A framework for evaluating the chemical knowledge and reasoning abilities of large language models against the expertise of chemists

Large language models (LLMs) have gained widespread interest owing to their ability to process human language and perform tasks on which they have not been explicitly trained. However, we possess only a limited systematic understanding of the chemical capabilities of LLMs, which would be required to...

Full description

Saved in:
Bibliographic Details
Published inNature chemistry Vol. 17; no. 7; pp. 1027 - 1034
Main Authors Mirza, Adrian, Alampara, Nawaf, Kunchapu, Sreekanth, Ríos-García, Martiño, Emoekabu, Benedict, Krishnan, Aswanth, Gupta, Tanya, Schilling-Wilhelmi, Mara, Okereke, Macjonathan, Aneesh, Anagha, Asgari, Mehrdad, Eberhardt, Juliane, Elahi, Amir Mohammad, Elbeheiry, Hani M., Gil, María Victoria, Glaubitz, Christina, Greiner, Maximilian, Holick, Caroline T., Hoffmann, Tim, Ibrahim, Abdelrahman, Klepsch, Lea C., Köster, Yannik, Kreth, Fabian Alexander, Meyer, Jakob, Miret, Santiago, Peschel, Jan Matthias, Ringleb, Michael, Roesner, Nicole C., Schreiber, Johanna, Schubert, Ulrich S., Stafast, Leanne M., Wonanke, A. D. Dinga, Pieler, Michael, Schwaller, Philippe, Jablonka, Kevin Maik
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 01.07.2025
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Large language models (LLMs) have gained widespread interest owing to their ability to process human language and perform tasks on which they have not been explicitly trained. However, we possess only a limited systematic understanding of the chemical capabilities of LLMs, which would be required to improve models and mitigate potential harm. Here we introduce ChemBench, an automated framework for evaluating the chemical knowledge and reasoning abilities of state-of-the-art LLMs against the expertise of chemists. We curated more than 2,700 question–answer pairs, evaluated leading open- and closed-source LLMs and found that the best models, on average, outperformed the best human chemists in our study. However, the models struggle with some basic tasks and provide overconfident predictions. These findings reveal LLMs’ impressive chemical capabilities while emphasizing the need for further research to improve their safety and usefulness. They also suggest adapting chemistry education and show the value of benchmarking frameworks for evaluating LLMs in specific domains. Large language models are increasingly used for diverse tasks, yet we have limited insight into their understanding of chemistry. Now ChemBench—a benchmarking framework containing more than 2,700 question–answer pairs—has been developed to assess their chemical knowledge and reasoning, revealing that the best models surpass human chemists on average but struggle with some basic tasks.
AbstractList Large language models (LLMs) have gained widespread interest owing to their ability to process human language and perform tasks on which they have not been explicitly trained. However, we possess only a limited systematic understanding of the chemical capabilities of LLMs, which would be required to improve models and mitigate potential harm. Here we introduce ChemBench, an automated framework for evaluating the chemical knowledge and reasoning abilities of state-of-the-art LLMs against the expertise of chemists. We curated more than 2,700 question–answer pairs, evaluated leading open- and closed-source LLMs and found that the best models, on average, outperformed the best human chemists in our study. However, the models struggle with some basic tasks and provide overconfident predictions. These findings reveal LLMs’ impressive chemical capabilities while emphasizing the need for further research to improve their safety and usefulness. They also suggest adapting chemistry education and show the value of benchmarking frameworks for evaluating LLMs in specific domains. Large language models are increasingly used for diverse tasks, yet we have limited insight into their understanding of chemistry. Now ChemBench—a benchmarking framework containing more than 2,700 question–answer pairs—has been developed to assess their chemical knowledge and reasoning, revealing that the best models surpass human chemists on average but struggle with some basic tasks.
Large language models (LLMs) have gained widespread interest owing to their ability to process human language and perform tasks on which they have not been explicitly trained. However, we possess only a limited systematic understanding of the chemical capabilities of LLMs, which would be required to improve models and mitigate potential harm. Here we introduce ChemBench, an automated framework for evaluating the chemical knowledge and reasoning abilities of state-of-the-art LLMs against the expertise of chemists. We curated more than 2,700 question-answer pairs, evaluated leading open- and closed-source LLMs and found that the best models, on average, outperformed the best human chemists in our study. However, the models struggle with some basic tasks and provide overconfident predictions. These findings reveal LLMs' impressive chemical capabilities while emphasizing the need for further research to improve their safety and usefulness. They also suggest adapting chemistry education and show the value of benchmarking frameworks for evaluating LLMs in specific domains.Large language models (LLMs) have gained widespread interest owing to their ability to process human language and perform tasks on which they have not been explicitly trained. However, we possess only a limited systematic understanding of the chemical capabilities of LLMs, which would be required to improve models and mitigate potential harm. Here we introduce ChemBench, an automated framework for evaluating the chemical knowledge and reasoning abilities of state-of-the-art LLMs against the expertise of chemists. We curated more than 2,700 question-answer pairs, evaluated leading open- and closed-source LLMs and found that the best models, on average, outperformed the best human chemists in our study. However, the models struggle with some basic tasks and provide overconfident predictions. These findings reveal LLMs' impressive chemical capabilities while emphasizing the need for further research to improve their safety and usefulness. They also suggest adapting chemistry education and show the value of benchmarking frameworks for evaluating LLMs in specific domains.
Large language models (LLMs) have gained widespread interest owing to their ability to process human language and perform tasks on which they have not been explicitly trained. However, we possess only a limited systematic understanding of the chemical capabilities of LLMs, which would be required to improve models and mitigate potential harm. Here we introduce ChemBench, an automated framework for evaluating the chemical knowledge and reasoning abilities of state-of-the-art LLMs against the expertise of chemists. We curated more than 2,700 question-answer pairs, evaluated leading open- and closed-source LLMs and found that the best models, on average, outperformed the best human chemists in our study. However, the models struggle with some basic tasks and provide overconfident predictions. These findings reveal LLMs' impressive chemical capabilities while emphasizing the need for further research to improve their safety and usefulness. They also suggest adapting chemistry education and show the value of benchmarking frameworks for evaluating LLMs in specific domains.
Large language models (LLMs) have gained widespread interest owing to their ability to process human language and perform tasks on which they have not been explicitly trained. However, we possess only a limited systematic understanding of the chemical capabilities of LLMs, which would be required to improve models and mitigate potential harm. Here we introduce ChemBench, an automated framework for evaluating the chemical knowledge and reasoning abilities of state-of-the-art LLMs against the expertise of chemists. We curated more than 2,700 question–answer pairs, evaluated leading open- and closed-source LLMs and found that the best models, on average, outperformed the best human chemists in our study. However, the models struggle with some basic tasks and provide overconfident predictions. These findings reveal LLMs’ impressive chemical capabilities while emphasizing the need for further research to improve their safety and usefulness. They also suggest adapting chemistry education and show the value of benchmarking frameworks for evaluating LLMs in specific domains.Large language models are increasingly used for diverse tasks, yet we have limited insight into their understanding of chemistry. Now ChemBench—a benchmarking framework containing more than 2,700 question–answer pairs—has been developed to assess their chemical knowledge and reasoning, revealing that the best models surpass human chemists on average but struggle with some basic tasks.
Author Gil, María Victoria
Ringleb, Michael
Schubert, Ulrich S.
Asgari, Mehrdad
Jablonka, Kevin Maik
Eberhardt, Juliane
Mirza, Adrian
Pieler, Michael
Emoekabu, Benedict
Schilling-Wilhelmi, Mara
Schreiber, Johanna
Glaubitz, Christina
Roesner, Nicole C.
Stafast, Leanne M.
Krishnan, Aswanth
Kunchapu, Sreekanth
Alampara, Nawaf
Gupta, Tanya
Ríos-García, Martiño
Okereke, Macjonathan
Greiner, Maximilian
Kreth, Fabian Alexander
Holick, Caroline T.
Elahi, Amir Mohammad
Meyer, Jakob
Miret, Santiago
Elbeheiry, Hani M.
Aneesh, Anagha
Klepsch, Lea C.
Peschel, Jan Matthias
Wonanke, A. D. Dinga
Ibrahim, Abdelrahman
Schwaller, Philippe
Hoffmann, Tim
Köster, Yannik
Author_xml – sequence: 1
  givenname: Adrian
  orcidid: 0000-0003-4033-4235
  surname: Mirza
  fullname: Mirza, Adrian
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena)
– sequence: 2
  givenname: Nawaf
  orcidid: 0009-0001-7697-7315
  surname: Alampara
  fullname: Alampara, Nawaf
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena
– sequence: 3
  givenname: Sreekanth
  orcidid: 0009-0003-5752-0154
  surname: Kunchapu
  fullname: Kunchapu, Sreekanth
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena
– sequence: 4
  givenname: Martiño
  orcidid: 0000-0003-1507-4048
  surname: Ríos-García
  fullname: Ríos-García, Martiño
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Institute of Carbon Science and Technology, CSIC
– sequence: 5
  givenname: Benedict
  orcidid: 0009-0001-1860-8132
  surname: Emoekabu
  fullname: Emoekabu, Benedict
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena
– sequence: 6
  givenname: Aswanth
  orcidid: 0009-0008-2703-5613
  surname: Krishnan
  fullname: Krishnan, Aswanth
  organization: QpiVolta Technologies Pvt Ltd
– sequence: 7
  givenname: Tanya
  orcidid: 0009-0001-9523-3290
  surname: Gupta
  fullname: Gupta, Tanya
  organization: Laboratory of Artificial Chemical Intelligence, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, National Centre of Competence in Research Catalysis, École Polytechnique Fédérale de Lausanne
– sequence: 8
  givenname: Mara
  orcidid: 0009-0007-4392-5918
  surname: Schilling-Wilhelmi
  fullname: Schilling-Wilhelmi, Mara
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena
– sequence: 9
  givenname: Macjonathan
  orcidid: 0009-0007-1013-0502
  surname: Okereke
  fullname: Okereke, Macjonathan
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena
– sequence: 10
  givenname: Anagha
  orcidid: 0009-0001-0275-2586
  surname: Aneesh
  fullname: Aneesh, Anagha
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena
– sequence: 11
  givenname: Mehrdad
  orcidid: 0000-0002-5427-1610
  surname: Asgari
  fullname: Asgari, Mehrdad
  organization: Department of Chemical Engineering and Biotechnology, University of Cambridge
– sequence: 12
  givenname: Juliane
  orcidid: 0009-0000-3991-0704
  surname: Eberhardt
  fullname: Eberhardt, Juliane
  organization: Macromolecular Chemistry, University of Bayreuth
– sequence: 13
  givenname: Amir Mohammad
  orcidid: 0009-0001-5907-101X
  surname: Elahi
  fullname: Elahi, Amir Mohammad
  organization: Laboratory of Molecular Simulation, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne
– sequence: 14
  givenname: Hani M.
  orcidid: 0000-0002-5205-2852
  surname: Elbeheiry
  fullname: Elbeheiry, Hani M.
  organization: Institute for Inorganic and Analytical Chemistry, Friedrich Schiller University Jena
– sequence: 15
  givenname: María Victoria
  orcidid: 0000-0002-2258-3011
  surname: Gil
  fullname: Gil, María Victoria
  organization: Institute of Carbon Science and Technology, CSIC
– sequence: 16
  givenname: Christina
  surname: Glaubitz
  fullname: Glaubitz, Christina
– sequence: 17
  givenname: Maximilian
  surname: Greiner
  fullname: Greiner, Maximilian
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena
– sequence: 18
  givenname: Caroline T.
  orcidid: 0009-0000-1724-2725
  surname: Holick
  fullname: Holick, Caroline T.
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena Center for Soft Matter, Friedrich Schiller University Jena
– sequence: 19
  givenname: Tim
  orcidid: 0009-0004-0230-6115
  surname: Hoffmann
  fullname: Hoffmann, Tim
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena Center for Soft Matter, Friedrich Schiller University Jena
– sequence: 20
  givenname: Abdelrahman
  orcidid: 0009-0003-1460-4710
  surname: Ibrahim
  fullname: Ibrahim, Abdelrahman
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena
– sequence: 21
  givenname: Lea C.
  orcidid: 0009-0009-3849-1670
  surname: Klepsch
  fullname: Klepsch, Lea C.
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena Center for Soft Matter, Friedrich Schiller University Jena
– sequence: 22
  givenname: Yannik
  orcidid: 0000-0002-9125-3067
  surname: Köster
  fullname: Köster, Yannik
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena Center for Soft Matter, Friedrich Schiller University Jena
– sequence: 23
  givenname: Fabian Alexander
  orcidid: 0000-0002-5968-8706
  surname: Kreth
  fullname: Kreth, Fabian Alexander
  organization: Institute for Technical Chemistry and Environmental Chemistry, Friedrich Schiller University Jena, Center for Energy and Environmental Chemistry Jena, Friedrich Schiller University Jena
– sequence: 24
  givenname: Jakob
  surname: Meyer
  fullname: Meyer, Jakob
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena
– sequence: 25
  givenname: Santiago
  orcidid: 0000-0002-5121-3853
  surname: Miret
  fullname: Miret, Santiago
  organization: Intel Labs
– sequence: 26
  givenname: Jan Matthias
  orcidid: 0009-0002-4787-2757
  surname: Peschel
  fullname: Peschel, Jan Matthias
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena
– sequence: 27
  givenname: Michael
  orcidid: 0000-0002-7320-8529
  surname: Ringleb
  fullname: Ringleb, Michael
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena Center for Soft Matter, Friedrich Schiller University Jena
– sequence: 28
  givenname: Nicole C.
  orcidid: 0000-0002-5133-775X
  surname: Roesner
  fullname: Roesner, Nicole C.
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena Center for Soft Matter, Friedrich Schiller University Jena
– sequence: 29
  givenname: Johanna
  orcidid: 0009-0000-0991-8967
  surname: Schreiber
  fullname: Schreiber, Johanna
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena Center for Soft Matter, Friedrich Schiller University Jena
– sequence: 30
  givenname: Ulrich S.
  orcidid: 0000-0003-4978-4670
  surname: Schubert
  fullname: Schubert, Ulrich S.
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Jena Center for Soft Matter, Friedrich Schiller University Jena, Center for Energy and Environmental Chemistry Jena, Friedrich Schiller University Jena
– sequence: 31
  givenname: Leanne M.
  orcidid: 0009-0008-5604-261X
  surname: Stafast
  fullname: Stafast, Leanne M.
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Jena Center for Soft Matter, Friedrich Schiller University Jena
– sequence: 32
  givenname: A. D. Dinga
  orcidid: 0000-0002-9066-2715
  surname: Wonanke
  fullname: Wonanke, A. D. Dinga
  organization: Theoretical Chemistry, Technische Universität Dresden
– sequence: 33
  givenname: Michael
  orcidid: 0000-0001-9186-7045
  surname: Pieler
  fullname: Pieler, Michael
  organization: OpenBioML.org, Stability.AI
– sequence: 34
  givenname: Philippe
  orcidid: 0000-0003-3046-6576
  surname: Schwaller
  fullname: Schwaller, Philippe
  organization: Laboratory of Artificial Chemical Intelligence, Institut des Sciences et Ingénierie Chimiques, École Polytechnique Fédérale de Lausanne, National Centre of Competence in Research Catalysis, École Polytechnique Fédérale de Lausanne
– sequence: 35
  givenname: Kevin Maik
  orcidid: 0000-0003-4894-4660
  surname: Jablonka
  fullname: Jablonka, Kevin Maik
  email: mail@kjablonka.com
  organization: Laboratory of Organic and Macromolecular Chemistry, Friedrich Schiller University Jena, Helmholtz Institute for Polymers in Energy Applications Jena (HIPOLE Jena), Jena Center for Soft Matter, Friedrich Schiller University Jena, Center for Energy and Environmental Chemistry Jena, Friedrich Schiller University Jena
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40394186$$D View this record in MEDLINE/PubMed
BookMark eNp9kklvFDEQhS0URBb4AxyQJS5cGrx39wlFEZsUiQucLbe73OPEYw92dzLc-eF4ZsKwHDi5ZH_1qp78ztFJTBEQek7Ja0p496YIKmXbECYbQjsqm-0jdEZbKRvBRX9yrDk5Reel3BCiJKfqCToVhPeCduoM_bjELps13Kd8i13KGO5MWMzs44TnFWC7grW3JuDbmO4DjBNgE0ecwZQUd5AZfPCzh4KTw8HkCgQTp8XUYp1GCAWbyfhY5r0ebDeQZ19gh-_Fy1yeosfOhALPHs4L9PX9uy9XH5vrzx8-XV1eN1awbm5gIGxoW-GoU4aJjrajdc4q2xvK3NiKHiwoSYdWDn3PSMsJdNwx0_X1GgS_QG8PuptlWMNoIc7ZBL3Jfm3yd52M13-_RL_SU7rTlDGmOGdV4dWDQk7fFiizrgYshGoZ0lI0Z0QxroSUFX35D3qTlhyrv0ox1UnC2x314s-Vjrv8-qEKsANgcyolgzsilOhdDPQhBrrGQO9joLe1iR-aSoXjBPn37P90_QRQnbhL
Cites_doi 10.1039/D3DD00239J
10.48550/arXiv.2304.10510
10.18653/v1/2023.emnlp-main.468
10.48550/arXiv.2402.01439
10.26434/chemrxiv-2023-05v1b-v2
10.1038/s41524-020-00406-3
10.1038/s41586-023-06792-0
10.48550/arXiv.2311.15936
10.1371/journal.pdig.0000198
10.48550/arXiv.2312.07559
10.1093/bioinformatics/btae104
10.48550/arXiv.2303.12712
10.1039/D3DD00113J
10.1073/pnas.2322420121
10.1016/j.matt.2024.10.015
10.48550/arXiv.2108.07258
10.48550/arXiv.2303.08774
10.48550/arXiv.2403.05075
10.48550/arXiv.2304.05341
10.18653/v1/2023.acl-long.753
10.1038/s41467-024-45563-x
10.48550/arXiv.2409.13740
10.1038/s42256-024-00832-8
10.48550/arXiv.2402.05200
10.48550/arXiv.2305.05708
10.48550/arXiv.2209.07858
10.48550/arXiv.2406.17295
10.18653/v1/2023.acl-long.201
10.1039/D4CS00913D
10.48550/arXiv.2310.18233
10.1038/s42256-023-00740-3
10.48550/arXiv.2305.18365
10.1039/D3SC04610A
10.1039/D3DD00188A
10.1017/pan.2023.2
10.48550/arXiv.2311.07361
10.1038/s42256-022-00511-6
10.48550/arXiv.2211.09085
10.48550/arXiv.2402.06852
10.1038/s42256-023-00788-1
10.1038/s42256-022-00465-9
10.5281/zenodo.14010212
10.1039/C7SC02664A
10.48550/arXiv.2209.01712
10.1145/3442188.3445922
10.1016/j.ymeth.2024.01.004
10.1038/s41467-023-42242-1
10.48550/arXiv.2307.03718
10.48550/arXiv.2310.14029
10.48550/arXiv.2409.13989
10.48550/arXiv.2205.00445
10.48550/arXiv.2411.16736
10.1038/s41570-023-00502-0
10.18653/v1/2023.findings-emnlp.380
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: The Author(s) 2025. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
8FD
FR3
K9.
P64
7X8
5PM
DOI 10.1038/s41557-025-01815-x
DatabaseName Springer Nature OA Free Journals
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
Chemoreception Abstracts
Technology Research Database
Engineering Research Database
ProQuest Health & Medical Complete (Alumni)
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
ProQuest Health & Medical Complete (Alumni)
Chemoreception Abstracts
Engineering Research Database
Technology Research Database
Biotechnology and BioEngineering Abstracts
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
MEDLINE
CrossRef
ProQuest Health & Medical Complete (Alumni)
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature Link Open Access Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 3
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 1755-4349
EndPage 1034
ExternalDocumentID PMC12226332
40394186
10_1038_s41557_025_01815_x
Genre Journal Article
GeographicLocations United States--US
GeographicLocations_xml – name: United States--US
GrantInformation_xml – fundername: Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
  grantid: CNS2022-135474
  funderid: https://doi.org/10.13039/501100011033
– fundername: Helmholtz Association
  funderid: https://doi.org/10.13039/501100009318
– fundername: Fulbright Association
  funderid: https://doi.org/10.13039/501100010629
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: 497115849; 497115849
  funderid: https://doi.org/10.13039/501100001659
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
  grantid: 225147
  funderid: https://doi.org/10.13039/501100001711
– fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
  grantid: 101106377
  funderid: https://doi.org/10.13039/501100010661
– fundername: Carl-Zeiss-Stiftung (Carl Zeiss Foundation)
  funderid: https://doi.org/10.13039/501100007569
– fundername: Ministry of Economy and Competitiveness | Agencia Estatal de Investigación (Spanish Agencia Estatal de Investigación)
  grantid: CNS2022-135474
– fundername: Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
  grantid: 225147
– fundername: EC | Horizon 2020 Framework Programme (EU Framework Programme for Research and Innovation H2020)
  grantid: 101106377
– fundername: Deutsche Forschungsgemeinschaft (German Research Foundation)
  grantid: 497115849
GroupedDBID ---
0R~
123
29M
39C
4.4
53G
70F
7X7
88E
8AO
8FE
8FG
8FH
8FI
8FJ
8R4
8R5
AARCD
AAYZH
ABAWZ
ABDBF
ABFSG
ABJCF
ABJNI
ABLJU
ABNNU
ABUWG
ACBWK
ACGFS
ACIWK
ACPRK
ACRPL
ACSTC
ACUHS
ADBBV
ADNMO
AENEX
AEUYN
AEZWR
AFANA
AFBBN
AFHIU
AFKRA
AFSHS
AFWHJ
AGAYW
AGGDT
AGQPQ
AHMBA
AHOSX
AHSBF
AHWEU
AIBTJ
AIXLP
AIYXT
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALPWD
ARMCB
ASPBG
ATHPR
AVWKF
AXYYD
AZFZN
BBNVY
BENPR
BGLVJ
BHPHI
BKKNO
BPHCQ
BVXVI
C6C
CCPQU
CS3
D1I
DB5
DU5
EBS
EE.
EJD
EMOBN
ESX
EXGXG
F5P
FEDTE
FQGFK
FSGXE
FYUFA
HCIFZ
HMCUK
HVGLF
HZ~
KB.
L-9
LK8
M1P
M7P
ML-
NFIDA
NNMJJ
O9-
ODYON
P2P
PDBOC
PHGZM
PHGZT
PQQKQ
PROAC
PSQYO
Q2X
RNS
RNT
RNTTT
SHXYY
SIXXV
SNYQT
SOJ
SV3
TAOOD
TBHMF
TDRGL
TSG
TUS
UKHRP
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7QR
8FD
FR3
K9.
P64
7X8
5PM
ID FETCH-LOGICAL-c428t-eb02b774f1f6a24817dcffc6c9a12fd749ece651b75b9920730e83f2a89e65e43
IEDL.DBID C6C
ISSN 1755-4330
1755-4349
IngestDate Thu Aug 21 18:22:33 EDT 2025
Wed Jul 02 03:00:55 EDT 2025
Sat Aug 23 12:47:25 EDT 2025
Mon Jul 07 01:54:12 EDT 2025
Thu Jul 10 08:04:52 EDT 2025
Fri Jul 04 01:21:34 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 7
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-eb02b774f1f6a24817dcffc6c9a12fd749ece651b75b9920730e83f2a89e65e43
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0009-0007-4392-5918
0009-0009-3849-1670
0009-0000-1724-2725
0000-0003-4978-4670
0000-0003-3046-6576
0000-0002-7320-8529
0009-0008-5604-261X
0000-0002-5205-2852
0000-0002-5427-1610
0009-0008-2703-5613
0000-0002-2258-3011
0009-0003-1460-4710
0009-0000-3991-0704
0000-0002-5968-8706
0009-0007-1013-0502
0009-0000-0991-8967
0000-0003-4894-4660
0000-0003-4033-4235
0000-0001-9186-7045
0000-0002-9125-3067
0009-0003-5752-0154
0000-0002-5133-775X
0009-0001-5907-101X
0009-0001-9523-3290
0009-0002-4787-2757
0009-0001-0275-2586
0000-0002-9066-2715
0009-0001-7697-7315
0000-0002-5121-3853
0009-0004-0230-6115
0000-0003-1507-4048
0009-0001-1860-8132
OpenAccessLink https://www.nature.com/articles/s41557-025-01815-x
PMID 40394186
PQID 3226850375
PQPubID 536302
PageCount 8
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12226332
proquest_miscellaneous_3206236455
proquest_journals_3226850375
pubmed_primary_40394186
crossref_primary_10_1038_s41557_025_01815_x
springer_journals_10_1038_s41557_025_01815_x
PublicationCentury 2000
PublicationDate 2025-07-01
PublicationDateYYYYMMDD 2025-07-01
PublicationDate_xml – month: 07
  year: 2025
  text: 2025-07-01
  day: 01
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationTitle Nature chemistry
PublicationTitleAbbrev Nat. Chem
PublicationTitleAlternate Nat Chem
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References A M. Bran (1815_CR6) 2024; 6
1815_CR71
1815_CR26
1815_CR25
Z Zheng (1815_CR28) 2024; 3
1815_CR69
1815_CR24
1815_CR68
1815_CR23
1815_CR67
1815_CR22
1815_CR66
1815_CR21
1815_CR65
1815_CR20
1815_CR64
1815_CR63
RT McCoy (1815_CR10) 2024; 121
1815_CR29
Z Xie (1815_CR17) 2024; 15
TH Kung (1815_CR3) 2023; 2
T Dinh (1815_CR48) 2022; 35
1815_CR62
1815_CR61
1815_CR60
AD White (1815_CR14) 2023; 7
KM Jablonka (1815_CR15) 2023; 2
1815_CR59
1815_CR58
1815_CR13
1815_CR57
1815_CR12
1815_CR56
LP Argyle (1815_CR70) 2023; 31
1815_CR11
1815_CR55
J Dagdelen (1815_CR27) 2024; 15
1815_CR52
K Darvish (1815_CR7) 2025; 8
1815_CR19
1815_CR18
NC Frey (1815_CR47) 2023; 5
1815_CR2
1815_CR51
DA Boiko (1815_CR5) 2023; 624
1815_CR50
M Schilling-Wilhelmi (1815_CR32) 2025; 54
Z Wu (1815_CR49) 2018; 9
F Urbina (1815_CR37) 2022; 4
F Urbina (1815_CR40) 2022; 4
1815_CR45
1815_CR44
1815_CR43
1815_CR42
1815_CR41
O-H Choung (1815_CR72) 2023; 14
JH Caufield (1815_CR30) 2024; 40
X Cai (1815_CR46) 2024; 222
1815_CR4
T Brown (1815_CR1) 2020; 33
1815_CR9
1815_CR8
KM Jablonka (1815_CR16) 2024; 6
A Dunn (1815_CR53) 2020; 6
B Li (1815_CR73) 2023; 55
1815_CR36
1815_CR35
1815_CR34
1815_CR33
M Zaki (1815_CR54) 2024; 3
1815_CR31
1815_CR74
1815_CR39
1815_CR38
References_xml – volume: 3
  start-page: 491
  year: 2024
  ident: 1815_CR28
  publication-title: Digit. Discov.
  doi: 10.1039/D3DD00239J
– ident: 1815_CR61
– ident: 1815_CR59
– ident: 1815_CR65
– ident: 1815_CR38
  doi: 10.48550/arXiv.2304.10510
– ident: 1815_CR55
  doi: 10.18653/v1/2023.emnlp-main.468
– ident: 1815_CR18
  doi: 10.48550/arXiv.2402.01439
– ident: 1815_CR26
  doi: 10.26434/chemrxiv-2023-05v1b-v2
– volume: 6
  start-page: 138
  year: 2020
  ident: 1815_CR53
  publication-title: npj Comput. Mater.
  doi: 10.1038/s41524-020-00406-3
– volume: 624
  start-page: 570
  year: 2023
  ident: 1815_CR5
  publication-title: Nature
  doi: 10.1038/s41586-023-06792-0
– ident: 1815_CR39
  doi: 10.48550/arXiv.2311.15936
– volume: 2
  start-page: e0000198
  year: 2023
  ident: 1815_CR3
  publication-title: PLoS Digit. Health
  doi: 10.1371/journal.pdig.0000198
– ident: 1815_CR42
– ident: 1815_CR51
– volume: 55
  start-page: 1
  year: 2023
  ident: 1815_CR73
  publication-title: ACM Comput. Surv.
– ident: 1815_CR29
  doi: 10.48550/arXiv.2312.07559
– volume: 40
  start-page: btae104
  year: 2024
  ident: 1815_CR30
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btae104
– ident: 1815_CR8
  doi: 10.48550/arXiv.2303.12712
– volume: 2
  start-page: 1233
  year: 2023
  ident: 1815_CR15
  publication-title: Digit. Discov.
  doi: 10.1039/D3DD00113J
– ident: 1815_CR69
– volume: 121
  start-page: e2322420121
  year: 2024
  ident: 1815_CR10
  publication-title: Proc. Natl Acad. Sci. USA
  doi: 10.1073/pnas.2322420121
– volume: 8
  start-page: 101897
  year: 2025
  ident: 1815_CR7
  publication-title: Matter
  doi: 10.1016/j.matt.2024.10.015
– ident: 1815_CR11
  doi: 10.48550/arXiv.2108.07258
– ident: 1815_CR4
  doi: 10.48550/arXiv.2303.08774
– ident: 1815_CR68
– ident: 1815_CR2
  doi: 10.48550/arXiv.2403.05075
– ident: 1815_CR43
– ident: 1815_CR60
– ident: 1815_CR20
  doi: 10.48550/arXiv.2304.05341
– ident: 1815_CR31
  doi: 10.18653/v1/2023.acl-long.753
– volume: 15
  year: 2024
  ident: 1815_CR27
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-024-45563-x
– ident: 1815_CR33
  doi: 10.48550/arXiv.2409.13740
– volume: 6
  start-page: 525
  year: 2024
  ident: 1815_CR6
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-024-00832-8
– ident: 1815_CR34
  doi: 10.48550/arXiv.2402.05200
– ident: 1815_CR23
  doi: 10.48550/arXiv.2305.05708
– ident: 1815_CR36
  doi: 10.48550/arXiv.2209.07858
– ident: 1815_CR25
  doi: 10.48550/arXiv.2406.17295
– ident: 1815_CR71
– ident: 1815_CR58
  doi: 10.18653/v1/2023.acl-long.201
– volume: 54
  start-page: 1125
  year: 2025
  ident: 1815_CR32
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D4CS00913D
– ident: 1815_CR63
– ident: 1815_CR35
  doi: 10.48550/arXiv.2310.18233
– ident: 1815_CR67
– volume: 5
  start-page: 1297
  year: 2023
  ident: 1815_CR47
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00740-3
– ident: 1815_CR44
  doi: 10.48550/arXiv.2305.18365
– volume: 15
  start-page: 500
  year: 2024
  ident: 1815_CR17
  publication-title: Chem. Sci.
  doi: 10.1039/D3SC04610A
– volume: 3
  start-page: 313
  year: 2024
  ident: 1815_CR54
  publication-title: Digit. Discov.
  doi: 10.1039/D3DD00188A
– volume: 31
  start-page: 337
  year: 2023
  ident: 1815_CR70
  publication-title: Polit. Anal.
  doi: 10.1017/pan.2023.2
– ident: 1815_CR13
  doi: 10.48550/arXiv.2311.07361
– ident: 1815_CR21
– volume: 35
  start-page: 11763
  year: 2022
  ident: 1815_CR48
  publication-title: Adv. Neural Inf. Process. Syst.
– volume: 4
  start-page: 607
  year: 2022
  ident: 1815_CR40
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00511-6
– ident: 1815_CR64
  doi: 10.48550/arXiv.2211.09085
– ident: 1815_CR19
  doi: 10.48550/arXiv.2402.06852
– volume: 6
  start-page: 161
  year: 2024
  ident: 1815_CR16
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-023-00788-1
– ident: 1815_CR57
– volume: 4
  start-page: 189
  year: 2022
  ident: 1815_CR37
  publication-title: Nat. Mach. Intell.
  doi: 10.1038/s42256-022-00465-9
– ident: 1815_CR74
  doi: 10.5281/zenodo.14010212
– ident: 1815_CR62
– volume: 9
  start-page: 513
  year: 2018
  ident: 1815_CR49
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02664A
– ident: 1815_CR24
– ident: 1815_CR41
– ident: 1815_CR45
  doi: 10.48550/arXiv.2209.01712
– ident: 1815_CR9
  doi: 10.1145/3442188.3445922
– volume: 222
  start-page: 133
  year: 2024
  ident: 1815_CR46
  publication-title: Methods
  doi: 10.1016/j.ymeth.2024.01.004
– volume: 14
  year: 2023
  ident: 1815_CR72
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-023-42242-1
– ident: 1815_CR12
  doi: 10.48550/arXiv.2307.03718
– ident: 1815_CR22
  doi: 10.48550/arXiv.2310.14029
– volume: 33
  start-page: 1877
  year: 2020
  ident: 1815_CR1
  publication-title: Adv. Neural Inf. Process. Syst.
– ident: 1815_CR50
  doi: 10.48550/arXiv.2409.13989
– ident: 1815_CR66
  doi: 10.48550/arXiv.2205.00445
– ident: 1815_CR52
  doi: 10.48550/arXiv.2411.16736
– volume: 7
  start-page: 457
  year: 2023
  ident: 1815_CR14
  publication-title: Nat. Rev. Chem.
  doi: 10.1038/s41570-023-00502-0
– ident: 1815_CR56
  doi: 10.18653/v1/2023.findings-emnlp.380
SSID ssj0065316
Score 2.4957294
Snippet Large language models (LLMs) have gained widespread interest owing to their ability to process human language and perform tasks on which they have not been...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 1027
SubjectTerms 639/638/630
639/638/899
Analytical Chemistry
Benchmarks
Biochemistry
Chemical reactions
Chemistry
Chemistry - education
Chemistry and Materials Science
Chemistry/Food Science
Chemists
Design
Humans
Inorganic Chemistry
Knowledge
Language
Large Language Models
Organic Chemistry
Performance evaluation
Physical Chemistry
Reasoning
Toxicity
Title A framework for evaluating the chemical knowledge and reasoning abilities of large language models against the expertise of chemists
URI https://link.springer.com/article/10.1038/s41557-025-01815-x
https://www.ncbi.nlm.nih.gov/pubmed/40394186
https://www.proquest.com/docview/3226850375
https://www.proquest.com/docview/3206236455
https://pubmed.ncbi.nlm.nih.gov/PMC12226332
Volume 17
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV3BbtQwEB1V7aFcKqCFBkplJG7FInFsxz5uV6wqJHqiUm9R7NilEspW3a3UD-DDmXHiRUvhwC1KRo6dmdjP45k3AB9sFa1wsuLReskRgQfeaddz60rb97L3MZK_4-ulvriSX67V9Q6InAuTgvYTpWWapnN02KcVLXwNp-KrRDGlOOLGPaJuJ6ue63mefTXaVMooapSibKBySpQpa_OXNrYXoycI82mg5B-npWkRWjyHgwk9stnY3xewE4aXsD_PRdsO4eeMxRxuxRCPsszmPdwwhHrMT_wAbONLY93QM4pMT35ZNtJ24_aZLSP7QWHiLLs0Waqas2LdTXeLoDK1lwoEUD1nEvdjP1ZHcLX4_G1-wadCC9zj7mPNgyuFQxwYq6g7IU3VkI689rarROwbaYMPWlWuUc5aQbNCMHUUnbF4O8j6FewOyyEcA0O0gLr3TjkEWggP8EJ5BIGx6ZVphCngLH_x9m7k02jTOXht2lE_LeqnTfppHws4yUppp39r1eIUpI2i2r0FvN88xvHRUUc3hOUDyZSaqPEVyrwedbh5nSxrKyujCzBb2t0IEOP29pPh9nti3q4QTem6FgV8zIbwu1__Hsab_xN_C89EMlIKCj6B3fX9Q3iH0GftTmFvtjg_vzxNNv8L4asB_Q
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Nb9QwEB1V7aFcEOUz0IKRuIFF4tiOfaxWVAu0PbVSb1Hs2KVSlUXsVuoP6A9nxom3WgoHblEycuzMxH4ez7wB-GCraIWTFY_WS44IPPBOu55bV9q-l72PkfwdJ6d6fi6_XaiLLRA5FyYF7SdKyzRN5-iwz0ta-BpOxVeJYkpxxI07iLU1hXHN9CzPvhptKmUUNUpRNlA5JcqUtflLG5uL0QOE-TBQ8o_T0rQIHT2BxxN6ZIdjf_dgKwxPYXeWi7Y9g7tDFnO4FUM8yjKb93DJEOoxP_EDsLUvjXVDzygyPfll2UjbjdtntojsmsLEWXZpslQ1Z8m6y-4KQWVqLxUIoHrOJO7Hfiyfw_nRl7PZnE-FFrjH3ceKB1cKhzgwVlF3QpqqIR157W1Xidg30gYftKpco5y1gmaFYOooOmPxdpD1C9geFkN4BQzRAureO-UQaCE8wAvlEQTGplemEaaAj_mLtz9HPo02nYPXph3106J-2qSf9raA_ayUdvq3li1OQdooqt1bwPv1YxwfHXV0Q1jckEypiRpfoczLUYfr18mytrIyugCzod21ADFubz4Zrn4k5u0K0ZSua1HAp2wI9_369zBe_5_4O9idn50ct8dfT7-_gUciGSwFCO_D9urXTThAGLRyb5Pd_wYOAANw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Lb9QwEB6VIgEXVF4lUMBI3MCQh-3Yx2phVV4VByr1ZsWOXSpV2YrdSv0B_HBmnHirpXDgFiUjx85M7M_jmW8AXpkqmtqJikfjBUcEHninXM-NK03fi97HSP6Or4fq4Eh8OpbHW6ByLkwK2k-UlmmaztFh75a08LWciq8SxZTkl2_P-3gDbiLeLmnTNVOzPAMrtKuUVdRKSRlB5ZQsUzb6L-1sLkjXUOb1YMk_TkzTQjTfgbsTgmT7Y5_vwVYY7sPtWS7c9gB-7bOYQ64YYlKWGb2HE4Zwj_mJI4Ct_WmsG3pG0enJN8tG6m7cQrNFZGcUKs6yW5OlyjlL1p10pwgsU3upSADVdCZxP_Zj-RCO5h--zw74VGyBe9yBrHhwZe0QC8Yqqq4WumpJT15501V17Fthgg9KVq6VzpiaZoagm1h32uDtIJpHsD0shvAYGCIG1L930iHYQoiAF9IjEIxtL3Vb6wJe5y9uz0dODZvOwhttR_1Y1I9N-rGXBexlpdjp_1panIaUllS_t4CX68c4Pjru6IawuCCZUhE9vkSZ3VGH69eJsjGi0qoAvaHdtQCxbm8-GU5_JPbtChGVapq6gDfZEK769e9hPPk_8Rdw69v7uf3y8fDzU7hTJ3ulGOE92F79vAjPEAmt3PNk9r8BtRgEeQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+framework+for+evaluating+the+chemical+knowledge+and+reasoning+abilities+of+large+language+models+against+the+expertise+of+chemists&rft.jtitle=Nature+chemistry&rft.au=Mirza%2C+Adrian&rft.au=Alampara%2C+Nawaf&rft.au=Kunchapu%2C+Sreekanth&rft.au=R%C3%ADos-Garc%C3%ADa%2C+Marti%C3%B1o&rft.date=2025-07-01&rft.eissn=1755-4349&rft.volume=17&rft.issue=7&rft.spage=1027&rft_id=info:doi/10.1038%2Fs41557-025-01815-x&rft_id=info%3Apmid%2F40394186&rft.externalDocID=40394186
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1755-4330&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1755-4330&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1755-4330&client=summon