Semiparametric GARCH via Bayesian Model Averaging
As the dynamic structure of financial markets is subject to dramatic change, a model capable of providing consistently accurate volatility estimates should not make rigid assumptions on how prices change over time. Most volatility models impose a particular parametric functional form that relates an...
Saved in:
Published in | Journal of business & economic statistics Vol. 39; no. 2; pp. 437 - 452 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
Alexandria
Taylor & Francis
20.03.2021
Taylor & Francis Ltd |
Subjects | |
Online Access | Get full text |
ISSN | 0735-0015 1537-2707 |
DOI | 10.1080/07350015.2019.1668796 |
Cover
Loading…
Abstract | As the dynamic structure of financial markets is subject to dramatic change, a model capable of providing consistently accurate volatility estimates should not make rigid assumptions on how prices change over time. Most volatility models impose a particular parametric functional form that relates an observed price change to a volatility forecast (news impact function). Here, a new class of functional coefficient semiparametric volatility models is proposed, where the news impact function is allowed to be any smooth function. The ability of the proposed model to estimate volatility is studied and compared to the well-known parametric proposals, in both a simulation study and an empirical study with real financial market data. The news impact function is estimated using a Bayesian model averaging approach, implemented via a carefully developed Markov chain Monte Carlo sampling algorithm. Using simulations it is shown that the proposed flexible semiparametric model is able to learn the shape of the news impact function very effectively, from observed data. When applied to real financial time series, the proposed model suggests that news impact functions have quite different shapes over different asset types, but a consistent shape within the same asset class.
Supplementary materials
for this article are available online. |
---|---|
AbstractList | As the dynamic structure of financial markets is subject to dramatic change, a model capable of providing consistently accurate volatility estimates should not make rigid assumptions on how prices change over time. Most volatility models impose a particular parametric functional form that relates an observed price change to a volatility forecast (news impact function). Here, a new class of functional coefficient semiparametric volatility models is proposed, where the news impact function is allowed to be any smooth function. The ability of the proposed model to estimate volatility is studied and compared to the well-known parametric proposals, in both a simulation study and an empirical study with real financial market data. The news impact function is estimated using a Bayesian model averaging approach, implemented via a carefully developed Markov chain Monte Carlo sampling algorithm. Using simulations it is shown that the proposed flexible semiparametric model is able to learn the shape of the news impact function very effectively, from observed data. When applied to real financial time series, the proposed model suggests that news impact functions have quite different shapes over different asset types, but a consistent shape within the same asset class. Supplementary materials for this article are available online. As the dynamic structure of financial markets is subject to dramatic change, a model capable of providing consistently accurate volatility estimates should not make rigid assumptions on how prices change over time. Most volatility models impose a particular parametric functional form that relates an observed price change to a volatility forecast (news impact function). Here, a new class of functional coefficient semiparametric volatility models is proposed, where the news impact function is allowed to be any smooth function. The ability of the proposed model to estimate volatility is studied and compared to the well-known parametric proposals, in both a simulation study and an empirical study with real financial market data. The news impact function is estimated using a Bayesian model averaging approach, implemented via a carefully developed Markov chain Monte Carlo sampling algorithm. Using simulations it is shown that the proposed flexible semiparametric model is able to learn the shape of the news impact function very effectively, from observed data. When applied to real financial time series, the proposed model suggests that news impact functions have quite different shapes over different asset types, but a consistent shape within the same asset class. Supplementary materials for this article are available online. |
Author | Chen, Wilson Ye Gerlach, Richard H. |
Author_xml | – sequence: 1 givenname: Wilson Ye orcidid: 0000-0002-5514-6213 surname: Chen fullname: Chen, Wilson Ye organization: The Institute of Statistical Mathematics – sequence: 2 givenname: Richard H. orcidid: 0000-0002-5656-4556 surname: Gerlach fullname: Gerlach, Richard H. organization: Discipline of Business Analytics, Business School, The University of Sydney |
BookMark | eNqFkE1Lw0AQhhepYFv9CULAc-rsbpLN4sVatBUUwY_zMsluypZ0t27SSv-9Ca0XDzqXuTzPO8w7IgPnnSHkksKEQg7XIHgKQNMJAyonNMtyIbMTMqQpFzETIAZk2DNxD52RUdOsoJs8zYaEvpm13WDAtWmDLaP59HW2iHYWozvcm8aii569NnU03ZmAS-uW5-S0wroxF8c9Jh8P9--zRfz0Mn-cTZ_iMmF5G-uizGTJtZECqDAJQpEzxrRMhDRCJgUyjVQKDkJTWhgupDSaoSgkJgyAj8nVIXcT_OfWNK1a-W1w3UnFcuDd55TSjro5UGXwTRNMpUrbYmu9awPaWlFQfUfqpyPVd6SOHXV2-sveBLvGsP_Xuz141lU-rPHLh1qrFve1D1VAV9pG8b8jvgFiNH0Q |
CitedBy_id | crossref_primary_10_1360_SSM_2023_0246 crossref_primary_10_1080_01621459_2022_2070070 crossref_primary_10_1080_03610918_2024_2374900 crossref_primary_10_1111_jtsa_12713 crossref_primary_10_1007_s00500_019_04607_x |
Cites_doi | 10.1016/j.jeconom.2005.03.019 10.1198/10618600152627924 10.1016/j.ijforecast.2013.01.007 10.1111/1467-9868.00336 10.1002/jae.606 10.1016/0304-4076(92)90069-4 10.1016/0165-1889(94)90039-6 10.1214/06-BA122 10.1198/016214503000000891 10.1016/j.jeconom.2005.03.006 10.5705/ss.2009.285 10.1137/1.9781611970128 10.1016/j.csda.2015.04.003 10.1017/S0266466600009166 10.1214/aos/1176345206 10.1214/088342304000000035 10.1214/aos/1176325750 10.1002/for.1237 10.1007/978-3-662-12605-9 10.1016/j.jeconom.2006.06.012 10.1016/0304-4076(95)01763-1 10.1016/0304-4076(86)90063-1 10.1093/biomet/82.4.711 10.1111/j.1468-0262.2005.00596.x 10.1016/0304-4076(90)90101-X 10.1198/073500103288619430 10.1007/978-1-4612-6333-3 10.1016/j.ijforecast.2005.08.001 10.1017/S0266466608080304 10.1111/1368-423X.11003 10.1016/j.jeconom.2013.03.006 10.3982/ECTA6495 10.1239/jap/1183667414 10.1198/016214501750332965 10.1111/j.1540-6261.1993.tb05128.x 10.1111/j.1540-6261.1993.tb05127.x 10.1080/01621459.1993.10476353 10.1111/1467-9868.00353 10.1093/jjfinec/nbw002 10.2307/2527081 10.1111/j.1368-423X.2008.00253.x 10.2307/1925546 10.1023/A:1013164120801 10.1017/CBO9781139540933 10.1515/9781400839254 10.1016/S0304-4076(97)00042-0 10.2307/2938260 10.1214/ss/1015346320 10.1002/jae.1279 10.1111/1368-423X.00070 10.1016/S0167-9473(02)00080-4 10.1017/S0266466602184040 10.1007/s11749-007-0056-8 10.2307/1391236 10.1080/01621459.1988.10478694 10.1017/CBO9780511755453 10.2307/1912773 10.2139/ssrn.2316341 10.1111/j.1467-9868.2009.00696.x 10.1016/j.csda.2010.06.018 10.1017/S0770451800004346 |
ContentType | Journal Article |
Copyright | 2019 American Statistical Association 2019 2019 American Statistical Association |
Copyright_xml | – notice: 2019 American Statistical Association 2019 – notice: 2019 American Statistical Association |
DBID | AAYXX CITATION |
DOI | 10.1080/07350015.2019.1668796 |
DatabaseName | CrossRef |
DatabaseTitle | CrossRef |
DatabaseTitleList | |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Economics Statistics Mathematics |
EISSN | 1537-2707 |
EndPage | 452 |
ExternalDocumentID | 10_1080_07350015_2019_1668796 1668796 |
Genre | Research Article |
GroupedDBID | -~X .7F .QJ 0BK 0R~ 29K 30N 4.4 5GY 7WY 85S 8FL AAENE AAIKC AAJMT AALDU AAMIU AAMNW AAPUL AAQRR ABCCY ABFAN ABFIM ABJNI ABKVW ABLIJ ABLJU ABPAQ ABPEM ABTAI ABXUL ABXYU ABYRZ ABYWD ABYYQ ACGFO ACGFS ACHQT ACMTB ACNCT ACTIO ACTMH ACVFL ADCVX ADGTB ADMHG AEISY AELLO AENEX AEOZL AEPSL AEYOC AFSUE AFVYC AGDLA AGMYJ AHAJD AHDZW AHQJS AIJEM AKBRZ AKBVH AKOOK AKVCP ALIPV ALMA_UNASSIGNED_HOLDINGS ALQZU AQRUH AVBZW AWYRJ BKOMP BLEHA CCCUG CS3 D-I D0L DGEBU DKSSO DU5 EBS EBU EOH E~A E~B F5P GROUPED_ABI_INFORM_COMPLETE GTTXZ H13 HF~ HZ~ H~P IAO IEA IGG IOF IPNFZ J.P JAA JST K60 K6~ KYCEM LJTGL M4Z MS~ N95 NA5 NY~ O9- P2P RIG RNANH ROSJB RTWRZ S-T SJN SNACF TBQAZ TDBHL TEJ TFL TFT TFW TN5 TTHFI TUROJ U5U UT5 UU3 WZA YK4 YQT ZCA ZGOLN ~S~ AAGDL AAHIA AAYXX ADXHL ADYSH AFRVT AIYEW AMPGV CITATION TASJS |
ID | FETCH-LOGICAL-c428t-dbc69c3de97017e4a0b8222d9479e794ba2da197307d11be3799ed2a7b9a42003 |
ISSN | 0735-0015 |
IngestDate | Sat Aug 23 12:59:04 EDT 2025 Thu Apr 24 23:07:49 EDT 2025 Tue Jul 01 02:59:23 EDT 2025 Wed Dec 25 09:08:14 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c428t-dbc69c3de97017e4a0b8222d9479e794ba2da197307d11be3799ed2a7b9a42003 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0002-5514-6213 0000-0002-5656-4556 |
PQID | 2803108111 |
PQPubID | 3244 |
PageCount | 16 |
ParticipantIDs | informaworld_taylorfrancis_310_1080_07350015_2019_1668796 proquest_journals_2803108111 crossref_citationtrail_10_1080_07350015_2019_1668796 crossref_primary_10_1080_07350015_2019_1668796 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-03-20 |
PublicationDateYYYYMMDD | 2021-03-20 |
PublicationDate_xml | – month: 03 year: 2021 text: 2021-03-20 day: 20 |
PublicationDecade | 2020 |
PublicationPlace | Alexandria |
PublicationPlace_xml | – name: Alexandria |
PublicationTitle | Journal of business & economic statistics |
PublicationYear | 2021 |
Publisher | Taylor & Francis Taylor & Francis Ltd |
Publisher_xml | – name: Taylor & Francis – name: Taylor & Francis Ltd |
References | CIT0032 CIT0031 CIT0034 Yang L. (CIT0065) 2002; 12 CIT0033 CIT0035 CIT0038 CIT0037 CIT0039 CIT0040 CIT0043 CIT0042 CIT0045 CIT0044 CIT0003 CIT0047 CIT0002 CIT0005 Forsythe G. E. (CIT0030) 1977 CIT0049 CIT0004 CIT0048 CIT0007 CIT0006 CIT0009 CIT0008 CIT0050 CIT0051 CIT0010 CIT0054 CIT0053 CIT0012 CIT0056 CIT0011 CIT0055 Gruet M.-A. (CIT0036) 1997; 59 CIT0014 CIT0058 CIT0013 CIT0057 CIT0016 CIT0015 CIT0059 CIT0018 CIT0017 Harvey A. C. (CIT0041) 2009 CIT0019 CIT0061 CIT0060 CIT0063 CIT0062 CIT0021 CIT0020 CIT0064 CIT0023 CIT0067 CIT0022 CIT0066 Akaike H. (CIT0001) 1973 Lubrano M. (CIT0046) 2001; 67 CIT0025 CIT0024 CIT0027 CIT0026 CIT0029 CIT0028 Roberts G. O. (CIT0052) 1996 |
References_xml | – ident: CIT0059 doi: 10.1016/j.jeconom.2005.03.019 – ident: CIT0033 doi: 10.1198/10618600152627924 – ident: CIT0019 doi: 10.1016/j.ijforecast.2013.01.007 – ident: CIT0007 doi: 10.1111/1467-9868.00336 – ident: CIT0063 doi: 10.1002/jae.606 – ident: CIT0034 doi: 10.1016/0304-4076(92)90069-4 – ident: CIT0067 doi: 10.1016/0165-1889(94)90039-6 – ident: CIT0015 doi: 10.1214/06-BA122 – ident: CIT0051 doi: 10.1198/016214503000000891 – ident: CIT0066 doi: 10.1016/j.jeconom.2005.03.006 – ident: CIT0064 doi: 10.5705/ss.2009.285 – start-page: 45 volume-title: Markov Chain Monte Carlo in Practice year: 1996 ident: CIT0052 – ident: CIT0062 doi: 10.1137/1.9781611970128 – ident: CIT0010 doi: 10.1016/j.csda.2015.04.003 – ident: CIT0047 doi: 10.1017/S0266466600009166 – ident: CIT0058 doi: 10.1214/aos/1176345206 – ident: CIT0022 doi: 10.1214/088342304000000035 – ident: CIT0061 doi: 10.1214/aos/1176325750 – ident: CIT0017 doi: 10.1002/for.1237 – ident: CIT0037 doi: 10.1007/978-3-662-12605-9 – ident: CIT0021 doi: 10.1016/j.jeconom.2006.06.012 – volume: 12 start-page: 801 year: 2002 ident: CIT0065 publication-title: Statistica Sinica – volume: 59 start-page: 777 year: 1997 ident: CIT0036 publication-title: Journal of Royal Statistical Society, Series B – ident: CIT0056 doi: 10.1016/0304-4076(95)01763-1 – ident: CIT0011 doi: 10.1016/0304-4076(86)90063-1 – ident: CIT0035 doi: 10.1093/biomet/82.4.711 – ident: CIT0045 doi: 10.1111/j.1468-0262.2005.00596.x – ident: CIT0050 doi: 10.1016/0304-4076(90)90101-X – ident: CIT0009 doi: 10.1198/073500103288619430 – ident: CIT0024 doi: 10.1007/978-1-4612-6333-3 – volume-title: Technical Report, Working Paper. Earlier Version Appeared in 2008 as a Cambridge Working Paper in Economics from Faculty of Economics year: 2009 ident: CIT0041 – ident: CIT0018 doi: 10.1016/j.ijforecast.2005.08.001 – ident: CIT0039 doi: 10.1017/S0266466608080304 – ident: CIT0008 doi: 10.1111/1368-423X.11003 – ident: CIT0002 doi: 10.1016/j.jeconom.2013.03.006 – ident: CIT0006 doi: 10.3982/ECTA6495 – ident: CIT0054 doi: 10.1239/jap/1183667414 – volume-title: Computer Methods for Mathematical Computations year: 1977 ident: CIT0030 – ident: CIT0003 doi: 10.1198/016214501750332965 – ident: CIT0032 doi: 10.1111/j.1540-6261.1993.tb05128.x – ident: CIT0029 doi: 10.1111/j.1540-6261.1993.tb05127.x – ident: CIT0031 doi: 10.1080/01621459.1993.10476353 – volume-title: 2nd International Symposium on Information Theory year: 1973 ident: CIT0001 – ident: CIT0057 doi: 10.1111/1467-9868.00353 – ident: CIT0016 doi: 10.1093/jjfinec/nbw002 – ident: CIT0038 doi: 10.2307/2527081 – ident: CIT0004 doi: 10.1111/j.1368-423X.2008.00253.x – ident: CIT0012 doi: 10.2307/1925546 – ident: CIT0025 doi: 10.1023/A:1013164120801 – ident: CIT0040 doi: 10.1017/CBO9781139540933 – ident: CIT0060 doi: 10.1515/9781400839254 – ident: CIT0026 doi: 10.1016/S0304-4076(97)00042-0 – ident: CIT0049 doi: 10.2307/2938260 – ident: CIT0053 doi: 10.1214/ss/1015346320 – ident: CIT0023 doi: 10.1002/jae.1279 – ident: CIT0043 doi: 10.1111/1368-423X.00070 – ident: CIT0013 doi: 10.1016/S0167-9473(02)00080-4 – ident: CIT0014 doi: 10.1017/S0266466602184040 – ident: CIT0042 doi: 10.1007/s11749-007-0056-8 – ident: CIT0028 doi: 10.2307/1391236 – ident: CIT0048 doi: 10.1080/01621459.1988.10478694 – ident: CIT0055 doi: 10.1017/CBO9780511755453 – ident: CIT0027 doi: 10.2307/1912773 – ident: CIT0044 doi: 10.2139/ssrn.2316341 – ident: CIT0005 doi: 10.1111/j.1467-9868.2009.00696.x – ident: CIT0020 doi: 10.1016/j.csda.2010.06.018 – volume: 67 start-page: 257 year: 2001 ident: CIT0046 publication-title: Recherches Économiques de Louvain/Louvain Economic Review doi: 10.1017/S0770451800004346 |
SSID | ssj0000856 |
Score | 2.3172207 |
Snippet | As the dynamic structure of financial markets is subject to dramatic change, a model capable of providing consistently accurate volatility estimates should not... |
SourceID | proquest crossref informaworld |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 437 |
SubjectTerms | Bayesian analysis Functional coefficient Heavy tail Markov chain Monte Carlo News impact function Regression spline Volatility |
Title | Semiparametric GARCH via Bayesian Model Averaging |
URI | https://www.tandfonline.com/doi/abs/10.1080/07350015.2019.1668796 https://www.proquest.com/docview/2803108111 |
Volume | 39 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT-MwELbYcgAOK14rYAHlwC1K1Tgmjo_s8qiQ4AJoWS6RX5WQli6CgAS_nhnbSVMozxyiJJKdpN9kZjyd-YaQLdrTqeqlJjEFZQlT1CRCKDiFtYpCCrSBxjjk0XHeP2OH59vno9oTV11Sqa5-nFhX8hVU4RrgilWyn0C2mRQuwDHgC3tAGPYfwvjEXl0id_cVtsXS8QH-8xPfX8r4l3ywrjoSW50BBvBmrhvRK66oqrPfUQ5sKFXGKEPlaZxHOQBeSXmOx_hvIxQHGBX0TaVCpX7c77YDCtRlVNFeS-_wbDtBX8qbiFovcixd423F6VmIgoDQlhZknsclGFTmKWpf6OqQ3Ah3w5thlp3opnlecDGBG_uZzWoyCdOa4jRMU-I0ZZjmG5mmsHqgHTK909-9-DMy0YVr69u8aV3ahaTrk55nzGkZo7R9YcKdX3I6T74HFKMdLx0LZMoOF8lMXW9-u0jmjhpmXjibPWlQXSLpuABFToAiEKCoFqDICVDUCNAyOdvfO_3dT0IPjUTDwrJKjNK50JmxgoPutUz2FLqERjAuLOhiJamRqQA9z02aKptxIayhkishGSYu_iCd4f-hXSHRADZW5IUspGC5yeSAwuoURuSW60LSVcLqH6nUgWAe-5z8K98EaZV0m2HXnmHlvQGijUBZudDWwPehKbN3xq7XcJXhQ74tsUEbDAGrv_bZZ_lJZkef0DrpVDd3dgO81EptBpl7ApqWgwQ |
linkProvider | Library Specific Holdings |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3JTsMwEB2xHIADO6KsOXBNyeI68REQUKDtBZC4Wd4iVdCCaIoEX89MlrIJcSA3H8ZK7NnszLwHcBAFJtRBaH2bRsxnOrK-EBqHeFbRBIGWGbqH7PZ4-5Zd3rXuPvXCUFklnaGzEiii8NVk3HQZXZfEHaJatijYU2WWaIacp4ng0zDbEjwhFoM46H1447RgcCURn2TqLp7fpvkSn76gl_7w1kUIOlsCU798WXly3xznumnevuE6_u_rlmGxylC9o1KlVmDKDVdhrm5gHq3CQncC9YqjeUpXS7TnNQiv3aBPaOIDIuoy3jn9i_Je-so7Vq-O-jU9Il_D2dGCCn6kdbg9O705afsVKYNv8KSS-1YbLkxsnUjQmB1TgaYcwwqWCIfGrVVkVSjQcSQ2DLWLEyGcjVSihWJUCbcBM8PHodsEL8OHpTxVqRKM21hleBpNUYK7xKQqagCrt0KaCrGciDMeZFgDm1ZLJWmpZLVUDWhOxJ5KyI6_BMTnfZZ5cVeSlcQmMv5DdqdWCllZ_0gS4xeKYBjZ-sfU-zDXvul2ZOeid7UN8xEV0wQxurUdmMmfx24Xs6Fc7xXq_g4UQveG |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3HTsQwEB1RJFgOdMRSc-CaJcU48ZG2LG2FBEjcLLdIK9gFsQEJvp6ZFKoQB3LzYazEnmZn5j2ArSgwoQ5C69s0Yj7TkfWF0DjEs4omCLTM0D3keZd3rtnJzU5dTTisyirpDJ2VQBGFrybjfrBZXRG3jVq5Q7GeCrNEK-Q8TQQfhXFO4OHUxRF0P5xxWhC4kohPMnUTz2_TfAlPX8BLfzjrIgK1Z0DX714Wnty2nnLdMq_fYB3_9XGzMF3lp95uqVBzMOIG8zBZty8P52Hq_B3oFUcNSlZLrOcFCC9dv0dY4n2i6TLeEf2J8p57yttTL466NT2iXsPZ0X4KdqRFuG4fXu13_IqSwTd4Tsl9qw0XJrZOJGjKjqlAU4ZhBUuEQ9PWKrIqFOg2EhuG2sWJEM5GKtFCMaqDW4Kxwf3ALYOX4cNSnqpUCcZtrDI8i6YowV1iUhU1gdU7IU2FV060GXcyrGFNq6WStFSyWqomtN7FHkrAjr8ExOdtlnlxU5KVtCYy_kN2rdYJWdn-UBLfF4pgEFn5x9SbMHFx0JZnx93TVWhEVEkTxOjT1mAsf3xy65gK5XqjUPY3-fT2Kg |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Semiparametric+GARCH+via+Bayesian+Model+Averaging&rft.jtitle=Journal+of+business+%26+economic+statistics&rft.au=Chen%2C+Wilson+Ye&rft.au=Gerlach%2C+Richard+H.&rft.date=2021-03-20&rft.issn=0735-0015&rft.eissn=1537-2707&rft.volume=39&rft.issue=2&rft.spage=437&rft.epage=452&rft_id=info:doi/10.1080%2F07350015.2019.1668796&rft.externalDBID=n%2Fa&rft.externalDocID=10_1080_07350015_2019_1668796 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0735-0015&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0735-0015&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0735-0015&client=summon |