Motion grading of high-resolution quantitative computed tomography supported by deep convolutional neural networks

Image quality degradation due to subject motion confounds the precision and reproducibility of measurements of bone density, morphology and mechanical properties from high-resolution peripheral quantitative computed tomography (HR-pQCT). Time-consuming operator-based scoring of motion artefacts rema...

Full description

Saved in:
Bibliographic Details
Published inBone (New York, N.Y.) Vol. 166; p. 116607
Main Authors Walle, Matthias, Eggemann, Dominic, Atkins, Penny R., Kendall, Jack J., Stock, Kerstin, Müller, Ralph, Collins, Caitlyn J.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Image quality degradation due to subject motion confounds the precision and reproducibility of measurements of bone density, morphology and mechanical properties from high-resolution peripheral quantitative computed tomography (HR-pQCT). Time-consuming operator-based scoring of motion artefacts remains the gold standard to determine the degree of acceptable motion. However, due to the subjectiveness of manual grading, HR-pQCT scans of poor quality, which cannot be used for analysis, may be accepted upon initial review, leaving patients with incomplete or inaccurate imaging results. Convolutional Neural Networks (CNNs) enable fast image analysis with relatively few pre-processing requirements in an operator-independent and fully automated way for image classification tasks. This study aimed to develop a CNN that can predict motion scores from HR-pQCT images, while also being aware of uncertain predictions that require manual confirmation. The CNN calculated motion scores within seconds and achieved a high F1-score (86.8 ± 2.8 %), with good precision (87.5 ± 2.7 %), recall (86.7 ± 2.9 %) and a substantial agreement with the ground truth measured by Cohen's kappa (κ = 68.6 ± 6.2 %); motion scores of the test dataset were predicted by the algorithm with comparable accuracy, precision, sensitivity and agreement as by the operators (p > 0.05). This post-processing approach may be used to assess the effect of motion scores on microstructural analysis and can be immediately implemented into clinical protocols, significantly reducing the time for quality assessment and control of HR-pQCT scans. [Display omitted] •An accurate (F1 = 86.8 ± 2.8 %) convolutional neural network (CNN) for motion grading of HR-pQCT scans.•Uncertainty quantification to help human operators understand CNN predictions.•Assessment of patient motion in a sizeable HR-pQCT dataset.
AbstractList Image quality degradation due to subject motion confounds the precision and reproducibility of measurements of bone density, morphology and mechanical properties from high-resolution peripheral quantitative computed tomography (HR-pQCT). Time-consuming operator-based scoring of motion artefacts remains the gold standard to determine the degree of acceptable motion. However, due to the subjectiveness of manual grading, HR-pQCT scans of poor quality, which cannot be used for analysis, may be accepted upon initial review, leaving patients with incomplete or inaccurate imaging results. Convolutional Neural Networks (CNNs) enable fast image analysis with relatively few pre-processing requirements in an operator-independent and fully automated way for image classification tasks. This study aimed to develop a CNN that can predict motion scores from HR-pQCT images, while also being aware of uncertain predictions that require manual confirmation. The CNN calculated motion scores within seconds and achieved a high F1-score (86.8 ± 2.8 %), with good precision (87.5 ± 2.7 %), recall (86.7 ± 2.9 %) and a substantial agreement with the ground truth measured by Cohen's kappa (κ = 68.6 ± 6.2 %); motion scores of the test dataset were predicted by the algorithm with comparable accuracy, precision, sensitivity and agreement as by the operators (p > 0.05). This post-processing approach may be used to assess the effect of motion scores on microstructural analysis and can be immediately implemented into clinical protocols, significantly reducing the time for quality assessment and control of HR-pQCT scans.Image quality degradation due to subject motion confounds the precision and reproducibility of measurements of bone density, morphology and mechanical properties from high-resolution peripheral quantitative computed tomography (HR-pQCT). Time-consuming operator-based scoring of motion artefacts remains the gold standard to determine the degree of acceptable motion. However, due to the subjectiveness of manual grading, HR-pQCT scans of poor quality, which cannot be used for analysis, may be accepted upon initial review, leaving patients with incomplete or inaccurate imaging results. Convolutional Neural Networks (CNNs) enable fast image analysis with relatively few pre-processing requirements in an operator-independent and fully automated way for image classification tasks. This study aimed to develop a CNN that can predict motion scores from HR-pQCT images, while also being aware of uncertain predictions that require manual confirmation. The CNN calculated motion scores within seconds and achieved a high F1-score (86.8 ± 2.8 %), with good precision (87.5 ± 2.7 %), recall (86.7 ± 2.9 %) and a substantial agreement with the ground truth measured by Cohen's kappa (κ = 68.6 ± 6.2 %); motion scores of the test dataset were predicted by the algorithm with comparable accuracy, precision, sensitivity and agreement as by the operators (p > 0.05). This post-processing approach may be used to assess the effect of motion scores on microstructural analysis and can be immediately implemented into clinical protocols, significantly reducing the time for quality assessment and control of HR-pQCT scans.
Image quality degradation due to subject motion confounds the precision and reproducibility of measurements of bone density, morphology and mechanical properties from high-resolution peripheral quantitative computed tomography (HR-pQCT). Time-consuming operator-based scoring of motion artefacts remains the gold standard to determine the degree of acceptable motion. However, due to the subjectiveness of manual grading, HR-pQCT scans of poor quality, which cannot be used for analysis, may be accepted upon initial review, leaving patients with incomplete or inaccurate imaging results. Convolutional Neural Networks (CNNs) enable fast image analysis with relatively few pre-processing requirements in an operator-independent and fully automated way for image classification tasks. This study aimed to develop a CNN that can predict motion scores from HR-pQCT images, while also being aware of uncertain predictions that require manual confirmation. The CNN calculated motion scores within seconds and achieved a high F1-score (86.8 ± 2.8 %), with good precision (87.5 ± 2.7 %), recall (86.7 ± 2.9 %) and a substantial agreement with the ground truth measured by Cohen's kappa (κ = 68.6 ± 6.2 %); motion scores of the test dataset were predicted by the algorithm with comparable accuracy, precision, sensitivity and agreement as by the operators (p > 0.05). This post-processing approach may be used to assess the effect of motion scores on microstructural analysis and can be immediately implemented into clinical protocols, significantly reducing the time for quality assessment and control of HR-pQCT scans. [Display omitted] •An accurate (F1 = 86.8 ± 2.8 %) convolutional neural network (CNN) for motion grading of HR-pQCT scans.•Uncertainty quantification to help human operators understand CNN predictions.•Assessment of patient motion in a sizeable HR-pQCT dataset.
ArticleNumber 116607
Author Walle, Matthias
Atkins, Penny R.
Eggemann, Dominic
Müller, Ralph
Stock, Kerstin
Kendall, Jack J.
Collins, Caitlyn J.
Author_xml – sequence: 1
  givenname: Matthias
  surname: Walle
  fullname: Walle, Matthias
  organization: Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
– sequence: 2
  givenname: Dominic
  surname: Eggemann
  fullname: Eggemann, Dominic
  organization: Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
– sequence: 3
  givenname: Penny R.
  surname: Atkins
  fullname: Atkins, Penny R.
  organization: Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
– sequence: 4
  givenname: Jack J.
  surname: Kendall
  fullname: Kendall, Jack J.
  organization: Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
– sequence: 5
  givenname: Kerstin
  surname: Stock
  fullname: Stock, Kerstin
  organization: University Hospital for Orthopedics and Traumatology, Innsbruck, Austria
– sequence: 6
  givenname: Ralph
  surname: Müller
  fullname: Müller, Ralph
  organization: Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
– sequence: 7
  givenname: Caitlyn J.
  surname: Collins
  fullname: Collins, Caitlyn J.
  email: caitlyn.collins@hest.ethz.ch
  organization: Institute for Biomechanics, ETH Zurich, Zurich, Switzerland
BookMark eNqFkDtv2zAUhYkiAeo4-QOdNGaRy4dFUkWWwugLcNGlmQmKvLJpy6RMUg787ys_Jg_pdIFzzneBcx7QnQ8eEPpE8Ixgwj9vZs0ozCimdEYI51h8QBMiBSup4OwOTaSoeMmopB_RQ0objDGrBZmg-DtkF3yxito6vypCW6zdal1GSKEbztZ-0D67rLM7QGHCrh8y2CKHXRihfn0s0tD3IZ7E5lhYgH5M-cMV113hYYjnk99C3KZHdN_qLsHT9U7R6_dvfxc_y-WfH78WX5elmVOZy1a0VjcVnle6kQ0lQGTd1rXBjYHaVloTQVtmG0IYxZZLzrkwdPQorhrcWjZFz5e_fQz7AVJWO5cMdJ32EIakqGCVFJiy-RiVl6iJIaUIrTLnwsHnqF2nCFanmdVGnWZWp5nVZeYRpTdoH91Ox-P70MsFgrH_wUFUyTjwBqyLYLKywb2Pf7nBTee8M7rbwvF_8D_aH6_j
CitedBy_id crossref_primary_10_1055_s_0044_1788623
crossref_primary_10_1016_j_bone_2023_116893
crossref_primary_10_1126_sciadv_adq3632
crossref_primary_10_3390_diagnostics14050568
crossref_primary_10_1016_j_bone_2023_116780
crossref_primary_10_1109_TIM_2024_3446627
crossref_primary_10_1093_jbmr_zjad014
Cites_doi 10.1016/j.artmed.2020.101955
10.1210/jc.2005-1258
10.1016/j.media.2019.04.009
10.1155/2017/4501647
10.1016/j.bone.2011.10.003
10.1007/s00198-020-05438-5
10.1016/j.medengphy.2007.11.003
10.1007/s00223-013-9803-x
10.1016/j.bone.2012.03.003
10.1109/TMI.2018.2799231
10.2106/JBJS.L.00588
10.1016/j.bone.2011.03.755
10.1007/s00198-016-3705-5
10.1007/s13244-018-0639-9
10.1007/s10916-018-1088-1
10.1002/jbmr.4292
10.1007/s00198-011-1829-1
10.1088/0031-9155/47/8/304
10.1007/s11548-018-1836-1
10.1016/j.bone.2013.01.007
ContentType Journal Article
Copyright 2022 The Authors
Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
Copyright_xml – notice: 2022 The Authors
– notice: Copyright © 2022 The Authors. Published by Elsevier Inc. All rights reserved.
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
DOI 10.1016/j.bone.2022.116607
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic


DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1873-2763
ExternalDocumentID 10_1016_j_bone_2022_116607
S8756328222002848
GroupedDBID ---
--K
--M
.1-
.55
.FO
.GJ
.~1
0R~
1B1
1P~
1~.
1~5
23N
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JM
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABGSF
ABJNI
ABLJU
ABMAC
ABMZM
ABUDA
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACRLP
ACRPL
ACVFH
ADBBV
ADCNI
ADEZE
ADMUD
ADNMO
ADUVX
AEBSH
AEHWI
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGRDE
AGUBO
AGYEJ
AHHHB
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
HEB
HMK
HMO
HVGLF
HZ~
IHE
J1W
J5H
K-O
KOM
L7B
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OF0
OR.
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SCC
SDF
SDG
SDP
SEL
SES
SEW
SPCBC
SSH
SSU
SSZ
T5K
WUQ
X7M
Z5R
ZGI
ZMT
~02
~G-
1RT
6I.
AACTN
AAFTH
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AHPSJ
AJBFU
AJOXV
AMFUW
DOVZS
EFLBG
LCYCR
RIG
ZA5
AAYXX
AGRNS
CITATION
7X8
ID FETCH-LOGICAL-c428t-f7fdab5045ab8b21e189f99c0bce9d5aa172f3db11320d686667c2ce9205b0fd3
IEDL.DBID .~1
ISSN 8756-3282
1873-2763
IngestDate Sun Jul 20 02:21:09 EDT 2025
Tue Jul 01 03:41:45 EDT 2025
Thu Apr 24 23:08:33 EDT 2025
Fri Feb 23 02:37:40 EST 2024
Tue Aug 26 16:31:43 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Motion-grading
High-resolution peripheral quantitative computed tomography
Convolutional neural networks
Artificial intelligence
Machine learning
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-f7fdab5045ab8b21e189f99c0bce9d5aa172f3db11320d686667c2ce9205b0fd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S8756328222002848
PQID 2735870234
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2735870234
crossref_citationtrail_10_1016_j_bone_2022_116607
crossref_primary_10_1016_j_bone_2022_116607
elsevier_sciencedirect_doi_10_1016_j_bone_2022_116607
elsevier_clinicalkey_doi_10_1016_j_bone_2022_116607
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate January 2023
2023-01-00
20230101
PublicationDateYYYYMMDD 2023-01-01
PublicationDate_xml – month: 01
  year: 2023
  text: January 2023
PublicationDecade 2020
PublicationTitle Bone (New York, N.Y.)
PublicationYear 2023
Publisher Elsevier Inc
Publisher_xml – name: Elsevier Inc
References Aubreville, Stoeve, Oetter, Goncalves, Knipfer, Neumann, Bohr, Stelzle, Maier (bb0070) 2019; 14
Boutroy, Bouxsein, Munoz, Delmas (bb0005) 2005; 90
Selvaraju, Cogswell, Das, Vedantam, Parikh, Batra (bb0115) 2017
Lu, Mackie (bb0140) 2002; 47
Sode, Burghardt, Pialat, Link, Majumdar (bb0135) 2011; 48
D’Agostino, Pearson (bb0120) 1973; 60
Pauchard, Boyd (bb0145) 2008; 6913
Li, Cai, Wang, Zhou, Feng, Chen (bb0090) 2014
Pauchard, Liphardt, Macdonald, Hanley, Boyd (bb0050) 2012; 50
Pialat, Burghardt, Sode, Link, Majumdar (bb0040) 2012; 50
Pauchard, Ayres, Boyd (bb0150) 2009
Oksuz, Ruijsink, Puyol-Antón, Clough, Cruz, Bustin, Prieto, Botnar, Rueckert, Schnabel, King (bb0060) 2019; 55
Chollet (bb0130) 2015
Whittier, Boyd, Burghardt, Paccou, Ghasem-Zadeh, Chapurlat, Engelke, Bouxsein (bb0030) 2020; 31
Rozental, Deschamps, Taylor, Earp, Zurakowski, Day, Bouxsein (bb0085) 2013; 95
Bonaretti, Vilayphiou, Chan, Yu, Nishiyama, Liu, Boutroy, Ghasem-Zadeh, Boyd, Chapurlat, McKay, Shane, Bouxsein, Black, Majumdar, Orwoll, Lang, Khosla, Burghardt (bb0020) 2017; 28
Adler, Öktem (bb0160) 2018; 37
Zhang, Hann, Werys, Wu, Popescu, Lukaschuk, Barutcu, Ferreira, Piechnik (bb0055) 2020; 110
Smets, Shevroja, Hügle, Leslie, Hans (bb0165) 2021; 36
Anwar, Majid, Qayyum, Awais, Alnowami, Khan (bb0095) 2018; 42
Pauchard, Ayres, Boyd (bb0075) 2009
Zebaze, Ghasem-Zadeh, Mbala, Seeman (bb0025) 2013; 54
Blew, Lee, Farr, Schiferl, Going (bb0155) 2014; 94
Engelke, Stampa, Timm, Dardzinski, De Papp, Genant, Fuerst (bb0045) 2012; 23
P.R. Atkins K. Stock N. Ohs C.J. Collins L. Horling S. Benedikt G. Degenhart K. Lippuner M. Blauth P. Christen , et al., Formation dominates resorption with increasing mineralized density and time-post-fracture in cortical but not trabecular bone: a longitudinal HR-pQCT imaging study in the distal radius, JBMR Plus. (n.d.) e10493.
Abadi, Barham, Chen, Chen, Davis, Dean, Devin, Ghemawat, Irving, Isard (bb0125) 2016; 16
Yamashita, Nishio, Do, Togashi (bb0100) 2018; 9
Whittier, Boyd, Burghardt, Paccou, Ghasem-Zadeh, Chapurlat, Engelke, Bouxsein (bb0035) 2020; 31
Brown (bb0105) 2010; 312
Sode, Burghardt, Pialat, Link, Majumdar (bb0015) 2011; 48
MacNeil, Boyd (bb0010) 2008; 30
Lorch, Vaillant, Baumgartner, Bai, Rueckert, Maier (bb0065) 2017; 2017
Chollet (bb0110) 2021
Engelke (10.1016/j.bone.2022.116607_bb0045) 2012; 23
Zebaze (10.1016/j.bone.2022.116607_bb0025) 2013; 54
Zhang (10.1016/j.bone.2022.116607_bb0055) 2020; 110
Yamashita (10.1016/j.bone.2022.116607_bb0100) 2018; 9
Chollet (10.1016/j.bone.2022.116607_bb0110) 2021
Whittier (10.1016/j.bone.2022.116607_bb0035) 2020; 31
Abadi (10.1016/j.bone.2022.116607_bb0125) 2016; 16
Sode (10.1016/j.bone.2022.116607_bb0135) 2011; 48
Boutroy (10.1016/j.bone.2022.116607_bb0005) 2005; 90
Brown (10.1016/j.bone.2022.116607_bb0105) 2010; 312
Bonaretti (10.1016/j.bone.2022.116607_bb0020) 2017; 28
Pauchard (10.1016/j.bone.2022.116607_bb0075) 2009
Lu (10.1016/j.bone.2022.116607_bb0140) 2002; 47
Pauchard (10.1016/j.bone.2022.116607_bb0150) 2009
Pauchard (10.1016/j.bone.2022.116607_bb0050) 2012; 50
Aubreville (10.1016/j.bone.2022.116607_bb0070) 2019; 14
MacNeil (10.1016/j.bone.2022.116607_bb0010) 2008; 30
Whittier (10.1016/j.bone.2022.116607_bb0030) 2020; 31
Blew (10.1016/j.bone.2022.116607_bb0155) 2014; 94
Pialat (10.1016/j.bone.2022.116607_bb0040) 2012; 50
Pauchard (10.1016/j.bone.2022.116607_bb0145) 2008; 6913
Selvaraju (10.1016/j.bone.2022.116607_bb0115) 2017
Adler (10.1016/j.bone.2022.116607_bb0160) 2018; 37
Oksuz (10.1016/j.bone.2022.116607_bb0060) 2019; 55
Lorch (10.1016/j.bone.2022.116607_bb0065) 2017; 2017
10.1016/j.bone.2022.116607_bb0080
Rozental (10.1016/j.bone.2022.116607_bb0085) 2013; 95
Li (10.1016/j.bone.2022.116607_bb0090) 2014
Sode (10.1016/j.bone.2022.116607_bb0015) 2011; 48
Chollet (10.1016/j.bone.2022.116607_bb0130) 2015
Anwar (10.1016/j.bone.2022.116607_bb0095) 2018; 42
D’Agostino (10.1016/j.bone.2022.116607_bb0120) 1973; 60
Smets (10.1016/j.bone.2022.116607_bb0165) 2021; 36
References_xml – volume: 42
  year: 2018
  ident: bb0095
  article-title: Medical image analysis using convolutional neural networks: a review
  publication-title: J. Med. Syst.
– volume: 60
  start-page: 613
  year: 1973
  end-page: 622
  ident: bb0120
  article-title: Tests for departure from normality. Empirical results for the distributions of b2 and √b1
  publication-title: Biometrika
– volume: 110
  year: 2020
  ident: bb0055
  article-title: Deep learning with attention supervision for automated motion artefact detection in quality control of cardiac T1-mapping
  publication-title: Artif. Intell. Med.
– volume: 30
  start-page: 792
  year: 2008
  end-page: 799
  ident: bb0010
  article-title: Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality
  publication-title: Med. Eng. Phys.
– volume: 50
  start-page: 111
  year: 2012
  end-page: 118
  ident: bb0040
  article-title: Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture
  publication-title: Bone
– volume: 47
  start-page: 1267
  year: 2002
  end-page: 1284
  ident: bb0140
  article-title: Tomographic motion detection and correction directly in sinogram space
  publication-title: Phys. Med. Biol.
– volume: 28
  start-page: 245
  year: 2017
  end-page: 257
  ident: bb0020
  article-title: Operator variability in scan positioning is a major component of HR-pQCT precision error and is reduced by standardized training
  publication-title: Osteoporos. Int.
– volume: 90
  start-page: 6508
  year: 2005
  end-page: 6515
  ident: bb0005
  article-title: In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography
  publication-title: J. Clin. Endocrinol. Metab.
– volume: 16
  start-page: 265
  year: 2016
  end-page: 283
  ident: bb0125
  article-title: Tensorflow: a system for large-scale machine learning
  publication-title: 12th Symposium on Operating Systems Design and Implementation
– volume: 36
  start-page: 833
  year: 2021
  end-page: 851
  ident: bb0165
  article-title: Machine learning solutions for osteoporosis—a review
  publication-title: J. Bone Miner. Res.
– volume: 2017
  start-page: 1
  year: 2017
  end-page: 9
  ident: bb0065
  article-title: Automated detection of motion artefacts in MR imaging using decision forests
  publication-title: J. Med. Eng.
– start-page: 338
  year: 2009
  end-page: 341
  ident: bb0075
  article-title: Measuring patient motion in HR-Pqct
  publication-title: Proceedings - 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, ISBI 2009
– volume: 95
  start-page: 633
  year: 2013
  end-page: 642
  ident: bb0085
  article-title: Premenopausal women with a distal radial fracture have deteriorated trabecular bone density and morphology compared with controls without a fracture
  publication-title: J. Bone Joint Surg. Am.
– volume: 9
  start-page: 611
  year: 2018
  end-page: 629
  ident: bb0100
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imaging
– start-page: 618
  year: 2017
  end-page: 626
  ident: bb0115
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
  publication-title: Proceedings of the IEEE International Conference on Computer Vision. 2017-October
– volume: 31
  start-page: 1607
  year: 2020
  end-page: 1627
  ident: bb0035
  article-title: Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography
  publication-title: Osteoporos. Int.
– volume: 312
  start-page: 15
  year: 2010
  end-page: 19
  ident: bb0105
  article-title: Ensemble learning
  publication-title: Encyclopedia of Machine Learning
– year: 2015
  ident: bb0130
  article-title: Keras
– start-page: 338
  year: 2009
  end-page: 341
  ident: bb0150
  publication-title: MEASURING PATIENT MOTION IN HR-PQCT Schulich School of Engineering University of Calgary s, Language (Baltim)
– volume: 48
  start-page: 1291
  year: 2011
  end-page: 1297
  ident: bb0015
  article-title: Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia
  publication-title: Bone
– volume: 55
  start-page: 136
  year: 2019
  end-page: 147
  ident: bb0060
  article-title: Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning
  publication-title: Med. Image Anal.
– start-page: 844
  year: 2014
  end-page: 848
  ident: bb0090
  article-title: Medical image classification with convolutional neural network
  publication-title: 2014 13th International Conference on Control Automation Robotics and Vision, ICARCV 2014
– volume: 54
  start-page: 8
  year: 2013
  end-page: 20
  ident: bb0025
  article-title: A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images
  publication-title: Bone
– volume: 14
  start-page: 31
  year: 2019
  end-page: 42
  ident: bb0070
  article-title: Deep learning-based detection of motion artifacts in probe-based confocal laser endomicroscopy images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
– volume: 37
  start-page: 1322
  year: 2018
  end-page: 1332
  ident: bb0160
  article-title: Learned primal-dual reconstruction
  publication-title: IEEE Trans. Med. Imaging
– year: 2021
  ident: bb0110
  article-title: Deep Learning With Python
– volume: 94
  start-page: 202
  year: 2014
  end-page: 211
  ident: bb0155
  article-title: Standardizing evaluation of pQCT image quality in the presence of subject movement: qualitative versus quantitative assessment
  publication-title: Calcif. Tissue Int.
– reference: P.R. Atkins K. Stock N. Ohs C.J. Collins L. Horling S. Benedikt G. Degenhart K. Lippuner M. Blauth P. Christen , et al., Formation dominates resorption with increasing mineralized density and time-post-fracture in cortical but not trabecular bone: a longitudinal HR-pQCT imaging study in the distal radius, JBMR Plus. (n.d.) e10493.
– volume: 6913
  year: 2008
  ident: bb0145
  article-title: Landmark based compensation of patient motion artifacts in computed tomography
  publication-title: Medical Imaging 2008: Physics of Medical Imaging
– volume: 50
  start-page: 1304
  year: 2012
  end-page: 1310
  ident: bb0050
  article-title: Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography
  publication-title: Bone
– volume: 48
  start-page: 1291
  year: 2011
  end-page: 1297
  ident: bb0135
  article-title: Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia
  publication-title: Bone
– volume: 31
  start-page: 1607
  year: 2020
  end-page: 1627
  ident: bb0030
  article-title: Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography
  publication-title: Osteoporos. Int.
– volume: 23
  start-page: 2151
  year: 2012
  end-page: 2158
  ident: bb0045
  article-title: Short-term in vivo precision of BMD and parameters of trabecular architecture at the distal forearm and tibia
  publication-title: Osteoporos. Int.
– volume: 60
  start-page: 613
  year: 1973
  ident: 10.1016/j.bone.2022.116607_bb0120
  article-title: Tests for departure from normality. Empirical results for the distributions of b2 and √b1
  publication-title: Biometrika
– volume: 6913
  year: 2008
  ident: 10.1016/j.bone.2022.116607_bb0145
  article-title: Landmark based compensation of patient motion artifacts in computed tomography
– volume: 110
  year: 2020
  ident: 10.1016/j.bone.2022.116607_bb0055
  article-title: Deep learning with attention supervision for automated motion artefact detection in quality control of cardiac T1-mapping
  publication-title: Artif. Intell. Med.
  doi: 10.1016/j.artmed.2020.101955
– ident: 10.1016/j.bone.2022.116607_bb0080
– volume: 90
  start-page: 6508
  year: 2005
  ident: 10.1016/j.bone.2022.116607_bb0005
  article-title: In vivo assessment of trabecular bone microarchitecture by high-resolution peripheral quantitative computed tomography
  publication-title: J. Clin. Endocrinol. Metab.
  doi: 10.1210/jc.2005-1258
– volume: 55
  start-page: 136
  year: 2019
  ident: 10.1016/j.bone.2022.116607_bb0060
  article-title: Automatic CNN-based detection of cardiac MR motion artefacts using k-space data augmentation and curriculum learning
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2019.04.009
– volume: 2017
  start-page: 1
  year: 2017
  ident: 10.1016/j.bone.2022.116607_bb0065
  article-title: Automated detection of motion artefacts in MR imaging using decision forests
  publication-title: J. Med. Eng.
  doi: 10.1155/2017/4501647
– volume: 50
  start-page: 111
  year: 2012
  ident: 10.1016/j.bone.2022.116607_bb0040
  article-title: Visual grading of motion induced image degradation in high resolution peripheral computed tomography: impact of image quality on measures of bone density and micro-architecture
  publication-title: Bone
  doi: 10.1016/j.bone.2011.10.003
– volume: 31
  start-page: 1607
  year: 2020
  ident: 10.1016/j.bone.2022.116607_bb0030
  article-title: Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-020-05438-5
– volume: 30
  start-page: 792
  year: 2008
  ident: 10.1016/j.bone.2022.116607_bb0010
  article-title: Improved reproducibility of high-resolution peripheral quantitative computed tomography for measurement of bone quality
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2007.11.003
– start-page: 338
  year: 2009
  ident: 10.1016/j.bone.2022.116607_bb0075
  article-title: Measuring patient motion in HR-Pqct
– volume: 16
  start-page: 265
  year: 2016
  ident: 10.1016/j.bone.2022.116607_bb0125
  article-title: Tensorflow: a system for large-scale machine learning
– volume: 94
  start-page: 202
  year: 2014
  ident: 10.1016/j.bone.2022.116607_bb0155
  article-title: Standardizing evaluation of pQCT image quality in the presence of subject movement: qualitative versus quantitative assessment
  publication-title: Calcif. Tissue Int.
  doi: 10.1007/s00223-013-9803-x
– volume: 31
  start-page: 1607
  year: 2020
  ident: 10.1016/j.bone.2022.116607_bb0035
  article-title: Guidelines for the assessment of bone density and microarchitecture in vivo using high-resolution peripheral quantitative computed tomography
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-020-05438-5
– volume: 50
  start-page: 1304
  year: 2012
  ident: 10.1016/j.bone.2022.116607_bb0050
  article-title: Quality control for bone quality parameters affected by subject motion in high-resolution peripheral quantitative computed tomography
  publication-title: Bone
  doi: 10.1016/j.bone.2012.03.003
– start-page: 338
  year: 2009
  ident: 10.1016/j.bone.2022.116607_bb0150
– volume: 37
  start-page: 1322
  year: 2018
  ident: 10.1016/j.bone.2022.116607_bb0160
  article-title: Learned primal-dual reconstruction
  publication-title: IEEE Trans. Med. Imaging
  doi: 10.1109/TMI.2018.2799231
– year: 2015
  ident: 10.1016/j.bone.2022.116607_bb0130
– volume: 95
  start-page: 633
  year: 2013
  ident: 10.1016/j.bone.2022.116607_bb0085
  article-title: Premenopausal women with a distal radial fracture have deteriorated trabecular bone density and morphology compared with controls without a fracture
  publication-title: J. Bone Joint Surg. Am.
  doi: 10.2106/JBJS.L.00588
– volume: 48
  start-page: 1291
  year: 2011
  ident: 10.1016/j.bone.2022.116607_bb0135
  article-title: Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia
  publication-title: Bone
  doi: 10.1016/j.bone.2011.03.755
– year: 2021
  ident: 10.1016/j.bone.2022.116607_bb0110
– start-page: 618
  year: 2017
  ident: 10.1016/j.bone.2022.116607_bb0115
  article-title: Grad-CAM: visual explanations from deep networks via gradient-based localization
– volume: 312
  start-page: 15
  year: 2010
  ident: 10.1016/j.bone.2022.116607_bb0105
  article-title: Ensemble learning
– volume: 28
  start-page: 245
  year: 2017
  ident: 10.1016/j.bone.2022.116607_bb0020
  article-title: Operator variability in scan positioning is a major component of HR-pQCT precision error and is reduced by standardized training
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-016-3705-5
– volume: 9
  start-page: 611
  year: 2018
  ident: 10.1016/j.bone.2022.116607_bb0100
  article-title: Convolutional neural networks: an overview and application in radiology
  publication-title: Insights Imaging
  doi: 10.1007/s13244-018-0639-9
– volume: 42
  year: 2018
  ident: 10.1016/j.bone.2022.116607_bb0095
  article-title: Medical image analysis using convolutional neural networks: a review
  publication-title: J. Med. Syst.
  doi: 10.1007/s10916-018-1088-1
– volume: 48
  start-page: 1291
  year: 2011
  ident: 10.1016/j.bone.2022.116607_bb0015
  article-title: Quantitative characterization of subject motion in HR-pQCT images of the distal radius and tibia
  publication-title: Bone
  doi: 10.1016/j.bone.2011.03.755
– start-page: 844
  year: 2014
  ident: 10.1016/j.bone.2022.116607_bb0090
  article-title: Medical image classification with convolutional neural network
– volume: 36
  start-page: 833
  year: 2021
  ident: 10.1016/j.bone.2022.116607_bb0165
  article-title: Machine learning solutions for osteoporosis—a review
  publication-title: J. Bone Miner. Res.
  doi: 10.1002/jbmr.4292
– volume: 23
  start-page: 2151
  year: 2012
  ident: 10.1016/j.bone.2022.116607_bb0045
  article-title: Short-term in vivo precision of BMD and parameters of trabecular architecture at the distal forearm and tibia
  publication-title: Osteoporos. Int.
  doi: 10.1007/s00198-011-1829-1
– volume: 47
  start-page: 1267
  year: 2002
  ident: 10.1016/j.bone.2022.116607_bb0140
  article-title: Tomographic motion detection and correction directly in sinogram space
  publication-title: Phys. Med. Biol.
  doi: 10.1088/0031-9155/47/8/304
– volume: 14
  start-page: 31
  year: 2019
  ident: 10.1016/j.bone.2022.116607_bb0070
  article-title: Deep learning-based detection of motion artifacts in probe-based confocal laser endomicroscopy images
  publication-title: Int. J. Comput. Assist. Radiol. Surg.
  doi: 10.1007/s11548-018-1836-1
– volume: 54
  start-page: 8
  year: 2013
  ident: 10.1016/j.bone.2022.116607_bb0025
  article-title: A new method of segmentation of compact-appearing, transitional and trabecular compartments and quantification of cortical porosity from high resolution peripheral quantitative computed tomographic images
  publication-title: Bone
  doi: 10.1016/j.bone.2013.01.007
SSID ssj0003971
Score 2.4457648
Snippet Image quality degradation due to subject motion confounds the precision and reproducibility of measurements of bone density, morphology and mechanical...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 116607
SubjectTerms Artificial intelligence
Convolutional neural networks
Deep learning
High-resolution peripheral quantitative computed tomography
Machine learning
Motion-grading
Title Motion grading of high-resolution quantitative computed tomography supported by deep convolutional neural networks
URI https://www.clinicalkey.com/#!/content/1-s2.0-S8756328222002848
https://dx.doi.org/10.1016/j.bone.2022.116607
https://www.proquest.com/docview/2735870234
Volume 166
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSwMxEA5FQbyIWsU3EcSLxO77cSxFqUq9qOAtbF6i6La23UMv_nZnstmKIhU8Lexmwm4yO5lJvvmGkBNjgtQTmWZgFUMWxTJkwstTpjTykxV-rCxPweA26T9E14_xY4v0mlwYhFU621_bdGut3Z2OG83O6Pm5cweedhIiChJxBlmECb9RlKKWn398wTxgvfXrPb6EYWuXOFNjvMSwRKrMIADLkSRYUvb3xemHmbZrz-U6WXNOI-3W77VBWrrcJO1uCQHz24yeUgvjtPvjm2Rl4E7L22Q8sCV66NPYAuXp0FBkJ2YQYTuFo-9VUdo0MzB6VNYVHhSFbh2TNZ1UI0t9rqiYUaX1iCJO3YnDOyEfpr1YNPlkizxcXtz3-szVWGASAo8pM6lRhYjBsStEJgJf-1lu8lx6QupcxUUBDo4JlcCC9J5KMoh2UhnAs8CLhWdUuE2WShjFHULB9ZGJyCUy7EfQZ5Yaiex9eS4yaVJvl_jN4HLpCMixDsYrb5BmLxwnhOOE8HpCdsnZXGZU028sbB02c8abxFIwhRxWh4VS8Vzqm-r9KXfcqAWHfxIPWopSD6sJB5cQvh68oWjvn33vk1Wsa1_v9RyQpem40ofg_UzFkVXvI7Lcvbrp334CYT0Frg
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LSyQxEC50BPUi64tV1zWCeJEw_X4cB1HGx8xFBW-h8xLF7RnncfDfW5VOD6yIC3tq6O4K6ST9pSr58hXAibVRHsjCcETFmCepirkMypxrQ_pkVZhqp1MwGGb9h-T6MX1cgvP2LAzRKj32N5ju0Nrf6frW7I6fn7t36GlnMbEgiWdQJMUyrJA6VdqBld7VTX-4AGSccsNmmS_jZODPzjQ0LzmqSS0zihA8soyyyn49P31Cajf9XP6ADe83sl5TtU1YMvUWbPdqjJn_vLNT5picbol8C1YHfsN8GyYDl6WHPU0cV56NLCOBYo5Bth9z7G1e1e6kGeIeU02SB82wWC9mzabzsVM_10y-M23MmBFV3ZtjnUgS010coXy6Aw-XF_fnfe7TLHCFsceM29zqSqbo21WykFFowqK0ZakCqUyp06pCH8fGWlJO-kBnBQY8uYrwWRSkMrA63oVOja34Exh6PyqTpSKR_QTLLHKrSMCvLGWhbB7sQdg2rlBeg5xSYbyKlmz2IqhDBHWIaDpkD84WNuNGgePbt-O2z0R7thTRUOAE8a1VurD6a_T90-64HRYCf0vaa6lqM5pPBXqF-PXoECX7_1n2Eaz17we34vZqeHMA65Tmvln6-QWd2WRuDtEZmsnffrB_AExFCF8
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Motion+grading+of+high-resolution+quantitative+computed+tomography+supported+by+deep+convolutional+neural+networks&rft.jtitle=Bone+%28New+York%2C+N.Y.%29&rft.au=Walle%2C+Matthias&rft.au=Eggemann%2C+Dominic&rft.au=Atkins%2C+Penny+R.&rft.au=Kendall%2C+Jack+J.&rft.date=2023-01-01&rft.pub=Elsevier+Inc&rft.issn=8756-3282&rft.eissn=1873-2763&rft.volume=166&rft_id=info:doi/10.1016%2Fj.bone.2022.116607&rft.externalDocID=S8756328222002848
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=8756-3282&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=8756-3282&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=8756-3282&client=summon