48) 2024; 21
MJ Hawrylycz (9010_CR45) 2012; 489
V Moreno-Juan (9010_CR60) 2017; 8
9010_CR72
9010_CR71
CR Cadwell (9010_CR10) 2019; 103
L Larsson (9010_CR19) 2021; 18
M Pachitariu (9010_CR23) 2022; 19
References_xml – volume: 362
  year: 2018
  ident: 9010_CR9
  publication-title: Science
  doi: 10.1126/science.aau5324
– volume: 4
  year: 2013
  ident: 9010_CR64
  publication-title: Mol. Autism
  doi: 10.1186/2040-2392-4-36
– volume: 18
  start-page: 100
  year: 2021
  ident: 9010_CR24
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01018-x
– volume: 364
  start-page: 987
  year: 2019
  ident: 9010_CR57
  publication-title: Science
  doi: 10.1126/science.aav7617
– volume: 601
  start-page: 397
  year: 2022
  ident: 9010_CR26
  publication-title: Nature
  doi: 10.1038/s41586-021-04230-7
– volume: 358
  start-page: 1318
  year: 2017
  ident: 9010_CR7
  publication-title: Science
  doi: 10.1126/science.aap8809
– volume: 12
  year: 2021
  ident: 9010_CR49
  publication-title: Nat. Commun.
– volume: 12
  start-page: 400
  year: 1989
  ident: 9010_CR17
  publication-title: Trends Neurosci.
  doi: 10.1016/0166-2236(89)90080-5
– volume: 382
  year: 2023
  ident: 9010_CR53
  publication-title: Science
  doi: 10.1126/science.adf1226
– volume: 52
  start-page: 339
  year: 2011
  ident: 9010_CR1
  publication-title: J. Child Psychol. Psychiatry
  doi: 10.1111/j.1469-7610.2010.02307.x
– volume: 297
  start-page: 441
  year: 1990
  ident: 9010_CR34
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.902970309
– volume: 20
  start-page: 163
  year: 2019
  ident: 9010_CR68
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0276-y
– volume: 573
  start-page: 61
  year: 2019
  ident: 9010_CR35
  publication-title: Nature
  doi: 10.1038/s41586-019-1506-7
– volume: 8
  year: 2017
  ident: 9010_CR60
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14172
– volume: 603
  start-page: 871
  year: 2022
  ident: 9010_CR65
  publication-title: Nature
  doi: 10.1038/s41586-022-04510-w
– volume: 20
  start-page: 1196
  year: 2023
  ident: 9010_CR40
  publication-title: Nat. Methods
  doi: 10.1038/s41592-023-01933-9
– volume: 185
  start-page: 311
  year: 2022
  ident: 9010_CR51
  publication-title: Cell
  doi: 10.1016/j.cell.2021.12.022
– volume: 376
  start-page: 386
  year: 1996
  ident: 9010_CR58
  publication-title: J. Comp. Neurol.
  doi: 10.1002/(SICI)1096-9861(19961216)376:3<386::AID-CNE3>3.0.CO;2-Z
– ident: 9010_CR72
  doi: 10.5281/zenodo.15127709
– volume: 17
  year: 2023
  ident: 9010_CR43
  publication-title: Front. Cell. Neurosci.
  doi: 10.3389/fncel.2023.1257803
– volume: 22
  start-page: 3
  year: 2025
  ident: 9010_CR70
  publication-title: Nat. Methods
  doi: 10.1038/s41592-024-02371-x
– ident: 9010_CR41
  doi: 10.1145/2939672.2939785
– volume: 21
  start-page: 1674
  year: 2011
  ident: 9010_CR56
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq238
– volume: 43
  start-page: 269
  year: 2024
  ident: 9010_CR47
  publication-title: Nat. Biotechnol.
  doi: 10.1038/s41587-024-02193-4
– volume: 241
  start-page: 170
  year: 1988
  ident: 9010_CR15
  publication-title: Science
  doi: 10.1126/science.3291116
– volume: 374
  year: 2021
  ident: 9010_CR66
  publication-title: Science
– volume: 598
  start-page: 200
  year: 2021
  ident: 9010_CR6
  publication-title: Nature
  doi: 10.1038/s41586-021-03910-8
– volume: 76
  start-page: 3
  year: 2018
  ident: 9010_CR14
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2017.08.033
– volume: 348
  year: 2015
  ident: 9010_CR22
  publication-title: Science
– volume: 382
  year: 2023
  ident: 9010_CR46
  publication-title: Science
  doi: 10.1126/science.adf3786
– volume: 184
  start-page: 5053
  year: 2021
  ident: 9010_CR8
  publication-title: Cell
  doi: 10.1016/j.cell.2021.07.039
– volume: 186
  start-page: 5892
  year: 2023
  ident: 9010_CR52
  publication-title: Cell
  doi: 10.1016/j.cell.2023.11.016
– volume: 11
  start-page: 233
  year: 2017
  ident: 9010_CR54
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2017.00233
– volume: 80
  start-page: 633
  year: 2013
  ident: 9010_CR5
  publication-title: Neuron
  doi: 10.1016/j.neuron.2013.10.045
– volume: 21
  start-page: 588
  year: 2011
  ident: 9010_CR33
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhq125
– ident: 9010_CR61
  doi: 10.1038/s41586-024-07221-6
– volume: 66
  start-page: 101
  year: 2007
  ident: 9010_CR31
  publication-title: J. Neuropathol. Exp. Neurol.
  doi: 10.1097/nen.0b013e3180301c06
– ident: 9010_CR69
  doi: 10.17504/protocols.io.y6rfzd6
– volume: 21
  start-page: 444
  year: 2024
  ident: 9010_CR48
  publication-title: Nat. Methods
  doi: 10.1038/s41592-024-02184-y
– volume: 525
  start-page: 407
  year: 2017
  ident: 9010_CR63
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.24130
– volume: 363
  start-page: 1463
  year: 2019
  ident: 9010_CR20
  publication-title: Science
  doi: 10.1126/science.aaw1219
– volume: 192
  start-page: 766
  year: 1961
  ident: 9010_CR37
  publication-title: Nature
  doi: 10.1038/192766b0
– ident: 9010_CR71
  doi: 10.5281/zenodo.14422018
– volume: 88
  start-page: 1086
  year: 2015
  ident: 9010_CR3
  publication-title: Neuron
  doi: 10.1016/j.neuron.2015.12.001
– volume: 598
  start-page: 489
  year: 2021
  ident: 9010_CR39
  publication-title: Nature
  doi: 10.1038/s41586-021-03952-y
– volume: 88
  start-page: 2083
  year: 1991
  ident: 9010_CR59
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.88.6.2083
– volume: 634
  start-page: 644
  year: 2024
  ident: 9010_CR18
  publication-title: Nature
  doi: 10.1038/s41586-024-07895-y
– volume: 455
  start-page: 903
  year: 2008
  ident: 9010_CR50
  publication-title: Nature
  doi: 10.1038/nature07456
– volume: 508
  start-page: 199
  year: 2014
  ident: 9010_CR32
  publication-title: Nature
  doi: 10.1038/nature13185
– volume: 629
  start-page: 384
  year: 2024
  ident: 9010_CR29
  publication-title: Nature
  doi: 10.1038/s41586-024-07292-5
– volume: 598
  start-page: 483
  year: 2021
  ident: 9010_CR13
  publication-title: Nature
  doi: 10.1038/s41586-021-03953-x
– volume: 29
  start-page: 4831
  year: 2019
  ident: 9010_CR25
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhz018
– volume: 115
  start-page: 1231
  year: 2002
  ident: 9010_CR62
  publication-title: Neuroscience
  doi: 10.1016/S0306-4522(02)00418-9
– volume: 489
  start-page: 391
  year: 2012
  ident: 9010_CR45
  publication-title: Nature
  doi: 10.1038/nature11405
– volume: 18
  start-page: 15
  year: 2021
  ident: 9010_CR19
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01038-7
– volume: 29
  start-page: 1706
  year: 2019
  ident: 9010_CR16
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhy327
– volume: 382
  year: 2023
  ident: 9010_CR67
  publication-title: Science
– volume: 19
  start-page: 1634
  year: 2022
  ident: 9010_CR23
  publication-title: Nat. Methods
  doi: 10.1038/s41592-022-01663-4
– volume: 30
  start-page: 1382
  year: 2023
  ident: 9010_CR27
  publication-title: Cell Stem Cell
  doi: 10.1016/j.stem.2023.08.009
– volume: 362
  start-page: 176
  year: 2018
  ident: 9010_CR42
  publication-title: Science
  doi: 10.1126/science.aas9435
– volume: 14
  start-page: 755
  year: 2013
  ident: 9010_CR36
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn3586
– volume: 33
  start-page: 8442
  year: 2013
  ident: 9010_CR55
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.5786-12.2013
– volume: 9
  start-page: 110
  year: 2008
  ident: 9010_CR2
  publication-title: Nat. Rev. Neurosci.
  doi: 10.1038/nrn2252
– volume: 530
  start-page: 6
  year: 2022
  ident: 9010_CR30
  publication-title: J. Comp. Neurol.
  doi: 10.1002/cne.25243
– ident: 9010_CR28
  doi: 10.1101/2023.11.06.565899
– volume: 149
  start-page: 483
  year: 2012
  ident: 9010_CR38
  publication-title: Cell
  doi: 10.1016/j.cell.2012.02.052
– volume: 257
  start-page: 221
  year: 2003
  ident: 9010_CR12
  publication-title: Dev. Biol.
  doi: 10.1016/S0012-1606(03)00070-8
– volume: 32
  start-page: 291
  year: 2009
  ident: 9010_CR4
  publication-title: Trends Neurosci.
  doi: 10.1016/j.tins.2009.01.007
– volume: 18
  start-page: 90
  year: 2008
  ident: 9010_CR11
  publication-title: Curr. Opin. Neurobiol.
  doi: 10.1016/j.conb.2008.05.011
– volume: 103
  start-page: 980
  year: 2019
  ident: 9010_CR10
  publication-title: Neuron
  doi: 10.1016/j.neuron.2019.07.009
– volume: 18
  start-page: 18
  year: 2021
  ident: 9010_CR21
  publication-title: Nat. Methods
  doi: 10.1038/s41592-020-01037-8
– volume: 563
  start-page: 72
  year: 2018
  ident: 9010_CR44
  publication-title: Nature
  doi: 10.1038/s41586-018-0654-5
SSID ssj0005174
Score 2.4946818
Snippet The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct 1 , 2 , 3 – 4 . Although single-cell...
The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct 1–4 . Although single-cell...
The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct . Although single-cell transcriptomic...
The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct1, 2, 3–4. Although single-cell...
The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct1-4. Although single-cell transcriptomic...
The human cerebral cortex is composed of six layers and dozens of areas that are molecularly and structurally distinct 1 – 4 . Although single-cell...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 153
SubjectTerms 13
14
38
38/32
38/39
45
631/136/368/2430
631/378/2571/1696
631/378/368/2430
82
82/51
Brain architecture
Cells
Cerebral cortex
Cerebral Cortex - cytology
Cerebral Cortex - embryology
Cerebral Cortex - metabolism
Deep Learning
Female
Fetus - cytology
Fetus - embryology
Fetuses
Fluorescence
Fluorescence in situ hybridization
Gene Expression Profiling
Gene sequencing
Genes
Gestation
Humanities and Social Sciences
Humans
Hybridization
Hypotheses
In Situ Hybridization, Fluorescence
Integrated approach
Localization
Male
multidisciplinary
Multiplexing
Neurons
Neurons - cytology
Neurons - metabolism
Nuclei (cytology)
Robustness
Science
Science (multidisciplinary)
Segmentation
Single-Cell Analysis
Specifications
Synaptogenesis
Transcriptome - genetics
Transcriptomics
Visual cortex
Visual Cortex - cytology
Visual Cortex - embryology
Title Spatial transcriptomics reveals human cortical layer and area specification
URI https://link.springer.com/article/10.1038/s41586-025-09010-1
https://www.ncbi.nlm.nih.gov/pubmed/40369074
https://www.proquest.com/docview/3237101849
https://www.proquest.com/docview/3204329913
https://pubmed.ncbi.nlm.nih.gov/PMC12328223
Volume 644
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3dS8MwED-mQ_BF3PyqHyOCD4oWu6bp0kcdjqG4Jwd7K0maoiBVbP3_vcvayaY--JyQpHeX3F3zu18AzqIg6mdCxH4SC-VHJlC-1kb5wiiR9MN-bl1V2uMkHk-j-5mYtSBsamEcaN9RWrpjukGHXZfoaCTBZQX9WSBEwRq0ibqdrHoYD79hHSvMy3WhTMDlL2MsO6MfEeZPoOTKbalzQqNt2KqjR3YzX28HWrbowoZDcZqyC516p5bsvKaTvtiBB3p1GK2MVeSW3CFBlcglI_ImND7mnuljmIW639rsVWEUzlSRMYUBJaNSTIITOQ3uwnR09zQc-_UTCr7BvKLy88ToQWC50ZHU-cCg78lxX-RxnGG71DFXsQqMSoTGZIzzkCsprJWhHVgbmoTvwXrxVtgDYCTsXGTEB5ZFWpjEhJkMdZ5onWGD9eCykWX6PmfKSN0NN5fpXPIpSj51kk_7Hhw34k7rXVOmOP2AGMSixIPTRTPaO11iqMK-fVIfIhHEqJZ7sD_XzmK6CN0xJfseyCW9LToQl_ZyS_Hy7Di1KbLEWAkHvWpU_L2uvz_j8H_dj2AzdOZHAMJjWK8-Pu0JBjWV7kH7ZnR7O-k5a_4CyXbxZg
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3Pb9MwFH4qnRBc0Fp-BbphJA4giEjj2HGOU7Wqo-1Om7SbZTuOhoSyaUn_f95zk07dxoGzLdt5fvb7HH_vM8CXLMmmpRAyLqQwceYSE1vrTCycEcU0nVY-ZKWtz-XiMvt1Ja4GkPa5MIG0HyQtwzbds8N-NhhoFNFlBf1ZIEbBMzhArC2JxjWTs3taxwPl5S5RJuHqiTb2g9EjhPmYKPngtjQEofkhvOrQIzvZjncEA1-P4XlgcbpmDKNupTbsaycn_e01LOnVYfQy1lJYCpsEZSI3jMSb0PlYeKaP4Sk0_NZmfwyicGbqkhkElIxSMYlOFGbwDVzOTy9mi7h7QiF2eK5o46pwNk88dzZTtsodxp4K10UlZYnlykpupEmcKYTFwxjnKTdKeK9Sn3ufuoK_hWF9U_v3wEgnvxIl6YGVmRWucGmpUlsV1pZY4CP43ttS326VMnS44eZKby2v0fI6WF5PI5j05tbdqmk0dp-TglhWRPB5V4z-TpcYpvY3G6pDIoKIankE77azs-suw3BMh_0I1N687SqQlvZ-Sf37OmhqE7JErISN_uin-H5c__6MD_9X_RO8WFysV3p1dr78CC_T4Irop_kEhu3dxh8hwGntcfDov7NK8t8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6VIhAviI5tBAoYiQfQli2JY8d5RIWqMJh4YNLeLNtxBNKUTST9_9y5Sauu2wPPtmzn7uz7Lr77DPA-T_K0EkLGpRQmzl1iYmudiYUzokyztPahKu3HuVxc5N8uxeUI5FALE5L2A6VlOKaH7LDTFh2NonRZQX8WKKPg5KaqH8BDxNsJBV0zOdukdtxiX-6LZRKu7hhn2yHtoMzdZMlbN6bBEc2fwdMeQbJPqzVPYOSbPXgUMjlduweTfre27ENPKf3xOZzRy8Noaawj1xQOCqpGbhkROKEBsvBUH8NINPzaZlcGkTgzTcUMgkpG5ZiUUhS0uA8X8y-_Zou4f0YhdhhbdHFdOlsknjubK1sXDv1PjXujlrLCdmUlN9IkzpTCYkDGecaNEt6rzBfeZ67kBzBurhv_Ahhx5deiIk6wKrfClS6rVGbr0toKG3wER4Ms9c2KLUOHW26u9EryGiWvg-R1GsF0ELfud06rcfqCWMTyMoJ362a0ebrIMI2_XlIfIhJEZMsjOFxpZz1dji6ZAv4I1Jbe1h2IT3u7pfnzO_BqE7pEvISDHg8q3qzr_s94-X_d38Ljn5_n-vvX87NX8CQLlohmWkxh3P1d-teIcTr7Jhj0PzIY8-g
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Spatial+transcriptomics+reveals+human+cortical+layer+and+area+specification&rft.jtitle=Nature+%28London%29&rft.au=Qian%2C+Xuyu&rft.au=Coleman%2C+Kyle&rft.au=Jiang%2C+Shunzhou&rft.au=Kriz%2C+Andrea+J&rft.date=2025-08-07&rft.pub=Nature+Publishing+Group&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=644&rft.issue=8075&rft.spage=153&rft.epage=163&rft_id=info:doi/10.1038%2Fs41586-025-09010-1&rft.externalDBID=HAS_PDF_LINK
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon