A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy of hypoxic tumors in the NIR-II window
Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazola...
Saved in:
Published in | Chemical science (Cambridge) Vol. 12; no. 32; pp. 1848 - 1854 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
18.08.2021
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron-hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O
2
level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high-
Z
elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both
in vitro
and
in vivo
experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation.
A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy (PTT/PDT) of hypoxic tumors in the NIR-II window. |
---|---|
AbstractList | Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron-hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O
2
level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high-
Z
elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both
in vitro
and
in vivo
experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation.
A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy (PTT/PDT) of hypoxic tumors in the NIR-II window. Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron–hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O 2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high- Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation. Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron-hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high-Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation.Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron-hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high-Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation. Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron-hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high- elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both and experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation. Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great importance for cancer treatment. In this study, by integrating the anticancer drug DOX and plasmonic bimetal heterostructures into zeolitic imidazolate framework-8 (ZIF-8), a stimuli-responsive multifunctional nanoplatform, DOX-Pt-tipped Au@ZIF-8, has been successfully fabricated. Pt nanocrystals with catalase-like activity were selectively grown on the ends of the Au nanorods to form Pt-tipped Au NR heterostructures. Under single 1064 nm laser irradiation, compared with Au NRs and Pt-covered Au NRs, the Pt-tipped Au nanorods exhibit outstanding photothermal and photodynamic properties owing to more efficient plasmon-induced electron–hole separation. The heat generated by laser irradiation can enhance the catalytic activity of Pt and improve the O2 level to relieve tumor hypoxia. Meanwhile, the strong absorption in the NIR-II region and high-Z elements (Au, Pt) of the DOX-Pt-tipped Au@ZIF-8 provide the possibility for photothermal (PT) and computed tomography (CT) imaging. Both in vitro and in vivo experimental results illustrated that the DOX-Pt-tipped Au@ZIF-8 exhibits remarkably synergistic plasmon-enhanced chemo-phototherapy (PTT/PDT) and successfully inhibited tumor growth. Taken together, this work contributes to designing a rational theranostic nanoplatform for PT/CT imaging-guided synergistic chemo-phototherapy under single laser activation. |
Author | Zhao, Wei Chen, Ming-Ming Chen, Hong-Yuan Zhao, Xueli Hao, Hai-Li Xu, Jing-Juan |
AuthorAffiliation | Shanghai University State Key Laboratory of Analytical Chemistry for Life Science College of Chemistry and Molecular Engineering Institute of Nanochemistry and Nanobiology Nanjing University School of Chemistry and Chemical Engineering School of Environmental and Chemical Engineering Zhengzhou University |
AuthorAffiliation_xml | – name: Zhengzhou University – name: Shanghai University – name: School of Chemistry and Chemical Engineering – name: Nanjing University – name: State Key Laboratory of Analytical Chemistry for Life Science – name: Institute of Nanochemistry and Nanobiology – name: School of Environmental and Chemical Engineering – name: College of Chemistry and Molecular Engineering |
Author_xml | – sequence: 1 givenname: Ming-Ming surname: Chen fullname: Chen, Ming-Ming – sequence: 2 givenname: Hai-Li surname: Hao fullname: Hao, Hai-Li – sequence: 3 givenname: Wei surname: Zhao fullname: Zhao, Wei – sequence: 4 givenname: Xueli surname: Zhao fullname: Zhao, Xueli – sequence: 5 givenname: Hong-Yuan surname: Chen fullname: Chen, Hong-Yuan – sequence: 6 givenname: Jing-Juan surname: Xu fullname: Xu, Jing-Juan |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34476064$$D View this record in MEDLINE/PubMed |
BookMark | eNptkttrFDEUxoNUbK198V0J-CLCaK6TzYtQ1ksXioKX55DJZDopM8k0yVj3vzezW1ctJpBz4Py-j3M4eQyOfPAWgKcYvcaIyjctTgZhUaP-ATghiOGq5lQeHXKCjsFZSteoHEoxJ-IROKaMFUXNTsB8DqdBpzH4yvpee2NbmHsbtQ8pOwN9SQqQuxBHWB6Ytt7GK7crmt6OoZr6kMNOM21h6GC_ncLPUs3zGGKCzi-G8NPmS7XZwFvn23D7BDzs9JDs2V08Bd8_vP-2vqguP3_crM8vK8PIKlctsYR0hDe0XE14LVkjKRIM624lhcXa8Jo2kskO1wZ3hmrKuoZLTIxAWtBT8HbvO83NaFtjfY56UFN0o45bFbRT_1a869VV-KFWVBDOZTF4eWcQw81sU1ajS8YOg_Y2zEktPVFBBccFfXEPvQ5z9GW8hSKEUoIX6vnfHR1a-b2RArzaAyaGlKLtDghGatm4eoe_rncbvygwugcbl3V2YZnGDf-XPNtLYjIH6z-fiP4CifS4nA |
CitedBy_id | crossref_primary_10_1016_j_jddst_2023_104272 crossref_primary_10_1021_acsanm_4c01144 crossref_primary_10_1002_ange_202117401 crossref_primary_10_1021_acsanm_2c04551 crossref_primary_10_1039_D3DT00413A crossref_primary_10_1016_j_ccr_2023_215282 crossref_primary_10_1007_s10904_023_02538_7 crossref_primary_10_1021_acs_iecr_4c03274 crossref_primary_10_1002_smtd_202301270 crossref_primary_10_1021_acsanm_4c02074 crossref_primary_10_1021_cbmi_2c00003 crossref_primary_10_1186_s12951_023_02220_7 crossref_primary_10_1016_j_ajps_2025_101017 crossref_primary_10_1016_j_jcis_2023_12_074 crossref_primary_10_1016_j_ccr_2024_215719 crossref_primary_10_1002_adfm_202312753 crossref_primary_10_1002_smll_202204131 crossref_primary_10_1002_smll_202206592 crossref_primary_10_1016_j_ejmech_2025_117424 crossref_primary_10_1039_D3CE00390F crossref_primary_10_1021_acs_jpcc_3c06691 crossref_primary_10_3390_nano13212873 crossref_primary_10_1016_j_jiec_2022_09_008 crossref_primary_10_1038_s41571_024_00892_0 crossref_primary_10_1016_j_sciaf_2023_e01700 crossref_primary_10_1002_smll_202307981 crossref_primary_10_1002_anie_202117401 crossref_primary_10_1016_j_cej_2023_141874 crossref_primary_10_1016_j_matdes_2023_111702 crossref_primary_10_1016_j_ccr_2022_214745 crossref_primary_10_1016_j_jallcom_2023_172935 crossref_primary_10_1039_D3MA00545C crossref_primary_10_1177_08853282221092222 crossref_primary_10_1002_advs_202204842 crossref_primary_10_3390_polym14020287 crossref_primary_10_3390_cancers14163935 crossref_primary_10_1016_j_ccr_2024_216381 crossref_primary_10_1039_D2TB02801H crossref_primary_10_1002_advs_202305308 crossref_primary_10_1016_j_cej_2022_134869 crossref_primary_10_1166_jbn_2022_3346 crossref_primary_10_1016_j_jmst_2024_07_002 crossref_primary_10_1016_j_jare_2022_01_018 crossref_primary_10_1016_j_reactfunctpolym_2023_105743 |
Cites_doi | 10.1039/c2dt30357d 10.1021/jp0671502 10.1002/smll.201703077 10.1021/acsami.8b13487 10.1002/adma.201706320 10.1002/anie.201300441 10.1039/D0NR03047C 10.1038/nrc706 10.1038/nmat4281 10.1021/acsnano.5b01320 10.1002/anie.201605509 10.1038/s41467-021-21047-0 10.1021/acsami.7b05142 10.1038/nchem.1272 10.1002/anie.200903524 10.1021/acs.chemrev.6b00525 10.1021/acs.chemmater.9b03430 10.7150/thno.51287 10.1002/smll.201302719 10.1021/acsnano.9b08667 10.1021/ja502704n 10.1007/s12274-017-1874-y 10.1021/acs.nanolett.9b01595 10.1146/annurev.med.60.052907.094936 10.1002/adma.201505869 10.1038/nnano.2010.235 10.1039/C6CS00458J 10.1007/s12274-016-1395-0 10.1021/acsnano.6b05113 10.1021/acsami.7b14705 10.1038/nmat1927 10.1002/adma.201904836 10.1002/adma.202007247 10.1038/ncomms14880 10.1002/anie.201510655 10.1002/adma.201405583 10.1038/nrclinonc.2011.2 10.1021/acs.chemrev.5b00148 10.1002/adma.201704367 10.1021/acsnano.7b07746 10.1021/cm020732l 10.7150/thno.26607 10.1021/jacs.7b01794 10.1038/s41467-020-15730-x 10.1016/j.ejpb.2012.10.012 10.1021/nl5045378 10.1039/C8SC02305K 10.1002/adom.201600594 10.1039/C8CS00234G 10.1021/jacs.7b07818 10.1021/acs.accounts.7b00294 10.1021/acs.chemrev.7b00258 10.1021/jacs.5b11720 10.1039/D0CS00664E 10.1016/j.biomaterials.2017.12.003 10.1021/jacs.8b13507 10.1002/anie.201105236 10.1002/anie.201904751 10.1021/jacs.7b11754 10.1021/acs.chemrev.5b00125 10.1016/j.ctrv.2008.04.003 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d1sc01760h |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE - Academic PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 1854 |
ExternalDocumentID | PMC8372559 34476064 10_1039_D1SC01760H d1sc01760h |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: ZYJH004 – fundername: ; grantid: 22034003; 21991080 |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAJAE AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ 53G AAEMU AAFWJ AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AHGCF AKBGW APEMP CITATION HZ~ PGMZT RAOCF RNS -JG NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c428t-d2e22f25b3b3ba25694b930741af897e1ac563b949f16c1fc3a34fb5912c70a73 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:09:36 EDT 2025 Fri Jul 11 04:40:15 EDT 2025 Fri Jul 25 08:20:49 EDT 2025 Thu Jan 02 22:39:47 EST 2025 Tue Jul 01 03:46:53 EDT 2025 Thu Apr 24 22:58:06 EDT 2025 Sat Apr 30 11:00:21 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 32 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c428t-d2e22f25b3b3ba25694b930741af897e1ac563b949f16c1fc3a34fb5912c70a73 |
Notes | Electronic supplementary information (ESI) available: Experimental section, additional figures, results and discussion. See DOI 10.1039/d1sc01760h ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-9579-9318 0000-0002-9526-2008 |
OpenAccessLink | http://dx.doi.org/10.1039/d1sc01760h |
PMID | 34476064 |
PQID | 2562233211 |
PQPubID | 2047492 |
PageCount | 7 |
ParticipantIDs | crossref_primary_10_1039_D1SC01760H proquest_journals_2562233211 pubmed_primary_34476064 proquest_miscellaneous_2569373751 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8372559 crossref_citationtrail_10_1039_D1SC01760H rsc_primary_d1sc01760h |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20210818 |
PublicationDateYYYYMMDD | 2021-08-18 |
PublicationDate_xml | – month: 8 year: 2021 text: 20210818 day: 18 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Jabr-Milane (D1SC01760H/cit6) 2008; 34 Grzelczak (D1SC01760H/cit46) 2007; 111 Urbiola (D1SC01760H/cit60) 2013; 83 Ju (D1SC01760H/cit19) 2016; 55 Yang (D1SC01760H/cit10) 2018; 9 Li (D1SC01760H/cit49) 2018; 11 Yang (D1SC01760H/cit34) 2018; 10 Han (D1SC01760H/cit21) 2016; 10 Zheng (D1SC01760H/cit42) 2016; 138 Jiang (D1SC01760H/cit41) 2018; 10 Nikoobakht (D1SC01760H/cit45) 2003; 15 Cai (D1SC01760H/cit35) 2017; 10 Zhang (D1SC01760H/cit33) 2018; 12 Gottesman (D1SC01760H/cit5) 2002; 2 Yu (D1SC01760H/cit59) 2015; 9 Linic (D1SC01760H/cit30) 2015; 14 Vankayala (D1SC01760H/cit8) 2018; 30 Liu (D1SC01760H/cit22) 2018; 157 Zhang (D1SC01760H/cit61) 2017; 9 Khanal (D1SC01760H/cit51) 2009; 48 Liang (D1SC01760H/cit3) 2016; 45 Hayashi (D1SC01760H/cit47) 2007; 6 Chen (D1SC01760H/cit1) 2016; 116 He (D1SC01760H/cit13) 2018; 47 Lin (D1SC01760H/cit58) 2017; 139 Huang (D1SC01760H/cit11) 2017; 50 Cortés (D1SC01760H/cit29) 2017; 8 Qian (D1SC01760H/cit17) 2016; 28 Huang (D1SC01760H/cit24) 2011; 6 He (D1SC01760H/cit39) 2015; 115 Liao (D1SC01760H/cit43) 2017; 139 Liu (D1SC01760H/cit18) 2017; 117 Yang (D1SC01760H/cit37) 2016; 55 Cao (D1SC01760H/cit57) 2019; 31 Jiang (D1SC01760H/cit15) 2020; 11 Leng (D1SC01760H/cit28) 2018; 14 Jiang (D1SC01760H/cit14) 2021; 12 Alsaiari (D1SC01760H/cit40) 2018; 140 Liang (D1SC01760H/cit53) 2019; 19 Singhal (D1SC01760H/cit7) 2010; 61 Zeng (D1SC01760H/cit36) 2021; 33 Lu (D1SC01760H/cit48) 2012; 4 Goel (D1SC01760H/cit9) 2018; 30 Li (D1SC01760H/cit20) 2019; 141 Mantri (D1SC01760H/cit26) 2020; 12 Shan (D1SC01760H/cit27) 2020; 10 Zheng (D1SC01760H/cit50) 2014; 136 Sun (D1SC01760H/cit54) 2020; 14 Wistuba (D1SC01760H/cit4) 2011; 8 Kong (D1SC01760H/cit52) 2017; 5 Rengan (D1SC01760H/cit23) 2015; 15 Xu (D1SC01760H/cit16) 2021; 50 Vankayala (D1SC01760H/cit31) 2014; 10 Vankayala (D1SC01760H/cit32) 2011; 50 Fan (D1SC01760H/cit2) 2017; 117 Wang (D1SC01760H/cit12) 2019; 31 Meng (D1SC01760H/cit56) 2018; 8 Li (D1SC01760H/cit55) 2019; 58 Sun (D1SC01760H/cit44) 2012; 41 Liu (D1SC01760H/cit38) 2015; 27 Li (D1SC01760H/cit25) 2014; 53 |
References_xml | – volume: 41 start-page: 6906 year: 2012 ident: D1SC01760H/cit44 publication-title: Dalton Trans. doi: 10.1039/c2dt30357d – volume: 111 start-page: 6183 year: 2007 ident: D1SC01760H/cit46 publication-title: J. Phys. Chem. C doi: 10.1021/jp0671502 – volume: 14 start-page: 1703077 year: 2018 ident: D1SC01760H/cit28 publication-title: Small doi: 10.1002/smll.201703077 – volume: 10 start-page: 34513 year: 2018 ident: D1SC01760H/cit41 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.8b13487 – volume: 30 start-page: 1706320 year: 2018 ident: D1SC01760H/cit8 publication-title: Adv. Mater. doi: 10.1002/adma.201706320 – volume: 53 start-page: 1756 year: 2014 ident: D1SC01760H/cit25 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201300441 – volume: 12 start-page: 10511 year: 2020 ident: D1SC01760H/cit26 publication-title: Nanoscale doi: 10.1039/D0NR03047C – volume: 2 start-page: 48 year: 2002 ident: D1SC01760H/cit5 publication-title: Nat. Rev. Cancer doi: 10.1038/nrc706 – volume: 14 start-page: 567 year: 2015 ident: D1SC01760H/cit30 publication-title: Nat. Mater. doi: 10.1038/nmat4281 – volume: 9 start-page: 6655 year: 2015 ident: D1SC01760H/cit59 publication-title: ACS Nano doi: 10.1021/acsnano.5b01320 – volume: 55 start-page: 11467 year: 2016 ident: D1SC01760H/cit19 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201605509 – volume: 12 start-page: 742 year: 2021 ident: D1SC01760H/cit14 publication-title: Nat. Commun. doi: 10.1038/s41467-021-21047-0 – volume: 9 start-page: 19687 year: 2017 ident: D1SC01760H/cit61 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b05142 – volume: 4 start-page: 310 year: 2012 ident: D1SC01760H/cit48 publication-title: Nat. Chem. doi: 10.1038/nchem.1272 – volume: 48 start-page: 6888 year: 2009 ident: D1SC01760H/cit51 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200903524 – volume: 117 start-page: 6160 year: 2017 ident: D1SC01760H/cit18 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00525 – volume: 31 start-page: 9105 year: 2019 ident: D1SC01760H/cit57 publication-title: Chem. Mater. doi: 10.1021/acs.chemmater.9b03430 – volume: 10 start-page: 11656 year: 2020 ident: D1SC01760H/cit27 publication-title: Theranostics doi: 10.7150/thno.51287 – volume: 10 start-page: 1612 year: 2014 ident: D1SC01760H/cit31 publication-title: Small doi: 10.1002/smll.201302719 – volume: 14 start-page: 2063 year: 2020 ident: D1SC01760H/cit54 publication-title: ACS Nano doi: 10.1021/acsnano.9b08667 – volume: 136 start-page: 6870 year: 2014 ident: D1SC01760H/cit50 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja502704n – volume: 11 start-page: 3294 year: 2018 ident: D1SC01760H/cit49 publication-title: Nano Res. doi: 10.1007/s12274-017-1874-y – volume: 19 start-page: 4134 year: 2019 ident: D1SC01760H/cit53 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.9b01595 – volume: 61 start-page: 359 year: 2010 ident: D1SC01760H/cit7 publication-title: Annu. Rev. Med. doi: 10.1146/annurev.med.60.052907.094936 – volume: 28 start-page: 3313 year: 2016 ident: D1SC01760H/cit17 publication-title: Adv. Mater. doi: 10.1002/adma.201505869 – volume: 6 start-page: 28 year: 2011 ident: D1SC01760H/cit24 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2010.235 – volume: 45 start-page: 6250 year: 2016 ident: D1SC01760H/cit3 publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00458J – volume: 10 start-page: 2056 year: 2017 ident: D1SC01760H/cit35 publication-title: Nano Res. doi: 10.1007/s12274-016-1395-0 – volume: 10 start-page: 10858 year: 2016 ident: D1SC01760H/cit21 publication-title: ACS Nano doi: 10.1021/acsnano.6b05113 – volume: 10 start-page: 150 year: 2018 ident: D1SC01760H/cit34 publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b14705 – volume: 6 start-page: 501 year: 2007 ident: D1SC01760H/cit47 publication-title: Nat. Mater. doi: 10.1038/nmat1927 – volume: 31 start-page: 1904836 year: 2019 ident: D1SC01760H/cit12 publication-title: Adv. Mater. doi: 10.1002/adma.201904836 – volume: 33 start-page: 2007247 year: 2021 ident: D1SC01760H/cit36 publication-title: Adv. Mater. doi: 10.1002/adma.202007247 – volume: 8 start-page: 14880 year: 2017 ident: D1SC01760H/cit29 publication-title: Nat. Commun. doi: 10.1038/ncomms14880 – volume: 55 start-page: 3685 year: 2016 ident: D1SC01760H/cit37 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201510655 – volume: 27 start-page: 3273 year: 2015 ident: D1SC01760H/cit38 publication-title: Adv. Mater. doi: 10.1002/adma.201405583 – volume: 8 start-page: 135 year: 2011 ident: D1SC01760H/cit4 publication-title: Nat. Rev. Clin. Oncol. doi: 10.1038/nrclinonc.2011.2 – volume: 116 start-page: 2826 year: 2016 ident: D1SC01760H/cit1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00148 – volume: 30 start-page: 1704367 year: 2018 ident: D1SC01760H/cit9 publication-title: Adv. Mater. doi: 10.1002/adma.201704367 – volume: 12 start-page: 651 year: 2018 ident: D1SC01760H/cit33 publication-title: ACS Nano doi: 10.1021/acsnano.7b07746 – volume: 15 start-page: 1957 year: 2003 ident: D1SC01760H/cit45 publication-title: Chem. Mater. doi: 10.1021/cm020732l – volume: 8 start-page: 6025 year: 2018 ident: D1SC01760H/cit56 publication-title: Theranostics doi: 10.7150/thno.26607 – volume: 139 start-page: 6530 year: 2017 ident: D1SC01760H/cit43 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b01794 – volume: 11 start-page: 1857 year: 2020 ident: D1SC01760H/cit15 publication-title: Nat. Commun. doi: 10.1038/s41467-020-15730-x – volume: 83 start-page: 358 year: 2013 ident: D1SC01760H/cit60 publication-title: Eur. J. Pharm. Biopharm. doi: 10.1016/j.ejpb.2012.10.012 – volume: 15 start-page: 842 year: 2015 ident: D1SC01760H/cit23 publication-title: Nano Lett. doi: 10.1021/nl5045378 – volume: 9 start-page: 7210 year: 2018 ident: D1SC01760H/cit10 publication-title: Chem. Sci. doi: 10.1039/C8SC02305K – volume: 5 start-page: 1600594 year: 2017 ident: D1SC01760H/cit52 publication-title: Adv. Opt. Mater. doi: 10.1002/adom.201600594 – volume: 47 start-page: 4258 year: 2018 ident: D1SC01760H/cit13 publication-title: Chem. Soc. Rev. doi: 10.1039/C8CS00234G – volume: 139 start-page: 16235 year: 2017 ident: D1SC01760H/cit58 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b07818 – volume: 50 start-page: 2529 year: 2017 ident: D1SC01760H/cit11 publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00294 – volume: 117 start-page: 13566 year: 2017 ident: D1SC01760H/cit2 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00258 – volume: 138 start-page: 962 year: 2016 ident: D1SC01760H/cit42 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b11720 – volume: 50 start-page: 1111 year: 2021 ident: D1SC01760H/cit16 publication-title: Chem. Soc. Rev. doi: 10.1039/D0CS00664E – volume: 157 start-page: 107 year: 2018 ident: D1SC01760H/cit22 publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.12.003 – volume: 141 start-page: 4073 year: 2019 ident: D1SC01760H/cit20 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.8b13507 – volume: 50 start-page: 10640 year: 2011 ident: D1SC01760H/cit32 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201105236 – volume: 58 start-page: 12624 year: 2019 ident: D1SC01760H/cit55 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201904751 – volume: 140 start-page: 143 year: 2018 ident: D1SC01760H/cit40 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b11754 – volume: 115 start-page: 11079 year: 2015 ident: D1SC01760H/cit39 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.5b00125 – volume: 34 start-page: 592 year: 2008 ident: D1SC01760H/cit6 publication-title: Cancer Treat. Rev. doi: 10.1016/j.ctrv.2008.04.003 |
SSID | ssj0000331527 |
Score | 2.518909 |
Snippet | Development of simple and effective synergistic therapy by combination of different therapeutic modalities within one single nanostructure is of great... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 1848 |
SubjectTerms | Bimetals Catalase Catalytic activity Chemistry Computed tomography Gold Heterostructures Hypoxia Irradiation Lasers Light therapy Medical imaging Metal-organic frameworks Nanocrystals Nanorods Platinum Tumors Zeolites |
Title | A plasmon-enhanced theranostic nanoplatform for synergistic chemo-phototherapy of hypoxic tumors in the NIR-II window |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34476064 https://www.proquest.com/docview/2562233211 https://www.proquest.com/docview/2569373751 https://pubmed.ncbi.nlm.nih.gov/PMC8372559 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1bb9MwFLa67gFeELexwJiM4AVVhtjOpXmsCqhFlIexQnmq7FzUSltSrYnG-C_8V46dxHXXPgxUyYocN4lzvvjcfM5B6E3Sl4wnMiZMcEE84JEkArGAZEnAEs4SKoUy6E--BqOp93nmzzqdP9aupaqU7-Lfe-NK_oeq0Ad0VVGy_0BZc1HogGOgL7RAYWjvROOBKgK9htuRNF_UrnwdT5UXKvtyL4cDGFAquVRvJ1zfqEg_nZq5B8S6LMhqUZRNDJZ2tS9uVsUvOFtWl6oKT7sJcnxGxuPeNejvxbUtzpp0A210kPIJt1FglpFh2MSATIBRkknLLfXCp021I7EkX5aWEVv3_kh3umZVerG0LRVMm17txZW5HiWBz2o_TGr31QmNzIrMLOQ15s96faUq_b_FrFXshLeXE7hcJVL9QL8NYc0J3NGG37U-_lts0GxO1G55Hs03_z1Ahwy0ENZFh2ffp7Ofxojnct6UBTZza1Pg8uj95gLbQs-OJrO7Iffgqq0_o-Wc84foQaOg4EGNtkeok-aP0b1hWxfwCaoG-DbqsIU6bKMOQ4Mt1OFd1OEiww3qcI06vMzVBXGNOlyj7imafvp4PhyRpngHiUGjLUnCUsYy5ksOPwGCdeTJiCsBVmT9KEypiP2Ay8iLMhrENIu54F4m_YiyOHRFyI9QNy_y9Bhh4MlUhBSUZ5EAy3GlCGKWCUGjjIc-lQ56277dedxktlcFVi7mu6R00GszdlXnc9k76qQl0rz53tdzmAPI0pxR6qBX5jS8fOViE3laVHoMyPvqqRz0rKapuY3KrRmABuCgcIvaZoDK9L59Jl8udMb3Pg-V6u-gI8CFGZ_Qdayfd_H8TrN6ge5vPssT1C2vqvQliNSlPNWmqNMG3n8BUtvOFA |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+plasmon-enhanced+theranostic+nanoplatform+for+synergistic+chemo-phototherapy+of+hypoxic+tumors+in+the+NIR-II+window&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Chen%2C+Ming-Ming&rft.au=Hao%2C+Hai-Li&rft.au=Zhao%2C+Wei&rft.au=Zhao%2C+Xueli&rft.date=2021-08-18&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=32&rft.spage=10848&rft.epage=10854&rft_id=info:doi/10.1039%2FD1SC01760H&rft.externalDBID=n%2Fa&rft.externalDocID=10_1039_D1SC01760H |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |