An end-to-end framework for intima media measurement and atherosclerotic plaque detection in the carotid artery

•An end-to-end framework for atherosclerotic plaque detection and CIMT estimation.•An evaluation of the robustness, suitability, and efficiency of the framework.•State-of-the-art results in REGICOR dataset, with over 8000 images.•A comparison with other fully automatic methods for CIMT estimation. B...

Full description

Saved in:
Bibliographic Details
Published inComputer methods and programs in biomedicine Vol. 223; p. 106954
Main Authors Gago, Lucas, Vila, Maria del Mar, Grau, Maria, Remeseiro, Beatriz, Igual, Laura
Format Journal Article
LanguageEnglish
Published Elsevier B.V 01.08.2022
Subjects
Online AccessGet full text
ISSN0169-2607
1872-7565
1872-7565
DOI10.1016/j.cmpb.2022.106954

Cover

Abstract •An end-to-end framework for atherosclerotic plaque detection and CIMT estimation.•An evaluation of the robustness, suitability, and efficiency of the framework.•State-of-the-art results in REGICOR dataset, with over 8000 images.•A comparison with other fully automatic methods for CIMT estimation. Background and objectives: The detection and delineation of atherosclerotic plaque are usually manually performed by medical experts on the carotid artery. Evidence suggests that this manual process is subject to errors and has a large variability between experts, equipment, and datasets. This paper proposes a robust end-to-end framework for automatic atherosclerotic plaque detection. Methods: The proposed framework is composed of: (1) a semantic segmentation model based on U-Net, with EfficientNet as the backbone, that obtains a segmentation mask with the carotid intima-media region; and (2) a convolutional neural network designed using Bayesian optimization that simultaneously performs a regression to get the average and maximum carotid intima media thickness, and a classification to determine the presence of plaque. Results: Our approach improves the state-of-the-art in both co and bulb territories in the REGICOR database, with more than 8000 images, while providing predictions in real-time. The correlation coefficient was 0.89 in the common carotid artery and 0.74 for bulb region, and the F1 score for atherosclerotic plaque detecting was 0.60 and 0.59, respectively. The experimentation carried out includes a comparison with other fully automatic methods for carotid intima media thickness estimation found in the literature. Additionally, we present an extensive experimental study to evaluate the robustness of our proposal, as well as its suitability and efficiency compared to different versions of the framework. Conclusions: The proposed end-to-end framework significantly improves the automatic characterization of atherosclerotic plaque. The generation of the segmented mask can be helpful for practitioners since it allows them to evaluate and interpret the model’s results by visual inspection. Furthermore, the proposed framework overcomes the limitations of previous research based on ad-hoc post-processing, which could lead to overestimations in the case of oblique forms of the carotid artery.
AbstractList The detection and delineation of atherosclerotic plaque are usually manually performed by medical experts on the carotid artery. Evidence suggests that this manual process is subject to errors and has a large variability between experts, equipment, and datasets. This paper proposes a robust end-to-end framework for automatic atherosclerotic plaque detection.BACKGROUND AND OBJECTIVESThe detection and delineation of atherosclerotic plaque are usually manually performed by medical experts on the carotid artery. Evidence suggests that this manual process is subject to errors and has a large variability between experts, equipment, and datasets. This paper proposes a robust end-to-end framework for automatic atherosclerotic plaque detection.The proposed framework is composed of: (1) a semantic segmentation model based on U-Net, with EfficientNet as the backbone, that obtains a segmentation mask with the carotid intima-media region; and (2) a convolutional neural network designed using Bayesian optimization that simultaneously performs a regression to get the average and maximum carotid intima media thickness, and a classification to determine the presence of plaque.METHODSThe proposed framework is composed of: (1) a semantic segmentation model based on U-Net, with EfficientNet as the backbone, that obtains a segmentation mask with the carotid intima-media region; and (2) a convolutional neural network designed using Bayesian optimization that simultaneously performs a regression to get the average and maximum carotid intima media thickness, and a classification to determine the presence of plaque.Our approach improves the state-of-the-art in both co and bulb territories in the REGICOR database, with more than 8000 images, while providing predictions in real-time. The correlation coefficient was 0.89 in the common carotid artery and 0.74 for bulb region, and the F1 score for atherosclerotic plaque detecting was 0.60 and 0.59, respectively. The experimentation carried out includes a comparison with other fully automatic methods for carotid intima media thickness estimation found in the literature. Additionally, we present an extensive experimental study to evaluate the robustness of our proposal, as well as its suitability and efficiency compared to different versions of the framework.RESULTSOur approach improves the state-of-the-art in both co and bulb territories in the REGICOR database, with more than 8000 images, while providing predictions in real-time. The correlation coefficient was 0.89 in the common carotid artery and 0.74 for bulb region, and the F1 score for atherosclerotic plaque detecting was 0.60 and 0.59, respectively. The experimentation carried out includes a comparison with other fully automatic methods for carotid intima media thickness estimation found in the literature. Additionally, we present an extensive experimental study to evaluate the robustness of our proposal, as well as its suitability and efficiency compared to different versions of the framework.The proposed end-to-end framework significantly improves the automatic characterization of atherosclerotic plaque. The generation of the segmented mask can be helpful for practitioners since it allows them to evaluate and interpret the model's results by visual inspection. Furthermore, the proposed framework overcomes the limitations of previous research based on ad-hoc post-processing, which could lead to overestimations in the case of oblique forms of the carotid artery.CONCLUSIONSThe proposed end-to-end framework significantly improves the automatic characterization of atherosclerotic plaque. The generation of the segmented mask can be helpful for practitioners since it allows them to evaluate and interpret the model's results by visual inspection. Furthermore, the proposed framework overcomes the limitations of previous research based on ad-hoc post-processing, which could lead to overestimations in the case of oblique forms of the carotid artery.
•An end-to-end framework for atherosclerotic plaque detection and CIMT estimation.•An evaluation of the robustness, suitability, and efficiency of the framework.•State-of-the-art results in REGICOR dataset, with over 8000 images.•A comparison with other fully automatic methods for CIMT estimation. Background and objectives: The detection and delineation of atherosclerotic plaque are usually manually performed by medical experts on the carotid artery. Evidence suggests that this manual process is subject to errors and has a large variability between experts, equipment, and datasets. This paper proposes a robust end-to-end framework for automatic atherosclerotic plaque detection. Methods: The proposed framework is composed of: (1) a semantic segmentation model based on U-Net, with EfficientNet as the backbone, that obtains a segmentation mask with the carotid intima-media region; and (2) a convolutional neural network designed using Bayesian optimization that simultaneously performs a regression to get the average and maximum carotid intima media thickness, and a classification to determine the presence of plaque. Results: Our approach improves the state-of-the-art in both co and bulb territories in the REGICOR database, with more than 8000 images, while providing predictions in real-time. The correlation coefficient was 0.89 in the common carotid artery and 0.74 for bulb region, and the F1 score for atherosclerotic plaque detecting was 0.60 and 0.59, respectively. The experimentation carried out includes a comparison with other fully automatic methods for carotid intima media thickness estimation found in the literature. Additionally, we present an extensive experimental study to evaluate the robustness of our proposal, as well as its suitability and efficiency compared to different versions of the framework. Conclusions: The proposed end-to-end framework significantly improves the automatic characterization of atherosclerotic plaque. The generation of the segmented mask can be helpful for practitioners since it allows them to evaluate and interpret the model’s results by visual inspection. Furthermore, the proposed framework overcomes the limitations of previous research based on ad-hoc post-processing, which could lead to overestimations in the case of oblique forms of the carotid artery.
ArticleNumber 106954
Author Gago, Lucas
Grau, Maria
Igual, Laura
Remeseiro, Beatriz
Vila, Maria del Mar
Author_xml – sequence: 1
  givenname: Lucas
  orcidid: 0000-0002-4694-6120
  surname: Gago
  fullname: Gago, Lucas
  email: lgagogag69@alumnes.ub.edu
  organization: Dept. de Matemátiques i Informática, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, Barcelona, 08007, Spain
– sequence: 2
  givenname: Maria del Mar
  surname: Vila
  fullname: Vila, Maria del Mar
  organization: Dept. de Matemátiques i Informática, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, Barcelona, 08007, Spain
– sequence: 3
  givenname: Maria
  surname: Grau
  fullname: Grau, Maria
  organization: Dept. Epidemiologia i Salut Pública, IMIM, Institut Hospital del Mar d’Investigacions Médiques, Dr. Aiguader 88, Barcelona, 08003, Spain
– sequence: 4
  givenname: Beatriz
  surname: Remeseiro
  fullname: Remeseiro, Beatriz
  organization: Dept. of Computer Science, Universidad de Oviedo, Campus de Gijón s/n, Gijón, 33203, Spain
– sequence: 5
  givenname: Laura
  surname: Igual
  fullname: Igual, Laura
  organization: Dept. de Matemátiques i Informática, Universitat de Barcelona, Gran Via de les Corts Catalanes 585, Barcelona, 08007, Spain
BookMark eNp9kD1PwzAURS1UJNrCH2DyyJLij9hJ2KqKL6kSC8yW67wIt4ldbBfUf4-jMjF0eU-yz7F87wxNnHeA0C0lC0qovN8uzLDfLBhhLB_IRpQXaErrihWVkGKCphlqCiZJdYVmMW4JIUwIOUV-6TC4tki-yAt3QQ_w48MOdz5g65IdNB6gtePU8RBgAJewzqhOnxB8NH2eyRq87_XXAXALCUyy3mUbZwQbPd5nPiQIx2t02ek-ws3fnqOPp8f31Uuxfnt-XS3XhSlZnYqO87rbbEpOREOYASp5BbxsG10LaMuulUy0m85oKBsuaoBGCC6pkIQRoLzhc3R3encffP5WTGqw0UDfawf-EBWTdUlzCYRnlJ1Qk-PEAJ3ahxw7HBUlamxXbdXYrhrbVad2s1T_k4xNesydgrb9efXhpELO_20hKNNbZ43ud3BUrbfn5F8xY5f6
CitedBy_id crossref_primary_10_1016_j_eswa_2024_124377
crossref_primary_10_1155_2022_4304524
crossref_primary_10_1007_s11042_023_17243_3
crossref_primary_10_1016_j_bspc_2024_107077
crossref_primary_10_1016_j_bspc_2024_106035
crossref_primary_10_31083_j_fbl2810248
crossref_primary_10_1109_ACCESS_2024_3404023
crossref_primary_10_1016_j_neucom_2023_126298
crossref_primary_10_1016_j_ultrasmedbio_2024_12_010
crossref_primary_10_1007_s12020_023_03558_6
crossref_primary_10_31083_j_rcm2505184
crossref_primary_10_1109_TUFFC_2024_3494019
crossref_primary_10_31083_j_rcm2512454
crossref_primary_10_37015_AUDT_2023_230018
crossref_primary_10_1016_j_eswa_2025_126695
crossref_primary_10_1016_j_optlaseng_2024_108499
Cites_doi 10.3389/fgene.2017.00216
10.1109/TUFFC.2005.1561621
10.1016/j.cmpb.2017.10.002
10.1007/s10278-021-00461-2
10.1016/j.compbiomed.2018.05.014
10.1016/j.cpcardiol.2009.10.002
10.1016/j.artmed.2019.101784
10.1016/j.recesp.2012.04.026
10.1016/j.compbiomed.2020.103847
10.1007/s11517-006-0140-3
10.1016/j.media.2021.102040
10.1007/s11517-014-1203-5
10.1038/35025203
10.1161/01.CIR.96.5.1432
10.1155/2013/676489
10.1016/j.cmpb.2017.01.009
10.4070/kcj.2010.40.1.1
10.1056/NEJM199901073400103
10.1109/TIP.2011.2169270
10.1016/j.bspc.2014.08.012
10.1016/j.neucom.2014.09.066
10.2174/1381612811319130007
ContentType Journal Article
Copyright 2022 The Author(s)
Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2022 The Author(s)
– notice: Copyright © 2022 The Author(s). Published by Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
7X8
DOI 10.1016/j.cmpb.2022.106954
DatabaseName CrossRef
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic

DeliveryMethod fulltext_linktorsrc
Discipline Medicine
EISSN 1872-7565
ExternalDocumentID 10_1016_j_cmpb_2022_106954
S0169260722003364
GroupedDBID ---
--K
--M
-~X
.1-
.DC
.FO
.GJ
.~1
0R~
1B1
1P~
1RT
1~.
1~5
29F
4.4
457
4G.
53G
5GY
5RE
5VS
7-5
71M
8P~
9JN
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AATTM
AAXKI
AAXUO
AAYFN
AAYWO
ABBOA
ABFNM
ABJNI
ABMAC
ABMZM
ABWVN
ABXDB
ACDAQ
ACGFS
ACIEU
ACIUM
ACNNM
ACRLP
ACRPL
ACVFH
ACZNC
ADBBV
ADCNI
ADEZE
ADJOM
ADMUD
ADNMO
AEBSH
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFJKZ
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGHFR
AGQPQ
AGUBO
AGYEJ
AHHHB
AHZHX
AIALX
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
AOUOD
APXCP
ASPBG
AVWKF
AXJTR
AZFZN
BKOJK
BLXMC
BNPGV
CS3
DU5
EBS
EFJIC
EFKBS
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
GBLVA
GBOLZ
HLZ
HMK
HMO
HVGLF
HZ~
IHE
J1W
KOM
LG9
M29
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
ROL
RPZ
SAE
SBC
SDF
SDG
SEL
SES
SEW
SPC
SPCBC
SSH
SSV
SSZ
T5K
UHS
WUQ
XPP
Z5R
ZGI
ZY4
~G-
AAYXX
AFCTW
AGRNS
CITATION
RIG
7X8
EFLBG
ID FETCH-LOGICAL-c428t-f338fbb4305902ce1637e34d9a85ed4fd625dbfcae49358ee95536156020e1393
ISSN 0169-2607
1872-7565
IngestDate Fri Sep 05 12:50:23 EDT 2025
Thu Apr 24 22:54:55 EDT 2025
Tue Jul 01 02:41:19 EDT 2025
Tue Aug 26 16:33:35 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Deep learning
Semantic segmentation
Atherosclerotic plaque
CIMT estimation
Language English
License This is an open access article under the CC BY-NC-ND license.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-f338fbb4305902ce1637e34d9a85ed4fd625dbfcae49358ee95536156020e1393
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-4694-6120
OpenAccessLink https://www.clinicalkey.com/#!/content/1-s2.0-S0169260722003364
PQID 2684100203
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2684100203
crossref_primary_10_1016_j_cmpb_2022_106954
crossref_citationtrail_10_1016_j_cmpb_2022_106954
elsevier_clinicalkey_doi_10_1016_j_cmpb_2022_106954
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate August 2022
2022-08-00
20220801
PublicationDateYYYYMMDD 2022-08-01
PublicationDate_xml – month: 08
  year: 2022
  text: August 2022
PublicationDecade 2020
PublicationTitle Computer methods and programs in biomedicine
PublicationYear 2022
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References Biswas, Kuppili, Araki, Edla, Godia, Saba, Suri, Omerzu, Laird, Khanna (bib0018) 2018; 98
Tan, Le (bib0027) 2019
Loizou, Pattichis, Christodoulou, Istepanian, Pantziaris, Nicolaides (bib0029) 2005; 52
O’Leary, Polak, Kronmal, Manolio, Burke, Wolfson (bib0005) 1999; 340
Loizou, Pattichis, Pantziaris, Tyllis, Nicolaides (bib0015) 2007; 45
Biswas, Saba, Chakrabartty, Khanna, Song, Suri, Sfikakis, Mavrogeni, Viskovic, Laird (bib0019) 2020; 123
Snoek, Larochelle, Adams (bib0031) 2012
Kingma, Ba (bib0034) 2015
Lian, Luo, Feng, Li, Li (bib0022) 2021; 71
Bots, Hoes, Koudstaal, Hofman, Grobbee (bib0007) 1997; 96
Loizou (bib0010) 2014; 52
Molinari, Pattichis, Zeng, Saba, Acharya, Sanfilippo, Nicolaides, Suri (bib0013) 2011; 21
Srivastava, Hinton, Krizhevsky, Sutskever, Salakhutdinov (bib0026) 2014; 15
Bastida-Jumilla, Menchón-Lara, Morales-Sánchez, Verdú-Monedero, Larrey-Ruiz, Sancho-Gómez (bib0014) 2015; 16
Bianchini, Giannarelli, Maria Bruno, Armenia, Landini, Faita, Gemignani, Taddei, Ghiadoni (bib0023) 2013; 19
Deng, Dong, Socher, Li, Li, Fei-Fei (bib0028) 2009
Hong (bib0002) 2010; 40
Martín, Ashish, Paul, Eugene, Zhifeng, Craig, Davis, Jeffrey, Matthieu (bib0033) 2016
Ronneberger, Fischer, Brox (bib0024) 2015
Loizou, Pantziaris, Pattichis, Kyriakou (bib0011) 2010
Nair, Hinton (bib0032) 2010
Qian, Yang (bib0016) 2018; 153
Lusis (bib0001) 2000; 407
Touboul, Hennerici, Meairs, Adams, Amarenco (bib0009) 2012; 34
Ioffe, Szegedy (bib0025) 2015; volume 37
Ikeda, Dey, Sharma, Gupta, Bose, Acharjee, Shafique, Cuadrado-Godia, Araki, Saba (bib0021) 2017; 141
Doltra, Stawowy, Dietrich, Schneeweis, Fleck, Kelle (bib0006) 2013; 2013
del Mar, Remeseiro, Grau, Elosua, Betriu, Fernandez-Giraldez, Igual (bib0012) 2020; 103
Lin, Goyal, Girshick, He, Dollar (bib0030) 2017
Head, Daunert, Goldschmidt-Clermont (bib0003) 2017; 8
Biswas, Saba, Omerzu, Johri, Khanna, Viskovic, Mavrogeni, Laird, Pareek, Miner (bib0020) 2021; 34
Gaziano, Bitton, Anand, Abrahams-Gessel, Murphy (bib0004) 2010; 35
Menchón-Lara, Sancho-Gómez (bib0017) 2015; 151
Grau, Subirana, Agis, Ramos, Basagaña, Martí, De Groot, Arnold, Marrugat, Künzli, Elosua (bib0008) 2012; 65
Bots (10.1016/j.cmpb.2022.106954_bib0007) 1997; 96
Touboul (10.1016/j.cmpb.2022.106954_bib0009) 2012; 34
Biswas (10.1016/j.cmpb.2022.106954_bib0020) 2021; 34
Martín (10.1016/j.cmpb.2022.106954_bib0033) 2016
Grau (10.1016/j.cmpb.2022.106954_bib0008) 2012; 65
Loizou (10.1016/j.cmpb.2022.106954_bib0010) 2014; 52
Srivastava (10.1016/j.cmpb.2022.106954_bib0026) 2014; 15
del Mar (10.1016/j.cmpb.2022.106954_bib0012) 2020; 103
Bastida-Jumilla (10.1016/j.cmpb.2022.106954_bib0014) 2015; 16
Lin (10.1016/j.cmpb.2022.106954_bib0030) 2017
Loizou (10.1016/j.cmpb.2022.106954_bib0029) 2005; 52
Molinari (10.1016/j.cmpb.2022.106954_bib0013) 2011; 21
Loizou (10.1016/j.cmpb.2022.106954_bib0011) 2010
Tan (10.1016/j.cmpb.2022.106954_bib0027) 2019
Biswas (10.1016/j.cmpb.2022.106954_bib0018) 2018; 98
Doltra (10.1016/j.cmpb.2022.106954_bib0006) 2013; 2013
Deng (10.1016/j.cmpb.2022.106954_bib0028) 2009
Ikeda (10.1016/j.cmpb.2022.106954_bib0021) 2017; 141
Lian (10.1016/j.cmpb.2022.106954_bib0022) 2021; 71
Biswas (10.1016/j.cmpb.2022.106954_bib0019) 2020; 123
Nair (10.1016/j.cmpb.2022.106954_bib0032) 2010
Hong (10.1016/j.cmpb.2022.106954_bib0002) 2010; 40
Menchón-Lara (10.1016/j.cmpb.2022.106954_bib0017) 2015; 151
Lusis (10.1016/j.cmpb.2022.106954_bib0001) 2000; 407
Qian (10.1016/j.cmpb.2022.106954_bib0016) 2018; 153
Gaziano (10.1016/j.cmpb.2022.106954_bib0004) 2010; 35
Kingma (10.1016/j.cmpb.2022.106954_bib0034) 2015
Loizou (10.1016/j.cmpb.2022.106954_bib0015) 2007; 45
Bianchini (10.1016/j.cmpb.2022.106954_bib0023) 2013; 19
Ioffe (10.1016/j.cmpb.2022.106954_bib0025) 2015; volume 37
Ronneberger (10.1016/j.cmpb.2022.106954_bib0024) 2015
Snoek (10.1016/j.cmpb.2022.106954_bib0031) 2012
Head (10.1016/j.cmpb.2022.106954_bib0003) 2017; 8
O’Leary (10.1016/j.cmpb.2022.106954_bib0005) 1999; 340
References_xml – volume: 98
  start-page: 100
  year: 2018
  end-page: 117
  ident: bib0018
  article-title: Deep learning strategy for accurate carotid intima-media thickness measurement: an ultrasound study on japanese diabetic cohort
  publication-title: Comput. Biol. Med.
– volume: 123
  start-page: 103847
  year: 2020
  ident: bib0019
  article-title: Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: a screening tool for cardiovascular/stroke risk assessment
  publication-title: Comput. Biol. Med.
– start-page: 2999
  year: 2017
  end-page: 3007
  ident: bib0030
  article-title: Focal loss for dense object detection
  publication-title: IEEE International Conference on Computer Vision
– start-page: 807
  year: 2010
  end-page: 814
  ident: bib0032
  article-title: Rectified linear units improve restricted Boltzmann machines
  publication-title: 27th International Conference on Machine Learning
– start-page: 1
  year: 2015
  end-page: 15
  ident: bib0034
  article-title: Adam: a method for stochastic optimization
  publication-title: 3rd International Conference on Learning Representations
– volume: 34
  start-page: 581
  year: 2021
  end-page: 604
  ident: bib0020
  article-title: A review on joint carotid intima-media thickness and plaque area measurement in ultrasound for cardiovascular/stroke risk monitoring: artificial intelligence framework
  publication-title: J Digit Imaging
– start-page: 234
  year: 2015
  end-page: 241
  ident: bib0024
  article-title: U-net: Convolutional networks for biomedical image segmentation
  publication-title: International Conference on Medical Image Computing and Computer-assisted Intervention
– volume: 35
  start-page: 72
  year: 2010
  end-page: 115
  ident: bib0004
  article-title: Growing epidemic of coronary heart disease in low- and middle-Income countries
  publication-title: Curr Probl Cardiol
– volume: 52
  start-page: 1073
  year: 2014
  end-page: 1093
  ident: bib0010
  article-title: A review of ultrasound common carotid artery image and video segmentation techniques
  publication-title: Med. Biol. Eng. Comput.
– volume: 2013
  start-page: 1
  year: 2013
  end-page: 2
  ident: bib0006
  article-title: Magnetic resonance imaging of cardiovascular fibrosis and inflammation: from clinical practice to animal studies and back
  publication-title: Biomed Res Int
– volume: 15
  start-page: 1929
  year: 2014
  end-page: 1958
  ident: bib0026
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 103
  start-page: 101784
  year: 2020
  ident: bib0012
  article-title: Semantic segmentation with DenseNets for carotid artery ultrasound plaque segmentation and CIMT estimation
  publication-title: Artif Intell Med
– volume: 21
  start-page: 1211
  year: 2011
  end-page: 1222
  ident: bib0013
  article-title: Completely automated multiresolution edge snappera new technique for an accurate carotid ultrasound IMT measurement: clinical validation and benchmarking on a multi-institutional database
  publication-title: IEEE Trans. Image Process.
– start-page: 2951
  year: 2012
  end-page: 2959
  ident: bib0031
  article-title: Practical bayesian optimization of machine learning algorithms
  publication-title: Advances in Neural Information Processing Systems
– volume: 65
  start-page: 1086
  year: 2012
  end-page: 1093
  ident: bib0008
  article-title: Carotid intima-media thickness in the Spanish population: reference ranges and association with cardiovascular risk factors
  publication-title: Revista Española de Cardiologia
– volume: 52
  start-page: 1653
  year: 2005
  end-page: 1669
  ident: bib0029
  article-title: Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
– volume: 407
  start-page: 233
  year: 2000
  end-page: 241
  ident: bib0001
  article-title: Atherosclerosis
  publication-title: Nature
– volume: 340
  start-page: 14
  year: 1999
  end-page: 22
  ident: bib0005
  article-title: Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults
  publication-title: N top N. Engl. J. Med.
– volume: 34
  start-page: 290
  year: 2012
  end-page: 296
  ident: bib0009
  article-title: Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011)
  publication-title: Cardiovasc Dis
– start-page: 1
  year: 2016
  end-page: 19
  ident: bib0033
  article-title: Tensorflow: large-scale machine learning on heterogeneous distributed systems
  publication-title: arXiv preprint arXiv:1603.04467
– volume: 40
  start-page: 1
  year: 2010
  end-page: 9
  ident: bib0002
  article-title: Atherosclerotic cardiovascular disease beginning in childhood
  publication-title: Korean Circ J
– volume: 8
  start-page: 216
  year: 2017
  ident: bib0003
  article-title: The aging risk and atherosclerosis: a fresh look at arterial homeostasis
  publication-title: Front Genet
– start-page: 248
  year: 2009
  end-page: 255
  ident: bib0028
  article-title: ImageNet: a large-scale hierarchical image database
  publication-title: IEEE Conference on Computer Vision and Pattern Recognition
– start-page: 6105
  year: 2019
  end-page: 6114
  ident: bib0027
  article-title: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
  publication-title: International Conference on Machine Learning
– volume: 141
  start-page: 73
  year: 2017
  end-page: 81
  ident: bib0021
  article-title: Automated segmental-IMT measurement in thin/thick plaque with bulb presence in carotid ultrasound from multiple scanners: stroke risk assessment
  publication-title: Comput Methods Programs Biomed
– volume: volume 37
  start-page: 448
  year: 2015
  end-page: 456
  ident: bib0025
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
  publication-title: 32nd International Conference on Machine Learning
– volume: 71
  start-page: 102040
  year: 2021
  ident: bib0022
  article-title: APRIL: Anatomical prior-guided reinforcement learning for accurate carotid lumen diameter and intima-media thickness measurement
  publication-title: Med Image Anal
– start-page: 1
  year: 2010
  end-page: 6
  ident: bib0011
  article-title: M-mode state based identification in ultrasound videos of the atherosclerotic carotid plaque
  publication-title: 4th International Symposium on Communications, Control, and Signal Processing
– volume: 151
  start-page: 161
  year: 2015
  end-page: 167
  ident: bib0017
  article-title: Fully automatic segmentation of ultrasound common carotid artery images based on machine learning
  publication-title: Neurocomputing
– volume: 45
  start-page: 35
  year: 2007
  end-page: 49
  ident: bib0015
  article-title: Snakes based segmentation of the common carotid artery intima media
  publication-title: Medical & Biological Engineering & Computing
– volume: 16
  start-page: 68
  year: 2015
  end-page: 79
  ident: bib0014
  article-title: Frequency-domain active contours solution to evaluate intima-media thickness of the common carotid artery
  publication-title: Biomed Signal Process Control
– volume: 153
  start-page: 19
  year: 2018
  end-page: 32
  ident: bib0016
  article-title: An integrated method for atherosclerotic carotid plaque segmentation in ultrasound image
  publication-title: Comput Methods Programs Biomed
– volume: 19
  start-page: 2390
  year: 2013
  end-page: 2400
  ident: bib0023
  article-title: Functional and structural alterations of large arteries: methodological issues
  publication-title: Curr. Pharm. Des.
– volume: 96
  start-page: 1432
  year: 1997
  end-page: 1437
  ident: bib0007
  article-title: Common carotid intima-media thickness and risk of stroke and myocardial infarction: the rotterdam study
  publication-title: Circulation
– volume: 8
  start-page: 216
  year: 2017
  ident: 10.1016/j.cmpb.2022.106954_bib0003
  article-title: The aging risk and atherosclerosis: a fresh look at arterial homeostasis
  publication-title: Front Genet
  doi: 10.3389/fgene.2017.00216
– volume: 52
  start-page: 1653
  issue: 10
  year: 2005
  ident: 10.1016/j.cmpb.2022.106954_bib0029
  article-title: Comparative evaluation of despeckle filtering in ultrasound imaging of the carotid artery
  publication-title: IEEE Trans Ultrason Ferroelectr Freq Control
  doi: 10.1109/TUFFC.2005.1561621
– volume: 153
  start-page: 19
  year: 2018
  ident: 10.1016/j.cmpb.2022.106954_bib0016
  article-title: An integrated method for atherosclerotic carotid plaque segmentation in ultrasound image
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.10.002
– volume: 34
  start-page: 581
  issue: 3
  year: 2021
  ident: 10.1016/j.cmpb.2022.106954_bib0020
  article-title: A review on joint carotid intima-media thickness and plaque area measurement in ultrasound for cardiovascular/stroke risk monitoring: artificial intelligence framework
  publication-title: J Digit Imaging
  doi: 10.1007/s10278-021-00461-2
– volume: 98
  start-page: 100
  year: 2018
  ident: 10.1016/j.cmpb.2022.106954_bib0018
  article-title: Deep learning strategy for accurate carotid intima-media thickness measurement: an ultrasound study on japanese diabetic cohort
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2018.05.014
– volume: volume 37
  start-page: 448
  year: 2015
  ident: 10.1016/j.cmpb.2022.106954_bib0025
  article-title: Batch normalization: accelerating deep network training by reducing internal covariate shift
– start-page: 1
  year: 2016
  ident: 10.1016/j.cmpb.2022.106954_bib0033
  article-title: Tensorflow: large-scale machine learning on heterogeneous distributed systems
  publication-title: arXiv preprint arXiv:1603.04467
– volume: 35
  start-page: 72
  issue: 2
  year: 2010
  ident: 10.1016/j.cmpb.2022.106954_bib0004
  article-title: Growing epidemic of coronary heart disease in low- and middle-Income countries
  publication-title: Curr Probl Cardiol
  doi: 10.1016/j.cpcardiol.2009.10.002
– volume: 103
  start-page: 101784
  year: 2020
  ident: 10.1016/j.cmpb.2022.106954_bib0012
  article-title: Semantic segmentation with DenseNets for carotid artery ultrasound plaque segmentation and CIMT estimation
  publication-title: Artif Intell Med
  doi: 10.1016/j.artmed.2019.101784
– start-page: 1
  year: 2010
  ident: 10.1016/j.cmpb.2022.106954_bib0011
  article-title: M-mode state based identification in ultrasound videos of the atherosclerotic carotid plaque
– volume: 65
  start-page: 1086
  issue: 12
  year: 2012
  ident: 10.1016/j.cmpb.2022.106954_bib0008
  article-title: Carotid intima-media thickness in the Spanish population: reference ranges and association with cardiovascular risk factors
  publication-title: Revista Española de Cardiologia
  doi: 10.1016/j.recesp.2012.04.026
– start-page: 2999
  year: 2017
  ident: 10.1016/j.cmpb.2022.106954_bib0030
  article-title: Focal loss for dense object detection
– volume: 123
  start-page: 103847
  year: 2020
  ident: 10.1016/j.cmpb.2022.106954_bib0019
  article-title: Two-stage artificial intelligence model for jointly measurement of atherosclerotic wall thickness and plaque burden in carotid ultrasound: a screening tool for cardiovascular/stroke risk assessment
  publication-title: Comput. Biol. Med.
  doi: 10.1016/j.compbiomed.2020.103847
– volume: 45
  start-page: 35
  issue: 1
  year: 2007
  ident: 10.1016/j.cmpb.2022.106954_bib0015
  article-title: Snakes based segmentation of the common carotid artery intima media
  publication-title: Medical & Biological Engineering & Computing
  doi: 10.1007/s11517-006-0140-3
– start-page: 2951
  year: 2012
  ident: 10.1016/j.cmpb.2022.106954_bib0031
  article-title: Practical bayesian optimization of machine learning algorithms
– start-page: 807
  year: 2010
  ident: 10.1016/j.cmpb.2022.106954_bib0032
  article-title: Rectified linear units improve restricted Boltzmann machines
– volume: 71
  start-page: 102040
  year: 2021
  ident: 10.1016/j.cmpb.2022.106954_bib0022
  article-title: APRIL: Anatomical prior-guided reinforcement learning for accurate carotid lumen diameter and intima-media thickness measurement
  publication-title: Med Image Anal
  doi: 10.1016/j.media.2021.102040
– start-page: 248
  year: 2009
  ident: 10.1016/j.cmpb.2022.106954_bib0028
  article-title: ImageNet: a large-scale hierarchical image database
– volume: 52
  start-page: 1073
  issue: 12
  year: 2014
  ident: 10.1016/j.cmpb.2022.106954_bib0010
  article-title: A review of ultrasound common carotid artery image and video segmentation techniques
  publication-title: Med. Biol. Eng. Comput.
  doi: 10.1007/s11517-014-1203-5
– volume: 34
  start-page: 290
  issue: 4
  year: 2012
  ident: 10.1016/j.cmpb.2022.106954_bib0009
  article-title: Mannheim carotid intima-media thickness and plaque consensus (2004-2006-2011)
  publication-title: Cardiovasc Dis
– volume: 407
  start-page: 233
  year: 2000
  ident: 10.1016/j.cmpb.2022.106954_bib0001
  article-title: Atherosclerosis
  publication-title: Nature
  doi: 10.1038/35025203
– start-page: 1
  year: 2015
  ident: 10.1016/j.cmpb.2022.106954_bib0034
  article-title: Adam: a method for stochastic optimization
– volume: 96
  start-page: 1432
  issue: 5
  year: 1997
  ident: 10.1016/j.cmpb.2022.106954_bib0007
  article-title: Common carotid intima-media thickness and risk of stroke and myocardial infarction: the rotterdam study
  publication-title: Circulation
  doi: 10.1161/01.CIR.96.5.1432
– volume: 2013
  start-page: 1
  issue: 10
  year: 2013
  ident: 10.1016/j.cmpb.2022.106954_bib0006
  article-title: Magnetic resonance imaging of cardiovascular fibrosis and inflammation: from clinical practice to animal studies and back
  publication-title: Biomed Res Int
  doi: 10.1155/2013/676489
– volume: 15
  start-page: 1929
  year: 2014
  ident: 10.1016/j.cmpb.2022.106954_bib0026
  article-title: Dropout: a simple way to prevent neural networks from overfitting
  publication-title: Journal of Machine Learning Research
– volume: 141
  start-page: 73
  year: 2017
  ident: 10.1016/j.cmpb.2022.106954_bib0021
  article-title: Automated segmental-IMT measurement in thin/thick plaque with bulb presence in carotid ultrasound from multiple scanners: stroke risk assessment
  publication-title: Comput Methods Programs Biomed
  doi: 10.1016/j.cmpb.2017.01.009
– volume: 40
  start-page: 1
  issue: 1
  year: 2010
  ident: 10.1016/j.cmpb.2022.106954_bib0002
  article-title: Atherosclerotic cardiovascular disease beginning in childhood
  publication-title: Korean Circ J
  doi: 10.4070/kcj.2010.40.1.1
– volume: 340
  start-page: 14
  issue: 1
  year: 1999
  ident: 10.1016/j.cmpb.2022.106954_bib0005
  article-title: Carotid-artery intima and media thickness as a risk factor for myocardial infarction and stroke in older adults
  publication-title: N top N. Engl. J. Med.
  doi: 10.1056/NEJM199901073400103
– volume: 21
  start-page: 1211
  issue: 3
  year: 2011
  ident: 10.1016/j.cmpb.2022.106954_bib0013
  article-title: Completely automated multiresolution edge snappera new technique for an accurate carotid ultrasound IMT measurement: clinical validation and benchmarking on a multi-institutional database
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2011.2169270
– volume: 16
  start-page: 68
  year: 2015
  ident: 10.1016/j.cmpb.2022.106954_bib0014
  article-title: Frequency-domain active contours solution to evaluate intima-media thickness of the common carotid artery
  publication-title: Biomed Signal Process Control
  doi: 10.1016/j.bspc.2014.08.012
– volume: 151
  start-page: 161
  year: 2015
  ident: 10.1016/j.cmpb.2022.106954_bib0017
  article-title: Fully automatic segmentation of ultrasound common carotid artery images based on machine learning
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2014.09.066
– start-page: 234
  year: 2015
  ident: 10.1016/j.cmpb.2022.106954_bib0024
  article-title: U-net: Convolutional networks for biomedical image segmentation
– volume: 19
  start-page: 2390
  issue: 13
  year: 2013
  ident: 10.1016/j.cmpb.2022.106954_bib0023
  article-title: Functional and structural alterations of large arteries: methodological issues
  publication-title: Curr. Pharm. Des.
  doi: 10.2174/1381612811319130007
– start-page: 6105
  year: 2019
  ident: 10.1016/j.cmpb.2022.106954_bib0027
  article-title: EfficientNet: Rethinking Model Scaling for Convolutional Neural Networks
SSID ssj0002556
Score 2.4214199
Snippet •An end-to-end framework for atherosclerotic plaque detection and CIMT estimation.•An evaluation of the robustness, suitability, and efficiency of the...
The detection and delineation of atherosclerotic plaque are usually manually performed by medical experts on the carotid artery. Evidence suggests that this...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 106954
SubjectTerms Atherosclerotic plaque
CIMT estimation
Deep learning
Semantic segmentation
Title An end-to-end framework for intima media measurement and atherosclerotic plaque detection in the carotid artery
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0169260722003364
https://www.proquest.com/docview/2684100203
Volume 223
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxMxELZCkRAXRHmIFqiMxC3aVbJvHwOCVohyalFvK689i7ZKd6Nkc-mB_8A_ZsbedTbpQ5SLk3Vsy8l8sT2eb2YY-5ikGqahzjwpElRQpghjqRQ-liLVuCGXqSJH4dMfycl59O0ivhiN_gxYS-u28NX1rX4l_yNVrEO5kpfsAyTrBsUKfI_yxRIljOU_yXhWj6HWXtt4-DIue56VoQ5WdVtdSesZgqW7CbTRWenY16xwuGVDEVsXc0lhXDW0oIbsR0rq01Z6bIifWwbgPhtEl4J61QUcMGQvQ7G1fv1bdvtj-ctczH6nRGt95c9qLjunIZyoJqKtdITh46Vcuw-dbQi_xwoq66DzCSjHwPXw8gL13p465-4zE-GhSpUOF-QgCAdLKuqswsaZvrHa24uHS19dLQqfhvc3jbdDa-9seY6I2HPcLnMaI6cxcjvGI_Y4SFNj-fd_b1hDFLHNhou38-78sCxlcHced511dnZ9c5Q5e86edToIn1lA7bMR1C_Yk9NOWi9ZM6v5Blfc4YojrrjFFTe44gNccQQA38EVt7jiDlfYm2MT3uGKW1y9Yudfv5x9PvG6xByeQm219cowzMqioGhxYhIowDN9CmGkhcxi0FGpUanWRakkRGRmBxBxHCbksx9McGUQ4Wu2Vzc1vGFclLhV60wUAJNIRlEWCxClFFGRJLEKogM27X_CXHVR6yl5yjy_W3QHbOz6LGzMlntbh71k8t4bGffPHEF2b68PvRBzXJDJyiZraNarnMInTY2B__BB83jLnm7-Ie_YXrtcw3s88LbFkYHgX9m6rng
linkProvider Elsevier
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+end-to-end+framework+for+intima+media+measurement+and+atherosclerotic+plaque+detection+in+the+carotid+artery&rft.jtitle=Computer+methods+and+programs+in+biomedicine&rft.au=Gago%2C+Lucas&rft.au=Vila%2C+Maria+del+Mar&rft.au=Grau%2C+Maria&rft.au=Remeseiro%2C+Beatriz&rft.date=2022-08-01&rft.issn=0169-2607&rft.volume=223&rft.spage=106954&rft_id=info:doi/10.1016%2Fj.cmpb.2022.106954&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_cmpb_2022_106954
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0169-2607&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0169-2607&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0169-2607&client=summon