A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy of hypoxic tumors in the NIR-II window

Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazola...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 12; no. 32; pp. 1848 - 1854
Main Authors Chen, Ming-Ming, Hao, Hai-Li, Zhao, Wei, Zhao, Xueli, Chen, Hong-Yuan, Xu, Jing-Juan
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 18.08.2021
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron-hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O 2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high- Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation. A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy (PTT/PDT) of hypoxic tumors in the NIR-II window.
AbstractList Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron-hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O 2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high- Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation. A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy (PTT/PDT) of hypoxic tumors in the NIR-II window.
Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron–hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O 2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high- Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation.
Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron-hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high-Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation.Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron-hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high-Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation.
Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron-hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high- elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both and experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation.
Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron–hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high-Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation.
Author Zhao, Wei
Chen, Ming-Ming
Chen, Hong-Yuan
Zhao, Xueli
Hao, Hai-Li
Xu, Jing-Juan
AuthorAffiliation Shanghai University
State Key Laboratory of Analytical Chemistry for Life Science
College of Chemistry and Molecular Engineering
Institute of Nanochemistry and Nanobiology
Nanjing University
School of Chemistry and Chemical Engineering
School of Environmental and Chemical Engineering
Zhengzhou University
AuthorAffiliation_xml – name: Zhengzhou University
– name: Shanghai University
– name: School of Chemistry and Chemical Engineering
– name: Nanjing University
– name: State Key Laboratory of Analytical Chemistry for Life Science
– name: Institute of Nanochemistry and Nanobiology
– name: School of Environmental and Chemical Engineering
– name: College of Chemistry and Molecular Engineering
Author_xml – sequence: 1
  givenname: Ming-Ming
  surname: Chen
  fullname: Chen, Ming-Ming
– sequence: 2
  givenname: Hai-Li
  surname: Hao
  fullname: Hao, Hai-Li
– sequence: 3
  givenname: Wei
  surname: Zhao
  fullname: Zhao, Wei
– sequence: 4
  givenname: Xueli
  surname: Zhao
  fullname: Zhao, Xueli
– sequence: 5
  givenname: Hong-Yuan
  surname: Chen
  fullname: Chen, Hong-Yuan
– sequence: 6
  givenname: Jing-Juan
  surname: Xu
  fullname: Xu, Jing-Juan
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34476064$$D View this record in MEDLINE/PubMed
BookMark eNptkttrFDEUxoNUbK198V0J-CLCaK6TzYtQ1ksXioKX55DJZDopM8k0yVj3vzezW1ctJpBz4Py-j3M4eQyOfPAWgKcYvcaIyjctTgZhUaP-ATghiOGq5lQeHXKCjsFZSteoHEoxJ-IROKaMFUXNTsB8DqdBpzH4yvpee2NbmHsbtQ8pOwN9SQqQuxBHWB6Ytt7GK7crmt6OoZr6kMNOM21h6GC_ncLPUs3zGGKCzi-G8NPmS7XZwFvn23D7BDzs9JDs2V08Bd8_vP-2vqguP3_crM8vK8PIKlctsYR0hDe0XE14LVkjKRIM624lhcXa8Jo2kskO1wZ3hmrKuoZLTIxAWtBT8HbvO83NaFtjfY56UFN0o45bFbRT_1a869VV-KFWVBDOZTF4eWcQw81sU1ajS8YOg_Y2zEktPVFBBccFfXEPvQ5z9GW8hSKEUoIX6vnfHR1a-b2RArzaAyaGlKLtDghGatm4eoe_rncbvygwugcbl3V2YZnGDf-XPNtLYjIH6z-fiP4CifS4nA
CitedBy_id crossref_primary_10_1016_j_jddst_2023_104272
crossref_primary_10_1021_acsanm_4c01144
crossref_primary_10_1002_ange_202117401
crossref_primary_10_1021_acsanm_2c04551
crossref_primary_10_1039_D3DT00413A
crossref_primary_10_1016_j_ccr_2023_215282
crossref_primary_10_1007_s10904_023_02538_7
crossref_primary_10_1021_acs_iecr_4c03274
crossref_primary_10_1002_smtd_202301270
crossref_primary_10_1021_acsanm_4c02074
crossref_primary_10_1021_cbmi_2c00003
crossref_primary_10_1186_s12951_023_02220_7
crossref_primary_10_1016_j_ajps_2025_101017
crossref_primary_10_1016_j_jcis_2023_12_074
crossref_primary_10_1016_j_ccr_2024_215719
crossref_primary_10_1002_adfm_202312753
crossref_primary_10_1002_smll_202204131
crossref_primary_10_1002_smll_202206592
crossref_primary_10_1016_j_ejmech_2025_117424
crossref_primary_10_1039_D3CE00390F
crossref_primary_10_1021_acs_jpcc_3c06691
crossref_primary_10_3390_nano13212873
crossref_primary_10_1016_j_jiec_2022_09_008
crossref_primary_10_1038_s41571_024_00892_0
crossref_primary_10_1016_j_sciaf_2023_e01700
crossref_primary_10_1002_smll_202307981
crossref_primary_10_1002_anie_202117401
crossref_primary_10_1016_j_cej_2023_141874
crossref_primary_10_1016_j_matdes_2023_111702
crossref_primary_10_1016_j_ccr_2022_214745
crossref_primary_10_1016_j_jallcom_2023_172935
crossref_primary_10_1039_D3MA00545C
crossref_primary_10_1177_08853282221092222
crossref_primary_10_1002_advs_202204842
crossref_primary_10_3390_polym14020287
crossref_primary_10_3390_cancers14163935
crossref_primary_10_1016_j_ccr_2024_216381
crossref_primary_10_1039_D2TB02801H
crossref_primary_10_1002_advs_202305308
crossref_primary_10_1016_j_cej_2022_134869
crossref_primary_10_1166_jbn_2022_3346
crossref_primary_10_1016_j_jmst_2024_07_002
crossref_primary_10_1016_j_jare_2022_01_018
crossref_primary_10_1016_j_reactfunctpolym_2023_105743
Cites_doi 10.1039/c2dt30357d
10.1021/jp0671502
10.1002/smll.201703077
10.1021/acsami.8b13487
10.1002/adma.201706320
10.1002/anie.201300441
10.1039/D0NR03047C
10.1038/nrc706
10.1038/nmat4281
10.1021/acsnano.5b01320
10.1002/anie.201605509
10.1038/s41467-021-21047-0
10.1021/acsami.7b05142
10.1038/nchem.1272
10.1002/anie.200903524
10.1021/acs.chemrev.6b00525
10.1021/acs.chemmater.9b03430
10.7150/thno.51287
10.1002/smll.201302719
10.1021/acsnano.9b08667
10.1021/ja502704n
10.1007/s12274-017-1874-y
10.1021/acs.nanolett.9b01595
10.1146/annurev.med.60.052907.094936
10.1002/adma.201505869
10.1038/nnano.2010.235
10.1039/C6CS00458J
10.1007/s12274-016-1395-0
10.1021/acsnano.6b05113
10.1021/acsami.7b14705
10.1038/nmat1927
10.1002/adma.201904836
10.1002/adma.202007247
10.1038/ncomms14880
10.1002/anie.201510655
10.1002/adma.201405583
10.1038/nrclinonc.2011.2
10.1021/acs.chemrev.5b00148
10.1002/adma.201704367
10.1021/acsnano.7b07746
10.1021/cm020732l
10.7150/thno.26607
10.1021/jacs.7b01794
10.1038/s41467-020-15730-x
10.1016/j.ejpb.2012.10.012
10.1021/nl5045378
10.1039/C8SC02305K
10.1002/adom.201600594
10.1039/C8CS00234G
10.1021/jacs.7b07818
10.1021/acs.accounts.7b00294
10.1021/acs.chemrev.7b00258
10.1021/jacs.5b11720
10.1039/D0CS00664E
10.1016/j.biomaterials.2017.12.003
10.1021/jacs.8b13507
10.1002/anie.201105236
10.1002/anie.201904751
10.1021/jacs.7b11754
10.1021/acs.chemrev.5b00125
10.1016/j.ctrv.2008.04.003
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d1sc01760h
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
CrossRef

MEDLINE - Academic
PubMed
Materials Research Database
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 1854
ExternalDocumentID PMC8372559
34476064
10_1039_D1SC01760H
d1sc01760h
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: ZYJH004
– fundername: ;
  grantid: 22034003; 21991080
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAJAE
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGRSR
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
53G
AAEMU
AAFWJ
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AHGCF
AKBGW
APEMP
CITATION
HZ~
PGMZT
RAOCF
RNS
-JG
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c428t-d2e22f25b3b3ba25694b930741af897e1ac563b949f16c1fc3a34fb5912c70a73
ISSN 2041-6520
IngestDate Thu Aug 21 18:09:36 EDT 2025
Fri Jul 11 04:40:15 EDT 2025
Fri Jul 25 08:20:49 EDT 2025
Thu Jan 02 22:39:47 EST 2025
Tue Jul 01 03:46:53 EDT 2025
Thu Apr 24 22:58:06 EDT 2025
Sat Apr 30 11:00:21 EDT 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 32
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-d2e22f25b3b3ba25694b930741af897e1ac563b949f16c1fc3a34fb5912c70a73
Notes Electronic supplementary information (ESI) available: Experimental section, additional figures, results and discussion. See DOI
10.1039/d1sc01760h
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-9579-9318
0000-0002-9526-2008
OpenAccessLink http://dx.doi.org/10.1039/d1sc01760h
PMID 34476064
PQID 2562233211
PQPubID 2047492
PageCount 7
ParticipantIDs crossref_primary_10_1039_D1SC01760H
proquest_journals_2562233211
pubmed_primary_34476064
proquest_miscellaneous_2569373751
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8372559
crossref_citationtrail_10_1039_D1SC01760H
rsc_primary_d1sc01760h
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20210818
PublicationDateYYYYMMDD 2021-08-18
PublicationDate_xml – month: 8
  year: 2021
  text: 20210818
  day: 18
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2021
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References Jabr-Milane (D1SC01760H/cit6) 2008; 34
Grzelczak (D1SC01760H/cit46) 2007; 111
Urbiola (D1SC01760H/cit60) 2013; 83
Ju (D1SC01760H/cit19) 2016; 55
Yang (D1SC01760H/cit10) 2018; 9
Li (D1SC01760H/cit49) 2018; 11
Yang (D1SC01760H/cit34) 2018; 10
Han (D1SC01760H/cit21) 2016; 10
Zheng (D1SC01760H/cit42) 2016; 138
Jiang (D1SC01760H/cit41) 2018; 10
Nikoobakht (D1SC01760H/cit45) 2003; 15
Cai (D1SC01760H/cit35) 2017; 10
Zhang (D1SC01760H/cit33) 2018; 12
Gottesman (D1SC01760H/cit5) 2002; 2
Yu (D1SC01760H/cit59) 2015; 9
Linic (D1SC01760H/cit30) 2015; 14
Vankayala (D1SC01760H/cit8) 2018; 30
Liu (D1SC01760H/cit22) 2018; 157
Zhang (D1SC01760H/cit61) 2017; 9
Khanal (D1SC01760H/cit51) 2009; 48
Liang (D1SC01760H/cit3) 2016; 45
Hayashi (D1SC01760H/cit47) 2007; 6
Chen (D1SC01760H/cit1) 2016; 116
He (D1SC01760H/cit13) 2018; 47
Lin (D1SC01760H/cit58) 2017; 139
Huang (D1SC01760H/cit11) 2017; 50
Cortés (D1SC01760H/cit29) 2017; 8
Qian (D1SC01760H/cit17) 2016; 28
Huang (D1SC01760H/cit24) 2011; 6
He (D1SC01760H/cit39) 2015; 115
Liao (D1SC01760H/cit43) 2017; 139
Liu (D1SC01760H/cit18) 2017; 117
Yang (D1SC01760H/cit37) 2016; 55
Cao (D1SC01760H/cit57) 2019; 31
Jiang (D1SC01760H/cit15) 2020; 11
Leng (D1SC01760H/cit28) 2018; 14
Jiang (D1SC01760H/cit14) 2021; 12
Alsaiari (D1SC01760H/cit40) 2018; 140
Liang (D1SC01760H/cit53) 2019; 19
Singhal (D1SC01760H/cit7) 2010; 61
Zeng (D1SC01760H/cit36) 2021; 33
Lu (D1SC01760H/cit48) 2012; 4
Goel (D1SC01760H/cit9) 2018; 30
Li (D1SC01760H/cit20) 2019; 141
Mantri (D1SC01760H/cit26) 2020; 12
Shan (D1SC01760H/cit27) 2020; 10
Zheng (D1SC01760H/cit50) 2014; 136
Sun (D1SC01760H/cit54) 2020; 14
Wistuba (D1SC01760H/cit4) 2011; 8
Kong (D1SC01760H/cit52) 2017; 5
Rengan (D1SC01760H/cit23) 2015; 15
Xu (D1SC01760H/cit16) 2021; 50
Vankayala (D1SC01760H/cit31) 2014; 10
Vankayala (D1SC01760H/cit32) 2011; 50
Fan (D1SC01760H/cit2) 2017; 117
Wang (D1SC01760H/cit12) 2019; 31
Meng (D1SC01760H/cit56) 2018; 8
Li (D1SC01760H/cit55) 2019; 58
Sun (D1SC01760H/cit44) 2012; 41
Liu (D1SC01760H/cit38) 2015; 27
Li (D1SC01760H/cit25) 2014; 53
References_xml – volume: 41
  start-page: 6906
  year: 2012
  ident: D1SC01760H/cit44
  publication-title: Dalton Trans.
  doi: 10.1039/c2dt30357d
– volume: 111
  start-page: 6183
  year: 2007
  ident: D1SC01760H/cit46
  publication-title: J. Phys. Chem. C
  doi: 10.1021/jp0671502
– volume: 14
  start-page: 1703077
  year: 2018
  ident: D1SC01760H/cit28
  publication-title: Small
  doi: 10.1002/smll.201703077
– volume: 10
  start-page: 34513
  year: 2018
  ident: D1SC01760H/cit41
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.8b13487
– volume: 30
  start-page: 1706320
  year: 2018
  ident: D1SC01760H/cit8
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706320
– volume: 53
  start-page: 1756
  year: 2014
  ident: D1SC01760H/cit25
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201300441
– volume: 12
  start-page: 10511
  year: 2020
  ident: D1SC01760H/cit26
  publication-title: Nanoscale
  doi: 10.1039/D0NR03047C
– volume: 2
  start-page: 48
  year: 2002
  ident: D1SC01760H/cit5
  publication-title: Nat. Rev. Cancer
  doi: 10.1038/nrc706
– volume: 14
  start-page: 567
  year: 2015
  ident: D1SC01760H/cit30
  publication-title: Nat. Mater.
  doi: 10.1038/nmat4281
– volume: 9
  start-page: 6655
  year: 2015
  ident: D1SC01760H/cit59
  publication-title: ACS Nano
  doi: 10.1021/acsnano.5b01320
– volume: 55
  start-page: 11467
  year: 2016
  ident: D1SC01760H/cit19
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201605509
– volume: 12
  start-page: 742
  year: 2021
  ident: D1SC01760H/cit14
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-21047-0
– volume: 9
  start-page: 19687
  year: 2017
  ident: D1SC01760H/cit61
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b05142
– volume: 4
  start-page: 310
  year: 2012
  ident: D1SC01760H/cit48
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.1272
– volume: 48
  start-page: 6888
  year: 2009
  ident: D1SC01760H/cit51
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200903524
– volume: 117
  start-page: 6160
  year: 2017
  ident: D1SC01760H/cit18
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00525
– volume: 31
  start-page: 9105
  year: 2019
  ident: D1SC01760H/cit57
  publication-title: Chem. Mater.
  doi: 10.1021/acs.chemmater.9b03430
– volume: 10
  start-page: 11656
  year: 2020
  ident: D1SC01760H/cit27
  publication-title: Theranostics
  doi: 10.7150/thno.51287
– volume: 10
  start-page: 1612
  year: 2014
  ident: D1SC01760H/cit31
  publication-title: Small
  doi: 10.1002/smll.201302719
– volume: 14
  start-page: 2063
  year: 2020
  ident: D1SC01760H/cit54
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b08667
– volume: 136
  start-page: 6870
  year: 2014
  ident: D1SC01760H/cit50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja502704n
– volume: 11
  start-page: 3294
  year: 2018
  ident: D1SC01760H/cit49
  publication-title: Nano Res.
  doi: 10.1007/s12274-017-1874-y
– volume: 19
  start-page: 4134
  year: 2019
  ident: D1SC01760H/cit53
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.9b01595
– volume: 61
  start-page: 359
  year: 2010
  ident: D1SC01760H/cit7
  publication-title: Annu. Rev. Med.
  doi: 10.1146/annurev.med.60.052907.094936
– volume: 28
  start-page: 3313
  year: 2016
  ident: D1SC01760H/cit17
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201505869
– volume: 6
  start-page: 28
  year: 2011
  ident: D1SC01760H/cit24
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2010.235
– volume: 45
  start-page: 6250
  year: 2016
  ident: D1SC01760H/cit3
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00458J
– volume: 10
  start-page: 2056
  year: 2017
  ident: D1SC01760H/cit35
  publication-title: Nano Res.
  doi: 10.1007/s12274-016-1395-0
– volume: 10
  start-page: 10858
  year: 2016
  ident: D1SC01760H/cit21
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b05113
– volume: 10
  start-page: 150
  year: 2018
  ident: D1SC01760H/cit34
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b14705
– volume: 6
  start-page: 501
  year: 2007
  ident: D1SC01760H/cit47
  publication-title: Nat. Mater.
  doi: 10.1038/nmat1927
– volume: 31
  start-page: 1904836
  year: 2019
  ident: D1SC01760H/cit12
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201904836
– volume: 33
  start-page: 2007247
  year: 2021
  ident: D1SC01760H/cit36
  publication-title: Adv. Mater.
  doi: 10.1002/adma.202007247
– volume: 8
  start-page: 14880
  year: 2017
  ident: D1SC01760H/cit29
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms14880
– volume: 55
  start-page: 3685
  year: 2016
  ident: D1SC01760H/cit37
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201510655
– volume: 27
  start-page: 3273
  year: 2015
  ident: D1SC01760H/cit38
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201405583
– volume: 8
  start-page: 135
  year: 2011
  ident: D1SC01760H/cit4
  publication-title: Nat. Rev. Clin. Oncol.
  doi: 10.1038/nrclinonc.2011.2
– volume: 116
  start-page: 2826
  year: 2016
  ident: D1SC01760H/cit1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00148
– volume: 30
  start-page: 1704367
  year: 2018
  ident: D1SC01760H/cit9
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201704367
– volume: 12
  start-page: 651
  year: 2018
  ident: D1SC01760H/cit33
  publication-title: ACS Nano
  doi: 10.1021/acsnano.7b07746
– volume: 15
  start-page: 1957
  year: 2003
  ident: D1SC01760H/cit45
  publication-title: Chem. Mater.
  doi: 10.1021/cm020732l
– volume: 8
  start-page: 6025
  year: 2018
  ident: D1SC01760H/cit56
  publication-title: Theranostics
  doi: 10.7150/thno.26607
– volume: 139
  start-page: 6530
  year: 2017
  ident: D1SC01760H/cit43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b01794
– volume: 11
  start-page: 1857
  year: 2020
  ident: D1SC01760H/cit15
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-15730-x
– volume: 83
  start-page: 358
  year: 2013
  ident: D1SC01760H/cit60
  publication-title: Eur. J. Pharm. Biopharm.
  doi: 10.1016/j.ejpb.2012.10.012
– volume: 15
  start-page: 842
  year: 2015
  ident: D1SC01760H/cit23
  publication-title: Nano Lett.
  doi: 10.1021/nl5045378
– volume: 9
  start-page: 7210
  year: 2018
  ident: D1SC01760H/cit10
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC02305K
– volume: 5
  start-page: 1600594
  year: 2017
  ident: D1SC01760H/cit52
  publication-title: Adv. Opt. Mater.
  doi: 10.1002/adom.201600594
– volume: 47
  start-page: 4258
  year: 2018
  ident: D1SC01760H/cit13
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C8CS00234G
– volume: 139
  start-page: 16235
  year: 2017
  ident: D1SC01760H/cit58
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b07818
– volume: 50
  start-page: 2529
  year: 2017
  ident: D1SC01760H/cit11
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00294
– volume: 117
  start-page: 13566
  year: 2017
  ident: D1SC01760H/cit2
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00258
– volume: 138
  start-page: 962
  year: 2016
  ident: D1SC01760H/cit42
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b11720
– volume: 50
  start-page: 1111
  year: 2021
  ident: D1SC01760H/cit16
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/D0CS00664E
– volume: 157
  start-page: 107
  year: 2018
  ident: D1SC01760H/cit22
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.12.003
– volume: 141
  start-page: 4073
  year: 2019
  ident: D1SC01760H/cit20
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.8b13507
– volume: 50
  start-page: 10640
  year: 2011
  ident: D1SC01760H/cit32
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201105236
– volume: 58
  start-page: 12624
  year: 2019
  ident: D1SC01760H/cit55
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201904751
– volume: 140
  start-page: 143
  year: 2018
  ident: D1SC01760H/cit40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b11754
– volume: 115
  start-page: 11079
  year: 2015
  ident: D1SC01760H/cit39
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.5b00125
– volume: 34
  start-page: 592
  year: 2008
  ident: D1SC01760H/cit6
  publication-title: Cancer Treat. Rev.
  doi: 10.1016/j.ctrv.2008.04.003
SSID ssj0000331527
Score 2.518909
Snippet Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 1848
SubjectTerms Bimetals
Catalase
Catalytic activity
Chemistry
Computed tomography
Gold
Heterostructures
Hypoxia
Irradiation
Lasers
Light therapy
Medical imaging
Metal-organic frameworks
Nanocrystals
Nanorods
Platinum
Tumors
Zeolites
Title A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy of hypoxic tumors in the NIR-II window
URI https://www.ncbi.nlm.nih.gov/pubmed/34476064
https://www.proquest.com/docview/2562233211
https://www.proquest.com/docview/2569373751
https://pubmed.ncbi.nlm.nih.gov/PMC8372559
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gFeELexwJiM4AVVhtjOpXmsCqhFlIexQnmq7FzUSltSrYnG-C_8V46dxHXXPgxUyYocN4lzvvjcfM5B6E3Sl4wnMiZMcEE84JEkArGAZEnAEs4SKoUy6E--BqOp93nmzzqdP9aupaqU7-Lfe-NK_oeq0Ad0VVGy_0BZc1HogGOgL7RAYWjvROOBKgK9htuRNF_UrnwdT5UXKvtyL4cDGFAquVRvJ1zfqEg_nZq5B8S6LMhqUZRNDJZ2tS9uVsUvOFtWl6oKT7sJcnxGxuPeNejvxbUtzpp0A210kPIJt1FglpFh2MSATIBRkknLLfXCp021I7EkX5aWEVv3_kh3umZVerG0LRVMm17txZW5HiWBz2o_TGr31QmNzIrMLOQ15s96faUq_b_FrFXshLeXE7hcJVL9QL8NYc0J3NGG37U-_lts0GxO1G55Hs03_z1Ahwy0ENZFh2ffp7Ofxojnct6UBTZza1Pg8uj95gLbQs-OJrO7Iffgqq0_o-Wc84foQaOg4EGNtkeok-aP0b1hWxfwCaoG-DbqsIU6bKMOQ4Mt1OFd1OEiww3qcI06vMzVBXGNOlyj7imafvp4PhyRpngHiUGjLUnCUsYy5ksOPwGCdeTJiCsBVmT9KEypiP2Ay8iLMhrENIu54F4m_YiyOHRFyI9QNy_y9Bhh4MlUhBSUZ5EAy3GlCGKWCUGjjIc-lQ56277dedxktlcFVi7mu6R00GszdlXnc9k76qQl0rz53tdzmAPI0pxR6qBX5jS8fOViE3laVHoMyPvqqRz0rKapuY3KrRmABuCgcIvaZoDK9L59Jl8udMb3Pg-V6u-gI8CFGZ_Qdayfd_H8TrN6ge5vPssT1C2vqvQliNSlPNWmqNMG3n8BUtvOFA
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+plasmon-enhanced+theranostic+nanoplatform+for+synergistic+chemo-phototherapy+of+hypoxic+tumors+in+the+NIR-II+window&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Chen%2C+Ming-Ming&rft.au=Hao%2C+Hai-Li&rft.au=Zhao%2C+Wei&rft.au=Zhao%2C+Xueli&rft.date=2021-08-18&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=32&rft.spage=10848&rft.epage=10854&rft_id=info:doi/10.1039%2FD1SC01760H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1SC01760H
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon