Novel BiOBr by compositing low-cost biochar for efficient ciprofloxacin removal: the synergy of adsorption and photocatalysis on the degradation kinetics and mechanism insight
C/BiOBr composite materials were synthesized via a simple one-step solvothermal method, with C derived from biochar, which was prepared from the low-cost straw. The samples were characterized by SEM, XRD, XPS and PL. The 2% C/BiOBr composite material showed a noticeable adsorption and photocatalysis...
Saved in:
Published in | RSC advances Vol. 11; no. 25; pp. 15369 - 15379 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
26.04.2021
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | C/BiOBr composite materials were synthesized
via
a simple one-step solvothermal method, with C derived from biochar, which was prepared from the low-cost straw. The samples were characterized by SEM, XRD, XPS and PL. The 2% C/BiOBr composite material showed a noticeable adsorption and photocatalysis synergistic effect to remove CIP. The adsorption rate and degradation rate were 1.45 times and 1.8 times that of BiOBr. The adsorption kinetics and isotherms of CIP on C/BiOBr were analyzed with the pseudo-second-order kinetic and Langmuir models. The degradation efficiency was 96.8% after 60 min of irradiation. High stability and degradability were still maintained after four cycles. The Bi-O-C bond accelerated electron transition and inhibited the rapid photogenerated electron pair recombination. In the degradation process of CIP, &z.rad;O
2
−
and h
+
played a significant role. Experiments proved that C/BiOBr is practical and feasible for the degradation of CIP under the synergistic effect of adsorption and photocatalysis.
1. The C-loaded BiOBr was synthesized
via
a one-step solvothermal method. 2. C/BiOBr showed an obvious synergistic effect of adsorption and photocatalysis on the degradation of ciprofloxacin. |
---|---|
AbstractList | C/BiOBr composite materials were synthesized via a simple one-step solvothermal method, with C derived from biochar, which was prepared from the low-cost straw. The samples were characterized by SEM, XRD, XPS and PL. The 2% C/BiOBr composite material showed a noticeable adsorption and photocatalysis synergistic effect to remove CIP. The adsorption rate and degradation rate were 1.45 times and 1.8 times that of BiOBr. The adsorption kinetics and isotherms of CIP on C/BiOBr were analyzed with the pseudo-second-order kinetic and Langmuir models. The degradation efficiency was 96.8% after 60 min of irradiation. High stability and degradability were still maintained after four cycles. The Bi-O-C bond accelerated electron transition and inhibited the rapid photogenerated electron pair recombination. In the degradation process of CIP, ˙O2 - and h+ played a significant role. Experiments proved that C/BiOBr is practical and feasible for the degradation of CIP under the synergistic effect of adsorption and photocatalysis. C/BiOBr composite materials were synthesized via a simple one-step solvothermal method, with C derived from biochar, which was prepared from the low-cost straw. The samples were characterized by SEM, XRD, XPS and PL. The 2% C/BiOBr composite material showed a noticeable adsorption and photocatalysis synergistic effect to remove CIP. The adsorption rate and degradation rate were 1.45 times and 1.8 times that of BiOBr. The adsorption kinetics and isotherms of CIP on C/BiOBr were analyzed with the pseudo-second-order kinetic and Langmuir models. The degradation efficiency was 96.8% after 60 min of irradiation. High stability and degradability were still maintained after four cycles. The Bi-O-C bond accelerated electron transition and inhibited the rapid photogenerated electron pair recombination. In the degradation process of CIP, &z.rad;O 2 − and h + played a significant role. Experiments proved that C/BiOBr is practical and feasible for the degradation of CIP under the synergistic effect of adsorption and photocatalysis. 1. The C-loaded BiOBr was synthesized via a one-step solvothermal method. 2. C/BiOBr showed an obvious synergistic effect of adsorption and photocatalysis on the degradation of ciprofloxacin. C/BiOBr composite materials were synthesized via a simple one-step solvothermal method, with C derived from biochar, which was prepared from the low-cost straw. The samples were characterized by SEM, XRD, XPS and PL. The 2% C/BiOBr composite material showed a noticeable adsorption and photocatalysis synergistic effect to remove CIP. The adsorption rate and degradation rate were 1.45 times and 1.8 times that of BiOBr. The adsorption kinetics and isotherms of CIP on C/BiOBr were analyzed with the pseudo-second-order kinetic and Langmuir models. The degradation efficiency was 96.8% after 60 min of irradiation. High stability and degradability were still maintained after four cycles. The Bi–O–C bond accelerated electron transition and inhibited the rapid photogenerated electron pair recombination. In the degradation process of CIP, ·O2− and h+ played a significant role. Experiments proved that C/BiOBr is practical and feasible for the degradation of CIP under the synergistic effect of adsorption and photocatalysis. C/BiOBr composite materials were synthesized a simple one-step solvothermal method, with C derived from biochar, which was prepared from the low-cost straw. The samples were characterized by SEM, XRD, XPS and PL. The 2% C/BiOBr composite material showed a noticeable adsorption and photocatalysis synergistic effect to remove CIP. The adsorption rate and degradation rate were 1.45 times and 1.8 times that of BiOBr. The adsorption kinetics and isotherms of CIP on C/BiOBr were analyzed with the pseudo-second-order kinetic and Langmuir models. The degradation efficiency was 96.8% after 60 min of irradiation. High stability and degradability were still maintained after four cycles. The Bi-O-C bond accelerated electron transition and inhibited the rapid photogenerated electron pair recombination. In the degradation process of CIP, ˙O and h played a significant role. Experiments proved that C/BiOBr is practical and feasible for the degradation of CIP under the synergistic effect of adsorption and photocatalysis. C/BiOBr composite materials were synthesized via a simple one-step solvothermal method, with C derived from biochar, which was prepared from the low-cost straw. The samples were characterized by SEM, XRD, XPS and PL. The 2% C/BiOBr composite material showed a noticeable adsorption and photocatalysis synergistic effect to remove CIP. The adsorption rate and degradation rate were 1.45 times and 1.8 times that of BiOBr. The adsorption kinetics and isotherms of CIP on C/BiOBr were analyzed with the pseudo-second-order kinetic and Langmuir models. The degradation efficiency was 96.8% after 60 min of irradiation. High stability and degradability were still maintained after four cycles. The Bi–O–C bond accelerated electron transition and inhibited the rapid photogenerated electron pair recombination. In the degradation process of CIP, ˙O 2 − and h + played a significant role. Experiments proved that C/BiOBr is practical and feasible for the degradation of CIP under the synergistic effect of adsorption and photocatalysis. C/BiOBr composite materials were synthesized via a simple one-step solvothermal method, with C derived from biochar, which was prepared from the low-cost straw. The samples were characterized by SEM, XRD, XPS and PL. The 2% C/BiOBr composite material showed a noticeable adsorption and photocatalysis synergistic effect to remove CIP. The adsorption rate and degradation rate were 1.45 times and 1.8 times that of BiOBr. The adsorption kinetics and isotherms of CIP on C/BiOBr were analyzed with the pseudo-second-order kinetic and Langmuir models. The degradation efficiency was 96.8% after 60 min of irradiation. High stability and degradability were still maintained after four cycles. The Bi–O–C bond accelerated electron transition and inhibited the rapid photogenerated electron pair recombination. In the degradation process of CIP, ˙O 2 − and h + played a significant role. Experiments proved that C/BiOBr is practical and feasible for the degradation of CIP under the synergistic effect of adsorption and photocatalysis. 1. The C-loaded BiOBr was synthesized via a one-step solvothermal method. 2. C/BiOBr showed an obvious synergistic effect of adsorption and photocatalysis on the degradation of ciprofloxacin. |
Author | Song, Wandi Wang, Chengyu Liu, Shuxia Liu, Wang Chang, Haibo Zhao, Jianghua Xie, Xiuhong |
AuthorAffiliation | Changchun University College of Resources and Environment Jilin Agricultural University College of Landscape Architecture |
AuthorAffiliation_xml | – name: Changchun University – name: Jilin Agricultural University – name: College of Landscape Architecture – name: College of Resources and Environment |
Author_xml | – sequence: 1 givenname: Wandi surname: Song fullname: Song, Wandi – sequence: 2 givenname: Jianghua surname: Zhao fullname: Zhao, Jianghua – sequence: 3 givenname: Xiuhong surname: Xie fullname: Xie, Xiuhong – sequence: 4 givenname: Wang surname: Liu fullname: Liu, Wang – sequence: 5 givenname: Shuxia surname: Liu fullname: Liu, Shuxia – sequence: 6 givenname: Haibo surname: Chang fullname: Chang, Haibo – sequence: 7 givenname: Chengyu surname: Wang fullname: Wang, Chengyu |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/35424044$$D View this record in MEDLINE/PubMed |
BookMark | eNpdkk1v1DAQhi1UREvphTvIEheEFLAdJ3V6QNqWT6miEoJz5PgjcUk8wfYu5FfxF3F3y1LwxSPP43dm9M5DdODBG4QeU_KSkrJ5pWmQhDScynvoiBFeF4zUzcGd-BCdxHhN8qkrymr6AB2WFWeccH6Efn2CjRnxubs6D7hbsIJphuiS8z0e4UehICbcOVCDDNhCwMZap5zxCSs3B7Aj_JTKeRzMBBs5nuE0GBwXb0K_YLBY6ghhTg48ll7jeYAESiY5LtFFnF9veG36ILXcUt-cN8mpuMUnkwt7FyfsfHT9kB6h-1aO0Zzc3sfo67u3Xy4-FJdX7z9erC4LxZlIhSZUd1IzccrKjlijlTAN0XVlSCm6itHO6LojlGlLJWfUsOrUlsyKHFjVVOUxer3TndfdlL_ngYMc2zm4SYalBenafzPeDW0Pm1bUjeClyALPbwUCfF-bmNrJRWXGUXoD69iybEYtBOd1Rp_9h17DOvg8XssqxrOHVUMz9WJHqQAxBmP3zVDS3qxC-4Z-Xm1XYZXhp3fb36N_jM_Akx0Qotpn_-5S-RvjVb96 |
CitedBy_id | crossref_primary_10_1007_s11270_024_06919_7 crossref_primary_10_1016_j_jenvman_2023_119332 crossref_primary_10_1016_j_jiec_2022_07_050 crossref_primary_10_1016_j_jallcom_2022_166866 crossref_primary_10_1016_j_jwpe_2023_104558 crossref_primary_10_1016_j_jece_2023_111569 crossref_primary_10_1016_j_jwpe_2022_102725 crossref_primary_10_1016_j_arabjc_2024_105887 crossref_primary_10_1007_s10854_022_07768_y crossref_primary_10_1016_j_cej_2022_141228 crossref_primary_10_1016_j_jallcom_2023_172779 crossref_primary_10_1016_j_seppur_2023_125774 crossref_primary_10_1016_j_jece_2024_113080 crossref_primary_10_1016_j_inoche_2024_112260 crossref_primary_10_1007_s10895_022_02934_1 crossref_primary_10_1016_j_seppur_2022_120771 crossref_primary_10_3390_toxics9110313 crossref_primary_10_1002_aoc_6953 crossref_primary_10_1016_j_optmat_2023_113540 crossref_primary_10_1016_j_mssp_2024_108366 crossref_primary_10_1016_j_envpol_2022_120683 crossref_primary_10_1007_s10854_022_08545_7 crossref_primary_10_1016_j_jclepro_2022_134149 crossref_primary_10_3390_molecules28248094 crossref_primary_10_1016_j_chemosphere_2021_132200 crossref_primary_10_1007_s11356_024_31834_z |
Cites_doi | 10.1016/j.chemosphere.2019.05.011 10.1016/j.ceramint.2018.08.128 10.1016/j.nanoen.2020.105671 10.1039/D0RA01854F 10.1016/j.mssp.2016.05.008 10.1016/j.apsusc.2019.06.091 10.1038/srep45914 10.1016/j.apsusc.2019.04.160 10.1016/j.molliq.2018.01.034 10.1016/j.jhazmat.2019.121690 10.1016/j.apt.2019.03.016 10.1039/C9RA08145C 10.1016/j.apsusc.2018.03.178 10.1016/j.inoche.2018.05.022 10.1016/j.cclet.2020.07.043 10.1016/j.jallcom.2020.155025 10.1016/j.cej.2019.122137 10.1016/j.apcatb.2020.118602 10.1016/j.chemosphere.2020.126291 10.1016/j.jclepro.2020.120055 10.1016/j.scitotenv.2018.11.013 10.1016/j.jes.2020.04.026 10.1016/j.jhazmat.2016.09.065 10.1016/j.envpol.2018.08.059 10.1016/j.cej.2017.05.044 10.1016/j.mssp.2020.105023 10.1039/C9NJ06060J 10.1016/j.jcis.2018.05.054 10.1021/ac502440h 10.1016/j.cej.2020.124934 10.1016/j.jhazmat.2020.124675 10.1016/j.jpcs.2017.01.020 10.1007/s10853-020-04413-z 10.1016/j.jiec.2020.09.023 10.1038/s41598-020-61367-7 10.1016/j.apcata.2016.09.005 10.1016/j.cej.2020.126012 10.1016/j.ecoenv.2020.110897 10.1016/j.jcis.2020.06.088 10.1038/s41598-020-62791-5 10.1016/j.bios.2018.03.054 10.1016/j.apcatb.2018.01.024 10.1002/cctc.202000634 10.1016/j.ceramint.2020.07.042 10.1016/j.jhazmat.2018.10.063 10.1016/j.compositesb.2013.10.045 10.1016/j.jhazmat.2013.01.051 10.1016/j.jes.2017.12.024 10.1016/j.envres.2020.110258 10.1007/s10570-019-02474-1 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | NPM AAYXX CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d1ra00941a |
DatabaseName | PubMed CrossRef Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | PubMed CrossRef Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Materials Research Database PubMed CrossRef |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2046-2069 |
EndPage | 15379 |
ExternalDocumentID | 10_1039_D1RA00941A 35424044 d1ra00941a |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: 20190303086SF; 20200201011JC; 20200201210JC |
GroupedDBID | 0-7 0R AAGNR AAIWI ABGFH ACGFS ADBBV ADMRA AENEX AFVBQ AGRSR AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS ANUXI ASKNT AUDPV BCNDV BLAPV BSQNT C6K CKLOX EBS EE0 EF- GROUPED_DOAJ HZ H~N J3I JG O9- OK1 R7C R7G RCNCU RPMJG RRC RSCEA RVUXY SLH SMJ ZCN -JG 0R~ 53G AAFWJ AAHBH AAJAE AARTK AAWGC AAXHV ABEMK ABPDG ABXOH AEFDR AESAV AFLYV AGEGJ AHGCF AKBGW APEMP H13 HZ~ M~E NPM PGMZT RPM AAYXX AFPKN CITATION 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c428t-d01dbad28723b0fedc8e90d65e038b521bed6b012df1a421e257f32f8e25fc953 |
IEDL.DBID | RPM |
ISSN | 2046-2069 |
IngestDate | Tue Sep 17 21:25:37 EDT 2024 Sat Oct 26 05:49:34 EDT 2024 Thu Oct 10 20:18:57 EDT 2024 Fri Aug 23 02:57:17 EDT 2024 Sat Nov 02 12:01:57 EDT 2024 Sat Apr 16 10:02:51 EDT 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 25 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-d01dbad28723b0fedc8e90d65e038b521bed6b012df1a421e257f32f8e25fc953 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-5783-2658 0000-0002-4717-2630 |
OpenAccessLink | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC8698438/ |
PMID | 35424044 |
PQID | 2524206591 |
PQPubID | 2047525 |
PageCount | 11 |
ParticipantIDs | pubmed_primary_35424044 crossref_primary_10_1039_D1RA00941A rsc_primary_d1ra00941a proquest_miscellaneous_2651688446 pubmedcentral_primary_oai_pubmedcentral_nih_gov_8698438 proquest_journals_2524206591 |
PublicationCentury | 2000 |
PublicationDate | 2021-04-26 |
PublicationDateYYYYMMDD | 2021-04-26 |
PublicationDate_xml | – month: 04 year: 2021 text: 2021-04-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | RSC advances |
PublicationTitleAlternate | RSC Adv |
PublicationYear | 2021 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | Wang (D1RA00941A-(cit47)/*[position()=1]) 2018; 227 Li (D1RA00941A-(cit53)/*[position()=1]) 2019; 654 Lin (D1RA00941A-(cit9)/*[position()=1]) 2020; 406 Patil (D1RA00941A-(cit30)/*[position()=1]) 2016; 52 Deng (D1RA00941A-(cit20)/*[position()=1]) 2019; 5 Zhao (D1RA00941A-(cit27)/*[position()=1]) 2016; 527 Chang (D1RA00941A-(cit29)/*[position()=1]) 2020; 44 Wang (D1RA00941A-(cit10)/*[position()=1]) 2020; 10 Xiong (D1RA00941A-(cit50)/*[position()=1]) 2020; 266 Liang (D1RA00941A-(cit12)/*[position()=1]) 2018; 93 Li (D1RA00941A-(cit46)/*[position()=1]) 2018; 243 Liu (D1RA00941A-(cit21)/*[position()=1]) 2018; 445 Li (D1RA00941A-(cit42)/*[position()=1]) 2018; 73 Wang (D1RA00941A-(cit38)/*[position()=1]) 2020; 31 Yan (D1RA00941A-(cit41)/*[position()=1]) 2013; 250–251 Chen (D1RA00941A-(cit48)/*[position()=1]) 2020; 55 Li (D1RA00941A-(cit4)/*[position()=1]) 2017; 321 Ma (D1RA00941A-(cit5)/*[position()=1]) 2019; 9 Wang (D1RA00941A-(cit1)/*[position()=1]) 2021; 99 Lv (D1RA00941A-(cit18)/*[position()=1]) 2020; 401 Geng (D1RA00941A-(cit32)/*[position()=1]) 2020; 250 Zarezadeh (D1RA00941A-(cit33)/*[position()=1]) 2019; 30 Yao (D1RA00941A-(cit44)/*[position()=1]) 2017; 7 Dumrongrojthanath (D1RA00941A-(cit23)/*[position()=1]) 2018; 44 Li (D1RA00941A-(cit52)/*[position()=1]) 2021; 81 Guo (D1RA00941A-(cit22)/*[position()=1]) 2019; 378 Hua (D1RA00941A-(cit11)/*[position()=1]) 2020; 202 Thi Thanh Nhi (D1RA00941A-(cit6)/*[position()=1]) 2020; 10 Guo (D1RA00941A-(cit7)/*[position()=1]) 2019; 230 Wang (D1RA00941A-(cit14)/*[position()=1]) 2020; 834 Yan (D1RA00941A-(cit17)/*[position()=1]) 2018; 111 Hu (D1RA00941A-(cit43)/*[position()=1]) 2020; 253 Ao (D1RA00941A-(cit16)/*[position()=1]) 2014; 59 Huang (D1RA00941A-(cit15)/*[position()=1]) 2020; 12 Li (D1RA00941A-(cit51)/*[position()=1]) 2020; 387 Xu (D1RA00941A-(cit3)/*[position()=1]) 2019; 364 Alansi (D1RA00941A-(cit31)/*[position()=1]) 2018; 253 Liu (D1RA00941A-(cit25)/*[position()=1]) 2018; 29 Wu (D1RA00941A-(cit36)/*[position()=1]) 2017; 325 He (D1RA00941A-(cit13)/*[position()=1]) 2017; 104 Tie (D1RA00941A-(cit34)/*[position()=1]) 2020; 579 Juntrapirom (D1RA00941A-(cit19)/*[position()=1]) 2020; 394 Chen (D1RA00941A-(cit37)/*[position()=1]) 2019; 493 Du (D1RA00941A-(cit24)/*[position()=1]) 2019; 26 Allagui (D1RA00941A-(cit26)/*[position()=1]) 2019; 490 Igwegbe (D1RA00941A-(cit40)/*[position()=1]) 2021; 93 Shang (D1RA00941A-(cit28)/*[position()=1]) 2020; 31 Qu (D1RA00941A-(cit2)/*[position()=1]) 2020; 112 Wang (D1RA00941A-(cit39)/*[position()=1]) 2014; 86 Li (D1RA00941A-(cit49)/*[position()=1]) 2021; 192 Ghasemipour (D1RA00941A-(cit45)/*[position()=1]) 2020; 10 Zheng (D1RA00941A-(cit35)/*[position()=1]) 2018; 527 Kebaili (D1RA00941A-(cit8)/*[position()=1]) 2020; 46 |
References_xml | – volume: 230 start-page: 190 year: 2019 ident: D1RA00941A-(cit7)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2019.05.011 contributor: fullname: Guo – volume: 44 start-page: S148 year: 2018 ident: D1RA00941A-(cit23)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2018.08.128 contributor: fullname: Dumrongrojthanath – volume: 81 start-page: 105671 year: 2021 ident: D1RA00941A-(cit52)/*[position()=1] publication-title: Nano Energy doi: 10.1016/j.nanoen.2020.105671 contributor: fullname: Li – volume: 10 start-page: 16330 year: 2020 ident: D1RA00941A-(cit6)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/D0RA01854F contributor: fullname: Thi Thanh Nhi – volume: 52 start-page: 55 year: 2016 ident: D1RA00941A-(cit30)/*[position()=1] publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2016.05.008 contributor: fullname: Patil – volume: 490 start-page: 580 year: 2019 ident: D1RA00941A-(cit26)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.06.091 contributor: fullname: Allagui – volume: 7 start-page: 45914 year: 2017 ident: D1RA00941A-(cit44)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/srep45914 contributor: fullname: Yao – volume: 493 start-page: 1361 year: 2019 ident: D1RA00941A-(cit37)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2019.04.160 contributor: fullname: Chen – volume: 253 start-page: 297 year: 2018 ident: D1RA00941A-(cit31)/*[position()=1] publication-title: J. Mol. Liq. doi: 10.1016/j.molliq.2018.01.034 contributor: fullname: Alansi – volume: 387 start-page: 121690 year: 2020 ident: D1RA00941A-(cit51)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2019.121690 contributor: fullname: Li – volume: 30 start-page: 1197 year: 2019 ident: D1RA00941A-(cit33)/*[position()=1] publication-title: Adv. Powder Technol. doi: 10.1016/j.apt.2019.03.016 contributor: fullname: Zarezadeh – volume: 9 start-page: 33519 year: 2019 ident: D1RA00941A-(cit5)/*[position()=1] publication-title: RSC Adv. doi: 10.1039/C9RA08145C contributor: fullname: Ma – volume: 445 start-page: 242 year: 2018 ident: D1RA00941A-(cit21)/*[position()=1] publication-title: Appl. Surf. Sci. doi: 10.1016/j.apsusc.2018.03.178 contributor: fullname: Liu – volume: 93 start-page: 136 year: 2018 ident: D1RA00941A-(cit12)/*[position()=1] publication-title: Inorg. Chem. Commun. doi: 10.1016/j.inoche.2018.05.022 contributor: fullname: Liang – volume: 31 start-page: 2789 year: 2020 ident: D1RA00941A-(cit38)/*[position()=1] publication-title: Chin. Chem. Lett. doi: 10.1016/j.cclet.2020.07.043 contributor: fullname: Wang – volume: 834 start-page: 155025 year: 2020 ident: D1RA00941A-(cit14)/*[position()=1] publication-title: J. Alloy. Compd. doi: 10.1016/j.jallcom.2020.155025 contributor: fullname: Wang – volume: 31 start-page: 20858 year: 2020 ident: D1RA00941A-(cit28)/*[position()=1] publication-title: J. Mater. Sci.: Mater. Electron. contributor: fullname: Shang – volume: 378 start-page: 122137 year: 2019 ident: D1RA00941A-(cit22)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2019.122137 contributor: fullname: Guo – volume: 266 start-page: 118602 year: 2020 ident: D1RA00941A-(cit50)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2020.118602 contributor: fullname: Xiong – volume: 250 start-page: 126291 year: 2020 ident: D1RA00941A-(cit32)/*[position()=1] publication-title: Chemosphere doi: 10.1016/j.chemosphere.2020.126291 contributor: fullname: Geng – volume: 253 start-page: 120055 year: 2020 ident: D1RA00941A-(cit43)/*[position()=1] publication-title: J. Cleaner Prod. doi: 10.1016/j.jclepro.2020.120055 contributor: fullname: Hu – volume: 654 start-page: 1284 year: 2019 ident: D1RA00941A-(cit53)/*[position()=1] publication-title: Sci. Total Environ. doi: 10.1016/j.scitotenv.2018.11.013 contributor: fullname: Li – volume: 99 start-page: 249 year: 2021 ident: D1RA00941A-(cit1)/*[position()=1] publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2020.04.026 contributor: fullname: Wang – volume: 321 start-page: 711 year: 2017 ident: D1RA00941A-(cit4)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2016.09.065 contributor: fullname: Li – volume: 243 start-page: 206 year: 2018 ident: D1RA00941A-(cit46)/*[position()=1] publication-title: Environ. Pollut. doi: 10.1016/j.envpol.2018.08.059 contributor: fullname: Li – volume: 325 start-page: 59 year: 2017 ident: D1RA00941A-(cit36)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2017.05.044 contributor: fullname: Wu – volume: 112 start-page: 105023 year: 2020 ident: D1RA00941A-(cit2)/*[position()=1] publication-title: Mater. Sci. Semicond. Process. doi: 10.1016/j.mssp.2020.105023 contributor: fullname: Qu – volume: 44 start-page: 2479 year: 2020 ident: D1RA00941A-(cit29)/*[position()=1] publication-title: New J. Chem. doi: 10.1039/C9NJ06060J contributor: fullname: Chang – volume: 527 start-page: 202 year: 2018 ident: D1RA00941A-(cit35)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2018.05.054 contributor: fullname: Zheng – volume: 86 start-page: 10186 year: 2014 ident: D1RA00941A-(cit39)/*[position()=1] publication-title: Anal. Chem. doi: 10.1021/ac502440h contributor: fullname: Wang – volume: 394 start-page: 124934 year: 2020 ident: D1RA00941A-(cit19)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.124934 contributor: fullname: Juntrapirom – volume: 406 start-page: 124675 year: 2020 ident: D1RA00941A-(cit9)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2020.124675 contributor: fullname: Lin – volume: 104 start-page: 286 year: 2017 ident: D1RA00941A-(cit13)/*[position()=1] publication-title: J. Phys. Chem. Solids doi: 10.1016/j.jpcs.2017.01.020 contributor: fullname: He – volume: 5 start-page: 769 year: 2019 ident: D1RA00941A-(cit20)/*[position()=1] publication-title: J. Environ. Sci. Water Resour. contributor: fullname: Deng – volume: 29 start-page: 14300 year: 2018 ident: D1RA00941A-(cit25)/*[position()=1] publication-title: J. Mater. Sci.: Mater. Electron. contributor: fullname: Liu – volume: 55 start-page: 6065 year: 2020 ident: D1RA00941A-(cit48)/*[position()=1] publication-title: J. Mater. Sci. doi: 10.1007/s10853-020-04413-z contributor: fullname: Chen – volume: 93 start-page: 57 year: 2021 ident: D1RA00941A-(cit40)/*[position()=1] publication-title: J. Ind. Eng. Chem. doi: 10.1016/j.jiec.2020.09.023 contributor: fullname: Igwegbe – volume: 10 start-page: 4414 year: 2020 ident: D1RA00941A-(cit45)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-020-61367-7 contributor: fullname: Ghasemipour – volume: 527 start-page: 127 year: 2016 ident: D1RA00941A-(cit27)/*[position()=1] publication-title: Appl. Catal., A doi: 10.1016/j.apcata.2016.09.005 contributor: fullname: Zhao – volume: 401 start-page: 126012 year: 2020 ident: D1RA00941A-(cit18)/*[position()=1] publication-title: Chem. Eng. J. doi: 10.1016/j.cej.2020.126012 contributor: fullname: Lv – volume: 202 start-page: 110897 year: 2020 ident: D1RA00941A-(cit11)/*[position()=1] publication-title: Ecotoxicol. Environ. Saf. doi: 10.1016/j.ecoenv.2020.110897 contributor: fullname: Hua – volume: 579 start-page: 862 year: 2020 ident: D1RA00941A-(cit34)/*[position()=1] publication-title: J. Colloid Interface Sci. doi: 10.1016/j.jcis.2020.06.088 contributor: fullname: Tie – volume: 10 start-page: 6588 year: 2020 ident: D1RA00941A-(cit10)/*[position()=1] publication-title: Sci. Rep. doi: 10.1038/s41598-020-62791-5 contributor: fullname: Wang – volume: 111 start-page: 74 year: 2018 ident: D1RA00941A-(cit17)/*[position()=1] publication-title: Biosens. Bioelectron. doi: 10.1016/j.bios.2018.03.054 contributor: fullname: Yan – volume: 227 start-page: 114 year: 2018 ident: D1RA00941A-(cit47)/*[position()=1] publication-title: Appl. Catal., B doi: 10.1016/j.apcatb.2018.01.024 contributor: fullname: Wang – volume: 12 start-page: 4431 year: 2020 ident: D1RA00941A-(cit15)/*[position()=1] publication-title: ChemCatChem doi: 10.1002/cctc.202000634 contributor: fullname: Huang – volume: 46 start-page: 25671 year: 2020 ident: D1RA00941A-(cit8)/*[position()=1] publication-title: Ceram. Int. doi: 10.1016/j.ceramint.2020.07.042 contributor: fullname: Kebaili – volume: 364 start-page: 691 year: 2019 ident: D1RA00941A-(cit3)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2018.10.063 contributor: fullname: Xu – volume: 59 start-page: 96 year: 2014 ident: D1RA00941A-(cit16)/*[position()=1] publication-title: Composites, Part B doi: 10.1016/j.compositesb.2013.10.045 contributor: fullname: Ao – volume: 250–251 start-page: 106 year: 2013 ident: D1RA00941A-(cit41)/*[position()=1] publication-title: J. Hazard. Mater. doi: 10.1016/j.jhazmat.2013.01.051 contributor: fullname: Yan – volume: 73 start-page: 20 year: 2018 ident: D1RA00941A-(cit42)/*[position()=1] publication-title: J. Environ. Sci. (China) doi: 10.1016/j.jes.2017.12.024 contributor: fullname: Li – volume: 192 start-page: 110258 year: 2021 ident: D1RA00941A-(cit49)/*[position()=1] publication-title: Environ. Res. doi: 10.1016/j.envres.2020.110258 contributor: fullname: Li – volume: 26 start-page: 5543 year: 2019 ident: D1RA00941A-(cit24)/*[position()=1] publication-title: Cellulose doi: 10.1007/s10570-019-02474-1 contributor: fullname: Du |
SSID | ssj0000651261 |
Score | 2.5032916 |
Snippet | C/BiOBr composite materials were synthesized
via
a simple one-step solvothermal method, with C derived from biochar, which was prepared from the low-cost... C/BiOBr composite materials were synthesized a simple one-step solvothermal method, with C derived from biochar, which was prepared from the low-cost straw.... C/BiOBr composite materials were synthesized via a simple one-step solvothermal method, with C derived from biochar, which was prepared from the low-cost... |
SourceID | pubmedcentral proquest crossref pubmed rsc |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 15369 |
SubjectTerms | Adsorption Chemistry Composite materials Degradation Electron transitions Kinetics Low cost Photocatalysis Synergistic effect X ray photoelectron spectroscopy |
Title | Novel BiOBr by compositing low-cost biochar for efficient ciprofloxacin removal: the synergy of adsorption and photocatalysis on the degradation kinetics and mechanism insight |
URI | https://www.ncbi.nlm.nih.gov/pubmed/35424044 https://www.proquest.com/docview/2524206591 https://search.proquest.com/docview/2651688446 https://pubmed.ncbi.nlm.nih.gov/PMC8698438 |
Volume | 11 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Nb9QwEB11e4BeEF-FlFIZwTXdxHayCbftQlUhtSBEpd4iJ7ZpxMZeJWmhv4q_yNjZLKx64xbFIyfKvHie7fEbgHc0UZKlZRLqMtIhn1UszGXCQq0xuNEIGb8X0zm_SM8u-aer5GoHkvEsjE_ar8r62CybY1Nf-9zKVVNNxzyx6ZfzRZbmGfYxncAEAfrPFH0YfjGGpfEoRcryqYxb4TLoYrEHD1jCMYhxvh2H7pHL-zmSk3YsCeJDz-ljeLTmjGQ-vNsT2FHmKTxcjKXansHvC3urluSk_nzSkvKOuDxxn4xlvpOl_RlWtutJWVt3xIogSyXKC0fgM0lVu6rdS_tLVLUhrWosQu89QVpIujt_LpBYTYTsbOsHFyKMJKtr21u_8OP0TAjedfbS6U4MJZrIDySvTgDamzfKHS-uu4bUpnOLAc_h8vTjt8VZuK7EEFY4PelDGcWyFBJnV5ShT_GrZCqPZJqoiGUlMoBSybTEWCd1LDiNFQ4EmlGd4YWu8oTtw66xRr0E4gTkNLZQ5ZTfBc8FzwStZjLjUvGcB_B29EuxGgQ3Cr9RzvLiQ_x17h05D-BwdFmx_um6gibIN9w-cRzAm00zusLtgQij7A3aIDrSLMNJcAAvBg9vHjNCI4DZlu83Bk6Ke7sFEeoludeIDGAfUbKx_wu8g__u8hXsUZdGE_GQpoew27c36jXyoL488usHRx79fwD2KA6w |
link.rule.ids | 230,315,730,783,787,867,888,27936,27937,53804,53806 |
linkProvider | National Library of Medicine |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL3ahsT2wvcgMMAIXtPmw0kT3rrCVGAtCG1ob5EdO1u01q6SFBh_ir_ItdMUyp7grYqvkiY59j2Oj88FeBVEUoQxj9yCe4VLB3nopiIK3aLA5BZ4yPitmc5kGo9P6fuz6GwLom4vjBXt57zsqdm8p8oLq61czPN-pxPrf5qMkjhN8Bz9bbiB_dWjf0zS2wEYs1jsd2akYdoXfsWMhs5ne3AzjCimMUo3M9E1enldJblddUVBbPI5ug1fur_dak4ue8uG9_Iffzk6_vN93YFbKzpKhm3zXdiS6h7sjroqcPfh51R_lTNyWH48rAi_IkaCbnVe6pzM9Dc313VDeKnN7i2CBJhI60mBN0Py0hQEn-nvLC8VqeRcI6pfE2ScpL6yWw6JLggTta7suEWYEmRxoRttvykZqxSCR028MJYWbfUncom82HhL2_C5NDuXy3pOSlWb7wwP4PTo7clo7K6KPLg5znwaV3i-4EzgxC0IES74uBOZeiKOpBcmHMkFlyLmmEZF4TMa-BLHmCIMigR_FHkahfuwo7SSj4AYb7oCWwJpTOUZTRlNWJAPREKFpCl14GX3wrNF6-WR2TX4MM3e-J-HFiFDBw46LGSr_lxnQYRUxixB-w68WDfjqzDLK0xJvcQYhF2cJDi_duBhC531ZTrMOTDYANU6wLh8b7YgSKzb9woUDuwj_NbxvxH9-L9P-Rx2xyeT4-z43fTDE9gLjFrHo24QH8BOUy3lU6RbDX9mO9cv--0vvw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1db9MwFL1iQxp74XsQ2MAIXtPmw0kT3rqOanysTIhJEy-RHdtbtDaukhQYf4q_uGunKSt721sVXyVNcux7HB-fC_AuiKQIYx65invKpYM8dFMRha5SmNwCDxm_NdM5msSHJ_TTaXR6rdSXFe3nvOiV01mvLM6ttnI-y_udTqx_fDRK4jTBc_TnQvU34C72WS--NlFvB2HMZLHfGZKGaV_4FTM6Op9tw1YYUUxllK5noxsU86ZScqPqCoPYBDR-AD-6v97qTi56i4b38j__uTre6t4ewv0lLSXDNuQR3JHlY7g36qrBPYG_E_1TTsl-8XW_IvySGCm61XuVZ2Sqf7m5rhvCC212cREkwkRabwq8IZIXpjD4VP9meVGSSs40ovs9QeZJ6ku79ZBoRZiodWXHL8JKQebnutH225KxTCF41MQLY23RVoEiF8iPjce0DZ9Js4O5qGekKGvzveEpnIw_fB8dustiD26OM6DGFZ4vOBM4gQtChA0-8kSmnogj6YUJR5LBpYg5plOhfEYDX-JYo8JAJfhD5WkU7sBmqUv5HIjxqFPYEkhjLs9oymjCgnwgEiokTakDb7uXns1bT4_MrsWHaXbgfxtalAwd2O3wkC37dZ0FEVIasxTtO_Bm1YyvwiyzsFLqBcYg9OIkwXm2A89a-Kwu0-HOgcEasFYBxu17vQWBYl2_l8BwYAchuIr_h-oXtz7la9g6PhhnXz5OPr-E7cCIdjzqBvEubDbVQu4h62r4K9u_rgBGzDI_ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Novel+BiOBr+by+compositing+low-cost+biochar+for+efficient+ciprofloxacin+removal%3A+the+synergy+of+adsorption+and+photocatalysis+on+the+degradation+kinetics+and+mechanism+insight&rft.jtitle=RSC+advances&rft.au=Song%2C+Wandi&rft.au=Zhao%2C+Jianghua&rft.au=Xie%2C+Xiuhong&rft.au=Liu%2C+Wang&rft.date=2021-04-26&rft.pub=The+Royal+Society+of+Chemistry&rft.eissn=2046-2069&rft.volume=11&rft.issue=25&rft.spage=15369&rft.epage=15379&rft_id=info:doi/10.1039%2Fd1ra00941a&rft_id=info%3Apmid%2F35424044&rft.externalDBID=PMC8698438 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2046-2069&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2046-2069&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2046-2069&client=summon |