Siam-EMNet: A Siamese EfficientNet–MANet Network for Building Change Detection in Very High Resolution Images
As well as very high resolution (VHR) remote sensing technology and deep learning, methods for detecting changes in buildings have made great progress. Despite this, there are still some problems with the incomplete detection of change regions and rough edges. To this end, a change detection network...
Saved in:
Published in | Remote sensing (Basel, Switzerland) Vol. 15; no. 16; p. 3972 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
Basel
MDPI AG
01.08.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | As well as very high resolution (VHR) remote sensing technology and deep learning, methods for detecting changes in buildings have made great progress. Despite this, there are still some problems with the incomplete detection of change regions and rough edges. To this end, a change detection network for building VHR remote sensing images based on Siamese EfficientNet B4-MANet (Siam-EMNet) is proposed. First, a bi-branches pretrained EfficientNet B4 encoder structure is constructed to enhance the performance of feature extraction and the rich shallow and deep information is obtained; then, the semantic information of the building is input into the MANet decoder integrated by the dual attention mechanism through the skip connection. The position-wise attention block (PAB) and multi-scale fusion attention block (MFAB) capture spatial relationships between pixels in the global view and channel relationships between layers. The integration of dual attention mechanisms ensures that the building contour is fully detected. The proposed method was evaluated on the LEVIR-CD dataset, and its precision, recall, accuracy, and F1-score were 92.00%, 88.51%, 95.71%, and 90.21%, respectively, which represented the best overall performance compared to the BIT, CDNet, DSIFN, L-Unet, P2V-CD, and SNUNet methods. Verification of the efficacy of the suggested approach was then conducted. |
---|---|
AbstractList | As well as very high resolution (VHR) remote sensing technology and deep learning, methods for detecting changes in buildings have made great progress. Despite this, there are still some problems with the incomplete detection of change regions and rough edges. To this end, a change detection network for building VHR remote sensing images based on Siamese EfficientNet B4-MANet (Siam-EMNet) is proposed. First, a bi-branches pretrained EfficientNet B4 encoder structure is constructed to enhance the performance of feature extraction and the rich shallow and deep information is obtained; then, the semantic information of the building is input into the MANet decoder integrated by the dual attention mechanism through the skip connection. The position-wise attention block (PAB) and multi-scale fusion attention block (MFAB) capture spatial relationships between pixels in the global view and channel relationships between layers. The integration of dual attention mechanisms ensures that the building contour is fully detected. The proposed method was evaluated on the LEVIR-CD dataset, and its precision, recall, accuracy, and F1-score were 92.00%, 88.51%, 95.71%, and 90.21%, respectively, which represented the best overall performance compared to the BIT, CDNet, DSIFN, L-Unet, P2V-CD, and SNUNet methods. Verification of the efficacy of the suggested approach was then conducted. |
Audience | Academic |
Author | Tian, Qiuyuan Huang, Liang Tang, Bo-Hui Wang, Min Ma, Xianguang Le, Weipeng |
Author_xml | – sequence: 1 fullname: Huang, Liang – sequence: 2 fullname: Tian, Qiuyuan – sequence: 3 fullname: Tang, Bo-Hui – sequence: 4 fullname: Le, Weipeng – sequence: 5 fullname: Wang, Min – sequence: 6 fullname: Ma, Xianguang |
BookMark | eNptUd1uFCEYJaZNrG1vfAIS70y2MvwMg3frutpN2pr4d0sY-Jiy7kALszG98x18Q59EtmusTYR83wcn55xAzjN0EFMEhJ435IwxRV7l0oimZUrSJ-iIEklnnCp68M_5KTotZU3qYqxRhB-h9CmYcba8vILpNZ7j3Q0K4KX3wQaIU8V__fh5Oa8T1_qe8jfsU8ZvtmHjQhzw4trEAfBbmMBOIUUcIv4K-Q6fh-Eaf4SSNtt7fDWaAcoJOvRmU-D0zzxGX94tPy_OZxcf3q8W84uZ5bSbau8cs15xbmWrjHWUG--Y8z3Yhjeeir5XtqOCtB3xzikO1kopGgVV1_bsGK32vi6Ztb7JYTT5TicT9D2Q8qBNnoLdgCZeylrGOOe5N7S3tO04Z04J56SA6vVi73WT0-0WyqTXaZtjfb6mnZCcUyHIA2sw1TREn6Zs7BiK1XPZUsFlK3ess_-w6nYwBlvz9KHijwQv9wKbUykZ_N_PNETvYtcPsbPf7vmgow |
CitedBy_id | crossref_primary_10_3390_rs16081372 |
Cites_doi | 10.1109/JSTARS.2020.3037893 10.1145/3065386 10.1109/ACCESS.2020.3025372 10.1109/TGRS.2020.2989037 10.1080/2150704X.2013.763297 10.1109/JSTARS.2016.2569598 10.1109/TIP.2022.3226418 10.1109/TIP.2019.2933747 10.1109/JSTARS.2012.2228469 10.14358/PERS.77.7.721 10.1109/CVPR.2019.00326 10.1109/LGRS.2020.2988032 10.1109/JSTARS.2021.3058097 10.1016/j.isprsjprs.2020.06.003 10.18653/v1/2020.acl-main.45 10.3390/rs11111382 10.3390/rs15010087 10.1016/j.rse.2021.112636 10.1080/15481603.2023.2220525 10.1080/01431168908903939 10.1007/978-981-13-7025-0_18 10.3390/ijgi7100401 10.1109/JSTARS.2013.2252423 10.1109/CVPR.2018.00745 10.1016/j.isprsjprs.2022.05.001 10.1109/TGRS.2018.2858817 10.1109/ICIVC.2018.8492747 10.1007/s10514-018-9734-5 10.14358/PERS.69.4.369 10.3724/SP.J.1010.2008.00123 10.1109/JSTARS.2022.3177235 10.1109/TIP.2004.838698 10.3390/rs12101662 10.1016/j.rse.2021.112402 10.1109/LGRS.2019.2948660 10.1109/TGRS.2020.3034752 10.1016/j.isprsjprs.2003.09.007 10.1109/HORA58378.2023.10156778 |
ContentType | Journal Article |
Copyright | COPYRIGHT 2023 MDPI AG 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
Copyright_xml | – notice: COPYRIGHT 2023 MDPI AG – notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. |
DBID | AAYXX CITATION 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD 8FE 8FG ABJCF ABUWG AFKRA ARAPS AZQEC BENPR BGLVJ BHPHI BKSAR C1K CCPQU DWQXO F28 FR3 H8D H8G HCIFZ JG9 JQ2 KR7 L6V L7M L~C L~D M7S P5Z P62 P64 PCBAR PIMPY PQEST PQQKQ PQUKI PRINS PTHSS DOA |
DOI | 10.3390/rs15163972 |
DatabaseName | CrossRef Aluminium Industry Abstracts Biotechnology Research Abstracts Ceramic Abstracts Chemoreception Abstracts Computer and Information Systems Abstracts Corrosion Abstracts Ecology Abstracts Electronics & Communications Abstracts Engineered Materials Abstracts Materials Business File Mechanical & Transportation Engineering Abstracts Solid State and Superconductivity Abstracts METADEX Technology Research Database ProQuest SciTech Collection ProQuest Technology Collection Materials Science & Engineering Collection ProQuest Central (Alumni Edition) ProQuest Central UK/Ireland Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Central Technology Collection ProQuest Natural Science Collection Earth, Atmospheric & Aquatic Science Collection Environmental Sciences and Pollution Management ProQuest One Community College ProQuest Central ANTE: Abstracts in New Technology & Engineering Engineering Research Database Aerospace Database Copper Technical Reference Library SciTech Premium Collection Materials Research Database ProQuest Computer Science Collection Civil Engineering Abstracts ProQuest Engineering Collection Advanced Technologies Database with Aerospace Computer and Information Systems Abstracts Academic Computer and Information Systems Abstracts Professional Engineering Database Advanced Technologies & Aerospace Database ProQuest Advanced Technologies & Aerospace Collection Biotechnology and BioEngineering Abstracts Earth, Atmospheric & Aquatic Science Database Publicly Available Content Database ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central China Engineering Collection DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef Publicly Available Content Database Materials Research Database ProQuest Advanced Technologies & Aerospace Collection ProQuest Central Essentials ProQuest Computer Science Collection Computer and Information Systems Abstracts SciTech Premium Collection ProQuest Central China Materials Business File Environmental Sciences and Pollution Management Engineered Materials Abstracts Natural Science Collection Chemoreception Abstracts Engineering Collection ANTE: Abstracts in New Technology & Engineering Advanced Technologies & Aerospace Collection Engineering Database Aluminium Industry Abstracts ProQuest One Academic Eastern Edition Electronics & Communications Abstracts Earth, Atmospheric & Aquatic Science Database ProQuest Technology Collection Ceramic Abstracts Ecology Abstracts Biotechnology and BioEngineering Abstracts ProQuest One Academic UKI Edition Solid State and Superconductivity Abstracts Engineering Research Database ProQuest One Academic Technology Collection Technology Research Database Computer and Information Systems Abstracts – Academic Mechanical & Transportation Engineering Abstracts ProQuest Central (Alumni Edition) ProQuest One Community College Earth, Atmospheric & Aquatic Science Collection ProQuest Central Aerospace Database Copper Technical Reference Library ProQuest Engineering Collection Biotechnology Research Abstracts ProQuest Central Korea Advanced Technologies Database with Aerospace Civil Engineering Abstracts ProQuest SciTech Collection METADEX Computer and Information Systems Abstracts Professional Advanced Technologies & Aerospace Database Materials Science & Engineering Collection Corrosion Abstracts |
DatabaseTitleList | CrossRef Publicly Available Content Database |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website – sequence: 2 dbid: 8FG name: ProQuest Technology Collection url: https://search.proquest.com/technologycollection1 sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Geography |
EISSN | 2072-4292 |
ExternalDocumentID | oai_doaj_org_article_0f770f7aaddf4fa2bc268443d95dd75e A762547670 10_3390_rs15163972 |
GeographicLocations | China Siam |
GeographicLocations_xml | – name: China – name: Siam |
GroupedDBID | 29P 2WC 2XV 5VS 8FE 8FG 8FH AADQD AAHBH AAYXX ABDBF ABJCF ADBBV AENEX AFKRA AFZYC ALMA_UNASSIGNED_HOLDINGS ARAPS BCNDV BENPR BGLVJ BHPHI BKSAR CCPQU CITATION E3Z ESX FRP GROUPED_DOAJ HCIFZ I-F IAO ITC KQ8 L6V LK5 M7R M7S MODMG M~E OK1 P62 PCBAR PIMPY PROAC PTHSS RIG TR2 TUS 7QF 7QO 7QQ 7QR 7SC 7SE 7SN 7SP 7SR 7TA 7TB 7U5 8BQ 8FD ABUWG AZQEC C1K DWQXO F28 FR3 H8D H8G JG9 JQ2 KR7 L7M L~C L~D P64 PQEST PQQKQ PQUKI PRINS |
ID | FETCH-LOGICAL-c428t-c48d3cf944c769acd24afd3dfbec141f25bb9c8250680fdd94ecc77519ed3c6b3 |
IEDL.DBID | BENPR |
ISSN | 2072-4292 |
IngestDate | Tue Oct 22 15:13:51 EDT 2024 Thu Oct 10 19:24:07 EDT 2024 Thu Sep 19 02:08:40 EDT 2024 Tue Sep 17 04:03:03 EDT 2024 Thu Sep 26 18:19:51 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 16 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-c48d3cf944c769acd24afd3dfbec141f25bb9c8250680fdd94ecc77519ed3c6b3 |
ORCID | 0000-0001-6667-759X 0000-0002-1918-5346 0009-0008-0380-6815 |
OpenAccessLink | https://www.proquest.com/docview/2857442550?pq-origsite=%requestingapplication% |
PQID | 2857442550 |
PQPubID | 2032338 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_0f770f7aaddf4fa2bc268443d95dd75e proquest_journals_2857442550 gale_infotracmisc_A762547670 gale_infotracacademiconefile_A762547670 crossref_primary_10_3390_rs15163972 |
PublicationCentury | 2000 |
PublicationDate | 2023-08-01 |
PublicationDateYYYYMMDD | 2023-08-01 |
PublicationDate_xml | – month: 08 year: 2023 text: 2023-08-01 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Basel |
PublicationPlace_xml | – name: Basel |
PublicationTitle | Remote sensing (Basel, Switzerland) |
PublicationYear | 2023 |
Publisher | MDPI AG |
Publisher_xml | – name: MDPI AG |
References | Park (ref_8) 2023; 60 ref_50 Alcantarilla (ref_48) 2018; 42 Singh (ref_15) 1989; 10 Touati (ref_22) 2020; 29 Huang (ref_9) 2014; 7 Zhang (ref_51) 2020; 166 ref_19 Zheng (ref_4) 2021; 265 Lie (ref_35) 2021; 15 Shen (ref_32) 2022; 189 Zelinski (ref_6) 2014; 7 Chen (ref_34) 2020; 14 Hu (ref_12) 2013; 6 Ji (ref_54) 2018; 57 Chen (ref_10) 2021; 60 Hao (ref_23) 2020; 17 Huo (ref_21) 2016; 9 Liu (ref_3) 2022; 15 Lin (ref_53) 2023; 32 Shi (ref_2) 2020; 60 Zhang (ref_7) 2022; 51 ref_20 Huang (ref_17) 2011; 12 Fan (ref_45) 2020; 8 Deng (ref_37) 2021; 14 ref_28 ref_27 ref_26 Radke (ref_14) 2005; 14 Varshney (ref_18) 2013; 4 Dille (ref_5) 2021; 258 Krizhevsky (ref_39) 2017; 60 Walter (ref_13) 2004; 58 ref_33 Fang (ref_29) 2021; 19 ref_30 ref_38 Sun (ref_52) 2022; 19 Tan (ref_24) 2008; 27 ref_47 ref_46 ref_44 Liu (ref_31) 2020; 18 Wang (ref_36) 2023; 52 ref_43 Zhang (ref_25) 2018; 47 ref_42 ref_41 Chen (ref_11) 2003; 69 ref_40 ref_1 ref_49 Yuan (ref_16) 2007; 32 |
References_xml | – volume: 14 start-page: 1194 year: 2020 ident: ref_34 article-title: DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2020.3037893 contributor: fullname: Chen – ident: ref_49 – volume: 52 start-page: 283 year: 2023 ident: ref_36 article-title: Object-Level Change Detection of Multi-Sensor Optical Remote Sensing Images Combined with Unet++ and Multi-Level Difference Module publication-title: Acta Geod. Cartogr. Sin. contributor: fullname: Wang – volume: 60 start-page: 84 year: 2017 ident: ref_39 article-title: Imagenet Classification with Deep Convolutional Neural Networks publication-title: Commun. ACM doi: 10.1145/3065386 contributor: fullname: Krizhevsky – volume: 8 start-page: 179656 year: 2020 ident: ref_45 article-title: Ma-Net: A Multi-Scale Attention Network for Liver and Tumor Segmentation publication-title: IEEE Access. doi: 10.1109/ACCESS.2020.3025372 contributor: fullname: Fan – volume: 60 start-page: 1 year: 2020 ident: ref_2 article-title: Land-Use/Land-Cover Change Detection Based on Class-Prior Object-Oriented Conditional Random Field Framework for High Spatial Resolution Remote Sensing Imagery publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2020.2989037 contributor: fullname: Shi – volume: 4 start-page: 504 year: 2013 ident: ref_18 article-title: Improved NDBI Differencing Algorithm for Built-Up Regions Change Detection from Remote-Sensing Data: An Automated Approach publication-title: Remote Sens. Lett. doi: 10.1080/2150704X.2013.763297 contributor: fullname: Varshney – volume: 9 start-page: 3384 year: 2016 ident: ref_21 article-title: Learning Relationship for Very High Resolution Image Change Detection publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2016.2569598 contributor: fullname: Huo – ident: ref_42 – volume: 32 start-page: 57 year: 2023 ident: ref_53 article-title: Transition Is a Process: Pair-to-Video Change Detection Networks for Very High Resolution Remote Sensing Images publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2022.3226418 contributor: fullname: Lin – volume: 29 start-page: 757 year: 2020 ident: ref_22 article-title: Multimodal Change Detection in Remote Sensing Images Using an Unsupervised Pixel Pairwise-Based Markov Random Field Model publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2019.2933747 contributor: fullname: Touati – volume: 6 start-page: 1913 year: 2013 ident: ref_12 article-title: Seasonal Change of Land-Use/Land-Cover (LULC) Detection Using MODIS Data in Rapid Urbanization Regions: A Case Study of the Pearl River Delta Region (China) publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2012.2228469 contributor: fullname: Hu – volume: 12 start-page: 721 year: 2011 ident: ref_17 article-title: A Multidirectional and Multiscale Morphological Index for Automatic Building Extraction from Multispectral Geoeye-1 Imagery publication-title: Photogramm. Eng. Rem. S doi: 10.14358/PERS.77.7.721 contributor: fullname: Huang – ident: ref_33 doi: 10.1109/CVPR.2019.00326 – volume: 19 start-page: 1 year: 2021 ident: ref_29 article-title: SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images publication-title: IEEE Geosci. Remote Sens. Lett. contributor: fullname: Fang – volume: 18 start-page: 811 year: 2020 ident: ref_31 article-title: Building Change Detection for Remote Sensing Images Using a Dual-Task Constrained Deep Siamese Convolutional Network Model publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2020.2988032 contributor: fullname: Liu – volume: 14 start-page: 2611 year: 2021 ident: ref_37 article-title: Attention-Gate-Based Encoder–Decoder Network for Automatical Building Extraction publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2021.3058097 contributor: fullname: Deng – volume: 166 start-page: 183 year: 2020 ident: ref_51 article-title: A Deeply Supervised Image Fusion Network for Change Detection in High Resolution Bi-Temporal Remote Sensing Images publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2020.06.003 contributor: fullname: Zhang – volume: 47 start-page: 102 year: 2018 ident: ref_25 article-title: Combining the Pixel-based and Object-based Methods for Building Change Detection Using High-resolution Remote Sensing Images publication-title: Acta Geod. Cartogr. Sin. contributor: fullname: Zhang – ident: ref_47 doi: 10.18653/v1/2020.acl-main.45 – ident: ref_27 doi: 10.3390/rs11111382 – ident: ref_1 doi: 10.3390/rs15010087 – volume: 265 start-page: 112636 year: 2021 ident: ref_4 article-title: Building Damage Assessment for Rapid Disaster Response with a Deep Object-Based Semantic Change Detection Framework: From Natural Disasters to Man-Made Disasters publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112636 contributor: fullname: Zheng – volume: 51 start-page: 1091 year: 2022 ident: ref_7 article-title: Review and Prospect in Change Detection of Multi-Temporal Remote Sensing Images publication-title: Acta Geod. Cartogr. Sin. contributor: fullname: Zhang – ident: ref_41 – ident: ref_38 – volume: 19 start-page: 1 year: 2022 ident: ref_52 article-title: L-UNet: An LSTM Network for Remote Sensing Image Change Detection publication-title: IEEE Geosci. Remote Sens. Lett. contributor: fullname: Sun – volume: 60 start-page: 1548 year: 2023 ident: ref_8 article-title: Hybrid Approach Using Deep Learning and Graph Comparison for Building Change Detection publication-title: GIsci Remote Sens. doi: 10.1080/15481603.2023.2220525 contributor: fullname: Park – volume: 32 start-page: 89 year: 2007 ident: ref_16 article-title: Building Change Detection Method Considering Projection Influence Based on Spectral Feature and Texture Feature publication-title: Geomatics Inf. Sci. Wuhan Univ. contributor: fullname: Yuan – volume: 10 start-page: 989 year: 1989 ident: ref_15 article-title: Review Article Digital Change Detection Techniques Using Remotely-Sensed Data publication-title: Int. J. Remote Sens. doi: 10.1080/01431168908903939 contributor: fullname: Singh – ident: ref_28 – volume: 15 start-page: 409 year: 2021 ident: ref_35 article-title: SNLRUX++ for Building Extraction from High-Resolution Remote Sensing Images publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. contributor: fullname: Lie – volume: 7 start-page: 3453 year: 2014 ident: ref_6 article-title: Use of Landsat 5 for Change Detection at 1998 Indian and Pakistani Nuclear Test Sites. IEEE J. Sel. Topics Appl. Earth Observ publication-title: Remote Sens. contributor: fullname: Zelinski – ident: ref_20 doi: 10.1007/978-981-13-7025-0_18 – ident: ref_19 doi: 10.3390/ijgi7100401 – ident: ref_40 – volume: 7 start-page: 105 year: 2014 ident: ref_9 article-title: Building Change Detection from Multitemporal High-Resolution Remotely Sensed Images Based on a Morphological Building Index publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2013.2252423 contributor: fullname: Huang – ident: ref_46 doi: 10.1109/CVPR.2018.00745 – volume: 189 start-page: 78 year: 2022 ident: ref_32 article-title: Semantic Feature-Constrained Multitask Siamese Network for Building Change Detection in High-Spatial-Resolution Remote Sensing Imagery publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2022.05.001 contributor: fullname: Shen – volume: 57 start-page: 574 year: 2018 ident: ref_54 article-title: Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite Imagery Data Set publication-title: IEEE Trans. Geosci. Remote Sens. doi: 10.1109/TGRS.2018.2858817 contributor: fullname: Ji – ident: ref_26 doi: 10.1109/ICIVC.2018.8492747 – volume: 42 start-page: 1301 year: 2018 ident: ref_48 article-title: Street-View Change Detection with Deconvolutional Networks publication-title: Auton. Robot. doi: 10.1007/s10514-018-9734-5 contributor: fullname: Alcantarilla – volume: 69 start-page: 369 year: 2003 ident: ref_11 article-title: Land-Use/Land-Cover Change Detection Using Improved Change-Vector Analysis publication-title: Photogramm. Eng. Remote Sens. doi: 10.14358/PERS.69.4.369 contributor: fullname: Chen – volume: 27 start-page: 123 year: 2008 ident: ref_24 article-title: Hyperspectral Remote Sensing Image Classification Based on Support Vector Machine publication-title: J. Infrared Millim W doi: 10.3724/SP.J.1010.2008.00123 contributor: fullname: Tan – volume: 15 start-page: 4297 year: 2022 ident: ref_3 article-title: A CNN-Transformer Network with Multiscale Context Aggregation for Fine-Grained Cropland Change Detection publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens. doi: 10.1109/JSTARS.2022.3177235 contributor: fullname: Liu – volume: 14 start-page: 294 year: 2005 ident: ref_14 article-title: Image Change Detection Algorithms: A Systematic Survey publication-title: IEEE Trans. Image Process. doi: 10.1109/TIP.2004.838698 contributor: fullname: Radke – ident: ref_50 – ident: ref_30 doi: 10.3390/rs12101662 – volume: 258 start-page: 112402 year: 2021 ident: ref_5 article-title: When Image Correlation is Needed: Unravelling the Complex Dynamics of a Slow-Moving Landslide in The Tropics with Dense Radar and Optical Time Series publication-title: Remote Sens. Environ. doi: 10.1016/j.rse.2021.112402 contributor: fullname: Dille – volume: 17 start-page: 1401 year: 2020 ident: ref_23 article-title: An Advanced Superpixel-Based Markov Random Field Model for Unsupervised Change Detection publication-title: IEEE Geosci. Remote Sens. Lett. doi: 10.1109/LGRS.2019.2948660 contributor: fullname: Hao – volume: 60 start-page: 1 year: 2021 ident: ref_10 article-title: Remote Sensing Image Change Detection with Transformers publication-title: IEEE Trans Geosci Remote Sens. doi: 10.1109/TGRS.2020.3034752 contributor: fullname: Chen – ident: ref_43 – volume: 58 start-page: 225 year: 2004 ident: ref_13 article-title: Object-Based Classification of Remote Sensing Data for Change Detection publication-title: ISPRS J. Photogramm. Remote Sens. doi: 10.1016/j.isprsjprs.2003.09.007 contributor: fullname: Walter – ident: ref_44 doi: 10.1109/HORA58378.2023.10156778 |
SSID | ssj0000331904 |
Score | 2.3965685 |
Snippet | As well as very high resolution (VHR) remote sensing technology and deep learning, methods for detecting changes in buildings have made great progress. Despite... |
SourceID | doaj proquest gale crossref |
SourceType | Open Website Aggregation Database |
StartPage | 3972 |
SubjectTerms | Accuracy attention mechanism building Buildings Change detection Classification Coders Deep learning Feature extraction High resolution Image resolution Maintenance and repair Neural networks Remote sensing Support vector machines VHR remote sensing images |
SummonAdditionalLinks | – databaseName: DOAJ Directory of Open Access Journals dbid: DOA link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCyyIpygvWQKJKSKN7ThhK1AESO3CQ2xWbJ8FAylqw8DGf-Af8ks42ynQAbEwJFEcRzrd-V7J-TtCDrTW1hQWkxyMxRMuQCQ6K_IEupgOOQZMVqHKd5hf3PKre3H_o9WXrwmL8MCRcUepkxKPCvXQcVdl2nh8Es5sKayVAoL1TcsfyVSwwQyXVsojHinDvP5oPEHf5v9iZTMeKAD1_2aOg485XyZLbXBIe5GoFTIH9SpZaPuUP7yukdH1Y_WU9AdDaI5pj_o7mADtBxwIdB84_vH2PujhlQ5jgTfFqJSetM2vadxMQM-gCSVYNX2s6R2MX6mv96D-W35cifTyCQ3NZJ3cnvdvTi-StmVCYjCPaPBcWGZcybmReVkZm_HKWWYdiqrLuy4TWpcGs0LfcsNZW3IUoZQYxgG-l2u2QebrUQ2bhDLGJAYTjme65AxsUQguhXOZ1gVACR2yP2Wjeo7IGAozCs9s9c3sDjnxHP6a4dGswwDKWLUyVn_JuEMOvXyU17lmXJmq3TqAhHr0KtVDi47E5TLtkJ2ZmagrZvbxVMKq1dWJygohOZoukW79B7HbZNG3pI9Fgjtkvhm_wC4GLo3eC2v0E8Ou7XM priority: 102 providerName: Directory of Open Access Journals |
Title | Siam-EMNet: A Siamese EfficientNet–MANet Network for Building Change Detection in Very High Resolution Images |
URI | https://www.proquest.com/docview/2857442550 https://doaj.org/article/0f770f7aaddf4fa2bc268443d95dd75e |
Volume | 15 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQwcNRuD_SCaAF1oawsgcQpataPOOkF7cIubaWuEFDUmxW_yh6aLUk49NZ_4A_5EsaJt9Ue6CGJYjuKNTOel8czAO-01tbkFo0c1MUTLpxINM2zxI3RHPLMMVl2Ub6L7OSCn12Ky-hwa2JY5ZondozarkzwkR_RXEiOBCbSDze_klA1KuyuxhIa27BD0VKgA9iZzhZfvt57WVKGJJbyPi8pQ_v-qG5QxoXdLLohibqE_f9jy52smT-Dp1FJJJMeq3uw5ap9eBLrlf-8fQ6rb8vyOpmdL1x7TCYkvLnGkVmXDwLFCLb_vftzPsEnWfSB3gS1UzKNRbBJf6iAfHJtF4pVkWVFfrj6loS4DxJ8-j1FktNrZDjNC7iYz75_PEli6YTEoD3R4j23zPiCcyOzojSW8tJbZj2ibMzHngqtC4PWYSi94a0tOKJSSlTnHH6XafYSBtWqcgdAGGMSlQrPqS44czbPBZfCe6p17lzhhvB2DUZ102fIUGhZBGCrB2APYRogfD8iZLXuGlb1lYqLRKVeSrxK5Lme-5JqE3LRcGYLYa0U-Kv3AT8qrL22Lk0ZjxDgREMWKzVBzo6Ty2Q6hMONkbhmzGb3GsMqrtlGPVDYq8e7X8NuKDrfhwEewqCtf7s3qJq0egTb-fzzKFLhqDPw_wHj6Obi |
link.rule.ids | 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638 |
linkProvider | ProQuest |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LTtww0CpwgEtVoFWX8rBUpJ4isrEdJ72gBXa7tOxeChU3K37BHsjSJD1w6z_0D_kSZhIvaA_0kESxHcWaGc_L4xlCDrXW1mQWjBzQxSMunIh0kqWR64M55JljsmijfKfp-Ip_vxbXweFWh7DKBU9sGbWdG_SRHyWZkBwITMTH978jrBqFu6uhhMYKWeMMBA2eFB99e_axxAwILOZdVlIG1v1RVYOEw72sZEkOten6X2PKraQZvSNvg4pIBx1ON8kbV26R9VCt_PZhm8x_zoq7aDiZuuYrHVB8c7WjwzYbBAgRaH_8-28ygCeddmHeFHRTehJKYNPuSAE9c00biFXSWUl_ueqBYtQHRY9-R4_0_A7YTf2eXI2Gl6fjKBROiAxYEw3cM8uMzzk3Ms0LYxNeeMusB4T1ed8nQuvcgG2IhTe8tTkHREoJypyD71LNPpDVcl66j4QyxiSoFJ4nOufM2SwTXArvE60z53LXI58XYFT3XX4MBXYFAlu9ALtHThDCzyMwp3XbMK9uVFgiKvZSwlUAx_XcF4k2mImGM5sLa6WAX31B_ChceU1VmCIcIICJYg4rNQC-DpNLZdwju0sjYcWY5e4FhlVYsbV6oa-d_3cfkPXx5eRCXZxPf3wiG1h-vgsI3CWrTfXH7YGS0uj9lhKfAC8b5pI |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LTtwwcNQuEu2laqGIbWlrqUicos3GdpxwQbtlV9BChNqCuFnxq-VAlibpgRv_wB_2SzpOvKA9tIckiu0o1rzHHs8A7CqljM4MOjloi0eMWx6pJEsjO0Z3yFFLRdlF-Rbp0Tn7fMkvQ_xTE8IqlzKxE9Rmof0a-SjJuGBIYDweuRAWcXY4P7j5FfkKUn6nNZTTeAprgiFVDWBtOivOvj6suMQUyS1mfY5Sir7-qG5Q3_mdrWRFK3XJ-_8loju9M38JL4LBSCY9hl_BE1ttwLNQu_zn7SYsvl2V19HstLDtPpkQ_2YbS2ZdbghUKdj-5-7-dIJPUvRB3wQtVTINBbFJf8CAHNq2C8uqyFVFLmx9S3wMCPHr-z11kuNrFD7Nazifz75_OopCGYVIo2_R4j0zVLucMS3SvNQmYaUz1DhE35iNXcKVyjV6ir4MhzMmZ4hWIdC0s_hdqugWDKpFZbeBUEoFGhiOJSpn1Jos40xw5xKlMmtzO4SPSzDKmz5bhkQvwwNbPgJ7CFMP4YcRPsN117Cof8jAMDJ2QuBVovx1zJWJ0j4vDaMm58YIjr_a8_iRng_butRlOE6AE_UZreQEpTxOLhXxEHZWRiL_6NXuJYZl4N9GPlLbm_93f4B1JEN5clx8eQvPfS36PjpwBwZt_du-Q4ulVe8DKf4F2pLsNQ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Siam-EMNet%3A+A+Siamese+EfficientNet%E2%80%93MANet+Network+for+Building+Change+Detection+in+Very+High+Resolution+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Huang%2C+Liang&rft.au=Tian%2C+Qiuyuan&rft.au=Tang%2C+Bo-Hui&rft.au=Le%2C+Weipeng&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=16&rft_id=info:doi/10.3390%2Frs15163972&rft.externalDocID=A762547670 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon |