Reconstruction of Scapula Bone Shapes from Digitized Skin Landmarks Using Statistical Shape Modeling and Multiple Linear Regression

Purpose The aim of this study was to develop an algorithm for the reconstruction of scapula bone shapes from skin landmarks, using a statistical shape model (SSM). Methods A sample of 56 scapula segmentations was used, as well as 4 scapular bone and skin landmarks. Regression models were built to pr...

Full description

Saved in:
Bibliographic Details
Published inAnnals of biomedical engineering Vol. 53; no. 9; pp. 2239 - 2250
Main Authors Marques, Augusto, Folgado, João, Quental, Carlos
Format Journal Article
LanguageEnglish
Published Cham Springer International Publishing 01.09.2025
Springer Nature B.V
Subjects
Online AccessGet full text
ISSN0090-6964
1573-9686
1573-9686
DOI10.1007/s10439-025-03768-1

Cover

Loading…
Abstract Purpose The aim of this study was to develop an algorithm for the reconstruction of scapula bone shapes from skin landmarks, using a statistical shape model (SSM). Methods A sample of 56 scapula segmentations was used, as well as 4 scapular bone and skin landmarks. Regression models were built to predict the coordinates of bone landmarks from skin landmarks using subject-specific variables, namely skin landmark coordinates, sex, age, weight, and height. The scapula shapes were reconstructed by fitting the bone landmarks of the SSM’s mean shape to the predicted bone landmarks of the subject. Results The developed regression models registered a R 2 ranging from 0.70 to 0.98, with a maximum median error of 4 mm. The average surface-to-surface errors were equal to 2.41 and 2.45 mm using digitized and predicted bone landmarks, respectively. No significant statistical differences were observed between scapula shapes reconstructed from digitized and predicted bone landmarks. Conclusion This study demonstrated the reliability of the developed algorithm in deriving subject-specific scapula shapes from experimentally acquired data, highlighting that scapula shape reconstructions based on a limited set of landmarks can effectively generate subject-specific computational models without the need for additional medical imaging.
AbstractList Purpose The aim of this study was to develop an algorithm for the reconstruction of scapula bone shapes from skin landmarks, using a statistical shape model (SSM). Methods A sample of 56 scapula segmentations was used, as well as 4 scapular bone and skin landmarks. Regression models were built to predict the coordinates of bone landmarks from skin landmarks using subject-specific variables, namely skin landmark coordinates, sex, age, weight, and height. The scapula shapes were reconstructed by fitting the bone landmarks of the SSM’s mean shape to the predicted bone landmarks of the subject. Results The developed regression models registered a R 2 ranging from 0.70 to 0.98, with a maximum median error of 4 mm. The average surface-to-surface errors were equal to 2.41 and 2.45 mm using digitized and predicted bone landmarks, respectively. No significant statistical differences were observed between scapula shapes reconstructed from digitized and predicted bone landmarks. Conclusion This study demonstrated the reliability of the developed algorithm in deriving subject-specific scapula shapes from experimentally acquired data, highlighting that scapula shape reconstructions based on a limited set of landmarks can effectively generate subject-specific computational models without the need for additional medical imaging.
The aim of this study was to develop an algorithm for the reconstruction of scapula bone shapes from skin landmarks, using a statistical shape model (SSM).PURPOSEThe aim of this study was to develop an algorithm for the reconstruction of scapula bone shapes from skin landmarks, using a statistical shape model (SSM).A sample of 56 scapula segmentations was used, as well as 4 scapular bone and skin landmarks. Regression models were built to predict the coordinates of bone landmarks from skin landmarks using subject-specific variables, namely skin landmark coordinates, sex, age, weight, and height. The scapula shapes were reconstructed by fitting the bone landmarks of the SSM's mean shape to the predicted bone landmarks of the subject.METHODSA sample of 56 scapula segmentations was used, as well as 4 scapular bone and skin landmarks. Regression models were built to predict the coordinates of bone landmarks from skin landmarks using subject-specific variables, namely skin landmark coordinates, sex, age, weight, and height. The scapula shapes were reconstructed by fitting the bone landmarks of the SSM's mean shape to the predicted bone landmarks of the subject.The developed regression models registered a R2 ranging from 0.70 to 0.98, with a maximum median error of 4 mm. The average surface-to-surface errors were equal to 2.41 and 2.45 mm using digitized and predicted bone landmarks, respectively. No significant statistical differences were observed between scapula shapes reconstructed from digitized and predicted bone landmarks.RESULTSThe developed regression models registered a R2 ranging from 0.70 to 0.98, with a maximum median error of 4 mm. The average surface-to-surface errors were equal to 2.41 and 2.45 mm using digitized and predicted bone landmarks, respectively. No significant statistical differences were observed between scapula shapes reconstructed from digitized and predicted bone landmarks.This study demonstrated the reliability of the developed algorithm in deriving subject-specific scapula shapes from experimentally acquired data, highlighting that scapula shape reconstructions based on a limited set of landmarks can effectively generate subject-specific computational models without the need for additional medical imaging.CONCLUSIONThis study demonstrated the reliability of the developed algorithm in deriving subject-specific scapula shapes from experimentally acquired data, highlighting that scapula shape reconstructions based on a limited set of landmarks can effectively generate subject-specific computational models without the need for additional medical imaging.
The aim of this study was to develop an algorithm for the reconstruction of scapula bone shapes from skin landmarks, using a statistical shape model (SSM). A sample of 56 scapula segmentations was used, as well as 4 scapular bone and skin landmarks. Regression models were built to predict the coordinates of bone landmarks from skin landmarks using subject-specific variables, namely skin landmark coordinates, sex, age, weight, and height. The scapula shapes were reconstructed by fitting the bone landmarks of the SSM's mean shape to the predicted bone landmarks of the subject. The developed regression models registered a R ranging from 0.70 to 0.98, with a maximum median error of 4 mm. The average surface-to-surface errors were equal to 2.41 and 2.45 mm using digitized and predicted bone landmarks, respectively. No significant statistical differences were observed between scapula shapes reconstructed from digitized and predicted bone landmarks. This study demonstrated the reliability of the developed algorithm in deriving subject-specific scapula shapes from experimentally acquired data, highlighting that scapula shape reconstructions based on a limited set of landmarks can effectively generate subject-specific computational models without the need for additional medical imaging.
PurposeThe aim of this study was to develop an algorithm for the reconstruction of scapula bone shapes from skin landmarks, using a statistical shape model (SSM).MethodsA sample of 56 scapula segmentations was used, as well as 4 scapular bone and skin landmarks. Regression models were built to predict the coordinates of bone landmarks from skin landmarks using subject-specific variables, namely skin landmark coordinates, sex, age, weight, and height. The scapula shapes were reconstructed by fitting the bone landmarks of the SSM’s mean shape to the predicted bone landmarks of the subject.ResultsThe developed regression models registered a R2 ranging from 0.70 to 0.98, with a maximum median error of 4 mm. The average surface-to-surface errors were equal to 2.41 and 2.45 mm using digitized and predicted bone landmarks, respectively. No significant statistical differences were observed between scapula shapes reconstructed from digitized and predicted bone landmarks.ConclusionThis study demonstrated the reliability of the developed algorithm in deriving subject-specific scapula shapes from experimentally acquired data, highlighting that scapula shape reconstructions based on a limited set of landmarks can effectively generate subject-specific computational models without the need for additional medical imaging.
Author Marques, Augusto
Folgado, João
Quental, Carlos
Author_xml – sequence: 1
  givenname: Augusto
  surname: Marques
  fullname: Marques, Augusto
  organization: IDMEC, Instituto Superior Técnico, Universidade de Lisboa
– sequence: 2
  givenname: João
  orcidid: 0000-0003-1160-7302
  surname: Folgado
  fullname: Folgado, João
  organization: IDMEC, Instituto Superior Técnico, Universidade de Lisboa
– sequence: 3
  givenname: Carlos
  orcidid: 0000-0001-9034-8956
  surname: Quental
  fullname: Quental, Carlos
  email: carlos.quental@tecnico.ulisboa.pt
  organization: IDMEC, Instituto Superior Técnico, Universidade de Lisboa
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40537592$$D View this record in MEDLINE/PubMed
BookMark eNp9kktv1TAQhS1URG8Lf4AFssSGTcCvOPYKQXlKt0LqpWvLcSap21w7tRMk2PLHcUkpjwUrL-Y758zI5wgdhBgAoceUPKeENC8yJYLrirC6IryRqqL30IbWDa-0VPIAbQjRpJJaikN0lPMlIZQqXj9Ah4LUvKk126DvZ-BiyHNa3OxjwLHHO2enZbT4dUnDuws7QcZ9inv8xg9-9t-gw7srH_DWhm5v01XG59mHAe9mO_s8e2fHVYZPYwfjzaiQ-HQZZz-NgLc-gE34DIYEOZfQh-h-b8cMj27fY3T-7u3nkw_V9tP7jyevtpUTTM0VdG3rWsF4A7LVWpFegqupUG3TstpZ6hhVumsaV1umW2IZEVIx6MBppXvGj9HL1Xda2j10DsKc7Gim5MsZX0203vw9Cf7CDPGLoYxrymhTHJ7dOqR4vUCezd5nB-NoA8QlG84Yk1wrJQr69B_0Mi4plPsKJQTltWx0oZ78udLdLr8-qABsBVyKOSfo7xBKzE0LzNoCU1pgfrbA0CLiqygXOAyQfmf_R_UDG2m2vQ
Cites_doi 10.1016/j.medengphy.2019.11.007
10.1109/CVPRW.2008.4562996
10.1016/j.jbiomech.2016.10.021
10.1038/s41592-019-0686-2
10.1016/j.cmpb.2017.09.012
10.1080/10255842.2019.1577828
10.1109/TBME.2014.2368362
10.1007/s10237-020-01398-1
10.1007/s10439-022-03074-0
10.1016/j.jse.2017.07.026
10.1007/s10439-019-02354-6
10.1007/s10237-020-01367-8
10.1109/EMBC.2017.8037198
10.5555/1953048.2078195
10.1016/S0021-9290(97)00101-2
10.1201/9780203009765
10.1115/1.4047664
10.1016/j.medengphy.2021.07.005
10.1006/cviu.1995.1004
10.25827/5s8c-n515
10.1016/j.jbiomech.2004.05.042
10.1007/s10237-021-01533-6
10.1002/rcs.2503
10.1371/journal.pone.0205628
10.1007/s11042-023-17167-y
10.1016/j.gaitpost.2008.07.012
10.1016/j.media.2011.04.001
10.1016/j.media.2009.05.004
10.1016/j.mri.2012.05.001
10.1016/j.gaitpost.2020.02.010
10.1109/TBME.2006.886619
ContentType Journal Article
Copyright The Author(s) 2025 corrected publication 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025, corrected publication 2025 2025
Copyright_xml – notice: The Author(s) 2025 corrected publication 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025, corrected publication 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
5PM
DOI 10.1007/s10439-025-03768-1
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
Materials Research Database
ProQuest Computer Science Collection
ProQuest Health & Medical Complete (Alumni)
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
Materials Research Database
Civil Engineering Abstracts
Aluminium Industry Abstracts
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
Electronics & Communications Abstracts
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
ProQuest Health & Medical Complete (Alumni)
Ceramic Abstracts
Materials Business File
METADEX
Biotechnology and BioEngineering Abstracts
Computer and Information Systems Abstracts Professional
Aerospace Database
Copper Technical Reference Library
Engineered Materials Abstracts
Biotechnology Research Abstracts
Solid State and Superconductivity Abstracts
Engineering Research Database
Corrosion Abstracts
Advanced Technologies Database with Aerospace
ANTE: Abstracts in New Technology & Engineering
MEDLINE - Academic
DatabaseTitleList
MEDLINE - Academic
MEDLINE
Materials Research Database
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
EISSN 1573-9686
EndPage 2250
ExternalDocumentID PMC12391217
40537592
10_1007_s10439_025_03768_1
Genre Journal Article
GrantInformation_xml – fundername: Universidade de Lisboa (UL)
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: 10.54499/UIDB/50022/2020
  funderid: http://dx.doi.org/10.13039/501100001871
– fundername: Fundação para a Ciência e a Tecnologia
  grantid: 10.54499/UIDB/50022/2020
GroupedDBID ---
-DZ
-Y2
-~C
-~X
.86
.GJ
.VR
06C
06D
0R~
0VY
199
1N0
1SB
2.D
203
23M
28-
29~
2J2
2JN
2JY
2KG
2KM
2LR
2P1
2VQ
2~H
30V
3SX
4.4
406
408
409
40D
40E
53G
5GY
5QI
5RE
5VS
67N
67Z
6J9
6NX
78A
7X7
85S
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8TC
8UJ
95-
95.
95~
96X
AAAVM
AABHQ
AACDK
AAHNG
AAIAL
AAJBT
AAJKR
AANXM
AANZL
AAPKM
AARHV
AARTL
AASML
AATNV
AATVU
AAUYE
AAWCG
AAYIU
AAYQN
AAYTO
AAYZH
ABAKF
ABBBX
ABBRH
ABBXA
ABDBE
ABDZT
ABECU
ABFSG
ABFTV
ABHLI
ABHQN
ABIPD
ABJCF
ABJNI
ABJOX
ABKCH
ABKTR
ABMNI
ABMQK
ABNWP
ABPLI
ABQBU
ABQSL
ABRTQ
ABSXP
ABTEG
ABTHY
ABTKH
ABTMW
ABULA
ABUWG
ABWNU
ABXPI
ACAOD
ACBXY
ACDTI
ACGFO
ACGFS
ACHSB
ACHXU
ACIHN
ACIWK
ACKNC
ACMDZ
ACMLO
ACOKC
ACOMO
ACPIV
ACPRK
ACREN
ACSTC
ACZOJ
ADBBV
ADHHG
ADHIR
ADHKG
ADIMF
ADJJI
ADKNI
ADKPE
ADMLS
ADRFC
ADTPH
ADURQ
ADYFF
ADYOE
ADYPR
ADZKW
AEAQA
AEBTG
AEFIE
AEFQL
AEGAL
AEGNC
AEJHL
AEJRE
AEKMD
AEMSY
AENEX
AEOHA
AEPYU
AESKC
AETLH
AEUYN
AEVLU
AEXYK
AEZWR
AFBBN
AFDZB
AFEXP
AFGCZ
AFHIU
AFKRA
AFLOW
AFOHR
AFQWF
AFRAH
AFWTZ
AFYQB
AFZKB
AGAYW
AGDGC
AGGDS
AGJBK
AGMZJ
AGQEE
AGQMX
AGQPQ
AGRTI
AGWIL
AGWZB
AGYKE
AHAVH
AHBYD
AHIZS
AHKAY
AHMBA
AHPBZ
AHSBF
AHWEU
AHYZX
AI.
AIAKS
AIGIU
AIIXL
AILAN
AITGF
AIXLP
AJBLW
AJRNO
AJZVZ
AKMHD
ALMA_UNASSIGNED_HOLDINGS
ALWAN
AMKLP
AMTXH
AMXSW
AMYLF
AMYQR
AOCGG
ARAPS
ARMRJ
ASPBG
ATHPR
AVWKF
AXYYD
AYFIA
AZFZN
B-.
BA0
BBNVY
BBWZM
BDATZ
BENPR
BGLVJ
BGNMA
BHPHI
BPHCQ
BSONS
BVXVI
C6C
CAG
CCPQU
COF
CS3
CSCUP
DDRTE
DL5
DNIVK
DPUIP
EBD
EBLON
EBS
EIOEI
EJD
EMOBN
EN4
EPAXT
ESBYG
F5P
FEDTE
FERAY
FFXSO
FIGPU
FINBP
FNLPD
FRRFC
FSGXE
FWDCC
FYUFA
G-Y
G-Z
GGCAI
GGRSB
GJIRD
GNWQR
GQ7
GQ8
GXS
H13
HCIFZ
HF~
HG5
HG6
HMCUK
HMJXF
HQYDN
HRMNR
HVGLF
HZ~
I-F
I09
IHE
IJ-
IKXTQ
IMOTQ
IWAJR
IXC
IXD
IXE
IZIGR
IZQ
I~X
I~Z
J-C
J0Z
JBSCW
JCJTX
JZLTJ
KDC
KOV
KOW
KPH
L6V
L7B
LAK
LK8
LLZTM
M1P
M4Y
M7P
M7S
MA-
MK~
ML~
N2Q
NB0
NDZJH
NPVJJ
NQJWS
NU0
O9-
O93
O9G
O9I
O9J
OAM
OVD
P19
P2P
P62
PF0
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PT4
PT5
PTHSS
PUEGO
Q2X
QOK
QOR
QOS
R4E
R89
R9I
RHV
RNI
RNS
ROL
RPX
RRX
RSV
RZC
RZE
RZK
S16
S1Z
S26
S27
S28
S3A
S3B
SAP
SBL
SBY
SCLPG
SDH
SDM
SHX
SISQX
SJYHP
SNE
SNPRN
SNX
SOHCF
SOJ
SPISZ
SRMVM
SSLCW
SSXJD
STPWE
SV3
SZN
T13
T16
TEORI
TN5
TSG
TSK
TSV
TUC
TUS
U2A
U9L
UG4
UKHRP
UKR
UOJIU
UTJUX
UZXMN
VC2
VFIZW
VH1
W23
W48
WH7
WJK
WK6
WK8
YLTOR
Z45
ZGI
ZMTXR
ZOVNA
ZY4
~EX
~KM
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QF
7QO
7QQ
7SC
7SE
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
F28
FR3
H8D
H8G
JG9
JQ2
K9.
KR7
L7M
L~C
L~D
P64
7X8
ACMFV
ALIPV
5PM
ID FETCH-LOGICAL-c428t-edbbcb4237e6b9980f6ec5148b7b25ca1c2189d77c5a29b0a204682edec989f23
IEDL.DBID U2A
ISSN 0090-6964
1573-9686
IngestDate Sat Aug 30 05:11:30 EDT 2025
Fri Jul 11 17:03:38 EDT 2025
Fri Aug 29 04:49:04 EDT 2025
Wed Sep 03 02:15:48 EDT 2025
Wed Sep 03 16:38:23 EDT 2025
Thu Aug 28 04:21:40 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 9
Keywords Statistical shape model
Scapula
Computational modeling
Subject-specific
Bone landmark prediction
3D shape reconstruction
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-edbbcb4237e6b9980f6ec5148b7b25ca1c2189d77c5a29b0a204682edec989f23
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
Associate Editor Joel Stitzel oversaw the review of this article.
ORCID 0000-0003-1160-7302
0000-0001-9034-8956
OpenAccessLink https://link.springer.com/10.1007/s10439-025-03768-1
PMID 40537592
PQID 3244135679
PQPubID 54090
PageCount 12
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12391217
proquest_miscellaneous_3222639884
proquest_journals_3244135679
pubmed_primary_40537592
crossref_primary_10_1007_s10439_025_03768_1
springer_journals_10_1007_s10439_025_03768_1
PublicationCentury 2000
PublicationDate 20250900
PublicationDateYYYYMMDD 2025-09-01
PublicationDate_xml – month: 9
  year: 2025
  text: 20250900
PublicationDecade 2020
PublicationPlace Cham
PublicationPlace_xml – name: Cham
– name: United States
– name: New York
PublicationSubtitle The Journal of the Biomedical Engineering Society
PublicationTitle Annals of biomedical engineering
PublicationTitleAbbrev Ann Biomed Eng
PublicationTitleAlternate Ann Biomed Eng
PublicationYear 2025
Publisher Springer International Publishing
Springer Nature B.V
Publisher_xml – name: Springer International Publishing
– name: Springer Nature B.V
References A Patil (3768_CR19) 2023; 19
Y Huang (3768_CR10) 2022; 21
P Virtanen (3768_CR29) 2020; 17
C van Andel (3768_CR28) 2009; 29
K Plessers (3768_CR21) 2018; 27
TF Cootes (3768_CR5) 1995; 61
G Valente (3768_CR27) 2017; 152
F Pedregosa (3768_CR20) 2011
A Fedorov (3768_CR7) 2012; 30
N Baka (3768_CR3) 2011; 15
NM Lalonde (3768_CR12) 2007; 54
P Soltanmohammadi (3768_CR25) 2020; 142
D Nolte (3768_CR18) 2020; 77
A Asvadi (3768_CR1) 2021; 95
T Heimann (3768_CR9) 2009; 13
CGM Meskers (3768_CR15) 1997; 31
AF Gad (3768_CR8) 2024; 83
G Wu (3768_CR30) 2005; 38
BA Killen (3768_CR11) 2021; 20
A Salhi (3768_CR23) 2020; 76
EK Suwarganda (3768_CR26) 2019; 14
3768_CR17
EA Audenaert (3768_CR2) 2019; 22
3768_CR14
3768_CR6
3768_CR13
J Zhang (3768_CR31) 2016; 49
S Chokhandre (3768_CR4) 2023; 51
A Salhi (3768_CR22) 2020; 48
T Mutsvangwa (3768_CR16) 2015; 62
DJ Saxby (3768_CR24) 2020; 19
References_xml – volume: 76
  start-page: 88
  year: 2020
  ident: 3768_CR23
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2019.11.007
– ident: 3768_CR14
  doi: 10.1109/CVPRW.2008.4562996
– volume: 49
  start-page: 3875
  year: 2016
  ident: 3768_CR31
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2016.10.021
– volume: 17
  start-page: 261
  year: 2020
  ident: 3768_CR29
  publication-title: Nat. Methods
  doi: 10.1038/s41592-019-0686-2
– volume: 152
  start-page: 85
  year: 2017
  ident: 3768_CR27
  publication-title: Comput. Methods Programs Biomed.
  doi: 10.1016/j.cmpb.2017.09.012
– volume: 22
  start-page: 644
  year: 2019
  ident: 3768_CR2
  publication-title: Comput. Methods Biomech. Biomed. Eng.
  doi: 10.1080/10255842.2019.1577828
– volume: 62
  start-page: 1098
  year: 2015
  ident: 3768_CR16
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2014.2368362
– volume: 20
  start-page: 521
  year: 2021
  ident: 3768_CR11
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-020-01398-1
– volume: 51
  start-page: 10
  year: 2023
  ident: 3768_CR4
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-022-03074-0
– volume: 27
  start-page: 160
  year: 2018
  ident: 3768_CR21
  publication-title: J. Shoulder Elbow Surg.
  doi: 10.1016/j.jse.2017.07.026
– volume: 48
  start-page: 367
  year: 2020
  ident: 3768_CR22
  publication-title: Ann. Biomed. Eng.
  doi: 10.1007/s10439-019-02354-6
– volume: 19
  start-page: 1169
  year: 2020
  ident: 3768_CR24
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-020-01367-8
– ident: 3768_CR17
  doi: 10.1109/EMBC.2017.8037198
– year: 2011
  ident: 3768_CR20
  publication-title: J. Mach. Learn. Res.
  doi: 10.5555/1953048.2078195
– volume: 31
  start-page: 93
  year: 1997
  ident: 3768_CR15
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(97)00101-2
– ident: 3768_CR13
  doi: 10.1201/9780203009765
– volume: 142
  issue: 12
  year: 2020
  ident: 3768_CR25
  publication-title: J. Biomech. Eng.
  doi: 10.1115/1.4047664
– volume: 95
  start-page: 30
  year: 2021
  ident: 3768_CR1
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2021.07.005
– volume: 61
  start-page: 38
  year: 1995
  ident: 3768_CR5
  publication-title: Comput. Vis. Image Underst.
  doi: 10.1006/cviu.1995.1004
– ident: 3768_CR6
  doi: 10.25827/5s8c-n515
– volume: 38
  start-page: 981
  year: 2005
  ident: 3768_CR30
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.05.042
– volume: 21
  start-page: 249
  year: 2022
  ident: 3768_CR10
  publication-title: Biomech. Model. Mechanobiol.
  doi: 10.1007/s10237-021-01533-6
– volume: 19
  issue: 3
  year: 2023
  ident: 3768_CR19
  publication-title: Int. J. Med. Robot.
  doi: 10.1002/rcs.2503
– volume: 14
  year: 2019
  ident: 3768_CR26
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0205628
– volume: 83
  start-page: 58029
  year: 2024
  ident: 3768_CR8
  publication-title: Multimed. Tools Appl.
  doi: 10.1007/s11042-023-17167-y
– volume: 29
  start-page: 123
  year: 2009
  ident: 3768_CR28
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2008.07.012
– volume: 15
  start-page: 840
  year: 2011
  ident: 3768_CR3
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2011.04.001
– volume: 13
  start-page: 543
  year: 2009
  ident: 3768_CR9
  publication-title: Med. Image Anal.
  doi: 10.1016/j.media.2009.05.004
– volume: 30
  start-page: 1323
  year: 2012
  ident: 3768_CR7
  publication-title: Magn. Reson. Imaging
  doi: 10.1016/j.mri.2012.05.001
– volume: 77
  start-page: 269
  year: 2020
  ident: 3768_CR18
  publication-title: Gait Posture
  doi: 10.1016/j.gaitpost.2020.02.010
– volume: 54
  start-page: 11
  year: 2007
  ident: 3768_CR12
  publication-title: IEEE Trans. Biomed. Eng.
  doi: 10.1109/TBME.2006.886619
SSID ssj0011835
Score 2.4560091
Snippet Purpose The aim of this study was to develop an algorithm for the reconstruction of scapula bone shapes from skin landmarks, using a statistical shape model...
The aim of this study was to develop an algorithm for the reconstruction of scapula bone shapes from skin landmarks, using a statistical shape model (SSM). A...
PurposeThe aim of this study was to develop an algorithm for the reconstruction of scapula bone shapes from skin landmarks, using a statistical shape model...
The aim of this study was to develop an algorithm for the reconstruction of scapula bone shapes from skin landmarks, using a statistical shape model...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 2239
SubjectTerms Adult
Age
Aged
Algorithms
Anatomic Landmarks
Biochemistry
Biological and Medical Physics
Biomechanics
Biomedical and Life Sciences
Biomedical Engineering and Bioengineering
Biomedicine
Biophysics
Classical Mechanics
Data acquisition
Datasets
Digitization
Female
Humans
Laboratories
Linear Models
Male
Mathematical models
Medical imaging
Middle Aged
Models, Anatomic
Models, Statistical
Motion capture
Original
Original Article
Reconstruction
Regression analysis
Regression models
Scapula
Scapula - anatomy & histology
Scapula - diagnostic imaging
Skin
Statistical analysis
Statistical models
Title Reconstruction of Scapula Bone Shapes from Digitized Skin Landmarks Using Statistical Shape Modeling and Multiple Linear Regression
URI https://link.springer.com/article/10.1007/s10439-025-03768-1
https://www.ncbi.nlm.nih.gov/pubmed/40537592
https://www.proquest.com/docview/3244135679
https://www.proquest.com/docview/3222639884
https://pubmed.ncbi.nlm.nih.gov/PMC12391217
Volume 53
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9NAEB7RVkJwQFBepiVaJG5gyd7urr3HJG2ogPRAiVRO1no9biOEU5Fw4cofZ2ZtJw2FAycfvH6sZ8bzfZoXwGs01qGsk9iT846V4fiu0zpOXIa-wtopx7XD0zNzOlPvL_RFVxS27LPd-5Bk-FPfKHYj5xnz-NWErIK4zw7saebupMUzOVzHDkhJ27kFloiRNaorlfn7Pbbd0S2MeTtV8o94aXBDk4fwoMOPYtgK_BHcwWYf7t_oKrgPd6ddvPwx_GJ2uekRKxa1OPeOR3aJ0aJBcX7lrnEpuMZEHM8v56v5T6wED-QSH11TfXPfvy5FyCoQjEpDU2d6erhM8Bg1LmYXtFJMu8REQeSWjEd8wss2w7Z5ArPJyefxadyNXYg9cZFVjFVZ-pLTZdCUxMaS2qAnXJWXWSm1d6knWGCrLPPaSVsmThLHziVW6G1ua3n0FHYb2sNzEHliq1ShwtRnioBA6eraVE4lnKvidRbBm_7rF9dtd41i00eZZVWQrIogqyKN4LAXUNFZ2rIgQEh-WJvMRvBqfZpshAMfrsHFD15DIPPI5rmK4Fkrz_XjFDe00VZGkG9Jer2A-29vn2nmV6EPNzl9mxKli-BtrxSb9_r3Nl783_IDuCeDwnJe2yHsksrgSwJCq3IAe8PJaHTGx3dfPpwMYGdsxoNgDb8BkrMGbQ
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9RADLX6IdFyqKClJbSAkbhBpCSdTDJHWKi2sNsDbaXeopmJ066qZit2uXDlj2Mn2V22LYeex8lk4rHsJ9vPAO9JG0tJFYWenXeotOR3bZqGkc3Il1RZZaV3eHii--fq20V60dHkSC_Mnfy9tLixywxl6GrEtsCIZxXWFSNlKd_r6d48Y8BXs51WYBgOGa26BpmH37HshO5FlvcLJO9kSRvnc_QMtrqoET-1an4OK1Rvw9N_uAS34cmwy5LvwB_BlAtmWBxXeOqtDOrCz-Oa8PTK3tIEpbMEv4wuR9PRbypRxnDhwNbljf15PcGmlgAlFm2onHn35jGU4WnSwo4sicOuHBEZ0rLJ4A-6bOtq6xdwfvT1rNcPu2ELoWcEMg2pdM47KZIh7RiDRZUmz9FU7jKXpN7GnoMBU2aZT21iXGQTRtZ5QiV5k5sqOdyFtZrP8BIwj0wZK1IU-0yx-3e2qnRpVSQVKj7NAvgw-_vFbcupUSzYk0VXBeuqaHRVxAEczBRUdPY1KTgMZO-b6swE8G6-zJYh6Q5b0_iXyHBoeWjyXAWw1-pzvp0SGpvUJAHkS5qeCwjr9vJKPbpq2LfZ1ZuYgVwAH2eXYvFd_z_Gq8eJv4WN_tlwUAyOT77vw2bSXF6pbDuANb4-9JpDoal709jAX7-5AVI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9RADLZKK1VwQG15BVoYJG4QNUknk8yRbrsq0K0QpVJv0TycdoWaXXWXC1f-OPYk-6Jw6DmTTBKP5e-T7c8A71Bpg1mdxI6CdywV53dNnseJKdB5rI003Ds8OFMnF_LzZX651MUfqt1nKcm2p4FVmprp_tjX-0uNbxRIYx7FmpCHEA96ABvEVEKitqd68zwCHdh2hoEmkqSV7Npm_v2M1dB0B2_eLZv8K3caQlJ_Cx53WFJ8bI2_DWvY7MCjJYXBHdgcdLnzJ_CbmeZCL1aManHuDI_vEoejBsX5tRnjRHC_iTgaXg2nw1_oBQ_nEqem8Tfm9sdEhAoDwQg1CDzT7uE2wSPVuLFd0Eox6IoUBRFdciTxDa_aatvmKVz0j7_3TuJuBEPsiJdMY_TWOsulM6gsMbOkVugIY5W2sFnuTOoIImhfFC43mbaJyYhvlxl6dLrUdXbwDNYb-oYXIMpE-1SixNQVkkCBNXWtvJEJ1624vIjg_ezvV-NWaaNaaCqzrSqyVRVsVaUR7M4MVHVeN6kIHFJMzlWhI3g7v0z-wkkQ0-DoJ68hwHmgy1JG8Ly153w7yeI2uc4iKFcsPV_AWtyrV5rhddDkJgCgU6J3EXyYHYrFe_3_M17eb_kb2Px61K9OP519eQUPs3B2udxtF9bp9OAe4aOpfR1c4A8iFAmZ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Reconstruction+of+Scapula+Bone+Shapes+from+Digitized+Skin+Landmarks+Using+Statistical+Shape+Modeling+and+Multiple+Linear+Regression&rft.jtitle=Annals+of+biomedical+engineering&rft.au=Marques%2C+Augusto&rft.au=Folgado%2C+Jo%C3%A3o&rft.au=Quental%2C+Carlos&rft.date=2025-09-01&rft.pub=Springer+International+Publishing&rft.issn=0090-6964&rft.eissn=1573-9686&rft.volume=53&rft.issue=9&rft.spage=2239&rft.epage=2250&rft_id=info:doi/10.1007%2Fs10439-025-03768-1&rft.externalDocID=10_1007_s10439_025_03768_1
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0090-6964&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0090-6964&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0090-6964&client=summon