Causality Investigation between Gut Microbiota, Derived Metabolites, and Obstructive Sleep Apnea: A Bidirectional Mendelian Randomization Study
Various studies have highlighted the important associations between obstructive sleep apnea (OSA) and gut microbiota and related metabolites. Nevertheless, the establishment of causal relationships between these associations remains to be determined. Multiple mendelian randomization (MR) analyses we...
Saved in:
Published in | Nutrients Vol. 15; no. 21; p. 4544 |
---|---|
Main Authors | , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
26.10.2023
|
Subjects | |
Online Access | Get full text |
ISSN | 2072-6643 2072-6643 |
DOI | 10.3390/nu15214544 |
Cover
Loading…
Abstract | Various studies have highlighted the important associations between obstructive sleep apnea (OSA) and gut microbiota and related metabolites. Nevertheless, the establishment of causal relationships between these associations remains to be determined. Multiple mendelian randomization (MR) analyses were performed to genetically predict the causative impact of 196 gut microbiota and 83 metabolites on OSA. Two-sample MR was used to assess the potential association, and causality was evaluated using inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods. Multivariable MR (MVMR) was employed to ascertain the causal independence between gut microbiota and the metabolites linked to OSA. Additionally, Cochran’s Q test, the MR Egger intercept test and the MR Steiger test were used for the sensitivity analyses. The analysis of the 196 gut microbiota revealed that genus_Ruminococcaceae (UCG009) (PIVW = 0.010) and genus_Subdoligranulum (PIVW = 0.041) were associated with an increased risk of OSA onset. Conversely, Family_Ruminococcaceae (PIVW = 0.030), genus_Coprococcus2 (PWM = 0.025), genus_Eggerthella (PIVW = 0.011), and genus_Eubacterium (xylanophilum_group) (PIVW = 0.001) were negatively related to the risk of OSA. Among the 83 metabolites evaluated, 3-dehydrocarnitine, epiandrosterone sulfate, and leucine were determined to be potential independent risk factors associated with OSA. Moreover, the reverse MR analysis demonstrated a suggestive association between OSA exposure and six microbiota taxa. This study offers compelling evidence regarding the potential beneficial or detrimental causative impact of the gut microbiota and its associated metabolites on OSA risk, thereby providing new insights into the mechanisms of gut microbiome-mediated OSA development. |
---|---|
AbstractList | Various studies have highlighted the important associations between obstructive sleep apnea (OSA) and gut microbiota and related metabolites. Nevertheless, the establishment of causal relationships between these associations remains to be determined. Multiple mendelian randomization (MR) analyses were performed to genetically predict the causative impact of 196 gut microbiota and 83 metabolites on OSA. Two-sample MR was used to assess the potential association, and causality was evaluated using inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods. Multivariable MR (MVMR) was employed to ascertain the causal independence between gut microbiota and the metabolites linked to OSA. Additionally, Cochran’s Q test, the MR Egger intercept test and the MR Steiger test were used for the sensitivity analyses. The analysis of the 196 gut microbiota revealed that genus_Ruminococcaceae (UCG009) (PIVW = 0.010) and genus_Subdoligranulum (PIVW = 0.041) were associated with an increased risk of OSA onset. Conversely, Family_Ruminococcaceae (PIVW = 0.030), genus_Coprococcus2 (PWM = 0.025), genus_Eggerthella (PIVW = 0.011), and genus_Eubacterium (xylanophilum_group) (PIVW = 0.001) were negatively related to the risk of OSA. Among the 83 metabolites evaluated, 3-dehydrocarnitine, epiandrosterone sulfate, and leucine were determined to be potential independent risk factors associated with OSA. Moreover, the reverse MR analysis demonstrated a suggestive association between OSA exposure and six microbiota taxa. This study offers compelling evidence regarding the potential beneficial or detrimental causative impact of the gut microbiota and its associated metabolites on OSA risk, thereby providing new insights into the mechanisms of gut microbiome-mediated OSA development. Various studies have highlighted the important associations between obstructive sleep apnea (OSA) and gut microbiota and related metabolites. Nevertheless, the establishment of causal relationships between these associations remains to be determined. Multiple mendelian randomization (MR) analyses were performed to genetically predict the causative impact of 196 gut microbiota and 83 metabolites on OSA. Two-sample MR was used to assess the potential association, and causality was evaluated using inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods. Multivariable MR (MVMR) was employed to ascertain the causal independence between gut microbiota and the metabolites linked to OSA. Additionally, Cochran’s Q test, the MR Egger intercept test and the MR Steiger test were used for the sensitivity analyses. The analysis of the 196 gut microbiota revealed that genus_Ruminococcaceae (UCG009) (P[sub.IVW] = 0.010) and genus_Subdoligranulum (P[sub.IVW] = 0.041) were associated with an increased risk of OSA onset. Conversely, Family_Ruminococcaceae (P[sub.IVW] = 0.030), genus_Coprococcus2 (P[sub.WM] = 0.025), genus_Eggerthella (P[sub.IVW] = 0.011), and genus_Eubacterium (xylanophilum_group) (P[sub.IVW] = 0.001) were negatively related to the risk of OSA. Among the 83 metabolites evaluated, 3-dehydrocarnitine, epiandrosterone sulfate, and leucine were determined to be potential independent risk factors associated with OSA. Moreover, the reverse MR analysis demonstrated a suggestive association between OSA exposure and six microbiota taxa. This study offers compelling evidence regarding the potential beneficial or detrimental causative impact of the gut microbiota and its associated metabolites on OSA risk, thereby providing new insights into the mechanisms of gut microbiome-mediated OSA development. Various studies have highlighted the important associations between obstructive sleep apnea (OSA) and gut microbiota and related metabolites. Nevertheless, the establishment of causal relationships between these associations remains to be determined. Multiple mendelian randomization (MR) analyses were performed to genetically predict the causative impact of 196 gut microbiota and 83 metabolites on OSA. Two-sample MR was used to assess the potential association, and causality was evaluated using inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods. Multivariable MR (MVMR) was employed to ascertain the causal independence between gut microbiota and the metabolites linked to OSA. Additionally, Cochran's Q test, the MR Egger intercept test and the MR Steiger test were used for the sensitivity analyses. The analysis of the 196 gut microbiota revealed that genus_Ruminococcaceae (UCG009) (PIVW = 0.010) and genus_Subdoligranulum (PIVW = 0.041) were associated with an increased risk of OSA onset. Conversely, Family_Ruminococcaceae (PIVW = 0.030), genus_Coprococcus2 (PWM = 0.025), genus_Eggerthella (PIVW = 0.011), and genus_Eubacterium (xylanophilum_group) (PIVW = 0.001) were negatively related to the risk of OSA. Among the 83 metabolites evaluated, 3-dehydrocarnitine, epiandrosterone sulfate, and leucine were determined to be potential independent risk factors associated with OSA. Moreover, the reverse MR analysis demonstrated a suggestive association between OSA exposure and six microbiota taxa. This study offers compelling evidence regarding the potential beneficial or detrimental causative impact of the gut microbiota and its associated metabolites on OSA risk, thereby providing new insights into the mechanisms of gut microbiome-mediated OSA development.Various studies have highlighted the important associations between obstructive sleep apnea (OSA) and gut microbiota and related metabolites. Nevertheless, the establishment of causal relationships between these associations remains to be determined. Multiple mendelian randomization (MR) analyses were performed to genetically predict the causative impact of 196 gut microbiota and 83 metabolites on OSA. Two-sample MR was used to assess the potential association, and causality was evaluated using inverse variance weighted (IVW), MR-Egger, and weighted median (WM) methods. Multivariable MR (MVMR) was employed to ascertain the causal independence between gut microbiota and the metabolites linked to OSA. Additionally, Cochran's Q test, the MR Egger intercept test and the MR Steiger test were used for the sensitivity analyses. The analysis of the 196 gut microbiota revealed that genus_Ruminococcaceae (UCG009) (PIVW = 0.010) and genus_Subdoligranulum (PIVW = 0.041) were associated with an increased risk of OSA onset. Conversely, Family_Ruminococcaceae (PIVW = 0.030), genus_Coprococcus2 (PWM = 0.025), genus_Eggerthella (PIVW = 0.011), and genus_Eubacterium (xylanophilum_group) (PIVW = 0.001) were negatively related to the risk of OSA. Among the 83 metabolites evaluated, 3-dehydrocarnitine, epiandrosterone sulfate, and leucine were determined to be potential independent risk factors associated with OSA. Moreover, the reverse MR analysis demonstrated a suggestive association between OSA exposure and six microbiota taxa. This study offers compelling evidence regarding the potential beneficial or detrimental causative impact of the gut microbiota and its associated metabolites on OSA risk, thereby providing new insights into the mechanisms of gut microbiome-mediated OSA development. |
Audience | Academic |
Author | Zhan, Xiaojun Tai, Jun Yan, Weiheng Ji, Jie Zhou, Jiayi Liu, Yifan Hu, Wen Jiang, Miaomiao Wang, Shan |
Author_xml | – sequence: 1 givenname: Weiheng surname: Yan fullname: Yan, Weiheng – sequence: 2 givenname: Miaomiao orcidid: 0000-0003-1257-5373 surname: Jiang fullname: Jiang, Miaomiao – sequence: 3 givenname: Wen surname: Hu fullname: Hu, Wen – sequence: 4 givenname: Xiaojun surname: Zhan fullname: Zhan, Xiaojun – sequence: 5 givenname: Yifan surname: Liu fullname: Liu, Yifan – sequence: 6 givenname: Jiayi surname: Zhou fullname: Zhou, Jiayi – sequence: 7 givenname: Jie surname: Ji fullname: Ji, Jie – sequence: 8 givenname: Shan surname: Wang fullname: Wang, Shan – sequence: 9 givenname: Jun surname: Tai fullname: Tai, Jun |
BookMark | eNqFkt9uFCEUxompibX2xicg8caYbmWA-YN361prkzZNrF5PzsCZhoaFFZia9SX6yjJdk2rTRLiAwPf7DpxzXpI9HzwS8rpix0Io9t5PVc0rWUv5jOxz1vJF00ix99f-BTlM6YbNo2VtI_bJ3QqmBM7mLT3zt5iyvYZsg6cD5p-Inp5OmV5YHcNgQ4Yj-gmjvUVDLzDDEAqI6YiCN_RySDlOOpdbeuUQN3S58Qgf6JJ-tMZG1LMvuEJ6g86Cp18LF9b21y7iVZ7M9hV5PoJLePhnPSDfP598W31ZnF-enq2W5wsteZcXRgN0cmzRCKarTivGJONNPcpWscFgrSspwAA0IzecKdmoUTDViVoMZhhAHJC3O99NDD-m8u9-bZNG58BjmFIvip8sKWuq_0p51ymluKhEkb55JL0JUyyfvld1XDVS8gfVNTjsrR9DjqBn037ZtrwujxRz2OMnVGUaXFtdKj_acv4PwHZAKVZKEcde23yf2gJa11esn9ukf2iTgrx7hGyiXUPcPiX-DbvAvpY |
CitedBy_id | crossref_primary_10_7759_cureus_80810 crossref_primary_10_1097_MD_0000000000040900 crossref_primary_10_3389_fendo_2024_1344152 crossref_primary_10_3389_fnagi_2024_1436171 crossref_primary_10_3389_fmicb_2024_1366181 crossref_primary_10_1097_MD_0000000000039814 crossref_primary_10_1007_s11357_025_01524_w crossref_primary_10_3390_genes15060769 |
Cites_doi | 10.1183/13993003.03091-2020 10.1111/obr.13409 10.1136/bmj.k601 10.1016/j.sleep.2022.02.003 10.3389/fendo.2022.820939 10.1152/physrev.00043.2008 10.1016/j.jamda.2017.08.020 10.1080/14728222.2020.1841749 10.1161/JAHA.121.022560 10.1161/HYPERTENSIONAHA.118.11695 10.1093/aje/kwu283 10.1183/16000617.0220-2020 10.1371/journal.pmed.1003624 10.1016/j.jaip.2016.02.022 10.1093/nar/gkab1062 10.1002/gepi.21965 10.1016/j.jcmgh.2015.08.003 10.1016/j.metabol.2010.03.006 10.1038/ng.2982 10.1055/s-0034-1390023 10.1186/1471-2334-12-111 10.3390/nu11112628 10.1136/bmjopen-2018-022752 10.1152/ajpgi.00152.2020 10.1161/STROKEAHA.120.031903 10.1093/ije/dyv080 10.1042/CS20180891 10.1093/sleep/zsab047 10.1002/ppul.23753 10.1021/acs.jafc.9b02334 10.1016/j.jacc.2021.05.048 10.1186/s12916-022-02657-x 10.1128/spectrum.02000-22 10.1164/rccm.201107-1173OC 10.1016/j.ebiom.2020.102968 10.1128/mSystems.00020-18 10.1021/acs.jafc.0c04526 10.1186/1741-7007-11-61 10.1080/19490976.2022.2107387 10.1017/S0029665120006916 10.3389/fendo.2020.00621 10.1016/j.resp.2018.02.015 10.1038/nature09646 10.3390/biomedicines10123272 10.1038/s41588-020-00763-1 10.1101/117101 10.5665/sleep.6176 10.1016/j.expneurol.2020.113439 10.1093/nar/gkab382 10.1002/mnfr.202100408 10.1073/pnas.0602888103 10.3389/fphar.2023.1010996 10.1016/j.sleep.2020.10.017 10.1093/ajcn/nqac054 10.1016/S0140-6736(13)60734-5 10.1016/j.sleep.2022.09.022 10.3390/nu14204411 10.1002/sim.6835 10.1038/nrdp.2015.15 10.7554/eLife.34408 10.1002/ppul.25967 10.1038/s41588-018-0099-7 10.5665/SLEEP.1240 10.1093/sleep/zsab061 10.1038/s41398-022-02205-4 10.1111/jsr.12551 10.2147/NSS.S354742 10.1002/sim.9156 10.4158/EP12366.OR 10.1038/s41598-020-63475-w 10.3389/fmicb.2021.813289 10.1111/jch.14598 10.1002/acn3.51476 10.1074/jbc.M117.791285 10.1038/srep30958 10.1164/rccm.201510-1942OC 10.1002/sim.6522 10.1080/19490976.2022.2102878 10.1002/mnfr.201900616 10.1152/physrev.1983.63.4.1420 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 3V. 7TS 7X7 7XB 88E 8FI 8FJ 8FK ABUWG AFKRA AZQEC BENPR CCPQU DWQXO FYUFA GHDGH K9. M0S M1P PHGZM PHGZT PIMPY PJZUB PKEHL PPXIY PQEST PQQKQ PQUKI PRINS 7X8 7S9 L.6 |
DOI | 10.3390/nu15214544 |
DatabaseName | CrossRef ProQuest Central (Corporate) Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials ProQuest Central ProQuest One ProQuest Central Korea Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Health & Medical Complete (Alumni) Health & Medical Collection (Alumni) Medical Database ProQuest Central Premium ProQuest One Academic (New) Publicly Available Content Database ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitle | CrossRef Publicly Available Content Database ProQuest One Academic Middle East (New) ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) ProQuest One Community College ProQuest One Health & Nursing ProQuest Central China Physical Education Index ProQuest Central ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) ProQuest Central Korea Health & Medical Research Collection ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition ProQuest One Academic ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic AGRICOLA AGRICOLA - Academic |
DatabaseTitleList | Publicly Available Content Database MEDLINE - Academic CrossRef AGRICOLA |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Anatomy & Physiology |
EISSN | 2072-6643 |
ExternalDocumentID | A772535331 10_3390_nu15214544 |
GeographicLocations | China |
GeographicLocations_xml | – name: China |
GroupedDBID | --- 53G 5VS 7X7 88E 8FE 8FH 8FI 8FJ A8Z AADQD AAFWJ AAHBH AAWTL AAYXX ABUWG ACIWK ACPRK AENEX AFKRA AFRAH AFZYC ALIPV ALMA_UNASSIGNED_HOLDINGS APEBS BENPR BPHCQ BVXVI CCPQU CITATION DIK E3Z EBD ECGQY EIHBH ESTFP EYRJQ F5P FYUFA GX1 HMCUK HYE IAO ITC KQ8 LK8 M1P M48 MODMG M~E OK1 OZF P2P P6G PGMZT PHGZM PHGZT PIMPY PQQKQ PROAC PSQYO RNS RPM TR2 UKHRP PMFND 3V. 7TS 7XB 8FK AZQEC DWQXO K9. PJZUB PKEHL PPXIY PQEST PQUKI PRINS 7X8 7S9 L.6 |
ID | FETCH-LOGICAL-c428t-dcaa84f7ed30c18c90040265f4790bde5c143adaa6f2d209469f3098353bdbba3 |
IEDL.DBID | M48 |
ISSN | 2072-6643 |
IngestDate | Mon Jul 21 10:41:34 EDT 2025 Tue Aug 05 10:38:36 EDT 2025 Fri Jul 25 09:17:53 EDT 2025 Tue Jun 17 22:24:15 EDT 2025 Tue Jun 10 21:14:48 EDT 2025 Tue Jul 01 02:16:22 EDT 2025 Thu Apr 24 23:06:03 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 21 |
Language | English |
License | https://creativecommons.org/licenses/by/4.0 |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-dcaa84f7ed30c18c90040265f4790bde5c143adaa6f2d209469f3098353bdbba3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0003-1257-5373 |
OpenAccessLink | https://www.proquest.com/docview/2888296442?pq-origsite=%requestingapplication% |
PQID | 2888296442 |
PQPubID | 2032353 |
ParticipantIDs | proquest_miscellaneous_3040466461 proquest_miscellaneous_2889992313 proquest_journals_2888296442 gale_infotracmisc_A772535331 gale_infotracacademiconefile_A772535331 crossref_citationtrail_10_3390_nu15214544 crossref_primary_10_3390_nu15214544 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20231026 |
PublicationDateYYYYMMDD | 2023-10-26 |
PublicationDate_xml | – month: 10 year: 2023 text: 20231026 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Nutrients |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Zhang (ref_17) 2022; 14 Ganesh (ref_20) 2018; 72 Wishart (ref_27) 2022; 50 Li (ref_5) 2016; 4 ref_56 Cai (ref_9) 2021; 44 Shin (ref_26) 2014; 46 Cowie (ref_2) 2021; 78 Badran (ref_15) 2020; 24 ref_51 Tripathi (ref_11) 2018; 3 Bremer (ref_41) 1983; 63 Valentini (ref_22) 2020; 76 Michels (ref_69) 2022; 23 Yang (ref_70) 2020; 319 Raqib (ref_63) 2006; 103 Bowden (ref_76) 2015; 44 Jordan (ref_8) 2014; 383 Guha (ref_52) 2020; 68 ref_60 Xie (ref_57) 2022; 66 Liu (ref_10) 2022; 100 Strausz (ref_24) 2021; 57 Barquiel (ref_36) 2016; 194 Kanemitsu (ref_72) 2017; 292 Zheng (ref_81) 2023; 14 ref_67 Badran (ref_48) 2020; 334 ref_64 Grant (ref_31) 2021; 40 Kalhan (ref_43) 2011; 60 ref_62 Liu (ref_74) 2022; 14 Morley (ref_6) 2017; 18 Burgess (ref_30) 2015; 181 Zhang (ref_16) 2021; 30 ref_28 Conotte (ref_18) 2018; 256 Verbanck (ref_33) 2018; 50 Sun (ref_44) 2020; 11 Nair (ref_49) 2011; 184 Davies (ref_23) 2018; 362 Strausz (ref_38) 2018; 8 Ferrell (ref_71) 2015; 1 Chen (ref_78) 2021; 10 Torres (ref_59) 2016; 39 May (ref_53) 2014; 35 Ji (ref_3) 2021; 44 Zhong (ref_47) 2021; 52 Gosalbes (ref_68) 2020; 10 Kurilshikov (ref_25) 2021; 53 Greco (ref_32) 2015; 34 ref_79 Gu (ref_29) 2022; 12 ref_34 Pang (ref_35) 2021; 49 Burgess (ref_75) 2016; 35 Wu (ref_13) 2022; 57 Xing (ref_50) 2019; 67 Bowden (ref_77) 2016; 40 Wang (ref_14) 2022; 13 ref_39 Ko (ref_12) 2019; 133 Hemani (ref_80) 2018; 7 Dempsey (ref_7) 2010; 90 Jun (ref_42) 2011; 34 Barcelo (ref_37) 2017; 26 Lu (ref_61) 2022; 24 Ahmed (ref_46) 2022; 14 Toral (ref_66) 2020; 64 Fukuda (ref_65) 2011; 469 Levy (ref_1) 2015; 1 Kim (ref_54) 2022; 116 Barcelo (ref_40) 2017; 52 Tock (ref_45) 2014; 20 Tremlett (ref_55) 2021; 8 Zhang (ref_73) 2022; 91 Toth (ref_21) 2013; 63 ref_4 Xu (ref_19) 2016; 6 Marinelli (ref_58) 2021; 80 |
References_xml | – volume: 57 start-page: 2003091 year: 2021 ident: ref_24 article-title: Genetic analysis of obstructive sleep apnoea discovers a strong association with cardiometabolic health publication-title: Eur. Respir. J. doi: 10.1183/13993003.03091-2020 – volume: 23 start-page: e13409 year: 2022 ident: ref_69 article-title: Human microbiome and metabolic health: An overview of systematic reviews publication-title: Obes. Rev. doi: 10.1111/obr.13409 – volume: 362 start-page: k601 year: 2018 ident: ref_23 article-title: Reading Mendelian randomisation studies: A guide, glossary, and checklist for clinicians publication-title: BMJ doi: 10.1136/bmj.k601 – volume: 91 start-page: 84 year: 2022 ident: ref_73 article-title: Chronic intermittent hypoxia induces gut microbial dysbiosis and infers metabolic dysfunction in mice publication-title: Sleep Med. doi: 10.1016/j.sleep.2022.02.003 – volume: 13 start-page: 820939 year: 2022 ident: ref_14 article-title: Effects of Chronic Intermittent Hypoxia and Chronic Sleep Fragmentation on Gut Microbiome, Serum Metabolome, Liver and Adipose Tissue Morphology publication-title: Front. Endocrinol. doi: 10.3389/fendo.2022.820939 – volume: 90 start-page: 47 year: 2010 ident: ref_7 article-title: Pathophysiology of sleep apnea publication-title: Physiol. Rev. doi: 10.1152/physrev.00043.2008 – volume: 18 start-page: 899 year: 2017 ident: ref_6 article-title: Sleep Apnea: A Geriatric Syndrome publication-title: J. Am. Med. Dir. Assoc. doi: 10.1016/j.jamda.2017.08.020 – volume: 24 start-page: 1263 year: 2020 ident: ref_15 article-title: The gut microbiome as a target for adjuvant therapy in obstructive sleep apnea publication-title: Expert Opin. Ther. Targets doi: 10.1080/14728222.2020.1841749 – volume: 10 start-page: e022560 year: 2021 ident: ref_78 article-title: Causal Effect of Obstructive Sleep Apnea on Atrial Fibrillation: A Mendelian Randomization Study publication-title: J. Am. Heart Assoc. doi: 10.1161/JAHA.121.022560 – volume: 72 start-page: 1141 year: 2018 ident: ref_20 article-title: Prebiotics, Probiotics, and Acetate Supplementation Prevent Hypertension in a Model of Obstructive Sleep Apnea publication-title: Hypertension doi: 10.1161/HYPERTENSIONAHA.118.11695 – volume: 181 start-page: 251 year: 2015 ident: ref_30 article-title: Multivariable Mendelian randomization: The use of pleiotropic genetic variants to estimate causal effects publication-title: Am. J. Epidemiol. doi: 10.1093/aje/kwu283 – volume: 30 start-page: 200220 year: 2021 ident: ref_16 article-title: Metabolomics and microbiome profiling as biomarkers in obstructive sleep apnoea: A comprehensive review publication-title: Eur. Respir. Rev. doi: 10.1183/16000617.0220-2020 – ident: ref_79 doi: 10.1371/journal.pmed.1003624 – volume: 4 start-page: 852 year: 2016 ident: ref_5 article-title: Pediatric Sleep Apnea Syndrome: An Update publication-title: J. Allergy Clin. Immunol. Pract. doi: 10.1016/j.jaip.2016.02.022 – volume: 50 start-page: D622 year: 2022 ident: ref_27 article-title: HMDB 5.0: The Human Metabolome Database for 2022 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab1062 – volume: 40 start-page: 304 year: 2016 ident: ref_77 article-title: Consistent Estimation in Mendelian Randomization with Some Invalid Instruments Using a Weighted Median Estimator publication-title: Genet. Epidemiol. doi: 10.1002/gepi.21965 – volume: 1 start-page: 664 year: 2015 ident: ref_71 article-title: Short-term circadian disruption impairs bile acid and lipid homeostasis in mice publication-title: Cell. Mol. Gastroenterol. Hepatol. doi: 10.1016/j.jcmgh.2015.08.003 – volume: 60 start-page: 404 year: 2011 ident: ref_43 article-title: Plasma metabolomic profile in nonalcoholic fatty liver disease publication-title: Metabolism doi: 10.1016/j.metabol.2010.03.006 – volume: 46 start-page: 543 year: 2014 ident: ref_26 article-title: An atlas of genetic influences on human blood metabolites publication-title: Nat. Genet. doi: 10.1038/ng.2982 – volume: 35 start-page: 531 year: 2014 ident: ref_53 article-title: Obstructive sleep apnea: Role of intermittent hypoxia and inflammation publication-title: Semin. Respir. Crit. Care Med. doi: 10.1055/s-0034-1390023 – ident: ref_64 doi: 10.1186/1471-2334-12-111 – ident: ref_4 doi: 10.3390/nu11112628 – volume: 8 start-page: e022752 year: 2018 ident: ref_38 article-title: Obstructive sleep apnoea and the risk for coronary heart disease and type 2 diabetes: A longitudinal population-based study in Finland publication-title: BMJ Open doi: 10.1136/bmjopen-2018-022752 – volume: 319 start-page: G549 year: 2020 ident: ref_70 article-title: Bile acid metabolism and circadian rhythms publication-title: Am. J. Physiol. Gastrointest. Liver Physiol. doi: 10.1152/ajpgi.00152.2020 – volume: 52 start-page: 887 year: 2021 ident: ref_47 article-title: Choline Pathway Nutrients and Metabolites and Cognitive Impairment After Acute Ischemic Stroke publication-title: Stroke doi: 10.1161/STROKEAHA.120.031903 – volume: 44 start-page: 512 year: 2015 ident: ref_76 article-title: Mendelian randomization with invalid instruments: Effect estimation and bias detection through Egger regression publication-title: Int. J. Epidemiol. doi: 10.1093/ije/dyv080 – volume: 133 start-page: 905 year: 2019 ident: ref_12 article-title: Gut microbiota in obstructive sleep apnea-hypopnea syndrome: Disease-related dysbiosis and metabolic comorbidities publication-title: Clin. Sci. doi: 10.1042/CS20180891 – volume: 44 start-page: zsab047 year: 2021 ident: ref_3 article-title: Brain function in children with obstructive sleep apnea: A resting-state fMRI study publication-title: Sleep doi: 10.1093/sleep/zsab047 – volume: 52 start-page: 1085 year: 2017 ident: ref_40 article-title: Circulating branched-chain amino acids in children with obstructive sleep apnea publication-title: Pediatr. Pulmonol. doi: 10.1002/ppul.23753 – volume: 67 start-page: 8361 year: 2019 ident: ref_50 article-title: gamma-Glutamylvaline Prevents Low-Grade Chronic Inflammation via Activation of a Calcium-Sensing Receptor Pathway in 3T3-L1Mouse Adipocytes publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.9b02334 – volume: 63 start-page: 91 year: 2013 ident: ref_21 article-title: Animal models of sleep disorders publication-title: Comp. Med. – volume: 78 start-page: 608 year: 2021 ident: ref_2 article-title: Sleep Disordered Breathing and Cardiovascular Disease: JACC State-of-the-Art Review publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2021.05.048 – ident: ref_28 doi: 10.1186/s12916-022-02657-x – ident: ref_51 doi: 10.1128/spectrum.02000-22 – volume: 184 start-page: 1305 year: 2011 ident: ref_49 article-title: Sleep fragmentation induces cognitive deficits via nicotinamide adenine dinucleotide phosphate oxidase-dependent pathways in mouse publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201107-1173OC – ident: ref_60 doi: 10.1016/j.ebiom.2020.102968 – volume: 3 start-page: 10 year: 2018 ident: ref_11 article-title: Intermittent Hypoxia and Hypercapnia, a Hallmark of Obstructive Sleep Apnea, Alters the Gut Microbiome and Metabolome publication-title: mSystems doi: 10.1128/mSystems.00020-18 – volume: 68 start-page: 9139 year: 2020 ident: ref_52 article-title: Dietary gamma-Glutamyl Valine Ameliorates TNF-alpha-Induced Vascular Inflammation via Endothelial Calcium-Sensing Receptors publication-title: J. Agric. Food Chem. doi: 10.1021/acs.jafc.0c04526 – ident: ref_62 doi: 10.1186/1741-7007-11-61 – volume: 14 start-page: 2107387 year: 2022 ident: ref_74 article-title: Cholecystectomy-induced secondary bile acids accumulation ameliorates colitis through inhibiting monocyte/macrophage recruitment publication-title: Gut Microbes doi: 10.1080/19490976.2022.2107387 – volume: 80 start-page: 37 year: 2021 ident: ref_58 article-title: SCFA: Mechanisms and functional importance in the gut publication-title: Proc. Nutr. Soc. doi: 10.1017/S0029665120006916 – volume: 11 start-page: 621 year: 2020 ident: ref_44 article-title: Causal Effects of Genetically Determined Metabolites on Risk of Polycystic Ovary Syndrome: A Mendelian Randomization Study publication-title: Front. Endocrinol. doi: 10.3389/fendo.2020.00621 – volume: 256 start-page: 157 year: 2018 ident: ref_18 article-title: Metabonomic profiling of chronic intermittent hypoxia in a mouse model publication-title: Respir. Physiol. Neurobiol. doi: 10.1016/j.resp.2018.02.015 – volume: 469 start-page: 543 year: 2011 ident: ref_65 article-title: Bifidobacteria can protect from enteropathogenic infection through production of acetate publication-title: Nature doi: 10.1038/nature09646 – ident: ref_67 doi: 10.3390/biomedicines10123272 – volume: 53 start-page: 156 year: 2021 ident: ref_25 article-title: Large-scale association analyses identify host factors influencing human gut microbiome composition publication-title: Nat. Genet. doi: 10.1038/s41588-020-00763-1 – ident: ref_34 doi: 10.1101/117101 – volume: 39 start-page: 1891 year: 2016 ident: ref_59 article-title: Normoxic Recovery Mimicking Treatment of Sleep Apnea Does Not Reverse Intermittent Hypoxia-Induced Bacterial Dysbiosis and Low-Grade Endotoxemia in Mice publication-title: Sleep doi: 10.5665/sleep.6176 – volume: 334 start-page: 113439 year: 2020 ident: ref_48 article-title: Fecal microbiota transplantation from mice exposed to chronic intermittent hypoxia elicits sleep disturbances in naive mice publication-title: Exp. Neurol. doi: 10.1016/j.expneurol.2020.113439 – volume: 49 start-page: W388 year: 2021 ident: ref_35 article-title: MetaboAnalyst 5.0: Narrowing the gap between raw spectra and functional insights publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkab382 – volume: 66 start-page: e2100408 year: 2022 ident: ref_57 article-title: Short-Chain Fatty Acids Produced by Ruminococcaceae Mediate alpha-Linolenic Acid Promote Intestinal Stem Cells Proliferation publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.202100408 – volume: 103 start-page: 9178 year: 2006 ident: ref_63 article-title: Improved outcome in shigellosis associated with butyrate induction of an endogenous peptide antibiotic publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.0602888103 – volume: 14 start-page: 1010996 year: 2023 ident: ref_81 article-title: Modifiable factors for migraine prophylaxis: A mendelian randomization analysis publication-title: Front. Pharmacol. doi: 10.3389/fphar.2023.1010996 – volume: 76 start-page: 140 year: 2020 ident: ref_22 article-title: Gut microbiota composition in children with obstructive sleep apnoea syndrome: A pilot study publication-title: Sleep Med. doi: 10.1016/j.sleep.2020.10.017 – volume: 116 start-page: 151 year: 2022 ident: ref_54 article-title: Serum metabolomic signatures of plant-based diets and incident chronic kidney disease publication-title: Am. J. Clin. Nutr. doi: 10.1093/ajcn/nqac054 – volume: 383 start-page: 736 year: 2014 ident: ref_8 article-title: Adult obstructive sleep apnoea publication-title: Lancet doi: 10.1016/S0140-6736(13)60734-5 – volume: 100 start-page: 462 year: 2022 ident: ref_10 article-title: The gut microbiome and obstructive sleep apnea syndrome in children publication-title: Sleep Med. doi: 10.1016/j.sleep.2022.09.022 – ident: ref_39 doi: 10.3390/nu14204411 – volume: 35 start-page: 1880 year: 2016 ident: ref_75 article-title: Combining information on multiple instrumental variables in Mendelian randomization: Comparison of allele score and summarized data methods publication-title: Stat. Med. doi: 10.1002/sim.6835 – volume: 1 start-page: 15015 year: 2015 ident: ref_1 article-title: Obstructive sleep apnoea syndrome publication-title: Nat. Rev. Dis. Primers doi: 10.1038/nrdp.2015.15 – volume: 7 start-page: e34408 year: 2018 ident: ref_80 article-title: The MR-Base platform supports systematic causal inference across the human phenome publication-title: eLife doi: 10.7554/eLife.34408 – volume: 57 start-page: 2012 year: 2022 ident: ref_13 article-title: Gut microbiota dysbiosis in 4- to 6-year-old children with obstructive sleep apnea-hypopnea syndrome publication-title: Pediatr. Pulmonol. doi: 10.1002/ppul.25967 – volume: 50 start-page: 693 year: 2018 ident: ref_33 article-title: Detection of widespread horizontal pleiotropy in causal relationships inferred from Mendelian randomization between complex traits and diseases publication-title: Nat. Genet. doi: 10.1038/s41588-018-0099-7 – volume: 34 start-page: 1207 year: 2011 ident: ref_42 article-title: Effects of sleep apnea on nocturnal free fatty acids in subjects with heart failure publication-title: Sleep doi: 10.5665/SLEEP.1240 – volume: 44 start-page: zsab061 year: 2021 ident: ref_9 article-title: The microbiome in obstructive sleep apnea publication-title: Sleep doi: 10.1093/sleep/zsab061 – volume: 12 start-page: 427 year: 2022 ident: ref_29 article-title: Peripheral level of CD33 and Alzheimer’s disease: A bidirectional two-sample Mendelian randomization study publication-title: Transl. Psychiatry doi: 10.1038/s41398-022-02205-4 – volume: 26 start-page: 773 year: 2017 ident: ref_37 article-title: A randomized controlled trial: Branched-chain amino acid levels and glucose metabolism in patients with obesity and sleep apnea publication-title: J. Sleep Res. doi: 10.1111/jsr.12551 – volume: 14 start-page: 393 year: 2022 ident: ref_17 article-title: Immunoregulatory Effect of Short-Chain Fatty Acids from Gut Microbiota on Obstructive Sleep Apnea-Associated Hypertension publication-title: Nat. Sci. Sleep doi: 10.2147/NSS.S354742 – volume: 40 start-page: 5813 year: 2021 ident: ref_31 article-title: Pleiotropy robust methods for multivariable Mendelian randomization publication-title: Stat. Med. doi: 10.1002/sim.9156 – volume: 20 start-page: 244 year: 2014 ident: ref_45 article-title: Obstructive sleep apnea predisposes to nonalcoholic Fatty liver disease in patients with polycystic ovary syndrome publication-title: Endocr. Pract. doi: 10.4158/EP12366.OR – volume: 10 start-page: 6436 year: 2020 ident: ref_68 article-title: Gut metagenomic and short chain fatty acids signature in hypertension: A cross-sectional study publication-title: Sci. Rep. doi: 10.1038/s41598-020-63475-w – ident: ref_56 doi: 10.3389/fmicb.2021.813289 – volume: 24 start-page: 1598 year: 2022 ident: ref_61 article-title: Gut microbiota in hypertensive patients with versus without obstructive sleep apnea publication-title: J. Clin. Hypertens. doi: 10.1111/jch.14598 – volume: 8 start-page: 2252 year: 2021 ident: ref_55 article-title: The gut microbiota in pediatric multiple sclerosis and demyelinating syndromes publication-title: Ann. Clin. Transl. Neurol. doi: 10.1002/acn3.51476 – volume: 292 start-page: 21397 year: 2017 ident: ref_72 article-title: Periodic variation in bile acids controls circadian changes in uric acid via regulation of xanthine oxidase by the orphan nuclear receptor PPARalpha publication-title: J. Biol. Chem. doi: 10.1074/jbc.M117.791285 – volume: 6 start-page: 30958 year: 2016 ident: ref_19 article-title: Metabolomics Profiling for Obstructive Sleep Apnea and Simple Snorers publication-title: Sci. Rep. doi: 10.1038/srep30958 – volume: 194 start-page: 476 year: 2016 ident: ref_36 article-title: Effect of Continuous Positive Airway Pressure on Glycemic Control in Patients with Obstructive Sleep Apnea and Type 2 Diabetes. A Randomized Clinical Trial publication-title: Am. J. Respir. Crit. Care Med. doi: 10.1164/rccm.201510-1942OC – volume: 34 start-page: 2926 year: 2015 ident: ref_32 article-title: Detecting pleiotropy in Mendelian randomisation studies with summary data and a continuous outcome publication-title: Stat. Med. doi: 10.1002/sim.6522 – volume: 14 start-page: 2102878 year: 2022 ident: ref_46 article-title: Microbiota-derived metabolites as drivers of gut-brain communication publication-title: Gut Microbes doi: 10.1080/19490976.2022.2102878 – volume: 64 start-page: e1900616 year: 2020 ident: ref_66 article-title: Probiotics Prevent Dysbiosis and the Rise in Blood Pressure in Genetic Hypertension: Role of Short-Chain Fatty Acids publication-title: Mol. Nutr. Food Res. doi: 10.1002/mnfr.201900616 – volume: 63 start-page: 1420 year: 1983 ident: ref_41 article-title: Carnitine—Metabolism and functions publication-title: Physiol. Rev. doi: 10.1152/physrev.1983.63.4.1420 |
SSID | ssj0000070763 |
Score | 2.4273515 |
Snippet | Various studies have highlighted the important associations between obstructive sleep apnea (OSA) and gut microbiota and related metabolites. Nevertheless, the... |
SourceID | proquest gale crossref |
SourceType | Aggregation Database Enrichment Source Index Database |
StartPage | 4544 |
SubjectTerms | Amino acids Analysis androsterone Confounding (Statistics) digestive system Fatty acids Genomes Gut microbiota Human subjects Hypertension Hypoxia intestinal microorganisms leucine Metabolism Metabolites Microbiota Microbiota (Symbiotic organisms) Oxidative stress Probiotics risk Risk factors Sleep apnea Sleep apnea syndromes Sulfates Type 2 diabetes variance |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV3daxQxEA-1ffFFtFW8WmVEUYQu3d1ks11fZFutRaiCWri3JZ9QaLMnt1foX-G_7Ew2d_Wg-pzJbsjMZD4y-Q1jr2Oqsah9VvMqz4QvUKW88JkoVCM9LwnEjqotvsrTc_FlWk1Twm2eyiqXZ2I8qG1vKEd-UGKoRleEovww-5VR1yi6XU0tNO6xLYIuo5KuelqvciwRy0byEZWUY3R_EBZkr0QlxJoduvs0jibm5CF7kHxDaEdmPmIbLmyznTZgXHx1A28gVmvGNPgO-32sFvPoQ8NfUBl9gFR4BZ8XA5xdjDBLg9qHjyhq187CmRuQ7_TyeL4PKlj4phOG7LWDH5fOzaCdBafeQwtHF6PFi-lCnBmso6wIfMd5_VV6wQlUinjzmJ2ffPp5fJql5gqZwYhjyKxR6lD42lmem-LQNKTOpay8qJtcW1cZ9KSUVUr60pYYBMrG87xBh41rq7XiT9hm6IN7ykAoX3FCuZZGC1NrVatGoN1T2uUa46EJe7fc6s4k5HFqgHHZYQRCbOlu2TJhr1a0sxFv406qt8SxjpQQv2RUekuA6yE4q67FmKHClfJiwvbWKFF5zPrwkuddUt55dytqE_ZyNUwzqSAtuH4RadC1RjHn_6bhuKOE3i-L3f__5hm7T13sySSWco9tItfdc_R1Bv0iCvQf-s__WQ priority: 102 providerName: ProQuest |
Title | Causality Investigation between Gut Microbiota, Derived Metabolites, and Obstructive Sleep Apnea: A Bidirectional Mendelian Randomization Study |
URI | https://www.proquest.com/docview/2888296442 https://www.proquest.com/docview/2889992313 https://www.proquest.com/docview/3040466461 |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfV1ti9QwEB7u5YtfRD3F1XOJKIpw1TZJm60g0jvvBWFPOV3YbyVJEzjYy65u93B_hX_ZmbZ7urL6sWRSQmamM086eQbgeXPUmCgfKZHGkfQJupSXPpKJzjMvOJHYUbXFeXY2kh_H6XgLVv07uw2cb4R21E9q9H3y-se35Xt0-HeEOBGyvwkLCkIylXIbdjEiKXLQYZfmt2mwQrhOP5t5rHiUYRRumUr_mr4WmzZ_oZuwc3IHbnf5IitaBd-FLRfuwV4RECtfLdkL1lRwNkfje_DzSC_mTV7N_qDPmAbWFWOx00XNhpct9VKtD9gHNL9rV7Ghq9EW6Dby_IDpULFPpuOVvXbsy8S5GStmwem3rGCHl20UbI4QcWaoHJ2UsAucN73qbnUyKk9c3ofRyfHXo7Ooa7gQWUQhdVRZrQfSK1eJ2CYDm5OL8yz1UuWxqVxqMbvSldaZ5xVHYJjlXsQ5JnHCVMZo8QB2wjS4h8Ck9qkg5uvMGmmV0UrnEmOhNi42iJF68Gq11aXt2MipKcakRFRCail_q6UHz25kZy0Hx0apl6SxkkwF32R1d78A10MUV2WBOCLFlYqkB_trkuhQdn14pfNyZY8lHyAUyTF55D14ejNMM6lILbjpopHBdBtNX_xbRuCOEqN_ljz6_yoewy3qbE9hkmf7sINad08w_6lNH7bVWPVh9_D4_PMFPp2Ok35j8L8A28EGJw |
linkProvider | Scholars Portal |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Zb9QwELbK9gFeEFAQCwWMuITUqIntJA0SQunFlnYX1EPqW_ApVWqdRZst2l_BP-E3MpNjy0qFtz577ESeGc_h8TeEvK5TjVHqgpTHYSBcBCrlhAtEJLPEcYYgdlhtMUoGJ-LLaXy6RH53b2GwrLI7E-uD2pQac-TrDEI1vCIU7NP4R4Bdo_B2tWuh0YjFvp39hJBt8nFvG_j7hrHdneOtQdB2FQg0uNpVYLSUG8Kl1vBQRxs6QzlmSexEmoXK2FiDCyGNlIljhkH0k2SOhxl4KlwZpSSHdW-RZcEhlOmR5c2d0bfDeVanRs9JeIODynkWrvspWkgRC7Fg-a4__2ujtnuP3G29UZo34nOfLFn_gKzkHiLxixl9S-v60DrxvkJ-bcnppPba6V_gHKWnbakX_Tyt6PCsAXaq5BrdBuG-tIYObQWShm-dJ2tUekO_qha19tLSo3NrxzQfeys_0JxunjU2tk5QwkxvLOZh6CHMKy_aN6MUix9nD8nJjWz8I9LzpbePCRXSxRxxtROthE6VTGUmwNJKZUMFEVifvO-2utAt1jm23DgvIOZBthRXbOmTV3PacYPwcS3VO-RYgWoPK2nZvl6A_0EArSKHKCWGP-VRn6wuUIK66sXhjudFe1xMiivh7pOX82GciSVw3pbTmgaceVAs_m8aDjuK_QKS6Mn_P_OC3B4cDw-Kg73R_lNyh4HnhgaZJaukBxJgn4GnVannrXhT8v2mNeoPTEc-DQ |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1tb9MwELbGkBBf0GAgygYY8SakRU1sJ1mQEAorZWNsIMakfgt-lSZtblHTof4K_g-_jjsn6ag0-LbPPieO7873kvNzhDwLqcYkd1HO0zgSLgGVcsJFIpFF5jhDEDustjjMdo_Fx1E6WiG_u7swWFbZnYnhoDZjjTnyPoNQDX8RCtZ3bVnEl8Hw7eRHhB2k8E9r106jEZF9O_8J4dv0zd4AeP2cseH7bzu7UdthINLgdteR0VJuC5dbw2OdbOsCZZplqRN5EStjUw3uhDRSZo4ZBpFQVjgeF-C1cGWUkhyee41ch-9MUMfyUb7I7wQcnYw3iKicF3Hfz9BWilSIJRt4uSUI5m24Rm61fiktG0G6TVasv0PWSw8x-dmcvqChUjSk4NfJrx05mwb_nf4F0zH2tC36oh9mNT04aSCearlFByDm59bQA1uDzOGt5-kWld7Qz6rFrz239OjU2gktJ97K17Sk704aaxtSlTDTG4sZGfoV5o3P2tujFMsg53fJ8ZVs-z2y6sfe3idUSJdyRNjOtBI6VzKXhQCbK5WNFcRiPfKq2-pKt6jn2HzjtILoB9lSXbClR54uaCcN1selVC-RYxUeAPAkLdt7DLAehNKqSohXUlgpT3pkc4kSFFcvD3c8r9qDY1pdiHmPPFkM40wshvN2PAs04NaDivF_03DYUewckCUP_v-ax-QG6FH1ae9wf4PcZODCoWVm2SZZBQGwD8HlqtWjINuUfL9qZfoDcR9A3Q |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Causality+Investigation+between+Gut+Microbiota%2C+Derived+Metabolites%2C+and+Obstructive+Sleep+Apnea%3A+A+Bidirectional+Mendelian+Randomization+Study&rft.jtitle=Nutrients&rft.au=Yan%2C+Weiheng&rft.au=Jiang%2C+Miaomiao&rft.au=Hu%2C+Wen&rft.au=Zhan%2C+Xiaojun&rft.date=2023-10-26&rft.pub=MDPI+AG&rft.issn=2072-6643&rft.eissn=2072-6643&rft.volume=15&rft.issue=21&rft_id=info:doi/10.3390%2Fnu15214544&rft.externalDocID=A772535331 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-6643&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-6643&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-6643&client=summon |