Siam-EMNet: A Siamese EfficientNet–MANet Network for Building Change Detection in Very High Resolution Images

As well as very high resolution (VHR) remote sensing technology and deep learning, methods for detecting changes in buildings have made great progress. Despite this, there are still some problems with the incomplete detection of change regions and rough edges. To this end, a change detection network...

Full description

Saved in:
Bibliographic Details
Published inRemote sensing (Basel, Switzerland) Vol. 15; no. 16; p. 3972
Main Authors Huang, Liang, Tian, Qiuyuan, Tang, Bo-Hui, Le, Weipeng, Wang, Min, Ma, Xianguang
Format Journal Article
LanguageEnglish
Published Basel MDPI AG 01.08.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract As well as very high resolution (VHR) remote sensing technology and deep learning, methods for detecting changes in buildings have made great progress. Despite this, there are still some problems with the incomplete detection of change regions and rough edges. To this end, a change detection network for building VHR remote sensing images based on Siamese EfficientNet B4-MANet (Siam-EMNet) is proposed. First, a bi-branches pretrained EfficientNet B4 encoder structure is constructed to enhance the performance of feature extraction and the rich shallow and deep information is obtained; then, the semantic information of the building is input into the MANet decoder integrated by the dual attention mechanism through the skip connection. The position-wise attention block (PAB) and multi-scale fusion attention block (MFAB) capture spatial relationships between pixels in the global view and channel relationships between layers. The integration of dual attention mechanisms ensures that the building contour is fully detected. The proposed method was evaluated on the LEVIR-CD dataset, and its precision, recall, accuracy, and F1-score were 92.00%, 88.51%, 95.71%, and 90.21%, respectively, which represented the best overall performance compared to the BIT, CDNet, DSIFN, L-Unet, P2V-CD, and SNUNet methods. Verification of the efficacy of the suggested approach was then conducted.
AbstractList As well as very high resolution (VHR) remote sensing technology and deep learning, methods for detecting changes in buildings have made great progress. Despite this, there are still some problems with the incomplete detection of change regions and rough edges. To this end, a change detection network for building VHR remote sensing images based on Siamese EfficientNet B4-MANet (Siam-EMNet) is proposed. First, a bi-branches pretrained EfficientNet B4 encoder structure is constructed to enhance the performance of feature extraction and the rich shallow and deep information is obtained; then, the semantic information of the building is input into the MANet decoder integrated by the dual attention mechanism through the skip connection. The position-wise attention block (PAB) and multi-scale fusion attention block (MFAB) capture spatial relationships between pixels in the global view and channel relationships between layers. The integration of dual attention mechanisms ensures that the building contour is fully detected. The proposed method was evaluated on the LEVIR-CD dataset, and its precision, recall, accuracy, and F1-score were 92.00%, 88.51%, 95.71%, and 90.21%, respectively, which represented the best overall performance compared to the BIT, CDNet, DSIFN, L-Unet, P2V-CD, and SNUNet methods. Verification of the efficacy of the suggested approach was then conducted.
Audience Academic
Author Tian, Qiuyuan
Huang, Liang
Tang, Bo-Hui
Wang, Min
Ma, Xianguang
Le, Weipeng
Author_xml – sequence: 1
  fullname: Huang, Liang
– sequence: 2
  fullname: Tian, Qiuyuan
– sequence: 3
  fullname: Tang, Bo-Hui
– sequence: 4
  fullname: Le, Weipeng
– sequence: 5
  fullname: Wang, Min
– sequence: 6
  fullname: Ma, Xianguang
BookMark eNptUd1uFCEYJaZNrG1vfAIS70y2MvwMg3frutpN2pr4d0sY-Jiy7kALszG98x18Q59EtmusTYR83wcn55xAzjN0EFMEhJ435IwxRV7l0oimZUrSJ-iIEklnnCp68M_5KTotZU3qYqxRhB-h9CmYcba8vILpNZ7j3Q0K4KX3wQaIU8V__fh5Oa8T1_qe8jfsU8ZvtmHjQhzw4trEAfBbmMBOIUUcIv4K-Q6fh-Eaf4SSNtt7fDWaAcoJOvRmU-D0zzxGX94tPy_OZxcf3q8W84uZ5bSbau8cs15xbmWrjHWUG--Y8z3Yhjeeir5XtqOCtB3xzikO1kopGgVV1_bsGK32vi6Ztb7JYTT5TicT9D2Q8qBNnoLdgCZeylrGOOe5N7S3tO04Z04J56SA6vVi73WT0-0WyqTXaZtjfb6mnZCcUyHIA2sw1TREn6Zs7BiK1XPZUsFlK3ess_-w6nYwBlvz9KHijwQv9wKbUykZ_N_PNETvYtcPsbPf7vmgow
CitedBy_id crossref_primary_10_3390_rs16081372
Cites_doi 10.1109/JSTARS.2020.3037893
10.1145/3065386
10.1109/ACCESS.2020.3025372
10.1109/TGRS.2020.2989037
10.1080/2150704X.2013.763297
10.1109/JSTARS.2016.2569598
10.1109/TIP.2022.3226418
10.1109/TIP.2019.2933747
10.1109/JSTARS.2012.2228469
10.14358/PERS.77.7.721
10.1109/CVPR.2019.00326
10.1109/LGRS.2020.2988032
10.1109/JSTARS.2021.3058097
10.1016/j.isprsjprs.2020.06.003
10.18653/v1/2020.acl-main.45
10.3390/rs11111382
10.3390/rs15010087
10.1016/j.rse.2021.112636
10.1080/15481603.2023.2220525
10.1080/01431168908903939
10.1007/978-981-13-7025-0_18
10.3390/ijgi7100401
10.1109/JSTARS.2013.2252423
10.1109/CVPR.2018.00745
10.1016/j.isprsjprs.2022.05.001
10.1109/TGRS.2018.2858817
10.1109/ICIVC.2018.8492747
10.1007/s10514-018-9734-5
10.14358/PERS.69.4.369
10.3724/SP.J.1010.2008.00123
10.1109/JSTARS.2022.3177235
10.1109/TIP.2004.838698
10.3390/rs12101662
10.1016/j.rse.2021.112402
10.1109/LGRS.2019.2948660
10.1109/TGRS.2020.3034752
10.1016/j.isprsjprs.2003.09.007
10.1109/HORA58378.2023.10156778
ContentType Journal Article
Copyright COPYRIGHT 2023 MDPI AG
2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
Copyright_xml – notice: COPYRIGHT 2023 MDPI AG
– notice: 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.
DBID AAYXX
CITATION
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
8FE
8FG
ABJCF
ABUWG
AFKRA
ARAPS
AZQEC
BENPR
BGLVJ
BHPHI
BKSAR
C1K
CCPQU
DWQXO
F28
FR3
H8D
H8G
HCIFZ
JG9
JQ2
KR7
L6V
L7M
L~C
L~D
M7S
P5Z
P62
P64
PCBAR
PIMPY
PQEST
PQQKQ
PQUKI
PRINS
PTHSS
DOA
DOI 10.3390/rs15163972
DatabaseName CrossRef
Aluminium Industry Abstracts
Biotechnology Research Abstracts
Ceramic Abstracts
Chemoreception Abstracts
Computer and Information Systems Abstracts
Corrosion Abstracts
Ecology Abstracts
Electronics & Communications Abstracts
Engineered Materials Abstracts
Materials Business File
Mechanical & Transportation Engineering Abstracts
Solid State and Superconductivity Abstracts
METADEX
Technology Research Database
ProQuest SciTech Collection
ProQuest Technology Collection
Materials Science & Engineering Collection
ProQuest Central (Alumni Edition)
ProQuest Central UK/Ireland
Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Central
Technology Collection
ProQuest Natural Science Collection
Earth, Atmospheric & Aquatic Science Collection
Environmental Sciences and Pollution Management
ProQuest One Community College
ProQuest Central
ANTE: Abstracts in New Technology & Engineering
Engineering Research Database
Aerospace Database
Copper Technical Reference Library
SciTech Premium Collection
Materials Research Database
ProQuest Computer Science Collection
Civil Engineering Abstracts
ProQuest Engineering Collection
Advanced Technologies Database with Aerospace
Computer and Information Systems Abstracts – Academic
Computer and Information Systems Abstracts Professional
Engineering Database
Advanced Technologies & Aerospace Database
ProQuest Advanced Technologies & Aerospace Collection
Biotechnology and BioEngineering Abstracts
Earth, Atmospheric & Aquatic Science Database
Publicly Available Content Database
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central China
Engineering Collection
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
Publicly Available Content Database
Materials Research Database
ProQuest Advanced Technologies & Aerospace Collection
ProQuest Central Essentials
ProQuest Computer Science Collection
Computer and Information Systems Abstracts
SciTech Premium Collection
ProQuest Central China
Materials Business File
Environmental Sciences and Pollution Management
Engineered Materials Abstracts
Natural Science Collection
Chemoreception Abstracts
Engineering Collection
ANTE: Abstracts in New Technology & Engineering
Advanced Technologies & Aerospace Collection
Engineering Database
Aluminium Industry Abstracts
ProQuest One Academic Eastern Edition
Electronics & Communications Abstracts
Earth, Atmospheric & Aquatic Science Database
ProQuest Technology Collection
Ceramic Abstracts
Ecology Abstracts
Biotechnology and BioEngineering Abstracts
ProQuest One Academic UKI Edition
Solid State and Superconductivity Abstracts
Engineering Research Database
ProQuest One Academic
Technology Collection
Technology Research Database
Computer and Information Systems Abstracts – Academic
Mechanical & Transportation Engineering Abstracts
ProQuest Central (Alumni Edition)
ProQuest One Community College
Earth, Atmospheric & Aquatic Science Collection
ProQuest Central
Aerospace Database
Copper Technical Reference Library
ProQuest Engineering Collection
Biotechnology Research Abstracts
ProQuest Central Korea
Advanced Technologies Database with Aerospace
Civil Engineering Abstracts
ProQuest SciTech Collection
METADEX
Computer and Information Systems Abstracts Professional
Advanced Technologies & Aerospace Database
Materials Science & Engineering Collection
Corrosion Abstracts
DatabaseTitleList CrossRef
Publicly Available Content Database


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
– sequence: 2
  dbid: 8FG
  name: ProQuest Technology Collection
  url: https://search.proquest.com/technologycollection1
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Geography
EISSN 2072-4292
ExternalDocumentID oai_doaj_org_article_0f770f7aaddf4fa2bc268443d95dd75e
A762547670
10_3390_rs15163972
GeographicLocations China
Siam
GeographicLocations_xml – name: China
– name: Siam
GroupedDBID 29P
2WC
2XV
5VS
8FE
8FG
8FH
AADQD
AAHBH
AAYXX
ABDBF
ABJCF
ADBBV
AENEX
AFKRA
AFZYC
ALMA_UNASSIGNED_HOLDINGS
ARAPS
BCNDV
BENPR
BGLVJ
BHPHI
BKSAR
CCPQU
CITATION
E3Z
ESX
FRP
GROUPED_DOAJ
HCIFZ
I-F
IAO
ITC
KQ8
L6V
LK5
M7R
M7S
MODMG
M~E
OK1
P62
PCBAR
PIMPY
PROAC
PTHSS
RIG
TR2
TUS
7QF
7QO
7QQ
7QR
7SC
7SE
7SN
7SP
7SR
7TA
7TB
7U5
8BQ
8FD
ABUWG
AZQEC
C1K
DWQXO
F28
FR3
H8D
H8G
JG9
JQ2
KR7
L7M
L~C
L~D
P64
PQEST
PQQKQ
PQUKI
PRINS
ID FETCH-LOGICAL-c428t-c48d3cf944c769acd24afd3dfbec141f25bb9c8250680fdd94ecc77519ed3c6b3
IEDL.DBID BENPR
ISSN 2072-4292
IngestDate Tue Oct 22 15:13:51 EDT 2024
Thu Oct 10 19:24:07 EDT 2024
Thu Sep 19 02:08:40 EDT 2024
Tue Sep 17 04:03:03 EDT 2024
Thu Sep 26 18:19:51 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 16
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-c48d3cf944c769acd24afd3dfbec141f25bb9c8250680fdd94ecc77519ed3c6b3
ORCID 0000-0001-6667-759X
0000-0002-1918-5346
0009-0008-0380-6815
OpenAccessLink https://www.proquest.com/docview/2857442550?pq-origsite=%requestingapplication%
PQID 2857442550
PQPubID 2032338
ParticipantIDs doaj_primary_oai_doaj_org_article_0f770f7aaddf4fa2bc268443d95dd75e
proquest_journals_2857442550
gale_infotracmisc_A762547670
gale_infotracacademiconefile_A762547670
crossref_primary_10_3390_rs15163972
PublicationCentury 2000
PublicationDate 2023-08-01
PublicationDateYYYYMMDD 2023-08-01
PublicationDate_xml – month: 08
  year: 2023
  text: 2023-08-01
  day: 01
PublicationDecade 2020
PublicationPlace Basel
PublicationPlace_xml – name: Basel
PublicationTitle Remote sensing (Basel, Switzerland)
PublicationYear 2023
Publisher MDPI AG
Publisher_xml – name: MDPI AG
References Park (ref_8) 2023; 60
ref_50
Alcantarilla (ref_48) 2018; 42
Singh (ref_15) 1989; 10
Touati (ref_22) 2020; 29
Huang (ref_9) 2014; 7
Zhang (ref_51) 2020; 166
ref_19
Zheng (ref_4) 2021; 265
Lie (ref_35) 2021; 15
Shen (ref_32) 2022; 189
Zelinski (ref_6) 2014; 7
Chen (ref_34) 2020; 14
Hu (ref_12) 2013; 6
Ji (ref_54) 2018; 57
Chen (ref_10) 2021; 60
Hao (ref_23) 2020; 17
Huo (ref_21) 2016; 9
Liu (ref_3) 2022; 15
Lin (ref_53) 2023; 32
Shi (ref_2) 2020; 60
Zhang (ref_7) 2022; 51
ref_20
Huang (ref_17) 2011; 12
Fan (ref_45) 2020; 8
Deng (ref_37) 2021; 14
ref_28
ref_27
ref_26
Radke (ref_14) 2005; 14
Varshney (ref_18) 2013; 4
Dille (ref_5) 2021; 258
Krizhevsky (ref_39) 2017; 60
Walter (ref_13) 2004; 58
ref_33
Fang (ref_29) 2021; 19
ref_30
ref_38
Sun (ref_52) 2022; 19
Tan (ref_24) 2008; 27
ref_47
ref_46
ref_44
Liu (ref_31) 2020; 18
Wang (ref_36) 2023; 52
ref_43
Zhang (ref_25) 2018; 47
ref_42
ref_41
Chen (ref_11) 2003; 69
ref_40
ref_1
ref_49
Yuan (ref_16) 2007; 32
References_xml – volume: 14
  start-page: 1194
  year: 2020
  ident: ref_34
  article-title: DASNet: Dual Attentive Fully Convolutional Siamese Networks for Change Detection in High-Resolution Satellite Images
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2020.3037893
  contributor:
    fullname: Chen
– ident: ref_49
– volume: 52
  start-page: 283
  year: 2023
  ident: ref_36
  article-title: Object-Level Change Detection of Multi-Sensor Optical Remote Sensing Images Combined with Unet++ and Multi-Level Difference Module
  publication-title: Acta Geod. Cartogr. Sin.
  contributor:
    fullname: Wang
– volume: 60
  start-page: 84
  year: 2017
  ident: ref_39
  article-title: Imagenet Classification with Deep Convolutional Neural Networks
  publication-title: Commun. ACM
  doi: 10.1145/3065386
  contributor:
    fullname: Krizhevsky
– volume: 8
  start-page: 179656
  year: 2020
  ident: ref_45
  article-title: Ma-Net: A Multi-Scale Attention Network for Liver and Tumor Segmentation
  publication-title: IEEE Access.
  doi: 10.1109/ACCESS.2020.3025372
  contributor:
    fullname: Fan
– volume: 60
  start-page: 1
  year: 2020
  ident: ref_2
  article-title: Land-Use/Land-Cover Change Detection Based on Class-Prior Object-Oriented Conditional Random Field Framework for High Spatial Resolution Remote Sensing Imagery
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2020.2989037
  contributor:
    fullname: Shi
– volume: 4
  start-page: 504
  year: 2013
  ident: ref_18
  article-title: Improved NDBI Differencing Algorithm for Built-Up Regions Change Detection from Remote-Sensing Data: An Automated Approach
  publication-title: Remote Sens. Lett.
  doi: 10.1080/2150704X.2013.763297
  contributor:
    fullname: Varshney
– volume: 9
  start-page: 3384
  year: 2016
  ident: ref_21
  article-title: Learning Relationship for Very High Resolution Image Change Detection
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2016.2569598
  contributor:
    fullname: Huo
– ident: ref_42
– volume: 32
  start-page: 57
  year: 2023
  ident: ref_53
  article-title: Transition Is a Process: Pair-to-Video Change Detection Networks for Very High Resolution Remote Sensing Images
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2022.3226418
  contributor:
    fullname: Lin
– volume: 29
  start-page: 757
  year: 2020
  ident: ref_22
  article-title: Multimodal Change Detection in Remote Sensing Images Using an Unsupervised Pixel Pairwise-Based Markov Random Field Model
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2019.2933747
  contributor:
    fullname: Touati
– volume: 6
  start-page: 1913
  year: 2013
  ident: ref_12
  article-title: Seasonal Change of Land-Use/Land-Cover (LULC) Detection Using MODIS Data in Rapid Urbanization Regions: A Case Study of the Pearl River Delta Region (China)
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2012.2228469
  contributor:
    fullname: Hu
– volume: 12
  start-page: 721
  year: 2011
  ident: ref_17
  article-title: A Multidirectional and Multiscale Morphological Index for Automatic Building Extraction from Multispectral Geoeye-1 Imagery
  publication-title: Photogramm. Eng. Rem. S
  doi: 10.14358/PERS.77.7.721
  contributor:
    fullname: Huang
– ident: ref_33
  doi: 10.1109/CVPR.2019.00326
– volume: 19
  start-page: 1
  year: 2021
  ident: ref_29
  article-title: SNUNet-CD: A Densely Connected Siamese Network for Change Detection of VHR Images
  publication-title: IEEE Geosci. Remote Sens. Lett.
  contributor:
    fullname: Fang
– volume: 18
  start-page: 811
  year: 2020
  ident: ref_31
  article-title: Building Change Detection for Remote Sensing Images Using a Dual-Task Constrained Deep Siamese Convolutional Network Model
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2020.2988032
  contributor:
    fullname: Liu
– volume: 14
  start-page: 2611
  year: 2021
  ident: ref_37
  article-title: Attention-Gate-Based Encoder–Decoder Network for Automatical Building Extraction
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2021.3058097
  contributor:
    fullname: Deng
– volume: 166
  start-page: 183
  year: 2020
  ident: ref_51
  article-title: A Deeply Supervised Image Fusion Network for Change Detection in High Resolution Bi-Temporal Remote Sensing Images
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2020.06.003
  contributor:
    fullname: Zhang
– volume: 47
  start-page: 102
  year: 2018
  ident: ref_25
  article-title: Combining the Pixel-based and Object-based Methods for Building Change Detection Using High-resolution Remote Sensing Images
  publication-title: Acta Geod. Cartogr. Sin.
  contributor:
    fullname: Zhang
– ident: ref_47
  doi: 10.18653/v1/2020.acl-main.45
– ident: ref_27
  doi: 10.3390/rs11111382
– ident: ref_1
  doi: 10.3390/rs15010087
– volume: 265
  start-page: 112636
  year: 2021
  ident: ref_4
  article-title: Building Damage Assessment for Rapid Disaster Response with a Deep Object-Based Semantic Change Detection Framework: From Natural Disasters to Man-Made Disasters
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112636
  contributor:
    fullname: Zheng
– volume: 51
  start-page: 1091
  year: 2022
  ident: ref_7
  article-title: Review and Prospect in Change Detection of Multi-Temporal Remote Sensing Images
  publication-title: Acta Geod. Cartogr. Sin.
  contributor:
    fullname: Zhang
– ident: ref_41
– ident: ref_38
– volume: 19
  start-page: 1
  year: 2022
  ident: ref_52
  article-title: L-UNet: An LSTM Network for Remote Sensing Image Change Detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  contributor:
    fullname: Sun
– volume: 60
  start-page: 1548
  year: 2023
  ident: ref_8
  article-title: Hybrid Approach Using Deep Learning and Graph Comparison for Building Change Detection
  publication-title: GIsci Remote Sens.
  doi: 10.1080/15481603.2023.2220525
  contributor:
    fullname: Park
– volume: 32
  start-page: 89
  year: 2007
  ident: ref_16
  article-title: Building Change Detection Method Considering Projection Influence Based on Spectral Feature and Texture Feature
  publication-title: Geomatics Inf. Sci. Wuhan Univ.
  contributor:
    fullname: Yuan
– volume: 10
  start-page: 989
  year: 1989
  ident: ref_15
  article-title: Review Article Digital Change Detection Techniques Using Remotely-Sensed Data
  publication-title: Int. J. Remote Sens.
  doi: 10.1080/01431168908903939
  contributor:
    fullname: Singh
– ident: ref_28
– volume: 15
  start-page: 409
  year: 2021
  ident: ref_35
  article-title: SNLRUX++ for Building Extraction from High-Resolution Remote Sensing Images
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  contributor:
    fullname: Lie
– volume: 7
  start-page: 3453
  year: 2014
  ident: ref_6
  article-title: Use of Landsat 5 for Change Detection at 1998 Indian and Pakistani Nuclear Test Sites. IEEE J. Sel. Topics Appl. Earth Observ
  publication-title: Remote Sens.
  contributor:
    fullname: Zelinski
– ident: ref_20
  doi: 10.1007/978-981-13-7025-0_18
– ident: ref_19
  doi: 10.3390/ijgi7100401
– ident: ref_40
– volume: 7
  start-page: 105
  year: 2014
  ident: ref_9
  article-title: Building Change Detection from Multitemporal High-Resolution Remotely Sensed Images Based on a Morphological Building Index
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2013.2252423
  contributor:
    fullname: Huang
– ident: ref_46
  doi: 10.1109/CVPR.2018.00745
– volume: 189
  start-page: 78
  year: 2022
  ident: ref_32
  article-title: Semantic Feature-Constrained Multitask Siamese Network for Building Change Detection in High-Spatial-Resolution Remote Sensing Imagery
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2022.05.001
  contributor:
    fullname: Shen
– volume: 57
  start-page: 574
  year: 2018
  ident: ref_54
  article-title: Fully Convolutional Networks for Multisource Building Extraction from an Open Aerial and Satellite Imagery Data Set
  publication-title: IEEE Trans. Geosci. Remote Sens.
  doi: 10.1109/TGRS.2018.2858817
  contributor:
    fullname: Ji
– ident: ref_26
  doi: 10.1109/ICIVC.2018.8492747
– volume: 42
  start-page: 1301
  year: 2018
  ident: ref_48
  article-title: Street-View Change Detection with Deconvolutional Networks
  publication-title: Auton. Robot.
  doi: 10.1007/s10514-018-9734-5
  contributor:
    fullname: Alcantarilla
– volume: 69
  start-page: 369
  year: 2003
  ident: ref_11
  article-title: Land-Use/Land-Cover Change Detection Using Improved Change-Vector Analysis
  publication-title: Photogramm. Eng. Remote Sens.
  doi: 10.14358/PERS.69.4.369
  contributor:
    fullname: Chen
– volume: 27
  start-page: 123
  year: 2008
  ident: ref_24
  article-title: Hyperspectral Remote Sensing Image Classification Based on Support Vector Machine
  publication-title: J. Infrared Millim W
  doi: 10.3724/SP.J.1010.2008.00123
  contributor:
    fullname: Tan
– volume: 15
  start-page: 4297
  year: 2022
  ident: ref_3
  article-title: A CNN-Transformer Network with Multiscale Context Aggregation for Fine-Grained Cropland Change Detection
  publication-title: IEEE J. Sel. Topics Appl. Earth Observ. Remote Sens.
  doi: 10.1109/JSTARS.2022.3177235
  contributor:
    fullname: Liu
– volume: 14
  start-page: 294
  year: 2005
  ident: ref_14
  article-title: Image Change Detection Algorithms: A Systematic Survey
  publication-title: IEEE Trans. Image Process.
  doi: 10.1109/TIP.2004.838698
  contributor:
    fullname: Radke
– ident: ref_50
– ident: ref_30
  doi: 10.3390/rs12101662
– volume: 258
  start-page: 112402
  year: 2021
  ident: ref_5
  article-title: When Image Correlation is Needed: Unravelling the Complex Dynamics of a Slow-Moving Landslide in The Tropics with Dense Radar and Optical Time Series
  publication-title: Remote Sens. Environ.
  doi: 10.1016/j.rse.2021.112402
  contributor:
    fullname: Dille
– volume: 17
  start-page: 1401
  year: 2020
  ident: ref_23
  article-title: An Advanced Superpixel-Based Markov Random Field Model for Unsupervised Change Detection
  publication-title: IEEE Geosci. Remote Sens. Lett.
  doi: 10.1109/LGRS.2019.2948660
  contributor:
    fullname: Hao
– volume: 60
  start-page: 1
  year: 2021
  ident: ref_10
  article-title: Remote Sensing Image Change Detection with Transformers
  publication-title: IEEE Trans Geosci Remote Sens.
  doi: 10.1109/TGRS.2020.3034752
  contributor:
    fullname: Chen
– ident: ref_43
– volume: 58
  start-page: 225
  year: 2004
  ident: ref_13
  article-title: Object-Based Classification of Remote Sensing Data for Change Detection
  publication-title: ISPRS J. Photogramm. Remote Sens.
  doi: 10.1016/j.isprsjprs.2003.09.007
  contributor:
    fullname: Walter
– ident: ref_44
  doi: 10.1109/HORA58378.2023.10156778
SSID ssj0000331904
Score 2.3965685
Snippet As well as very high resolution (VHR) remote sensing technology and deep learning, methods for detecting changes in buildings have made great progress. Despite...
SourceID doaj
proquest
gale
crossref
SourceType Open Website
Aggregation Database
StartPage 3972
SubjectTerms Accuracy
attention mechanism
building
Buildings
Change detection
Classification
Coders
Deep learning
Feature extraction
High resolution
Image resolution
Maintenance and repair
Neural networks
Remote sensing
Support vector machines
VHR remote sensing images
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T8MwELYQCyyIpygvWQKJKSKN7ThhK1AESO3CQ2xWbJ8FAylqw8DGf-Af8ks42ynQAbEwJFEcRzrd-V7J-TtCDrTW1hQWkxyMxRMuQCQ6K_IEupgOOQZMVqHKd5hf3PKre3H_o9WXrwmL8MCRcUepkxKPCvXQcVdl2nh8Es5sKayVAoL1TcsfyVSwwQyXVsojHinDvP5oPEHf5v9iZTMeKAD1_2aOg485XyZLbXBIe5GoFTIH9SpZaPuUP7yukdH1Y_WU9AdDaI5pj_o7mADtBxwIdB84_vH2PujhlQ5jgTfFqJSetM2vadxMQM-gCSVYNX2s6R2MX6mv96D-W35cifTyCQ3NZJ3cnvdvTi-StmVCYjCPaPBcWGZcybmReVkZm_HKWWYdiqrLuy4TWpcGs0LfcsNZW3IUoZQYxgG-l2u2QebrUQ2bhDLGJAYTjme65AxsUQguhXOZ1gVACR2yP2Wjeo7IGAozCs9s9c3sDjnxHP6a4dGswwDKWLUyVn_JuEMOvXyU17lmXJmq3TqAhHr0KtVDi47E5TLtkJ2ZmagrZvbxVMKq1dWJygohOZoukW79B7HbZNG3pI9Fgjtkvhm_wC4GLo3eC2v0E8Ou7XM
  priority: 102
  providerName: Directory of Open Access Journals
Title Siam-EMNet: A Siamese EfficientNet–MANet Network for Building Change Detection in Very High Resolution Images
URI https://www.proquest.com/docview/2857442550
https://doaj.org/article/0f770f7aaddf4fa2bc268443d95dd75e
Volume 15
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LbtQwcNRuD_SCaAF1oawsgcQpataPOOkF7cIubaWuEFDUmxW_yh6aLUk49NZ_4A_5EsaJt9Ue6CGJYjuKNTOel8czAO-01tbkFo0c1MUTLpxINM2zxI3RHPLMMVl2Ub6L7OSCn12Ky-hwa2JY5ZondozarkzwkR_RXEiOBCbSDze_klA1KuyuxhIa27BD0VKgA9iZzhZfvt57WVKGJJbyPi8pQ_v-qG5QxoXdLLohibqE_f9jy52smT-Dp1FJJJMeq3uw5ap9eBLrlf-8fQ6rb8vyOpmdL1x7TCYkvLnGkVmXDwLFCLb_vftzPsEnWfSB3gS1UzKNRbBJf6iAfHJtF4pVkWVFfrj6loS4DxJ8-j1FktNrZDjNC7iYz75_PEli6YTEoD3R4j23zPiCcyOzojSW8tJbZj2ibMzHngqtC4PWYSi94a0tOKJSSlTnHH6XafYSBtWqcgdAGGMSlQrPqS44czbPBZfCe6p17lzhhvB2DUZ102fIUGhZBGCrB2APYRogfD8iZLXuGlb1lYqLRKVeSrxK5Lme-5JqE3LRcGYLYa0U-Kv3AT8qrL22Lk0ZjxDgREMWKzVBzo6Ty2Q6hMONkbhmzGb3GsMqrtlGPVDYq8e7X8NuKDrfhwEewqCtf7s3qJq0egTb-fzzKFLhqDPw_wHj6Obi
link.rule.ids 315,783,787,867,2109,12779,21402,27938,27939,33387,33758,43614,43819,74371,74638
linkProvider ProQuest
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LTtww0CpwgEtVoFWX8rBUpJ4isrEdJ72gBXa7tOxeChU3K37BHsjSJD1w6z_0D_kSZhIvaA_0kESxHcWaGc_L4xlCDrXW1mQWjBzQxSMunIh0kqWR64M55JljsmijfKfp-Ip_vxbXweFWh7DKBU9sGbWdG_SRHyWZkBwITMTH978jrBqFu6uhhMYKWeMMBA2eFB99e_axxAwILOZdVlIG1v1RVYOEw72sZEkOten6X2PKraQZvSNvg4pIBx1ON8kbV26R9VCt_PZhm8x_zoq7aDiZuuYrHVB8c7WjwzYbBAgRaH_8-28ygCeddmHeFHRTehJKYNPuSAE9c00biFXSWUl_ueqBYtQHRY9-R4_0_A7YTf2eXI2Gl6fjKBROiAxYEw3cM8uMzzk3Ms0LYxNeeMusB4T1ed8nQuvcgG2IhTe8tTkHREoJypyD71LNPpDVcl66j4QyxiSoFJ4nOufM2SwTXArvE60z53LXI58XYFT3XX4MBXYFAlu9ALtHThDCzyMwp3XbMK9uVFgiKvZSwlUAx_XcF4k2mImGM5sLa6WAX31B_ChceU1VmCIcIICJYg4rNQC-DpNLZdwju0sjYcWY5e4FhlVYsbV6oa-d_3cfkPXx5eRCXZxPf3wiG1h-vgsI3CWrTfXH7YGS0uj9lhKfAC8b5pI
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwfR3LTtwwcNQuEu2laqGIbWlrqUicos3GdpxwQbtlV9BChNqCuFnxq-VAlibpgRv_wB_2SzpOvKA9tIckiu0o1rzHHs8A7CqljM4MOjloi0eMWx6pJEsjO0Z3yFFLRdlF-Rbp0Tn7fMkvQ_xTE8IqlzKxE9Rmof0a-SjJuGBIYDweuRAWcXY4P7j5FfkKUn6nNZTTeAprgiFVDWBtOivOvj6suMQUyS1mfY5Sir7-qG5Q3_mdrWRFK3XJ-_8loju9M38JL4LBSCY9hl_BE1ttwLNQu_zn7SYsvl2V19HstLDtPpkQ_2YbS2ZdbghUKdj-5-7-dIJPUvRB3wQtVTINBbFJf8CAHNq2C8uqyFVFLmx9S3wMCPHr-z11kuNrFD7Nazifz75_OopCGYVIo2_R4j0zVLucMS3SvNQmYaUz1DhE35iNXcKVyjV6ir4MhzMmZ4hWIdC0s_hdqugWDKpFZbeBUEoFGhiOJSpn1Jos40xw5xKlMmtzO4SPSzDKmz5bhkQvwwNbPgJ7CFMP4YcRPsN117Cof8jAMDJ2QuBVovx1zJWJ0j4vDaMm58YIjr_a8_iRng_butRlOE6AE_UZreQEpTxOLhXxEHZWRiL_6NXuJYZl4N9GPlLbm_93f4B1JEN5clx8eQvPfS36PjpwBwZt_du-Q4ulVe8DKf4F2pLsNQ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Siam-EMNet%3A+A+Siamese+EfficientNet%E2%80%93MANet+Network+for+Building+Change+Detection+in+Very+High+Resolution+Images&rft.jtitle=Remote+sensing+%28Basel%2C+Switzerland%29&rft.au=Huang%2C+Liang&rft.au=Tian%2C+Qiuyuan&rft.au=Tang%2C+Bo-Hui&rft.au=Le%2C+Weipeng&rft.date=2023-08-01&rft.pub=MDPI+AG&rft.issn=2072-4292&rft.eissn=2072-4292&rft.volume=15&rft.issue=16&rft_id=info:doi/10.3390%2Frs15163972&rft.externalDocID=A762547670
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2072-4292&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2072-4292&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2072-4292&client=summon