Rhenium-doped MoS2 films
Tailoring the electrical properties of transition metal dichalcogenides by doping is one of the biggest challenges for the application of 2D materials in future electronic devices. Here, we report on a straightforward approach to the n-type doping of molybdenum disulfide (MoS2) films with rhenium (R...
Saved in:
Published in | Applied physics letters Vol. 111; no. 20 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
13.11.2017
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Tailoring the electrical properties of transition metal dichalcogenides by doping is one of the biggest challenges for the application of 2D materials in future electronic devices. Here, we report on a straightforward approach to the n-type doping of molybdenum disulfide (MoS2) films with rhenium (Re). High-Resolution Scanning Transmission Electron Microscopy and Energy-Dispersive X-ray spectroscopy are used to identify Re in interstitial and lattice sites of the MoS2 structure. Hall-effect measurements confirm the electron donating influence of Re in MoS2, while the nominally undoped films exhibit a net p-type doping. Density functional theory (DFT) modelling indicates that Re on Mo sites is the origin of the n-type doping, whereas S-vacancies have a p-type nature, providing an explanation for the p-type behaviour of nominally undoped MoS2 films. |
---|---|
AbstractList | Tailoring the electrical properties of transition metal dichalcogenides by doping is one of the biggest challenges for the application of 2D materials in future electronic devices. Here, we report on a straightforward approach to the n-type doping of molybdenum disulfide (MoS2) films with rhenium (Re). High-Resolution Scanning Transmission Electron Microscopy and Energy-Dispersive X-ray spectroscopy are used to identify Re in interstitial and lattice sites of the MoS2 structure. Hall-effect measurements confirm the electron donating influence of Re in MoS2, while the nominally undoped films exhibit a net p-type doping. Density functional theory (DFT) modelling indicates that Re on Mo sites is the origin of the n-type doping, whereas S-vacancies have a p-type nature, providing an explanation for the p-type behaviour of nominally undoped MoS2 films. |
Author | Monaghan, Scott Schmidt, Michael Cullen, Conor P. Gity, Farzan Hallam, Toby Downing, Clive Nicolosi, Valeria Ansari, Lida Duesberg, Georg S. Hurley, Paul K. |
Author_xml | – sequence: 1 givenname: Toby surname: Hallam fullname: Hallam, Toby organization: 5 Universität der Bundeswehr München, 85577 Neubiberg, Germany – sequence: 2 givenname: Scott surname: Monaghan fullname: Monaghan, Scott organization: Tyndall National Institute, and the Department of Chemistry, University College Cork – sequence: 3 givenname: Farzan surname: Gity fullname: Gity, Farzan organization: Tyndall National Institute, and the Department of Chemistry, University College Cork – sequence: 4 givenname: Lida surname: Ansari fullname: Ansari, Lida organization: Tyndall National Institute, and the Department of Chemistry, University College Cork – sequence: 5 givenname: Michael surname: Schmidt fullname: Schmidt, Michael organization: Tyndall National Institute, and the Department of Chemistry, University College Cork – sequence: 6 givenname: Clive surname: Downing fullname: Downing, Clive organization: CRANN/AMBER, Trinity College Dublin – sequence: 7 givenname: Conor P. surname: Cullen fullname: Cullen, Conor P. organization: 5 Universität der Bundeswehr München, 85577 Neubiberg, Germany – sequence: 8 givenname: Valeria surname: Nicolosi fullname: Nicolosi, Valeria organization: 5 Universität der Bundeswehr München, 85577 Neubiberg, Germany – sequence: 9 givenname: Paul K. surname: Hurley fullname: Hurley, Paul K. organization: Tyndall National Institute, and the Department of Chemistry, University College Cork – sequence: 10 givenname: Georg S. surname: Duesberg fullname: Duesberg, Georg S. organization: 5 Universität der Bundeswehr München, 85577 Neubiberg, Germany |
BookMark | eNp9z8tLw0AQBvBFKphWD948FjwppN3ZZ_YopT6gIvg4L9tkF1PSbNxNBP97I6kKKp6Ggd_3DTNGo9rXFqFjwDPAgs5hxpTihOA9lACWMqUA2QglGGOaCsXhAI1j3PQrJ5Qm6OT-2dZlt00L39hieusfyNSV1TYeon1nqmiPdnOCni6Xj4vrdHV3dbO4WKU5I1mbFlI6xhUVQjllgEkiRS6dXXPCLFaZwDQrmBBGqAI4V8JJbqRZUwp5Lo2hE3Q69DbBv3Q2tnrju1D3JzUBEJgzDqRXZ4PKg48xWKebUG5NeNOA9cfjGvTu8d7Of9i8bE1b-roNpqz-TJwPifgpv-pfffiGuincf_h38zvKdHP- |
CODEN | APPLAB |
CitedBy_id | crossref_primary_10_3390_lubricants7070057 crossref_primary_10_1002_pssb_202300477 crossref_primary_10_1016_j_physe_2019_113872 crossref_primary_10_1002_admt_202300517 crossref_primary_10_1016_j_surfrep_2022_100567 crossref_primary_10_1002_adma_202203425 crossref_primary_10_1016_j_apsusc_2020_147739 crossref_primary_10_1038_s41467_024_47039_4 crossref_primary_10_1002_aelm_202200209 crossref_primary_10_1021_acs_nanolett_0c05135 crossref_primary_10_1021_acsomega_9b04325 crossref_primary_10_1088_2053_1583_abc460 crossref_primary_10_1063_5_0062633 crossref_primary_10_3390_cryst8080316 crossref_primary_10_1039_D1TC02102H crossref_primary_10_1557_adv_2019_391 crossref_primary_10_1007_s10853_021_05916_z crossref_primary_10_1063_5_0045916 crossref_primary_10_1021_acs_jpcc_2c05895 crossref_primary_10_7567_1882_0786_aaf5c4 crossref_primary_10_1002_admi_201901055 crossref_primary_10_1063_1_5027535 crossref_primary_10_1021_acs_jpcc_2c03999 crossref_primary_10_1021_acs_chemrev_7b00633 crossref_primary_10_1021_acs_chemrev_8b00501 crossref_primary_10_1088_1361_648X_ac1caf crossref_primary_10_1002_adma_201907235 crossref_primary_10_1021_acsnano_4c08366 crossref_primary_10_1093_micmic_ozad067_931 crossref_primary_10_1021_acs_nanolett_4c06007 crossref_primary_10_1002_aelm_201900830 crossref_primary_10_1007_s10854_018_9551_9 crossref_primary_10_1016_j_mtnano_2022_100191 crossref_primary_10_1063_1_5121363 crossref_primary_10_1103_PhysRevB_105_094111 crossref_primary_10_1039_C9TC05548G crossref_primary_10_1021_acsanm_0c02167 crossref_primary_10_1109_TVLSI_2019_2914609 crossref_primary_10_1021_acsnano_0c06607 crossref_primary_10_1021_acsnano_9b09857 |
Cites_doi | 10.1021/nl301702r 10.1021/nl2018178 10.1039/C5CS00275C 10.1039/C6TC00489J 10.1038/srep29726 10.1021/ja5033327 10.1021/nn503284n 10.3390/electronics4030651 10.1021/nl503251h 10.1364/OE.24.010205 10.1063/1.4824205 10.1002/adma.201601104 10.1038/srep05458 10.1016/j.apsusc.2017.04.249 10.1021/nn1003937 10.1021/acsnano.5b00153 10.1021/acs.chemmater.6b00430 10.1016/S0022-0248(99)00296-1 10.1016/j.materresbull.2016.02.029 10.1002/adma.201506402 10.1021/nl502603d 10.1016/j.apsusc.2014.01.103 10.1016/j.calphad.2013.08.002 10.1039/c3cp55270e 10.1103/PhysRevB.88.075420 10.1063/1.4824893 10.1039/c2nr31833d 10.1109/JSTQE.2016.2584784 10.1038/ncomms4252 10.1063/1.4954017 10.1016/j.sse.2016.07.021 10.1063/1.4867197 10.1021/nl4007479 10.1021/nn5047844 10.1063/1.4943080 |
ContentType | Journal Article |
Copyright | Author(s) 2017 Author(s). Published by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2017 Author(s). Published by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/1.4995220 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Engineering Physics |
EISSN | 1077-3118 |
ExternalDocumentID | 10_1063_1_4995220 apl |
GrantInformation_xml | – fundername: EC | Seventh Framework Programme grantid: 604391 funderid: http://dx.doi.org/10.13039/100011102 – fundername: Science Foundation Ireland grantid: 12/RC/2278; PI_10/IN.1/I3030 funderid: http://dx.doi.org/10.13039/501100001602 |
GroupedDBID | -DZ -~X .DC 1UP 2-P 23M 4.4 53G 5GY 5VS 6J9 A9. AAAAW AABDS AAEUA AAGZG AAPUP AAYIH ABFTF ABJNI ABRJW ABZEH ACBEA ACBRY ACGFO ACGFS ACLYJ ACNCT ACZLF ADCTM AEGXH AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIAGR AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS AQWKA ATXIE AWQPM BPZLN CS3 D0L EBS EJD ESX F.2 F5P FDOHQ FFFMQ HAM M6X M71 M73 N9A NPSNA O-B P2P RIP RNS RQS SJN TAE TN5 UCJ UPT WH7 XJE YZZ ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c428t-d77f4593669f9a147276c7feb524e0986038d466a69d15596f75a7ab331cc7aa3 |
ISSN | 0003-6951 |
IngestDate | Sun Jun 29 15:28:17 EDT 2025 Thu Apr 24 22:56:27 EDT 2025 Tue Jul 01 01:15:55 EDT 2025 Fri Jun 21 00:14:28 EDT 2024 Sun Jul 14 11:38:49 EDT 2019 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 20 |
Language | English |
License | 0003-6951/2017/111(20)/203101/5/$30.00 Published by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c428t-d77f4593669f9a147276c7feb524e0986038d466a69d15596f75a7ab331cc7aa3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0003-2327-6715 0000-0002-9284-2832 0000-0002-5601-460X 0000-0002-9006-9890 0000-0003-3128-1426 |
OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/1.4995220 |
PQID | 2116054512 |
PQPubID | 2050678 |
PageCount | 5 |
ParticipantIDs | proquest_journals_2116054512 scitation_primary_10_1063_1_4995220 crossref_citationtrail_10_1063_1_4995220 crossref_primary_10_1063_1_4995220 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20171113 2017-11-13 |
PublicationDateYYYYMMDD | 2017-11-13 |
PublicationDate_xml | – month: 11 year: 2017 text: 20171113 day: 13 |
PublicationDecade | 2010 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Applied physics letters |
PublicationYear | 2017 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Kang, Hong, Oh, Kim, Yu, Park (c15) 2016 Vancsó, Magda, Pető, Noh, Kim, Hwang, Biró, Tapasztó (c28) 2016 Choi, Qu, Lee, Liu, Watanabe, Taniguchi, Yoo (c2) 2014 Tongay, Sahin, Ko, Luce, Fan, Liu, Zhou, Huang, Ho, Yan, Ogletree, Aloni, Ji, Li, Li, Peeters, Wu (c25) 2014 Suh, Park, Lin, Fu, Park, Jung, Chen, Ko, Jang, Sun, Sinclair, Chang, Tongay, Wu (c10) 2014 Wen, Xiong, Zang, Wei, Tang, Dong (c4) 2016 Brandão, Ribeiro, Vaz, González, Krambrock (c17) 2016 Mathieu, Dupin, Crivello, Yaqoob, Breidi, Fiorani, David, Joubert (c22) 2013 Lin, Zhang, Huang, Liu, Lee, Liang, Chu, Li (c18) 2012 Pu, Li, Takenobu (c5) 2014 Lee, Yan, Brus, Heinz, Hone, Ryu (c24) 2010 Laskar Masihhur, Nath Digbijoy, Lu, Lee Edwin, Hee, Thomas, Zihao, Rohan, Roldan Manuel, Juan‐Carlos, Pantelides Sokrates, Pennycook Stephen, Myers Roberto, Yiying, Siddharth (c13) 2014 Zhao, Kiriya, Azcatl, Zhang, Tosun, Liu, Hettick, Kang, McDonnell, Kc, Guo, Cho, Wallace, Javey (c9) 2014 Gioele, Michael, Brendan, Karim, Scott, Ian, MCarthy, Bell Alan, Roger, Felice, Hurley Paul, Ray (c14) 2016 Zhou, Zou, Najmaei, Liu, Shi, Kong, Lou, Ajayan, Yakobson, Idrobo (c27) 2013 Houssa, Iordanidou, Pourtois, Afanas'ev, Stesmans (c29) 2017 Pham, Yeom (c11) 2016 Liu, Guo, Fang, Robertson (c29) 2013 Gatensby, McEvoy, Lee, Hallam, Berner, Rezvani, Winters, O'Brien, Duesberg (c20) 2014 Gatensby, Hallam, Lee, McEvoy, Duesberg (c21) 2016 Varghese, Varghese, Swaminathan, Singh, Mittal (c3) 2015 Schmidt, Giustiniano, Eda (c6) 2015 Dolui, Rungger, Das Pemmaraju, Sanvito (c12) 2013 Park, Lim, Jeon, Yoo, Kang, Jang, Jeon, Lee, Cho, Yeom, Jung, Lee, Park, Lee, Park (c15) 2015 Yang, Majumdar, Liu, Du, Wu, Hatzistergos, Hung, Tieckelmann, Tsai, Hobbs, Ye (c9) 2014 Gao, Kim, Liang, Idrobo, Chow, Tan, Li, Li, Sumpter, Lu, Meunier, Hone, Koratkar (c19) 2016 Mikai, Hongsuk, Sungjin, Lian, Xin, Lifeng, Shulong, Xiaogan (c30) 2013 Yoon, Ganapathi, Salahuddin (c1) 2011 Fang, Chuang, Chang, Takei, Takahashi, Javey (c8) 2012 Tiong, Liao, Ho, Huang (c16) 1999 Al-Dulaimi, Lewis, Zhong, Azad Malik, O'Brien (c19) 2016 Voronine, Lu, Zhu, Krayev (c26) 2017 Tedstone, Lewis, O'Brien (c10) 2016 Kiriya, Tosun, Zhao, Kang, Javey (c7) 2014 Yim, O'Brien, McEvoy, Riazimehr, Schäfer-Eberwein, Bablich, Pawar, Iannaccone, Downing, Fiori, Lemme, Duesberg (c23) 2014 (2023061720520407400_c5) 2014; 16 (2023061720520407400_c11) 2016; 28 (2023061720520407400_c13) 2014; 104 (2023061720520407400_c18) 2012; 4 (2023061720520407400_c19a) 2016; 4 (2023061720520407400_c21) 2016; 125 (2023061720520407400_c30) 2013; 103 (2023061720520407400_c1) 2011; 11 (2023061720520407400_c10a) 2014; 14 (2023061720520407400_c19b) 2016; 28 (2023061720520407400_c20) 2014; 297 (2023061720520407400_c24) 2010; 4 (2023061720520407400_c29b) 2017; 416 (2023061720520407400_c26) 2017; 23 (2023061720520407400_c29a) 2013; 103 (2023061720520407400_c9a) 2014; 14 (2023061720520407400_c28) 2016; 6 (2023061720520407400_c16) 1999; 205 (2023061720520407400_c4) 2016; 24 (2023061720520407400_c22) 2013; 43 (2023061720520407400_c2) 2014; 8 (2023061720520407400_c27) 2013; 13 (2023061720520407400_c25) 2014; 5 (2023061720520407400_c3) 2015; 4 (2023061720520407400_c23) 2014; 4 (2023061720520407400_c17) 2016; 119 (2023061720520407400_c15b) 2016; 82 (2023061720520407400_c15a) 2015; 9 (2023061720520407400_c9b) 2014; 8 (2023061720520407400_c14) 2016; 6 (2023061720520407400_c6) 2015; 44 (2023061720520407400_c10b) 2016; 28 (2023061720520407400_c12) 2013; 88 (2023061720520407400_c7) 2014; 136 (2023061720520407400_c8) 2012; 12 |
References_xml | – start-page: 651 year: 2015 ident: c3 publication-title: Electronics – start-page: 142110 year: 2013 ident: c30 publication-title: Appl. Phys. Lett. – start-page: 10808 year: 2014 ident: c9 publication-title: ACS Nano – start-page: 18 year: 2013 ident: c22 publication-title: Calphad – start-page: 6976 year: 2014 ident: c10 publication-title: Nano Lett. – start-page: 2695 year: 2010 ident: c24 publication-title: ACS Nano – start-page: 2615 year: 2013 ident: c27 publication-title: Nano Lett. – start-page: 235701 year: 2016 ident: c17 publication-title: J. Appl. Phys. – start-page: 3768 year: 2011 ident: c1 publication-title: Nano Lett. – start-page: 9332 year: 2014 ident: c2 publication-title: ACS Nano – start-page: 543 year: 1999 ident: c16 publication-title: J. Cryst. Growth – start-page: 853 year: 2017 ident: c29 publication-title: Appl. Surf. Sci. – start-page: 39 year: 2016 ident: c21 publication-title: Solid-State Electron. – start-page: 26 year: 2016 ident: c15 publication-title: Mater. Res. Bull. – start-page: 6275 year: 2014 ident: c9 publication-title: Nano Lett. – start-page: 075420 year: 2013 ident: c12 publication-title: Phys. Rev. B – start-page: 092104 year: 2014 ident: c13 publication-title: Appl. Phys. Lett. – start-page: 9024 year: 2016 ident: c11 publication-title: Adv. Mater. – start-page: 3252 year: 2014 ident: c25 publication-title: Nat. Commun. – start-page: 4600506 year: 2017 ident: c26 publication-title: IEEE J. Sel. Top. Quantum Electron. – start-page: 2312 year: 2016 ident: c19 publication-title: J. Mater. Chem. C – start-page: 2368 year: 2015 ident: c15 publication-title: ACS Nano – start-page: 6637 year: 2012 ident: c18 publication-title: Nanoscale – start-page: 139 year: 2014 ident: c20 publication-title: Appl. Surf. Sci. – start-page: 14996 year: 2014 ident: c5 publication-title: Phys. Chem. Chem. Phys. – start-page: 3788 year: 2012 ident: c8 publication-title: Nano Lett. – start-page: 183113 year: 2013 ident: c29 publication-title: Appl. Phys. Lett. – start-page: 5458 year: 2014 ident: c23 publication-title: Sci. Rep. – start-page: 7715 year: 2015 ident: c6 publication-title: Chem. Soc. Rev. – start-page: 7853 year: 2014 ident: c7 publication-title: J. Am. Chem. Soc. – start-page: 1965 year: 2016 ident: c10 publication-title: Chem. Mater. – start-page: 10205 year: 2016 ident: c4 publication-title: Opt. Express – start-page: 9735 year: 2016 ident: c19 publication-title: Adv. Mater. – start-page: 29726 year: 2016 ident: c28 publication-title: Sci. Rep. – start-page: 025323 year: 2016 ident: c14 publication-title: AIP Adv. – volume: 12 start-page: 3788 issue: 7 year: 2012 ident: 2023061720520407400_c8 publication-title: Nano Lett. doi: 10.1021/nl301702r – volume: 11 start-page: 3768 issue: 9 year: 2011 ident: 2023061720520407400_c1 publication-title: Nano Lett. doi: 10.1021/nl2018178 – volume: 44 start-page: 7715 issue: 21 year: 2015 ident: 2023061720520407400_c6 publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00275C – volume: 4 start-page: 2312 issue: 12 year: 2016 ident: 2023061720520407400_c19a publication-title: J. Mater. Chem. C doi: 10.1039/C6TC00489J – volume: 6 start-page: 29726 year: 2016 ident: 2023061720520407400_c28 publication-title: Sci. Rep. doi: 10.1038/srep29726 – volume: 136 start-page: 7853 issue: 22 year: 2014 ident: 2023061720520407400_c7 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja5033327 – volume: 8 start-page: 9332 issue: 9 year: 2014 ident: 2023061720520407400_c2 publication-title: ACS Nano doi: 10.1021/nn503284n – volume: 4 start-page: 651 issue: 3 year: 2015 ident: 2023061720520407400_c3 publication-title: Electronics doi: 10.3390/electronics4030651 – volume: 14 start-page: 6976 issue: 12 year: 2014 ident: 2023061720520407400_c10a publication-title: Nano Lett. doi: 10.1021/nl503251h – volume: 24 start-page: 10205 issue: 10 year: 2016 ident: 2023061720520407400_c4 publication-title: Opt. Express doi: 10.1364/OE.24.010205 – volume: 103 start-page: 142110 issue: 14 year: 2013 ident: 2023061720520407400_c30 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4824205 – volume: 28 start-page: 9735 issue: 44 year: 2016 ident: 2023061720520407400_c19b publication-title: Adv. Mater. doi: 10.1002/adma.201601104 – volume: 4 start-page: 5458 year: 2014 ident: 2023061720520407400_c23 publication-title: Sci. Rep. doi: 10.1038/srep05458 – volume: 416 start-page: 853 year: 2017 ident: 2023061720520407400_c29b publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2017.04.249 – volume: 4 start-page: 2695 issue: 5 year: 2010 ident: 2023061720520407400_c24 publication-title: ACS Nano doi: 10.1021/nn1003937 – volume: 9 start-page: 2368 issue: 3 year: 2015 ident: 2023061720520407400_c15a publication-title: ACS Nano doi: 10.1021/acsnano.5b00153 – volume: 28 start-page: 1965 issue: 7 year: 2016 ident: 2023061720520407400_c10b publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.6b00430 – volume: 205 start-page: 543 issue: 4 year: 1999 ident: 2023061720520407400_c16 publication-title: J. Cryst. Growth doi: 10.1016/S0022-0248(99)00296-1 – volume: 82 start-page: 26 year: 2016 ident: 2023061720520407400_c15b publication-title: Mater. Res. Bull. doi: 10.1016/j.materresbull.2016.02.029 – volume: 28 start-page: 9024 issue: 41 year: 2016 ident: 2023061720520407400_c11 publication-title: Adv. Mater. doi: 10.1002/adma.201506402 – volume: 14 start-page: 6275 issue: 11 year: 2014 ident: 2023061720520407400_c9a publication-title: Nano Lett. doi: 10.1021/nl502603d – volume: 297 start-page: 139 year: 2014 ident: 2023061720520407400_c20 publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2014.01.103 – volume: 43 start-page: 18 year: 2013 ident: 2023061720520407400_c22 publication-title: Calphad doi: 10.1016/j.calphad.2013.08.002 – volume: 16 start-page: 14996 issue: 29 year: 2014 ident: 2023061720520407400_c5 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/c3cp55270e – volume: 88 start-page: 075420 issue: 7 year: 2013 ident: 2023061720520407400_c12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.88.075420 – volume: 103 start-page: 183113 issue: 18 year: 2013 ident: 2023061720520407400_c29a publication-title: Appl. Phys. Lett. doi: 10.1063/1.4824893 – volume: 4 start-page: 6637 issue: 20 year: 2012 ident: 2023061720520407400_c18 publication-title: Nanoscale doi: 10.1039/c2nr31833d – volume: 23 start-page: 4600506 issue: 1 year: 2017 ident: 2023061720520407400_c26 publication-title: IEEE J. Sel. Top. Quantum Electron. doi: 10.1109/JSTQE.2016.2584784 – volume: 5 start-page: 3252 year: 2014 ident: 2023061720520407400_c25 publication-title: Nat. Commun. doi: 10.1038/ncomms4252 – volume: 119 start-page: 235701 issue: 23 year: 2016 ident: 2023061720520407400_c17 publication-title: J. Appl. Phys. doi: 10.1063/1.4954017 – volume: 125 start-page: 39 year: 2016 ident: 2023061720520407400_c21 publication-title: Solid-State Electron. doi: 10.1016/j.sse.2016.07.021 – volume: 104 start-page: 092104 issue: 9 year: 2014 ident: 2023061720520407400_c13 publication-title: Appl. Phys. Lett. doi: 10.1063/1.4867197 – volume: 13 start-page: 2615 issue: 6 year: 2013 ident: 2023061720520407400_c27 publication-title: Nano Lett. doi: 10.1021/nl4007479 – volume: 8 start-page: 10808 issue: 10 year: 2014 ident: 2023061720520407400_c9b publication-title: ACS Nano doi: 10.1021/nn5047844 – volume: 6 start-page: 025323 issue: 2 year: 2016 ident: 2023061720520407400_c14 publication-title: AIP Adv. doi: 10.1063/1.4943080 |
SSID | ssj0005233 |
Score | 2.4503155 |
Snippet | Tailoring the electrical properties of transition metal dichalcogenides by doping is one of the biggest challenges for the application of 2D materials in... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Applied physics Density functional theory Doping Electrical properties Electronic devices Energy dispersive X ray spectroscopy Energy transmission Hall effect Lattice sites Lattice vacancies Molybdenum disulfide Rhenium Scanning electron microscopy Scanning transmission electron microscopy Transmission electron microscopy |
Title | Rhenium-doped MoS2 films |
URI | http://dx.doi.org/10.1063/1.4995220 https://www.proquest.com/docview/2116054512 |
Volume | 111 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3PT9swFLYGCAGHabAhyo-pAg5IUyCOUzs5VgOGUAuItlJvlhPbtBKkFQ0c-Ot5buyk3Sq07RJVluUm_pyX73t-fg-h40g3iCZGqfpSeaGSqRf7OvVoEigWYSGYNA799g296oXX_Ubf1ZK3p0vy5DR9W3iu5H9QhTbA1ZyS_Qdky0GhAX4DvnAFhOH6VxjfD1Q2fHny5GgMvLE96gQmz5LNP-5Sy1qaWbgwJj8ep-d3SiYN77R4GFgvqC1u77IzvhXNv4Z56XdvZhMQ16DkKyHfSQdPQ5n_HoNvPQnwdTLRbKTC3m0RzYUp3BV3N2dDiUdjmyZWFWbTZ8bbaS2ps6vWihYLaHrk7U-DDQzJ-A5OQXgBE_Srr5Lbib-55Ze9Vot3L_rdJbQSgBoAc7bSPG-3OjOxPIS40ojm1lwKKUrOyqHniUelJtaAahRRDzPEovsFfbaKoN4s4N1En1S2hTZm8kRuoVU7PV_RzhzkdQN5fQr5N9S7vOj-vPJscQsvBcWXe5IxHZpyijTWscAh8EiaMq2SRhAqP46oTyIZUipoLM3WMdWsIZhICMFpyoQg22g5G2VqB9WjSEuQ1QL7RIcUqxhIWxQoP2FYa4FpDZ24J-fuWU0Bkkc-jUCghGNuJ6mGDsuu4yLdyaJO-276uH0bJjzAGJRxCPyxho7KKf1okAW9XkfPVQ8-lnr347_aQ-vVQt5Hy_nzizoAkpgn3-0SeQcjHWNI |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rhenium-doped+MoS2+films&rft.jtitle=Applied+physics+letters&rft.au=Monaghan%2C+Scott&rft.au=Farzan%2C+Gity&rft.au=Ansari+Lida&rft.au=Schmidt%2C+Michael&rft.date=2017-11-13&rft.pub=American+Institute+of+Physics&rft.issn=0003-6951&rft.eissn=1077-3118&rft.volume=111&rft.issue=20&rft_id=info:doi/10.1063%2F1.4995220&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0003-6951&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0003-6951&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0003-6951&client=summon |