Semiparametric GARCH via Bayesian Model Averaging

As the dynamic structure of financial markets is subject to dramatic change, a model capable of providing consistently accurate volatility estimates should not make rigid assumptions on how prices change over time. Most volatility models impose a particular parametric functional form that relates an...

Full description

Saved in:
Bibliographic Details
Published inJournal of business & economic statistics Vol. 39; no. 2; pp. 437 - 452
Main Authors Chen, Wilson Ye, Gerlach, Richard H.
Format Journal Article
LanguageEnglish
Published Alexandria Taylor & Francis 20.03.2021
Taylor & Francis Ltd
Subjects
Online AccessGet full text
ISSN0735-0015
1537-2707
DOI10.1080/07350015.2019.1668796

Cover

Loading…
Abstract As the dynamic structure of financial markets is subject to dramatic change, a model capable of providing consistently accurate volatility estimates should not make rigid assumptions on how prices change over time. Most volatility models impose a particular parametric functional form that relates an observed price change to a volatility forecast (news impact function). Here, a new class of functional coefficient semiparametric volatility models is proposed, where the news impact function is allowed to be any smooth function. The ability of the proposed model to estimate volatility is studied and compared to the well-known parametric proposals, in both a simulation study and an empirical study with real financial market data. The news impact function is estimated using a Bayesian model averaging approach, implemented via a carefully developed Markov chain Monte Carlo sampling algorithm. Using simulations it is shown that the proposed flexible semiparametric model is able to learn the shape of the news impact function very effectively, from observed data. When applied to real financial time series, the proposed model suggests that news impact functions have quite different shapes over different asset types, but a consistent shape within the same asset class. Supplementary materials for this article are available online.
AbstractList As the dynamic structure of financial markets is subject to dramatic change, a model capable of providing consistently accurate volatility estimates should not make rigid assumptions on how prices change over time. Most volatility models impose a particular parametric functional form that relates an observed price change to a volatility forecast (news impact function). Here, a new class of functional coefficient semiparametric volatility models is proposed, where the news impact function is allowed to be any smooth function. The ability of the proposed model to estimate volatility is studied and compared to the well-known parametric proposals, in both a simulation study and an empirical study with real financial market data. The news impact function is estimated using a Bayesian model averaging approach, implemented via a carefully developed Markov chain Monte Carlo sampling algorithm. Using simulations it is shown that the proposed flexible semiparametric model is able to learn the shape of the news impact function very effectively, from observed data. When applied to real financial time series, the proposed model suggests that news impact functions have quite different shapes over different asset types, but a consistent shape within the same asset class. Supplementary materials for this article are available online.
As the dynamic structure of financial markets is subject to dramatic change, a model capable of providing consistently accurate volatility estimates should not make rigid assumptions on how prices change over time. Most volatility models impose a particular parametric functional form that relates an observed price change to a volatility forecast (news impact function). Here, a new class of functional coefficient semiparametric volatility models is proposed, where the news impact function is allowed to be any smooth function. The ability of the proposed model to estimate volatility is studied and compared to the well-known parametric proposals, in both a simulation study and an empirical study with real financial market data. The news impact function is estimated using a Bayesian model averaging approach, implemented via a carefully developed Markov chain Monte Carlo sampling algorithm. Using simulations it is shown that the proposed flexible semiparametric model is able to learn the shape of the news impact function very effectively, from observed data. When applied to real financial time series, the proposed model suggests that news impact functions have quite different shapes over different asset types, but a consistent shape within the same asset class. Supplementary materials for this article are available online.
Author Chen, Wilson Ye
Gerlach, Richard H.
Author_xml – sequence: 1
  givenname: Wilson Ye
  orcidid: 0000-0002-5514-6213
  surname: Chen
  fullname: Chen, Wilson Ye
  organization: The Institute of Statistical Mathematics
– sequence: 2
  givenname: Richard H.
  orcidid: 0000-0002-5656-4556
  surname: Gerlach
  fullname: Gerlach, Richard H.
  organization: Discipline of Business Analytics, Business School, The University of Sydney
BookMark eNqFkE1Lw0AQhhepYFv9CULAc-rsbpLN4sVatBUUwY_zMsluypZ0t27SSv-9Ca0XDzqXuTzPO8w7IgPnnSHkksKEQg7XIHgKQNMJAyonNMtyIbMTMqQpFzETIAZk2DNxD52RUdOsoJs8zYaEvpm13WDAtWmDLaP59HW2iHYWozvcm8aii569NnU03ZmAS-uW5-S0wroxF8c9Jh8P9--zRfz0Mn-cTZ_iMmF5G-uizGTJtZECqDAJQpEzxrRMhDRCJgUyjVQKDkJTWhgupDSaoSgkJgyAj8nVIXcT_OfWNK1a-W1w3UnFcuDd55TSjro5UGXwTRNMpUrbYmu9awPaWlFQfUfqpyPVd6SOHXV2-sveBLvGsP_Xuz141lU-rPHLh1qrFve1D1VAV9pG8b8jvgFiNH0Q
CitedBy_id crossref_primary_10_1360_SSM_2023_0246
crossref_primary_10_1080_01621459_2022_2070070
crossref_primary_10_1080_03610918_2024_2374900
crossref_primary_10_1111_jtsa_12713
crossref_primary_10_1007_s00500_019_04607_x
Cites_doi 10.1016/j.jeconom.2005.03.019
10.1198/10618600152627924
10.1016/j.ijforecast.2013.01.007
10.1111/1467-9868.00336
10.1002/jae.606
10.1016/0304-4076(92)90069-4
10.1016/0165-1889(94)90039-6
10.1214/06-BA122
10.1198/016214503000000891
10.1016/j.jeconom.2005.03.006
10.5705/ss.2009.285
10.1137/1.9781611970128
10.1016/j.csda.2015.04.003
10.1017/S0266466600009166
10.1214/aos/1176345206
10.1214/088342304000000035
10.1214/aos/1176325750
10.1002/for.1237
10.1007/978-3-662-12605-9
10.1016/j.jeconom.2006.06.012
10.1016/0304-4076(95)01763-1
10.1016/0304-4076(86)90063-1
10.1093/biomet/82.4.711
10.1111/j.1468-0262.2005.00596.x
10.1016/0304-4076(90)90101-X
10.1198/073500103288619430
10.1007/978-1-4612-6333-3
10.1016/j.ijforecast.2005.08.001
10.1017/S0266466608080304
10.1111/1368-423X.11003
10.1016/j.jeconom.2013.03.006
10.3982/ECTA6495
10.1239/jap/1183667414
10.1198/016214501750332965
10.1111/j.1540-6261.1993.tb05128.x
10.1111/j.1540-6261.1993.tb05127.x
10.1080/01621459.1993.10476353
10.1111/1467-9868.00353
10.1093/jjfinec/nbw002
10.2307/2527081
10.1111/j.1368-423X.2008.00253.x
10.2307/1925546
10.1023/A:1013164120801
10.1017/CBO9781139540933
10.1515/9781400839254
10.1016/S0304-4076(97)00042-0
10.2307/2938260
10.1214/ss/1015346320
10.1002/jae.1279
10.1111/1368-423X.00070
10.1016/S0167-9473(02)00080-4
10.1017/S0266466602184040
10.1007/s11749-007-0056-8
10.2307/1391236
10.1080/01621459.1988.10478694
10.1017/CBO9780511755453
10.2307/1912773
10.2139/ssrn.2316341
10.1111/j.1467-9868.2009.00696.x
10.1016/j.csda.2010.06.018
10.1017/S0770451800004346
ContentType Journal Article
Copyright 2019 American Statistical Association 2019
2019 American Statistical Association
Copyright_xml – notice: 2019 American Statistical Association 2019
– notice: 2019 American Statistical Association
DBID AAYXX
CITATION
DOI 10.1080/07350015.2019.1668796
DatabaseName CrossRef
DatabaseTitle CrossRef
DatabaseTitleList

DeliveryMethod fulltext_linktorsrc
Discipline Economics
Statistics
Mathematics
EISSN 1537-2707
EndPage 452
ExternalDocumentID 10_1080_07350015_2019_1668796
1668796
Genre Research Article
GroupedDBID -~X
.7F
.QJ
0BK
0R~
29K
30N
4.4
5GY
7WY
85S
8FL
AAENE
AAIKC
AAJMT
AALDU
AAMIU
AAMNW
AAPUL
AAQRR
ABCCY
ABFAN
ABFIM
ABJNI
ABKVW
ABLIJ
ABLJU
ABPAQ
ABPEM
ABTAI
ABXUL
ABXYU
ABYRZ
ABYWD
ABYYQ
ACGFO
ACGFS
ACHQT
ACMTB
ACNCT
ACTIO
ACTMH
ACVFL
ADCVX
ADGTB
ADMHG
AEISY
AELLO
AENEX
AEOZL
AEPSL
AEYOC
AFSUE
AFVYC
AGDLA
AGMYJ
AHAJD
AHDZW
AHQJS
AIJEM
AKBRZ
AKBVH
AKOOK
AKVCP
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALQZU
AQRUH
AVBZW
AWYRJ
BKOMP
BLEHA
CCCUG
CS3
D-I
D0L
DGEBU
DKSSO
DU5
EBS
EBU
EOH
E~A
E~B
F5P
GROUPED_ABI_INFORM_COMPLETE
GTTXZ
H13
HF~
HZ~
H~P
IAO
IEA
IGG
IOF
IPNFZ
J.P
JAA
JST
K60
K6~
KYCEM
LJTGL
M4Z
MS~
N95
NA5
NY~
O9-
P2P
RIG
RNANH
ROSJB
RTWRZ
S-T
SJN
SNACF
TBQAZ
TDBHL
TEJ
TFL
TFT
TFW
TN5
TTHFI
TUROJ
U5U
UT5
UU3
WZA
YK4
YQT
ZCA
ZGOLN
~S~
AAGDL
AAHIA
AAYXX
ADXHL
ADYSH
AFRVT
AIYEW
AMPGV
CITATION
TASJS
ID FETCH-LOGICAL-c428t-dbc69c3de97017e4a0b8222d9479e794ba2da197307d11be3799ed2a7b9a42003
ISSN 0735-0015
IngestDate Sat Aug 23 12:59:04 EDT 2025
Thu Apr 24 23:07:49 EDT 2025
Tue Jul 01 02:59:23 EDT 2025
Wed Dec 25 09:08:14 EST 2024
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-dbc69c3de97017e4a0b8222d9479e794ba2da197307d11be3799ed2a7b9a42003
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0002-5514-6213
0000-0002-5656-4556
PQID 2803108111
PQPubID 3244
PageCount 16
ParticipantIDs informaworld_taylorfrancis_310_1080_07350015_2019_1668796
proquest_journals_2803108111
crossref_citationtrail_10_1080_07350015_2019_1668796
crossref_primary_10_1080_07350015_2019_1668796
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-03-20
PublicationDateYYYYMMDD 2021-03-20
PublicationDate_xml – month: 03
  year: 2021
  text: 2021-03-20
  day: 20
PublicationDecade 2020
PublicationPlace Alexandria
PublicationPlace_xml – name: Alexandria
PublicationTitle Journal of business & economic statistics
PublicationYear 2021
Publisher Taylor & Francis
Taylor & Francis Ltd
Publisher_xml – name: Taylor & Francis
– name: Taylor & Francis Ltd
References CIT0032
CIT0031
CIT0034
Yang L. (CIT0065) 2002; 12
CIT0033
CIT0035
CIT0038
CIT0037
CIT0039
CIT0040
CIT0043
CIT0042
CIT0045
CIT0044
CIT0003
CIT0047
CIT0002
CIT0005
Forsythe G. E. (CIT0030) 1977
CIT0049
CIT0004
CIT0048
CIT0007
CIT0006
CIT0009
CIT0008
CIT0050
CIT0051
CIT0010
CIT0054
CIT0053
CIT0012
CIT0056
CIT0011
CIT0055
Gruet M.-A. (CIT0036) 1997; 59
CIT0014
CIT0058
CIT0013
CIT0057
CIT0016
CIT0015
CIT0059
CIT0018
CIT0017
Harvey A. C. (CIT0041) 2009
CIT0019
CIT0061
CIT0060
CIT0063
CIT0062
CIT0021
CIT0020
CIT0064
CIT0023
CIT0067
CIT0022
CIT0066
Akaike H. (CIT0001) 1973
Lubrano M. (CIT0046) 2001; 67
CIT0025
CIT0024
CIT0027
CIT0026
CIT0029
CIT0028
Roberts G. O. (CIT0052) 1996
References_xml – ident: CIT0059
  doi: 10.1016/j.jeconom.2005.03.019
– ident: CIT0033
  doi: 10.1198/10618600152627924
– ident: CIT0019
  doi: 10.1016/j.ijforecast.2013.01.007
– ident: CIT0007
  doi: 10.1111/1467-9868.00336
– ident: CIT0063
  doi: 10.1002/jae.606
– ident: CIT0034
  doi: 10.1016/0304-4076(92)90069-4
– ident: CIT0067
  doi: 10.1016/0165-1889(94)90039-6
– ident: CIT0015
  doi: 10.1214/06-BA122
– ident: CIT0051
  doi: 10.1198/016214503000000891
– ident: CIT0066
  doi: 10.1016/j.jeconom.2005.03.006
– ident: CIT0064
  doi: 10.5705/ss.2009.285
– start-page: 45
  volume-title: Markov Chain Monte Carlo in Practice
  year: 1996
  ident: CIT0052
– ident: CIT0062
  doi: 10.1137/1.9781611970128
– ident: CIT0010
  doi: 10.1016/j.csda.2015.04.003
– ident: CIT0047
  doi: 10.1017/S0266466600009166
– ident: CIT0058
  doi: 10.1214/aos/1176345206
– ident: CIT0022
  doi: 10.1214/088342304000000035
– ident: CIT0061
  doi: 10.1214/aos/1176325750
– ident: CIT0017
  doi: 10.1002/for.1237
– ident: CIT0037
  doi: 10.1007/978-3-662-12605-9
– ident: CIT0021
  doi: 10.1016/j.jeconom.2006.06.012
– volume: 12
  start-page: 801
  year: 2002
  ident: CIT0065
  publication-title: Statistica Sinica
– volume: 59
  start-page: 777
  year: 1997
  ident: CIT0036
  publication-title: Journal of Royal Statistical Society, Series B
– ident: CIT0056
  doi: 10.1016/0304-4076(95)01763-1
– ident: CIT0011
  doi: 10.1016/0304-4076(86)90063-1
– ident: CIT0035
  doi: 10.1093/biomet/82.4.711
– ident: CIT0045
  doi: 10.1111/j.1468-0262.2005.00596.x
– ident: CIT0050
  doi: 10.1016/0304-4076(90)90101-X
– ident: CIT0009
  doi: 10.1198/073500103288619430
– ident: CIT0024
  doi: 10.1007/978-1-4612-6333-3
– volume-title: Technical Report, Working Paper. Earlier Version Appeared in 2008 as a Cambridge Working Paper in Economics from Faculty of Economics
  year: 2009
  ident: CIT0041
– ident: CIT0018
  doi: 10.1016/j.ijforecast.2005.08.001
– ident: CIT0039
  doi: 10.1017/S0266466608080304
– ident: CIT0008
  doi: 10.1111/1368-423X.11003
– ident: CIT0002
  doi: 10.1016/j.jeconom.2013.03.006
– ident: CIT0006
  doi: 10.3982/ECTA6495
– ident: CIT0054
  doi: 10.1239/jap/1183667414
– volume-title: Computer Methods for Mathematical Computations
  year: 1977
  ident: CIT0030
– ident: CIT0003
  doi: 10.1198/016214501750332965
– ident: CIT0032
  doi: 10.1111/j.1540-6261.1993.tb05128.x
– ident: CIT0029
  doi: 10.1111/j.1540-6261.1993.tb05127.x
– ident: CIT0031
  doi: 10.1080/01621459.1993.10476353
– volume-title: 2nd International Symposium on Information Theory
  year: 1973
  ident: CIT0001
– ident: CIT0057
  doi: 10.1111/1467-9868.00353
– ident: CIT0016
  doi: 10.1093/jjfinec/nbw002
– ident: CIT0038
  doi: 10.2307/2527081
– ident: CIT0004
  doi: 10.1111/j.1368-423X.2008.00253.x
– ident: CIT0012
  doi: 10.2307/1925546
– ident: CIT0025
  doi: 10.1023/A:1013164120801
– ident: CIT0040
  doi: 10.1017/CBO9781139540933
– ident: CIT0060
  doi: 10.1515/9781400839254
– ident: CIT0026
  doi: 10.1016/S0304-4076(97)00042-0
– ident: CIT0049
  doi: 10.2307/2938260
– ident: CIT0053
  doi: 10.1214/ss/1015346320
– ident: CIT0023
  doi: 10.1002/jae.1279
– ident: CIT0043
  doi: 10.1111/1368-423X.00070
– ident: CIT0013
  doi: 10.1016/S0167-9473(02)00080-4
– ident: CIT0014
  doi: 10.1017/S0266466602184040
– ident: CIT0042
  doi: 10.1007/s11749-007-0056-8
– ident: CIT0028
  doi: 10.2307/1391236
– ident: CIT0048
  doi: 10.1080/01621459.1988.10478694
– ident: CIT0055
  doi: 10.1017/CBO9780511755453
– ident: CIT0027
  doi: 10.2307/1912773
– ident: CIT0044
  doi: 10.2139/ssrn.2316341
– ident: CIT0005
  doi: 10.1111/j.1467-9868.2009.00696.x
– ident: CIT0020
  doi: 10.1016/j.csda.2010.06.018
– volume: 67
  start-page: 257
  year: 2001
  ident: CIT0046
  publication-title: Recherches Économiques de Louvain/Louvain Economic Review
  doi: 10.1017/S0770451800004346
SSID ssj0000856
Score 2.3172207
Snippet As the dynamic structure of financial markets is subject to dramatic change, a model capable of providing consistently accurate volatility estimates should not...
SourceID proquest
crossref
informaworld
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 437
SubjectTerms Bayesian analysis
Functional coefficient
Heavy tail
Markov chain Monte Carlo
News impact function
Regression spline
Volatility
Title Semiparametric GARCH via Bayesian Model Averaging
URI https://www.tandfonline.com/doi/abs/10.1080/07350015.2019.1668796
https://www.proquest.com/docview/2803108111
Volume 39
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELbYcgAOK14rYAHlwC1K1Tgmjo_s8qiQ4AJoWS6RX5WQli6CgAS_nhnbSVMozxyiJJKdpN9kZjyd-YaQLdrTqeqlJjEFZQlT1CRCKDiFtYpCCrSBxjjk0XHeP2OH59vno9oTV11Sqa5-nFhX8hVU4RrgilWyn0C2mRQuwDHgC3tAGPYfwvjEXl0id_cVtsXS8QH-8xPfX8r4l3ywrjoSW50BBvBmrhvRK66oqrPfUQ5sKFXGKEPlaZxHOQBeSXmOx_hvIxQHGBX0TaVCpX7c77YDCtRlVNFeS-_wbDtBX8qbiFovcixd423F6VmIgoDQlhZknsclGFTmKWpf6OqQ3Ah3w5thlp3opnlecDGBG_uZzWoyCdOa4jRMU-I0ZZjmG5mmsHqgHTK909-9-DMy0YVr69u8aV3ahaTrk55nzGkZo7R9YcKdX3I6T74HFKMdLx0LZMoOF8lMXW9-u0jmjhpmXjibPWlQXSLpuABFToAiEKCoFqDICVDUCNAyOdvfO_3dT0IPjUTDwrJKjNK50JmxgoPutUz2FLqERjAuLOhiJamRqQA9z02aKptxIayhkishGSYu_iCd4f-hXSHRADZW5IUspGC5yeSAwuoURuSW60LSVcLqH6nUgWAe-5z8K98EaZV0m2HXnmHlvQGijUBZudDWwPehKbN3xq7XcJXhQ74tsUEbDAGrv_bZZ_lJZkef0DrpVDd3dgO81EptBpl7ApqWgwQ
linkProvider Library Specific Holdings
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6KsOXBNyeI68REQUKDtBZC4Wd4iVdCCaIoEX89MlrIJcSA3H8ZK7NnszLwHcBAFJtRBaH2bRsxnOrK-EBqHeFbRBIGWGbqH7PZ4-5Zd3rXuPvXCUFklnaGzEiii8NVk3HQZXZfEHaJatijYU2WWaIacp4ng0zDbEjwhFoM46H1447RgcCURn2TqLp7fpvkSn76gl_7w1kUIOlsCU798WXly3xznumnevuE6_u_rlmGxylC9o1KlVmDKDVdhrm5gHq3CQncC9YqjeUpXS7TnNQiv3aBPaOIDIuoy3jn9i_Je-so7Vq-O-jU9Il_D2dGCCn6kdbg9O705afsVKYNv8KSS-1YbLkxsnUjQmB1TgaYcwwqWCIfGrVVkVSjQcSQ2DLWLEyGcjVSihWJUCbcBM8PHodsEL8OHpTxVqRKM21hleBpNUYK7xKQqagCrt0KaCrGciDMeZFgDm1ZLJWmpZLVUDWhOxJ5KyI6_BMTnfZZ5cVeSlcQmMv5DdqdWCllZ_0gS4xeKYBjZ-sfU-zDXvul2ZOeid7UN8xEV0wQxurUdmMmfx24Xs6Fc7xXq_g4UQveG
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3HTsQwEB1RJFgOdMRSc-CaJcU48ZG2LG2FBEjcLLdIK9gFsQEJvp6ZFKoQB3LzYazEnmZn5j2ArSgwoQ5C69s0Yj7TkfWF0DjEs4omCLTM0D3keZd3rtnJzU5dTTisyirpDJ2VQBGFrybjfrBZXRG3jVq5Q7GeCrNEK-Q8TQQfhXFO4OHUxRF0P5xxWhC4kohPMnUTz2_TfAlPX8BLfzjrIgK1Z0DX714Wnty2nnLdMq_fYB3_9XGzMF3lp95uqVBzMOIG8zBZty8P52Hq_B3oFUcNSlZLrOcFCC9dv0dY4n2i6TLeEf2J8p57yttTL466NT2iXsPZ0X4KdqRFuG4fXu13_IqSwTd4Tsl9qw0XJrZOJGjKjqlAU4ZhBUuEQ9PWKrIqFOg2EhuG2sWJEM5GKtFCMaqDW4Kxwf3ALYOX4cNSnqpUCcZtrDI8i6YowV1iUhU1gdU7IU2FV060GXcyrGFNq6WStFSyWqomtN7FHkrAjr8ExOdtlnlxU5KVtCYy_kN2rdYJWdn-UBLfF4pgEFn5x9SbMHFx0JZnx93TVWhEVEkTxOjT1mAsf3xy65gK5XqjUPY3-fT2Kg
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiparametric+GARCH+via+Bayesian+Model+Averaging&rft.jtitle=Journal+of+business+%26+economic+statistics&rft.au=Chen%2C+Wilson+Ye&rft.au=Gerlach%2C+Richard+H.&rft.date=2021-03-20&rft.issn=0735-0015&rft.eissn=1537-2707&rft.volume=39&rft.issue=2&rft.spage=437&rft.epage=452&rft_id=info:doi/10.1080%2F07350015.2019.1668796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07350015_2019_1668796
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-0015&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-0015&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-0015&client=summon