Rhenium-doped MoS2 films

Tailoring the electrical properties of transition metal dichalcogenides by doping is one of the biggest challenges for the application of 2D materials in future electronic devices. Here, we report on a straightforward approach to the n-type doping of molybdenum disulfide (MoS2) films with rhenium (R...

Full description

Saved in:
Bibliographic Details
Published inApplied physics letters Vol. 111; no. 20
Main Authors Hallam, Toby, Monaghan, Scott, Gity, Farzan, Ansari, Lida, Schmidt, Michael, Downing, Clive, Cullen, Conor P., Nicolosi, Valeria, Hurley, Paul K., Duesberg, Georg S.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 13.11.2017
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Tailoring the electrical properties of transition metal dichalcogenides by doping is one of the biggest challenges for the application of 2D materials in future electronic devices. Here, we report on a straightforward approach to the n-type doping of molybdenum disulfide (MoS2) films with rhenium (Re). High-Resolution Scanning Transmission Electron Microscopy and Energy-Dispersive X-ray spectroscopy are used to identify Re in interstitial and lattice sites of the MoS2 structure. Hall-effect measurements confirm the electron donating influence of Re in MoS2, while the nominally undoped films exhibit a net p-type doping. Density functional theory (DFT) modelling indicates that Re on Mo sites is the origin of the n-type doping, whereas S-vacancies have a p-type nature, providing an explanation for the p-type behaviour of nominally undoped MoS2 films.
AbstractList Tailoring the electrical properties of transition metal dichalcogenides by doping is one of the biggest challenges for the application of 2D materials in future electronic devices. Here, we report on a straightforward approach to the n-type doping of molybdenum disulfide (MoS2) films with rhenium (Re). High-Resolution Scanning Transmission Electron Microscopy and Energy-Dispersive X-ray spectroscopy are used to identify Re in interstitial and lattice sites of the MoS2 structure. Hall-effect measurements confirm the electron donating influence of Re in MoS2, while the nominally undoped films exhibit a net p-type doping. Density functional theory (DFT) modelling indicates that Re on Mo sites is the origin of the n-type doping, whereas S-vacancies have a p-type nature, providing an explanation for the p-type behaviour of nominally undoped MoS2 films.
Author Monaghan, Scott
Schmidt, Michael
Cullen, Conor P.
Gity, Farzan
Hallam, Toby
Downing, Clive
Nicolosi, Valeria
Ansari, Lida
Duesberg, Georg S.
Hurley, Paul K.
Author_xml – sequence: 1
  givenname: Toby
  surname: Hallam
  fullname: Hallam, Toby
  organization: 5 Universität der Bundeswehr München, 85577 Neubiberg, Germany
– sequence: 2
  givenname: Scott
  surname: Monaghan
  fullname: Monaghan, Scott
  organization: Tyndall National Institute, and the Department of Chemistry, University College Cork
– sequence: 3
  givenname: Farzan
  surname: Gity
  fullname: Gity, Farzan
  organization: Tyndall National Institute, and the Department of Chemistry, University College Cork
– sequence: 4
  givenname: Lida
  surname: Ansari
  fullname: Ansari, Lida
  organization: Tyndall National Institute, and the Department of Chemistry, University College Cork
– sequence: 5
  givenname: Michael
  surname: Schmidt
  fullname: Schmidt, Michael
  organization: Tyndall National Institute, and the Department of Chemistry, University College Cork
– sequence: 6
  givenname: Clive
  surname: Downing
  fullname: Downing, Clive
  organization: CRANN/AMBER, Trinity College Dublin
– sequence: 7
  givenname: Conor P.
  surname: Cullen
  fullname: Cullen, Conor P.
  organization: 5 Universität der Bundeswehr München, 85577 Neubiberg, Germany
– sequence: 8
  givenname: Valeria
  surname: Nicolosi
  fullname: Nicolosi, Valeria
  organization: 5 Universität der Bundeswehr München, 85577 Neubiberg, Germany
– sequence: 9
  givenname: Paul K.
  surname: Hurley
  fullname: Hurley, Paul K.
  organization: Tyndall National Institute, and the Department of Chemistry, University College Cork
– sequence: 10
  givenname: Georg S.
  surname: Duesberg
  fullname: Duesberg, Georg S.
  organization: 5 Universität der Bundeswehr München, 85577 Neubiberg, Germany
BookMark eNp9z8tLw0AQBvBFKphWD948FjwppN3ZZ_YopT6gIvg4L9tkF1PSbNxNBP97I6kKKp6Ggd_3DTNGo9rXFqFjwDPAgs5hxpTihOA9lACWMqUA2QglGGOaCsXhAI1j3PQrJ5Qm6OT-2dZlt00L39hieusfyNSV1TYeon1nqmiPdnOCni6Xj4vrdHV3dbO4WKU5I1mbFlI6xhUVQjllgEkiRS6dXXPCLFaZwDQrmBBGqAI4V8JJbqRZUwp5Lo2hE3Q69DbBv3Q2tnrju1D3JzUBEJgzDqRXZ4PKg48xWKebUG5NeNOA9cfjGvTu8d7Of9i8bE1b-roNpqz-TJwPifgpv-pfffiGuincf_h38zvKdHP-
CODEN APPLAB
CitedBy_id crossref_primary_10_3390_lubricants7070057
crossref_primary_10_1002_pssb_202300477
crossref_primary_10_1016_j_physe_2019_113872
crossref_primary_10_1002_admt_202300517
crossref_primary_10_1016_j_surfrep_2022_100567
crossref_primary_10_1002_adma_202203425
crossref_primary_10_1016_j_apsusc_2020_147739
crossref_primary_10_1038_s41467_024_47039_4
crossref_primary_10_1002_aelm_202200209
crossref_primary_10_1021_acs_nanolett_0c05135
crossref_primary_10_1021_acsomega_9b04325
crossref_primary_10_1088_2053_1583_abc460
crossref_primary_10_1063_5_0062633
crossref_primary_10_3390_cryst8080316
crossref_primary_10_1039_D1TC02102H
crossref_primary_10_1557_adv_2019_391
crossref_primary_10_1007_s10853_021_05916_z
crossref_primary_10_1063_5_0045916
crossref_primary_10_1021_acs_jpcc_2c05895
crossref_primary_10_7567_1882_0786_aaf5c4
crossref_primary_10_1002_admi_201901055
crossref_primary_10_1063_1_5027535
crossref_primary_10_1021_acs_jpcc_2c03999
crossref_primary_10_1021_acs_chemrev_7b00633
crossref_primary_10_1021_acs_chemrev_8b00501
crossref_primary_10_1088_1361_648X_ac1caf
crossref_primary_10_1002_adma_201907235
crossref_primary_10_1021_acsnano_4c08366
crossref_primary_10_1093_micmic_ozad067_931
crossref_primary_10_1021_acs_nanolett_4c06007
crossref_primary_10_1002_aelm_201900830
crossref_primary_10_1007_s10854_018_9551_9
crossref_primary_10_1016_j_mtnano_2022_100191
crossref_primary_10_1063_1_5121363
crossref_primary_10_1103_PhysRevB_105_094111
crossref_primary_10_1039_C9TC05548G
crossref_primary_10_1021_acsanm_0c02167
crossref_primary_10_1109_TVLSI_2019_2914609
crossref_primary_10_1021_acsnano_0c06607
crossref_primary_10_1021_acsnano_9b09857
Cites_doi 10.1021/nl301702r
10.1021/nl2018178
10.1039/C5CS00275C
10.1039/C6TC00489J
10.1038/srep29726
10.1021/ja5033327
10.1021/nn503284n
10.3390/electronics4030651
10.1021/nl503251h
10.1364/OE.24.010205
10.1063/1.4824205
10.1002/adma.201601104
10.1038/srep05458
10.1016/j.apsusc.2017.04.249
10.1021/nn1003937
10.1021/acsnano.5b00153
10.1021/acs.chemmater.6b00430
10.1016/S0022-0248(99)00296-1
10.1016/j.materresbull.2016.02.029
10.1002/adma.201506402
10.1021/nl502603d
10.1016/j.apsusc.2014.01.103
10.1016/j.calphad.2013.08.002
10.1039/c3cp55270e
10.1103/PhysRevB.88.075420
10.1063/1.4824893
10.1039/c2nr31833d
10.1109/JSTQE.2016.2584784
10.1038/ncomms4252
10.1063/1.4954017
10.1016/j.sse.2016.07.021
10.1063/1.4867197
10.1021/nl4007479
10.1021/nn5047844
10.1063/1.4943080
ContentType Journal Article
Copyright Author(s)
2017 Author(s). Published by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2017 Author(s). Published by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/1.4995220
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef

Technology Research Database
DeliveryMethod fulltext_linktorsrc
Discipline Engineering
Physics
EISSN 1077-3118
ExternalDocumentID 10_1063_1_4995220
apl
GrantInformation_xml – fundername: EC | Seventh Framework Programme
  grantid: 604391
  funderid: http://dx.doi.org/10.13039/100011102
– fundername: Science Foundation Ireland
  grantid: 12/RC/2278; PI_10/IN.1/I3030
  funderid: http://dx.doi.org/10.13039/501100001602
GroupedDBID -DZ
-~X
.DC
1UP
2-P
23M
4.4
53G
5GY
5VS
6J9
A9.
AAAAW
AABDS
AAEUA
AAGZG
AAPUP
AAYIH
ABFTF
ABJNI
ABRJW
ABZEH
ACBEA
ACBRY
ACGFO
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEGXH
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIAGR
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
AQWKA
ATXIE
AWQPM
BPZLN
CS3
D0L
EBS
EJD
ESX
F.2
F5P
FDOHQ
FFFMQ
HAM
M6X
M71
M73
N9A
NPSNA
O-B
P2P
RIP
RNS
RQS
SJN
TAE
TN5
UCJ
UPT
WH7
XJE
YZZ
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c428t-d77f4593669f9a147276c7feb524e0986038d466a69d15596f75a7ab331cc7aa3
ISSN 0003-6951
IngestDate Sun Jun 29 15:28:17 EDT 2025
Thu Apr 24 22:56:27 EDT 2025
Tue Jul 01 01:15:55 EDT 2025
Fri Jun 21 00:14:28 EDT 2024
Sun Jul 14 11:38:49 EDT 2019
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 20
Language English
License 0003-6951/2017/111(20)/203101/5/$30.00
Published by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-d77f4593669f9a147276c7feb524e0986038d466a69d15596f75a7ab331cc7aa3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
ORCID 0000-0003-2327-6715
0000-0002-9284-2832
0000-0002-5601-460X
0000-0002-9006-9890
0000-0003-3128-1426
OpenAccessLink https://aip.scitation.org/doi/pdf/10.1063/1.4995220
PQID 2116054512
PQPubID 2050678
PageCount 5
ParticipantIDs proquest_journals_2116054512
scitation_primary_10_1063_1_4995220
crossref_citationtrail_10_1063_1_4995220
crossref_primary_10_1063_1_4995220
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20171113
2017-11-13
PublicationDateYYYYMMDD 2017-11-13
PublicationDate_xml – month: 11
  year: 2017
  text: 20171113
  day: 13
PublicationDecade 2010
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Applied physics letters
PublicationYear 2017
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Kang, Hong, Oh, Kim, Yu, Park (c15) 2016
Vancsó, Magda, Pető, Noh, Kim, Hwang, Biró, Tapasztó (c28) 2016
Choi, Qu, Lee, Liu, Watanabe, Taniguchi, Yoo (c2) 2014
Tongay, Sahin, Ko, Luce, Fan, Liu, Zhou, Huang, Ho, Yan, Ogletree, Aloni, Ji, Li, Li, Peeters, Wu (c25) 2014
Suh, Park, Lin, Fu, Park, Jung, Chen, Ko, Jang, Sun, Sinclair, Chang, Tongay, Wu (c10) 2014
Wen, Xiong, Zang, Wei, Tang, Dong (c4) 2016
Brandão, Ribeiro, Vaz, González, Krambrock (c17) 2016
Mathieu, Dupin, Crivello, Yaqoob, Breidi, Fiorani, David, Joubert (c22) 2013
Lin, Zhang, Huang, Liu, Lee, Liang, Chu, Li (c18) 2012
Pu, Li, Takenobu (c5) 2014
Lee, Yan, Brus, Heinz, Hone, Ryu (c24) 2010
Laskar Masihhur, Nath Digbijoy, Lu, Lee Edwin, Hee, Thomas, Zihao, Rohan, Roldan Manuel, Juan‐Carlos, Pantelides Sokrates, Pennycook Stephen, Myers Roberto, Yiying, Siddharth (c13) 2014
Zhao, Kiriya, Azcatl, Zhang, Tosun, Liu, Hettick, Kang, McDonnell, Kc, Guo, Cho, Wallace, Javey (c9) 2014
Gioele, Michael, Brendan, Karim, Scott, Ian, MCarthy, Bell Alan, Roger, Felice, Hurley Paul, Ray (c14) 2016
Zhou, Zou, Najmaei, Liu, Shi, Kong, Lou, Ajayan, Yakobson, Idrobo (c27) 2013
Houssa, Iordanidou, Pourtois, Afanas'ev, Stesmans (c29) 2017
Pham, Yeom (c11) 2016
Liu, Guo, Fang, Robertson (c29) 2013
Gatensby, McEvoy, Lee, Hallam, Berner, Rezvani, Winters, O'Brien, Duesberg (c20) 2014
Gatensby, Hallam, Lee, McEvoy, Duesberg (c21) 2016
Varghese, Varghese, Swaminathan, Singh, Mittal (c3) 2015
Schmidt, Giustiniano, Eda (c6) 2015
Dolui, Rungger, Das Pemmaraju, Sanvito (c12) 2013
Park, Lim, Jeon, Yoo, Kang, Jang, Jeon, Lee, Cho, Yeom, Jung, Lee, Park, Lee, Park (c15) 2015
Yang, Majumdar, Liu, Du, Wu, Hatzistergos, Hung, Tieckelmann, Tsai, Hobbs, Ye (c9) 2014
Gao, Kim, Liang, Idrobo, Chow, Tan, Li, Li, Sumpter, Lu, Meunier, Hone, Koratkar (c19) 2016
Mikai, Hongsuk, Sungjin, Lian, Xin, Lifeng, Shulong, Xiaogan (c30) 2013
Yoon, Ganapathi, Salahuddin (c1) 2011
Fang, Chuang, Chang, Takei, Takahashi, Javey (c8) 2012
Tiong, Liao, Ho, Huang (c16) 1999
Al-Dulaimi, Lewis, Zhong, Azad Malik, O'Brien (c19) 2016
Voronine, Lu, Zhu, Krayev (c26) 2017
Tedstone, Lewis, O'Brien (c10) 2016
Kiriya, Tosun, Zhao, Kang, Javey (c7) 2014
Yim, O'Brien, McEvoy, Riazimehr, Schäfer-Eberwein, Bablich, Pawar, Iannaccone, Downing, Fiori, Lemme, Duesberg (c23) 2014
(2023061720520407400_c5) 2014; 16
(2023061720520407400_c11) 2016; 28
(2023061720520407400_c13) 2014; 104
(2023061720520407400_c18) 2012; 4
(2023061720520407400_c19a) 2016; 4
(2023061720520407400_c21) 2016; 125
(2023061720520407400_c30) 2013; 103
(2023061720520407400_c1) 2011; 11
(2023061720520407400_c10a) 2014; 14
(2023061720520407400_c19b) 2016; 28
(2023061720520407400_c20) 2014; 297
(2023061720520407400_c24) 2010; 4
(2023061720520407400_c29b) 2017; 416
(2023061720520407400_c26) 2017; 23
(2023061720520407400_c29a) 2013; 103
(2023061720520407400_c9a) 2014; 14
(2023061720520407400_c28) 2016; 6
(2023061720520407400_c16) 1999; 205
(2023061720520407400_c4) 2016; 24
(2023061720520407400_c22) 2013; 43
(2023061720520407400_c2) 2014; 8
(2023061720520407400_c27) 2013; 13
(2023061720520407400_c25) 2014; 5
(2023061720520407400_c3) 2015; 4
(2023061720520407400_c23) 2014; 4
(2023061720520407400_c17) 2016; 119
(2023061720520407400_c15b) 2016; 82
(2023061720520407400_c15a) 2015; 9
(2023061720520407400_c9b) 2014; 8
(2023061720520407400_c14) 2016; 6
(2023061720520407400_c6) 2015; 44
(2023061720520407400_c10b) 2016; 28
(2023061720520407400_c12) 2013; 88
(2023061720520407400_c7) 2014; 136
(2023061720520407400_c8) 2012; 12
References_xml – start-page: 651
  year: 2015
  ident: c3
  publication-title: Electronics
– start-page: 142110
  year: 2013
  ident: c30
  publication-title: Appl. Phys. Lett.
– start-page: 10808
  year: 2014
  ident: c9
  publication-title: ACS Nano
– start-page: 18
  year: 2013
  ident: c22
  publication-title: Calphad
– start-page: 6976
  year: 2014
  ident: c10
  publication-title: Nano Lett.
– start-page: 2695
  year: 2010
  ident: c24
  publication-title: ACS Nano
– start-page: 2615
  year: 2013
  ident: c27
  publication-title: Nano Lett.
– start-page: 235701
  year: 2016
  ident: c17
  publication-title: J. Appl. Phys.
– start-page: 3768
  year: 2011
  ident: c1
  publication-title: Nano Lett.
– start-page: 9332
  year: 2014
  ident: c2
  publication-title: ACS Nano
– start-page: 543
  year: 1999
  ident: c16
  publication-title: J. Cryst. Growth
– start-page: 853
  year: 2017
  ident: c29
  publication-title: Appl. Surf. Sci.
– start-page: 39
  year: 2016
  ident: c21
  publication-title: Solid-State Electron.
– start-page: 26
  year: 2016
  ident: c15
  publication-title: Mater. Res. Bull.
– start-page: 6275
  year: 2014
  ident: c9
  publication-title: Nano Lett.
– start-page: 075420
  year: 2013
  ident: c12
  publication-title: Phys. Rev. B
– start-page: 092104
  year: 2014
  ident: c13
  publication-title: Appl. Phys. Lett.
– start-page: 9024
  year: 2016
  ident: c11
  publication-title: Adv. Mater.
– start-page: 3252
  year: 2014
  ident: c25
  publication-title: Nat. Commun.
– start-page: 4600506
  year: 2017
  ident: c26
  publication-title: IEEE J. Sel. Top. Quantum Electron.
– start-page: 2312
  year: 2016
  ident: c19
  publication-title: J. Mater. Chem. C
– start-page: 2368
  year: 2015
  ident: c15
  publication-title: ACS Nano
– start-page: 6637
  year: 2012
  ident: c18
  publication-title: Nanoscale
– start-page: 139
  year: 2014
  ident: c20
  publication-title: Appl. Surf. Sci.
– start-page: 14996
  year: 2014
  ident: c5
  publication-title: Phys. Chem. Chem. Phys.
– start-page: 3788
  year: 2012
  ident: c8
  publication-title: Nano Lett.
– start-page: 183113
  year: 2013
  ident: c29
  publication-title: Appl. Phys. Lett.
– start-page: 5458
  year: 2014
  ident: c23
  publication-title: Sci. Rep.
– start-page: 7715
  year: 2015
  ident: c6
  publication-title: Chem. Soc. Rev.
– start-page: 7853
  year: 2014
  ident: c7
  publication-title: J. Am. Chem. Soc.
– start-page: 1965
  year: 2016
  ident: c10
  publication-title: Chem. Mater.
– start-page: 10205
  year: 2016
  ident: c4
  publication-title: Opt. Express
– start-page: 9735
  year: 2016
  ident: c19
  publication-title: Adv. Mater.
– start-page: 29726
  year: 2016
  ident: c28
  publication-title: Sci. Rep.
– start-page: 025323
  year: 2016
  ident: c14
  publication-title: AIP Adv.
– volume: 12
  start-page: 3788
  issue: 7
  year: 2012
  ident: 2023061720520407400_c8
  publication-title: Nano Lett.
  doi: 10.1021/nl301702r
– volume: 11
  start-page: 3768
  issue: 9
  year: 2011
  ident: 2023061720520407400_c1
  publication-title: Nano Lett.
  doi: 10.1021/nl2018178
– volume: 44
  start-page: 7715
  issue: 21
  year: 2015
  ident: 2023061720520407400_c6
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00275C
– volume: 4
  start-page: 2312
  issue: 12
  year: 2016
  ident: 2023061720520407400_c19a
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C6TC00489J
– volume: 6
  start-page: 29726
  year: 2016
  ident: 2023061720520407400_c28
  publication-title: Sci. Rep.
  doi: 10.1038/srep29726
– volume: 136
  start-page: 7853
  issue: 22
  year: 2014
  ident: 2023061720520407400_c7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja5033327
– volume: 8
  start-page: 9332
  issue: 9
  year: 2014
  ident: 2023061720520407400_c2
  publication-title: ACS Nano
  doi: 10.1021/nn503284n
– volume: 4
  start-page: 651
  issue: 3
  year: 2015
  ident: 2023061720520407400_c3
  publication-title: Electronics
  doi: 10.3390/electronics4030651
– volume: 14
  start-page: 6976
  issue: 12
  year: 2014
  ident: 2023061720520407400_c10a
  publication-title: Nano Lett.
  doi: 10.1021/nl503251h
– volume: 24
  start-page: 10205
  issue: 10
  year: 2016
  ident: 2023061720520407400_c4
  publication-title: Opt. Express
  doi: 10.1364/OE.24.010205
– volume: 103
  start-page: 142110
  issue: 14
  year: 2013
  ident: 2023061720520407400_c30
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4824205
– volume: 28
  start-page: 9735
  issue: 44
  year: 2016
  ident: 2023061720520407400_c19b
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601104
– volume: 4
  start-page: 5458
  year: 2014
  ident: 2023061720520407400_c23
  publication-title: Sci. Rep.
  doi: 10.1038/srep05458
– volume: 416
  start-page: 853
  year: 2017
  ident: 2023061720520407400_c29b
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2017.04.249
– volume: 4
  start-page: 2695
  issue: 5
  year: 2010
  ident: 2023061720520407400_c24
  publication-title: ACS Nano
  doi: 10.1021/nn1003937
– volume: 9
  start-page: 2368
  issue: 3
  year: 2015
  ident: 2023061720520407400_c15a
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b00153
– volume: 28
  start-page: 1965
  issue: 7
  year: 2016
  ident: 2023061720520407400_c10b
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.6b00430
– volume: 205
  start-page: 543
  issue: 4
  year: 1999
  ident: 2023061720520407400_c16
  publication-title: J. Cryst. Growth
  doi: 10.1016/S0022-0248(99)00296-1
– volume: 82
  start-page: 26
  year: 2016
  ident: 2023061720520407400_c15b
  publication-title: Mater. Res. Bull.
  doi: 10.1016/j.materresbull.2016.02.029
– volume: 28
  start-page: 9024
  issue: 41
  year: 2016
  ident: 2023061720520407400_c11
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201506402
– volume: 14
  start-page: 6275
  issue: 11
  year: 2014
  ident: 2023061720520407400_c9a
  publication-title: Nano Lett.
  doi: 10.1021/nl502603d
– volume: 297
  start-page: 139
  year: 2014
  ident: 2023061720520407400_c20
  publication-title: Appl. Surf. Sci.
  doi: 10.1016/j.apsusc.2014.01.103
– volume: 43
  start-page: 18
  year: 2013
  ident: 2023061720520407400_c22
  publication-title: Calphad
  doi: 10.1016/j.calphad.2013.08.002
– volume: 16
  start-page: 14996
  issue: 29
  year: 2014
  ident: 2023061720520407400_c5
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/c3cp55270e
– volume: 88
  start-page: 075420
  issue: 7
  year: 2013
  ident: 2023061720520407400_c12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.88.075420
– volume: 103
  start-page: 183113
  issue: 18
  year: 2013
  ident: 2023061720520407400_c29a
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4824893
– volume: 4
  start-page: 6637
  issue: 20
  year: 2012
  ident: 2023061720520407400_c18
  publication-title: Nanoscale
  doi: 10.1039/c2nr31833d
– volume: 23
  start-page: 4600506
  issue: 1
  year: 2017
  ident: 2023061720520407400_c26
  publication-title: IEEE J. Sel. Top. Quantum Electron.
  doi: 10.1109/JSTQE.2016.2584784
– volume: 5
  start-page: 3252
  year: 2014
  ident: 2023061720520407400_c25
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4252
– volume: 119
  start-page: 235701
  issue: 23
  year: 2016
  ident: 2023061720520407400_c17
  publication-title: J. Appl. Phys.
  doi: 10.1063/1.4954017
– volume: 125
  start-page: 39
  year: 2016
  ident: 2023061720520407400_c21
  publication-title: Solid-State Electron.
  doi: 10.1016/j.sse.2016.07.021
– volume: 104
  start-page: 092104
  issue: 9
  year: 2014
  ident: 2023061720520407400_c13
  publication-title: Appl. Phys. Lett.
  doi: 10.1063/1.4867197
– volume: 13
  start-page: 2615
  issue: 6
  year: 2013
  ident: 2023061720520407400_c27
  publication-title: Nano Lett.
  doi: 10.1021/nl4007479
– volume: 8
  start-page: 10808
  issue: 10
  year: 2014
  ident: 2023061720520407400_c9b
  publication-title: ACS Nano
  doi: 10.1021/nn5047844
– volume: 6
  start-page: 025323
  issue: 2
  year: 2016
  ident: 2023061720520407400_c14
  publication-title: AIP Adv.
  doi: 10.1063/1.4943080
SSID ssj0005233
Score 2.4503155
Snippet Tailoring the electrical properties of transition metal dichalcogenides by doping is one of the biggest challenges for the application of 2D materials in...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Applied physics
Density functional theory
Doping
Electrical properties
Electronic devices
Energy dispersive X ray spectroscopy
Energy transmission
Hall effect
Lattice sites
Lattice vacancies
Molybdenum disulfide
Rhenium
Scanning electron microscopy
Scanning transmission electron microscopy
Transmission electron microscopy
Title Rhenium-doped MoS2 films
URI http://dx.doi.org/10.1063/1.4995220
https://www.proquest.com/docview/2116054512
Volume 111
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYGCAGHabAhyo-pAg5IUyCOUzs5VgOGUAuItlJvlhPbtBKkFQ0c-Ot5buyk3Sq07RJVluUm_pyX73t-fg-h40g3iCZGqfpSeaGSqRf7OvVoEigWYSGYNA799g296oXX_Ubf1ZK3p0vy5DR9W3iu5H9QhTbA1ZyS_Qdky0GhAX4DvnAFhOH6VxjfD1Q2fHny5GgMvLE96gQmz5LNP-5Sy1qaWbgwJj8ep-d3SiYN77R4GFgvqC1u77IzvhXNv4Z56XdvZhMQ16DkKyHfSQdPQ5n_HoNvPQnwdTLRbKTC3m0RzYUp3BV3N2dDiUdjmyZWFWbTZ8bbaS2ps6vWihYLaHrk7U-DDQzJ-A5OQXgBE_Srr5Lbib-55Ze9Vot3L_rdJbQSgBoAc7bSPG-3OjOxPIS40ojm1lwKKUrOyqHniUelJtaAahRRDzPEovsFfbaKoN4s4N1En1S2hTZm8kRuoVU7PV_RzhzkdQN5fQr5N9S7vOj-vPJscQsvBcWXe5IxHZpyijTWscAh8EiaMq2SRhAqP46oTyIZUipoLM3WMdWsIZhICMFpyoQg22g5G2VqB9WjSEuQ1QL7RIcUqxhIWxQoP2FYa4FpDZ24J-fuWU0Bkkc-jUCghGNuJ6mGDsuu4yLdyaJO-276uH0bJjzAGJRxCPyxho7KKf1okAW9XkfPVQ8-lnr347_aQ-vVQt5Hy_nzizoAkpgn3-0SeQcjHWNI
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhenium-doped+MoS2+films&rft.jtitle=Applied+physics+letters&rft.au=Monaghan%2C+Scott&rft.au=Farzan%2C+Gity&rft.au=Ansari+Lida&rft.au=Schmidt%2C+Michael&rft.date=2017-11-13&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=111&rft.issue=20&rft_id=info:doi/10.1063%2F1.4995220&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon