ROTATION AND WINDS OF EXOPLANET HD 189733 b MEASURED WITH HIGH-DISPERSION TRANSMISSION SPECTROSCOPY
ABSTRACT Giant exoplanets orbiting very close to their parent star (hot Jupiters) are subject to tidal forces expected to synchronize their rotational and orbital periods on short timescales (tidal locking). However, spin rotation has never been measured directly for hot Jupiters. Furthermore, their...
Saved in:
Published in | The Astrophysical journal Vol. 817; no. 2; pp. 106 - 120 |
---|---|
Main Authors | , , , , , |
Format | Journal Article |
Language | English |
Published |
United Kingdom
The American Astronomical Society
01.02.2016
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT Giant exoplanets orbiting very close to their parent star (hot Jupiters) are subject to tidal forces expected to synchronize their rotational and orbital periods on short timescales (tidal locking). However, spin rotation has never been measured directly for hot Jupiters. Furthermore, their atmospheres can show equatorial super-rotation via strong eastward jet streams, and/or high-altitude winds flowing from the day- to the night-side hemisphere. Planet rotation and atmospheric circulation broaden and distort the planet spectral lines to an extent that is detectable with measurements at high spectral resolution. We observed a transit of the hot Jupiter HD 189733 b around 2.3 m and at a spectral resolution of R∼105 with CRIRES at the ESO Very Large Telescope. After correcting for the stellar absorption lines and their distortion during transit (the Rossiter-McLaughlin effect), we detect the absorption of carbon monoxide and water vapor in the planet transmission spectrum by cross-correlating with model spectra. The signal is maximized (7.6 ) for a planet rotational velocity of km s−1, corresponding to a rotational period of days. This is consistent with the planet orbital period of 2.2 days, and therefore with tidal locking. We find that the rotation of HD 189733 b is longer than 1 day (3 ). The data only marginally (1.5 ) prefer models with rotation versus models without rotation. We measure a small day- to night-side wind speed of km s−1. Compared to the recent detection of sodium blueshifted by km s−1, this likely implies a strong vertical wind shear between the pressures probed by near-infrared and optical transmission spectroscopy. |
---|---|
AbstractList | (ProQuest: ... denotes formulae and/or non-USASCII text omitted) Giant exoplanets orbiting very close to their parent star (hot Jupiters) are subject to tidal forces expected to synchronize their rotational and orbital periods on short timescales (tidal locking). However, spin rotation has never been measured directly for hot Jupiters. Furthermore, their atmospheres can show equatorial super-rotation via strong eastward jet streams, and/or high-altitude winds flowing from the day- to the night-side hemisphere. Planet rotation and atmospheric circulation broaden and distort the planet spectral lines to an extent that is detectable with measurements at high spectral resolution. We observed a transit of the hot Jupiter HD 189733 b around 2.3 mu m and at a spectral resolution of R~10 super(5) with CRIRES at the ESO Very Large Telescope. After correcting for the stellar absorption lines and their distortion during transit (the Rossiter-McLaughlin effect), we detect the absorption of carbon monoxide and water vapor in the planet transmission spectrum by cross-correlating with model spectra. The signal is maximized (7.6[sigma]) for a planet rotational velocity of (...) km s super(-1), corresponding to a rotational period of (...) days. This is consistent with the planet orbital period of 2.2 days, and therefore with tidal locking. We find that the rotation of HD 189733 b is longer than 1 day (3[sigma]). The data only marginally (1.5[sigma]) prefer models with rotation versus models without rotation. We measure a small day- to night-side wind speed of (...) km s super(-1). Compared to the recent detection of sodium blueshifted by (8 + or - 2) km s super(-1), this likely implies a strong vertical wind shear between the pressures probed by near-infrared and optical transmission spectroscopy. Giant exoplanets orbiting very close to their parent star (hot Jupiters) are subject to tidal forces expected to synchronize their rotational and orbital periods on short timescales (tidal locking). However, spin rotation has never been measured directly for hot Jupiters. Furthermore, their atmospheres can show equatorial super-rotation via strong eastward jet streams, and/or high-altitude winds flowing from the day- to the night-side hemisphere. Planet rotation and atmospheric circulation broaden and distort the planet spectral lines to an extent that is detectable with measurements at high spectral resolution. We observed a transit of the hot Jupiter HD 189733 b around 2.3 μm and at a spectral resolution of R∼10{sup 5} with CRIRES at the ESO Very Large Telescope. After correcting for the stellar absorption lines and their distortion during transit (the Rossiter–McLaughlin effect), we detect the absorption of carbon monoxide and water vapor in the planet transmission spectrum by cross-correlating with model spectra. The signal is maximized (7.6σ) for a planet rotational velocity of (3.4{sub −2.1}{sup +1.3}) km s{sup −1}, corresponding to a rotational period of (1.7{sub −0.4}{sup +2.9}) days. This is consistent with the planet orbital period of 2.2 days, and therefore with tidal locking. We find that the rotation of HD 189733 b is longer than 1 day (3σ). The data only marginally (1.5σ) prefer models with rotation versus models without rotation. We measure a small day- to night-side wind speed of (−1.7{sub −1.2}{sup +1.1}) km s{sup −1}. Compared to the recent detection of sodium blueshifted by (8±2) km s{sup −1}, this likely implies a strong vertical wind shear between the pressures probed by near-infrared and optical transmission spectroscopy. Giant exoplanets orbiting very close to their parent star (hot Jupiters) are subject to tidal forces expected to synchronize their rotational and orbital periods on short timescales (tidal locking). However, spin rotation has never been measured directly for hot Jupiters. Furthermore, their atmospheres can show equatorial super-rotation via strong eastward jet streams, and/or high-altitude winds flowing from the day- to the night-side hemisphere. Planet rotation and atmospheric circulation broaden and distort the planet spectral lines to an extent that is detectable with measurements at high spectral resolution. We observed a transit of the hot Jupiter HD 189733 b around 2.3 μ m and at a spectral resolution of R ∼10 5 with CRIRES at the ESO Very Large Telescope. After correcting for the stellar absorption lines and their distortion during transit (the Rossiter–McLaughlin effect), we detect the absorption of carbon monoxide and water vapor in the planet transmission spectrum by cross-correlating with model spectra. The signal is maximized (7.6 σ ) for a planet rotational velocity of km s −1 , corresponding to a rotational period of days. This is consistent with the planet orbital period of 2.2 days, and therefore with tidal locking. We find that the rotation of HD 189733 b is longer than 1 day (3 σ ). The data only marginally (1.5 σ ) prefer models with rotation versus models without rotation. We measure a small day- to night-side wind speed of km s −1 . Compared to the recent detection of sodium blueshifted by km s −1 , this likely implies a strong vertical wind shear between the pressures probed by near-infrared and optical transmission spectroscopy. ABSTRACT Giant exoplanets orbiting very close to their parent star (hot Jupiters) are subject to tidal forces expected to synchronize their rotational and orbital periods on short timescales (tidal locking). However, spin rotation has never been measured directly for hot Jupiters. Furthermore, their atmospheres can show equatorial super-rotation via strong eastward jet streams, and/or high-altitude winds flowing from the day- to the night-side hemisphere. Planet rotation and atmospheric circulation broaden and distort the planet spectral lines to an extent that is detectable with measurements at high spectral resolution. We observed a transit of the hot Jupiter HD 189733 b around 2.3 m and at a spectral resolution of R∼105 with CRIRES at the ESO Very Large Telescope. After correcting for the stellar absorption lines and their distortion during transit (the Rossiter-McLaughlin effect), we detect the absorption of carbon monoxide and water vapor in the planet transmission spectrum by cross-correlating with model spectra. The signal is maximized (7.6 ) for a planet rotational velocity of km s−1, corresponding to a rotational period of days. This is consistent with the planet orbital period of 2.2 days, and therefore with tidal locking. We find that the rotation of HD 189733 b is longer than 1 day (3 ). The data only marginally (1.5 ) prefer models with rotation versus models without rotation. We measure a small day- to night-side wind speed of km s−1. Compared to the recent detection of sodium blueshifted by km s−1, this likely implies a strong vertical wind shear between the pressures probed by near-infrared and optical transmission spectroscopy. |
Author | Schwarz, H. Brogi, M. Kok, R. J. de Snellen, I. A. G. Birkby, J. L. Albrecht, S. |
Author_xml | – sequence: 1 givenname: M. orcidid: 0000-0002-7704-0153 surname: Brogi fullname: Brogi, M. email: matteo.brogi@colorado.edu organization: University of Colorado at Boulder Center for Astrophysics and Space Astronomy, Boulder, CO 80309, USA – sequence: 2 givenname: R. J. de orcidid: 0000-0001-6906-2662 surname: Kok fullname: Kok, R. J. de organization: Netherlands Institute for Space Research SRON, Sorbonnelaan 2, 3584CA Utrecht, The Netherlands – sequence: 3 givenname: S. surname: Albrecht fullname: Albrecht, S. organization: Aarhus University Stellar Astrophysics Centre, Department of Physics and Astronomy, DK-8000 Aarhus C, Denmark – sequence: 4 givenname: I. A. G. surname: Snellen fullname: Snellen, I. A. G. organization: Leiden University Leiden Observatory, 2333CA Leiden, The Netherlands – sequence: 5 givenname: J. L. surname: Birkby fullname: Birkby, J. L. organization: Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA – sequence: 6 givenname: H. surname: Schwarz fullname: Schwarz, H. organization: Leiden University Leiden Observatory, 2333CA Leiden, The Netherlands |
BackLink | https://www.osti.gov/biblio/22887100$$D View this record in Osti.gov |
BookMark | eNqNkU1vnDAQhq0qlbpJ8wt6sdRLLwR_YGyOaJcEpA2sgKjpyYJZoxJt8Bazh_77QrfKoYckF1szep7RaN5LdDHYwSD0hZIbrgLpE0ICL-Ty0VdU-synJPyAVlRw5QVcyAu0eiE-oUvnnpaSRdEKQVnUcZ0VOY7zDf6e5ZsKF7c4eSx22zhPapxuMFWR5By3-D6Jq4cyWbg6xWl2l3qbrNolZbUMqMs4r-6z6m8xd9d1WVTrYvfjM_rYNQdnrv_9V6i-Tep16m2Lu2wdbz0ImJrmV-y7PTHCKEplSzkLgEsD0IIMW0VMAAQEZ0pI4FyAiBiITrZRIE0n9_wKfT2PtW7qtYN-MvAT7DAYmDRjSklKyEx9O1PH0f46GTfp596BORyawdiT01TRkDDOuHgHSlTIWRiGM8rPKIzWudF0-jj2z834W1Oil4j0cnG9BKDniDSb-4sV_WfNSzdTb4dpbPrDG65_dnt71E_2NA7zaV81_gA6qZxf |
CitedBy_id | crossref_primary_10_1093_mnras_stae1277 crossref_primary_10_1051_0004_6361_201732193 crossref_primary_10_3847_1538_3881_aa7dd8 crossref_primary_10_3847_1538_3881_ac80bf crossref_primary_10_1051_0004_6361_202143016 crossref_primary_10_1051_0004_6361_201936566 crossref_primary_10_2138_rmg_2024_90_12 crossref_primary_10_3847_1538_3881_ac5e38 crossref_primary_10_1051_0004_6361_201833694 crossref_primary_10_3847_1538_3881_ac0428 crossref_primary_10_1093_mnras_stz742 crossref_primary_10_1093_mnras_stab1863 crossref_primary_10_3847_1538_3881_ac0e30 crossref_primary_10_3847_1538_3881_abde43 crossref_primary_10_3847_1538_3881_ab8d33 crossref_primary_10_1088_1538_3873_aa61ef crossref_primary_10_1088_1538_3873_aae5c5 crossref_primary_10_1038_s41550_021_01544_4 crossref_primary_10_1093_mnras_stac1539 crossref_primary_10_1146_annurev_astro_081817_051846 crossref_primary_10_3847_1538_4357_ac90bd crossref_primary_10_1051_0004_6361_201732189 crossref_primary_10_1093_mnras_stx1581 crossref_primary_10_1051_0004_6361_202140569 crossref_primary_10_3847_1538_4357_aa9891 crossref_primary_10_1051_0004_6361_202244055 crossref_primary_10_3847_1538_3881_ac77eb crossref_primary_10_1089_ast_2017_1737 crossref_primary_10_3847_1538_3881_aa6336 crossref_primary_10_1093_mnras_staa2569 crossref_primary_10_1093_mnras_stw1511 crossref_primary_10_1051_0004_6361_201630063 crossref_primary_10_1093_mnras_stab1164 crossref_primary_10_3847_1538_4357_ac423f crossref_primary_10_1051_0004_6361_201935691 crossref_primary_10_3847_1538_3881_acd24d crossref_primary_10_3847_1538_3881_aad781 crossref_primary_10_3847_1538_4357_abdc22 crossref_primary_10_1093_mnras_stac3388 crossref_primary_10_1093_mnras_stac3024 crossref_primary_10_3847_1538_3881_aaf725 crossref_primary_10_1051_0004_6361_201937409 crossref_primary_10_1051_0004_6361_202140559 crossref_primary_10_1051_0004_6361_202245832 crossref_primary_10_1051_0004_6361_202348508 crossref_primary_10_1093_mnras_stad2476 crossref_primary_10_1051_0004_6361_201731512 crossref_primary_10_1051_0004_6361_201834433 crossref_primary_10_1051_0004_6361_202244277 crossref_primary_10_1093_mnras_stac1744 crossref_primary_10_3847_1538_4357_ab5b0b crossref_primary_10_3847_2041_8213_aa6933 crossref_primary_10_3847_1538_3881_aaf56b crossref_primary_10_1093_mnras_stz2351 crossref_primary_10_3847_1538_3881_ab9e77 crossref_primary_10_1051_0004_6361_202347398 crossref_primary_10_1093_mnras_staa1459 crossref_primary_10_1093_mnras_staa748 crossref_primary_10_1051_0004_6361_201936084 crossref_primary_10_1051_0004_6361_202449341 crossref_primary_10_1051_0004_6361_202039072 crossref_primary_10_3847_0004_637X_832_2_131 crossref_primary_10_1051_0004_6361_202243854 crossref_primary_10_3847_2041_8213_ab8c44 crossref_primary_10_1038_s41550_018_0503_3 crossref_primary_10_3847_1538_4357_abb08b crossref_primary_10_1038_s41550_021_01581_z crossref_primary_10_3847_1538_3881_accd65 crossref_primary_10_3847_1538_3881_ad380c crossref_primary_10_1051_0004_6361_201936892 crossref_primary_10_3847_1538_3881_ac478f crossref_primary_10_3847_1538_3881_ac9d37 crossref_primary_10_3847_1538_3881_ab8f9c crossref_primary_10_1051_0004_6361_201834339 crossref_primary_10_1051_0004_6361_202245800 crossref_primary_10_1093_rasti_rzae043 crossref_primary_10_3847_2041_8213_ad6b29 crossref_primary_10_3847_1538_3881_ad2c8b crossref_primary_10_1051_0004_6361_201630144 crossref_primary_10_1051_0004_6361_202141696 crossref_primary_10_1126_science_aat5348 crossref_primary_10_3847_1538_3881_abb46b crossref_primary_10_1089_ast_2016_1578 crossref_primary_10_1051_0004_6361_201832986 crossref_primary_10_1093_mnras_stad480 crossref_primary_10_1051_0004_6361_202037437 crossref_primary_10_1051_0004_6361_202037672 crossref_primary_10_1093_mnras_stz1247 crossref_primary_10_3847_2041_8213_ac2513 crossref_primary_10_1093_mnras_stae674 crossref_primary_10_3847_1538_3881_abb59c crossref_primary_10_1088_1538_3873_ac9430 crossref_primary_10_1051_0004_6361_202244383 crossref_primary_10_1051_0004_6361_202452733 crossref_primary_10_3847_1538_4357_835_2_198 crossref_primary_10_1051_0004_6361_202450438 crossref_primary_10_3847_1538_3881_aa5c87 crossref_primary_10_3847_1538_3881_aa6a15 crossref_primary_10_1093_mnras_stae984 crossref_primary_10_1093_mnras_stx2826 crossref_primary_10_3847_1538_3881_ac1f8e crossref_primary_10_1093_mnras_sty2994 crossref_primary_10_3847_1538_3881_ab8fa3 crossref_primary_10_3847_1538_4357_ab22b2 crossref_primary_10_3847_1538_3881_ab164c crossref_primary_10_1093_mnras_stz2679 crossref_primary_10_1051_0004_6361_202038108 crossref_primary_10_3389_fspas_2022_768452 crossref_primary_10_1093_mnras_stad2607 crossref_primary_10_1051_0004_6361_202142314 crossref_primary_10_1051_0004_6361_201935089 crossref_primary_10_3390_galaxies7040082 crossref_primary_10_1140_epjh_e2018_80063_1 crossref_primary_10_1093_mnras_sty1892 crossref_primary_10_3847_1538_3881_ad17bf crossref_primary_10_1093_mnras_stad648 crossref_primary_10_1016_j_jqsrt_2021_107708 crossref_primary_10_3847_1538_4357_abb3d4 crossref_primary_10_1051_0004_6361_201937265 crossref_primary_10_1051_0004_6361_202142683 crossref_primary_10_1038_s41586_018_0401_y crossref_primary_10_1051_0004_6361_202039302 crossref_primary_10_1093_mnras_stab134 crossref_primary_10_3847_1538_3881_153_3_97 crossref_primary_10_3847_1538_4357_ac625d crossref_primary_10_3847_1538_4357_ad2077 crossref_primary_10_3847_1538_3881_ab4594 crossref_primary_10_1029_2020JE006629 crossref_primary_10_1051_0004_6361_201731244 crossref_primary_10_3847_1538_4357_ac47fe crossref_primary_10_1051_0004_6361_202142591 crossref_primary_10_3847_1538_4357_aabfbe crossref_primary_10_1017_S1743921320000198 crossref_primary_10_3847_1538_3881_abb67b crossref_primary_10_3847_1538_3881_aa7133 crossref_primary_10_3847_1538_3881_aa9433 crossref_primary_10_1093_mnras_stab1310 crossref_primary_10_1093_mnras_staa715 crossref_primary_10_1051_0004_6361_201730814 crossref_primary_10_3847_1538_4357_ab59d0 crossref_primary_10_3847_1538_3881_ad1180 crossref_primary_10_1093_mnras_staa3143 crossref_primary_10_1051_0004_6361_201936396 crossref_primary_10_1051_0004_6361_202039525 crossref_primary_10_1051_0004_6361_202449932 crossref_primary_10_3847_1538_3881_ac6bfa crossref_primary_10_1051_0004_6361_201935718 crossref_primary_10_1093_mnras_staa2944 crossref_primary_10_1016_j_icarus_2022_115421 crossref_primary_10_1093_mnras_staa1733 crossref_primary_10_3847_1538_3881_ad10a3 crossref_primary_10_3847_0004_6256_152_1_20 crossref_primary_10_1038_s41598_024_78071_5 crossref_primary_10_3847_1538_3881_ac897b crossref_primary_10_3847_1538_4357_ad5a97 crossref_primary_10_1051_0004_6361_201833415 crossref_primary_10_1051_0004_6361_201732278 crossref_primary_10_1051_0004_6361_202039234 crossref_primary_10_1093_mnras_stac091 crossref_primary_10_1016_j_icarus_2018_10_019 crossref_primary_10_1051_0004_6361_202244203 crossref_primary_10_3847_1538_4357_aa647f crossref_primary_10_1088_1538_3873_aa70df crossref_primary_10_3847_1538_3881_ac402e crossref_primary_10_1038_s41586_024_07760_y crossref_primary_10_3847_1538_4357_acd4bb crossref_primary_10_3847_1538_3881_ab24c7 crossref_primary_10_1051_0004_6361_202039344 crossref_primary_10_3847_1538_3881_ac51d2 crossref_primary_10_1117_1_JATIS_9_3_038006 crossref_primary_10_3847_1538_3881_acc654 crossref_primary_10_3847_1538_3881_153_2_81 crossref_primary_10_1051_0004_6361_201937316 crossref_primary_10_1051_0004_6361_201936105 crossref_primary_10_1051_0004_6361_202245064 crossref_primary_10_1051_0004_6361_201628908 crossref_primary_10_3847_1538_3881_ac36ce crossref_primary_10_3847_1538_3881_aaffd3 crossref_primary_10_1051_0004_6361_201731282 crossref_primary_10_1051_0004_6361_202038365 crossref_primary_10_3847_1538_3881_aaddf9 crossref_primary_10_3847_1538_3881_acacf3 crossref_primary_10_3847_1538_3881_ad72f3 crossref_primary_10_1088_1674_4527_20_7_99 crossref_primary_10_3847_1538_4357_aa7edf crossref_primary_10_1051_0004_6361_202449608 crossref_primary_10_1093_mnras_stab2168 crossref_primary_10_1051_0004_6361_201937201 crossref_primary_10_3847_1538_3881_ad8574 crossref_primary_10_1093_mnras_stad1103 crossref_primary_10_3847_1538_4357_ab3e30 crossref_primary_10_1051_0004_6361_201731956 crossref_primary_10_3847_1538_4357_aaa3de crossref_primary_10_1093_mnras_stad3765 crossref_primary_10_3847_1538_4357_aba1e6 crossref_primary_10_3847_1538_4357_acb141 crossref_primary_10_1088_1538_3873_ad6cf2 crossref_primary_10_3847_0004_637X_821_1_9 |
Cites_doi | 10.1086/304088 10.1086/512159 10.1038/nature11161 10.1117/12.458836 10.1088/0004-637X/724/1/313 10.1051/0004-6361/201116492 10.1088/0004-637X/795/1/24 10.1088/2041-8205/814/2/L24 10.1088/2041-8205/743/1/L16 10.1086/527045 10.1051/0004-6361:200810056 10.1051/0004-6361/200913347 10.1088/0004-637X/733/1/30 10.1086/510528 10.1111/j.1365-2966.2008.12852.x 10.1088/0004-6256/150/4/112 10.1088/0004-637X/762/1/24 10.1093/mnrasl/slt107 10.1088/0004-637X/758/1/36 10.1126/science.1133904 10.1088/0004-637X/771/1/11 10.1038/nature09111 10.1051/0004-6361/200911897 10.1088/0004-637X/772/1/51 10.1051/0004-6361/201525729 10.1051/0004-6361/201423537 10.1086/345520 10.1086/527475 10.1038/nature13253 10.1117/12.551480 10.1051/0004-6361:20020555 10.1088/2041-8205/753/1/L25 10.1051/0004-6361/201321381 10.1088/0004-637X/729/1/54 10.1051/0004-6361:20077953 10.1016/j.jqsrt.2009.02.013 10.1111/j.1365-2966.2011.18315.x 10.1093/mnras/stt651 10.1086/529429 10.1088/0004-637X/714/2/1334 10.1088/0004-637X/707/1/24 10.1086/131801 10.1117/12.211919 10.1016/S0032-0633(03)00035-7 10.1016/S0022-4073(00)00023-6 10.1111/j.1365-2966.2011.19142.x 10.1088/0004-637X/690/1/822 10.1088/0004-637X/738/1/71 10.1088/0004-637X/703/1/769 10.1016/j.jqsrt.2010.05.001 10.1111/j.1365-2966.2007.11897.x 10.1086/518736 10.1051/0004-6361/201116451 10.1086/177941 10.1086/142825 10.1111/j.1365-2966.2012.20805.x 10.1088/0004-637X/785/2/83 10.1111/j.1365-2966.2009.16131.x 10.1088/0004-637X/751/2/117 10.1088/0004-637X/754/1/22 10.1088/0004-637X/757/1/18 10.1088/2041-8205/783/2/L29 10.1088/0004-637X/752/2/81 10.1051/0004-6361:200500201 10.1051/0004-6361:20078269 10.1088/0004-637X/721/2/1861 10.1126/science.1256758 10.1088/0004-637X/699/1/478 10.1086/591635 10.1086/142826 10.1088/0004-637X/699/1/564 10.1088/0004-637X/723/2/1436 10.1088/0004-637X/751/2/86 10.1038/nature05782 10.1051/0004-6361:20020101 |
ContentType | Journal Article |
Copyright | 2016. The American Astronomical Society. All rights reserved. |
Copyright_xml | – notice: 2016. The American Astronomical Society. All rights reserved. |
DBID | AAYXX CITATION 7TG KL. 8FD H8D L7M OTOTI |
DOI | 10.3847/0004-637X/817/2/106 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts - Academic Meteorological & Geoastrophysical Abstracts Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts - Academic CrossRef |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | ROTATION AND WINDS OF EXOPLANET HD 189733 B MEASURED WITH HIGH-DISPERSION TRANSMISSION SPECTROSCOPY |
EISSN | 1538-4357 |
ExternalDocumentID | 22887100 10_3847_0004_637X_817_2_106 apj522286 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN ADIYS AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG KL. 8FD H8D L7M ABPTK OTOTI |
ID | FETCH-LOGICAL-c428t-c45dfd0e5e8117b1324c37eccbc76b80e4c0c532857c335c592c5f7b947ef7d3 |
IEDL.DBID | IOP |
ISSN | 0004-637X |
IngestDate | Fri May 19 01:42:36 EDT 2023 Fri Jul 11 04:22:05 EDT 2025 Thu Jul 10 23:24:57 EDT 2025 Tue Jul 01 01:05:17 EDT 2025 Thu Apr 24 22:53:16 EDT 2025 Wed Aug 21 03:41:35 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-c45dfd0e5e8117b1324c37eccbc76b80e4c0c532857c335c592c5f7b947ef7d3 |
Notes | Exoplanets ApJ100785 ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-7704-0153 0000-0001-6906-2662 |
OpenAccessLink | https://iopscience.iop.org/article/10.3847/0004-637X/817/2/106/pdf |
PQID | 1808632666 |
PQPubID | 23462 |
PageCount | 15 |
ParticipantIDs | osti_scitechconnect_22887100 proquest_miscellaneous_1816023235 iop_journals_10_3847_0004_637X_817_2_106 proquest_miscellaneous_1808632666 crossref_citationtrail_10_3847_0004_637X_817_2_106 crossref_primary_10_3847_0004_637X_817_2_106 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2016-02-01 |
PublicationDateYYYYMMDD | 2016-02-01 |
PublicationDate_xml | – month: 02 year: 2016 text: 2016-02-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | United Kingdom |
PublicationPlace_xml | – name: United Kingdom |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2016 |
Publisher | The American Astronomical Society |
Publisher_xml | – name: The American Astronomical Society |
References | Crossfield (apj522286bib21) 2010; 723 Agol (apj522286bib1) 2010; 721 Désert (apj522286bib24) 2009; 699 Rothman (apj522286bib67) 1995; 2471 Collier Cameron (apj522286bib16) 2010; 403 Heng (apj522286bib30) 2011; 413 Rauscher (apj522286bib61) 2010; 714 Pont (apj522286bib57) 2007; 476 Rossiter (apj522286bib64) 1924; 60 Triaud (apj522286bib82) 2009; 506 McLaughlin (apj522286bib51) 1924; 60 Hébrard (apj522286bib29) 2008; 488 Huitson (apj522286bib34) 2012; 422 Jensen (apj522286bib35) 2012; 751 Perna (apj522286bib55) 2010; 724 Torres (apj522286bib81) 2008; 677 Winn (apj522286bib83) 2006; 653 Sing (apj522286bib75) 2011; 416 Hughes (apj522286bib33) 2003; 51 Pont (apj522286bib58) 2013; 432 Barman (apj522286bib7) 2007; 661 Bouchy (apj522286bib13) 2005; 444 Harrington (apj522286bib28) 2006; 314 Showman (apj522286bib71) 2011; 738 Horne (apj522286bib32) 1986; 98 Winn (apj522286bib84) 2007; 133 Louden (apj522286bib44) 2015; 814 Borysow (apj522286bib12) 2001; 68 Rasio (apj522286bib60) 1996; 470 Charbonneau (apj522286bib17) 2008; 686 Albrecht (apj522286bib5) 2014; 785 Heng (apj522286bib31) 2015 Lecavelier Des Etangs (apj522286bib42) 2010; 514 Madhusudhan (apj522286bib45) 2012; 758 Birkby (apj522286bib10) 2013; 436 Brogi (apj522286bib14) 2012; 486 Esteves (apj522286bib25) 2013; 772 Snellen (apj522286bib77) 2014; 509 Claret (apj522286bib18) 2011; 529 Albrecht (apj522286bib4) 2013; 771 Redfield (apj522286bib62) 2008; 673 Benneke (apj522286bib9) 2015 Kaeufl (apj522286bib36) 2004; 5492 Queloz (apj522286bib59) 2000; 359L Knutson (apj522286bib41) 2012; 754 Beaulieu (apj522286bib8) 2008; 677 Madhusudhan (apj522286bib47) 2009; 707 Montalto (apj522286bib53) 2011; 528 Rodler (apj522286bib63) 2012; 753 Marcy (apj522286bib50) 1997; 481 de Kok (apj522286bib23) 2013; 554 Rothman (apj522286bib66) 2010; 111 Snellen (apj522286bib76) 2010; 465 Knutson (apj522286bib39) 2009a; 690 Miller-Ricci Kempton (apj522286bib52) 2012; 751 Knutson (apj522286bib38) 2007; 447 Showman (apj522286bib72) 2009; 699 Kempton (apj522286bib37) 2014; 795 Showman (apj522286bib69) 2002; 385 Wyttenbach (apj522286bib85) 2015; 577A Rothman (apj522286bib65) 2009; 110 Madhusudhan (apj522286bib46) 2014 Stevenson (apj522286bib78) 2014; 346 Mandel (apj522286bib48) 2002; 580 Pont (apj522286bib56) 2008; 385 Knutson (apj522286bib40) 2009b; 703 Öberg (apj522286bib54) 2011; 743 Rucinski (apj522286bib68) 1999; 185 Crossfield (apj522286bib22) 2012; 752 Cowan (apj522286bib19) 2007; 379 Albrecht (apj522286bib3) 2012; 757 Showman (apj522286bib70) 2013; 762 Shporer (apj522286bib74) 2015; 150 Lockwood (apj522286bib43) 2014; 783 Arsenault (apj522286bib6) 2003; 4839 Brogi (apj522286bib15) 2014; 565A Albrecht (apj522286bib2) 2007; 474 Borysow (apj522286bib11) 2002; 390 Gray (apj522286bib27) 2008 Shporer (apj522286bib73) 2011; 733 Cowan (apj522286bib20) 2011; 729 |
References_xml | – volume: 481 start-page: 926 year: 1997 ident: apj522286bib50 publication-title: ApJ doi: 10.1086/304088 – volume: 133 start-page: 1828 year: 2007 ident: apj522286bib84 publication-title: AJ doi: 10.1086/512159 – volume: 486 start-page: 502B year: 2012 ident: apj522286bib14 publication-title: Natur doi: 10.1038/nature11161 – volume: 4839 start-page: 174 year: 2003 ident: apj522286bib6 publication-title: Proc. SPIE doi: 10.1117/12.458836 – volume: 724 start-page: 313 year: 2010 ident: apj522286bib55 publication-title: ApJ doi: 10.1088/0004-637X/724/1/313 – volume: 528 start-page: L17 year: 2011 ident: apj522286bib53 publication-title: A&A doi: 10.1051/0004-6361/201116492 – volume: 795 start-page: 24 year: 2014 ident: apj522286bib37 publication-title: ApJ doi: 10.1088/0004-637X/795/1/24 – volume: 814 start-page: 24 year: 2015 ident: apj522286bib44 publication-title: ApJ doi: 10.1088/2041-8205/814/2/L24 – volume: 743 start-page: L16 year: 2011 ident: apj522286bib54 publication-title: ApJL doi: 10.1088/2041-8205/743/1/L16 – volume: 677 start-page: 1343 year: 2008 ident: apj522286bib8 publication-title: ApJ doi: 10.1086/527045 – volume: 488 start-page: 763 year: 2008 ident: apj522286bib29 publication-title: A&A doi: 10.1051/0004-6361:200810056 – volume: 514 start-page: A72 year: 2010 ident: apj522286bib42 publication-title: A&A doi: 10.1051/0004-6361/200913347 – volume: 733 start-page: 30 year: 2011 ident: apj522286bib73 publication-title: ApJ doi: 10.1088/0004-637X/733/1/30 – year: 2015 ident: apj522286bib31 – start-page: 739 year: 2014 ident: apj522286bib46 – volume: 653 start-page: L69 year: 2006 ident: apj522286bib83 publication-title: ApJL doi: 10.1086/510528 – volume: 385 start-page: 109 year: 2008 ident: apj522286bib56 publication-title: MNRAS doi: 10.1111/j.1365-2966.2008.12852.x – volume: 150 start-page: 112 year: 2015 ident: apj522286bib74 publication-title: AJ doi: 10.1088/0004-6256/150/4/112 – volume: 762 start-page: 24 year: 2013 ident: apj522286bib70 publication-title: ApJ doi: 10.1088/0004-637X/762/1/24 – volume: 436 start-page: 35 year: 2013 ident: apj522286bib10 publication-title: MNRAS doi: 10.1093/mnrasl/slt107 – year: 2008 ident: apj522286bib27 – volume: 758 start-page: 36 year: 2012 ident: apj522286bib45 publication-title: ApJ doi: 10.1088/0004-637X/758/1/36 – volume: 314 start-page: 623 year: 2006 ident: apj522286bib28 publication-title: Sci doi: 10.1126/science.1133904 – volume: 771 start-page: 11 year: 2013 ident: apj522286bib4 publication-title: ApJ doi: 10.1088/0004-637X/771/1/11 – volume: 465 start-page: 1049 year: 2010 ident: apj522286bib76 publication-title: Natur doi: 10.1038/nature09111 – volume: 506 start-page: 377T year: 2009 ident: apj522286bib82 publication-title: A&A doi: 10.1051/0004-6361/200911897 – volume: 772 start-page: 51 year: 2013 ident: apj522286bib25 publication-title: ApJ doi: 10.1088/0004-637X/772/1/51 – volume: 577A start-page: 62W year: 2015 ident: apj522286bib85 publication-title: A&A doi: 10.1051/0004-6361/201525729 – volume: 565A start-page: 124B year: 2014 ident: apj522286bib15 publication-title: A&A doi: 10.1051/0004-6361/201423537 – volume: 580 start-page: L171 year: 2002 ident: apj522286bib48 publication-title: ApJL doi: 10.1086/345520 – volume: 673 start-page: L87 year: 2008 ident: apj522286bib62 publication-title: ApJL doi: 10.1086/527475 – volume: 509 start-page: 63S year: 2014 ident: apj522286bib77 publication-title: Natur doi: 10.1038/nature13253 – volume: 5492 start-page: 1218 year: 2004 ident: apj522286bib36 publication-title: Proc. SPIE doi: 10.1117/12.551480 – volume: 390 start-page: 779 year: 2002 ident: apj522286bib11 publication-title: A&A doi: 10.1051/0004-6361:20020555 – volume: 753 start-page: 25 year: 2012 ident: apj522286bib63 publication-title: ApJ doi: 10.1088/2041-8205/753/1/L25 – volume: 554 start-page: A82 year: 2013 ident: apj522286bib23 publication-title: A&A doi: 10.1051/0004-6361/201321381 – volume: 729 start-page: 54 year: 2011 ident: apj522286bib20 publication-title: ApJ doi: 10.1088/0004-637X/729/1/54 – volume: 474 start-page: 565 year: 2007 ident: apj522286bib2 publication-title: A&A doi: 10.1051/0004-6361:20077953 – volume: 110 start-page: 533 year: 2009 ident: apj522286bib65 publication-title: JQSRT doi: 10.1016/j.jqsrt.2009.02.013 – volume: 413 start-page: 2380 year: 2011 ident: apj522286bib30 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.18315.x – volume: 432 start-page: 2917 year: 2013 ident: apj522286bib58 publication-title: MNRAS doi: 10.1093/mnras/stt651 – volume: 677 start-page: 1324 year: 2008 ident: apj522286bib81 publication-title: ApJ doi: 10.1086/529429 – volume: 714 start-page: 1334 year: 2010 ident: apj522286bib61 publication-title: ApJ doi: 10.1088/0004-637X/714/2/1334 – volume: 707 start-page: 24 year: 2009 ident: apj522286bib47 publication-title: ApJ doi: 10.1088/0004-637X/707/1/24 – volume: 98 start-page: 609 year: 1986 ident: apj522286bib32 publication-title: PASP doi: 10.1086/131801 – volume: 2471 start-page: 105 year: 1995 ident: apj522286bib67 publication-title: SPIE doi: 10.1117/12.211919 – volume: 185 start-page: 82R year: 1999 ident: apj522286bib68 publication-title: ASPC – volume: 51 start-page: 517 year: 2003 ident: apj522286bib33 publication-title: P&SS doi: 10.1016/S0032-0633(03)00035-7 – volume: 68 start-page: 235 year: 2001 ident: apj522286bib12 publication-title: JQSRT doi: 10.1016/S0022-4073(00)00023-6 – volume: 416 start-page: 1443 year: 2011 ident: apj522286bib75 publication-title: MNRAS doi: 10.1111/j.1365-2966.2011.19142.x – volume: 690 start-page: 822 year: 2009a ident: apj522286bib39 publication-title: ApJ doi: 10.1088/0004-637X/690/1/822 – volume: 738 start-page: 71 year: 2011 ident: apj522286bib71 publication-title: ApJ doi: 10.1088/0004-637X/738/1/71 – volume: 703 start-page: 769 year: 2009b ident: apj522286bib40 publication-title: ApJ doi: 10.1088/0004-637X/703/1/769 – volume: 111 start-page: 2139 year: 2010 ident: apj522286bib66 publication-title: JQSRT doi: 10.1016/j.jqsrt.2010.05.001 – volume: 379 start-page: 641 year: 2007 ident: apj522286bib19 publication-title: MNRAS doi: 10.1111/j.1365-2966.2007.11897.x – volume: 661 start-page: L191 year: 2007 ident: apj522286bib7 publication-title: ApJL doi: 10.1086/518736 – volume: 529 start-page: A75 year: 2011 ident: apj522286bib18 publication-title: A&A doi: 10.1051/0004-6361/201116451 – volume: 470 start-page: 1187 year: 1996 ident: apj522286bib60 publication-title: ApJ doi: 10.1086/177941 – volume: 60 start-page: 15 year: 1924 ident: apj522286bib64 publication-title: ApJ doi: 10.1086/142825 – volume: 422 start-page: 2477 year: 2012 ident: apj522286bib34 publication-title: MNRAS doi: 10.1111/j.1365-2966.2012.20805.x – volume: 785 start-page: 83 year: 2014 ident: apj522286bib5 publication-title: ApJ doi: 10.1088/0004-637X/785/2/83 – volume: 403 start-page: 151 year: 2010 ident: apj522286bib16 publication-title: MNRAS doi: 10.1111/j.1365-2966.2009.16131.x – volume: 751 start-page: 117 year: 2012 ident: apj522286bib52 publication-title: ApJ doi: 10.1088/0004-637X/751/2/117 – volume: 754 start-page: 22 year: 2012 ident: apj522286bib41 publication-title: ApJ doi: 10.1088/0004-637X/754/1/22 – volume: 359L start-page: 13Q year: 2000 ident: apj522286bib59 publication-title: A&A – volume: 757 start-page: 18 year: 2012 ident: apj522286bib3 publication-title: ApJ doi: 10.1088/0004-637X/757/1/18 – volume: 783 start-page: L29 year: 2014 ident: apj522286bib43 publication-title: ApJL doi: 10.1088/2041-8205/783/2/L29 – volume: 752 start-page: 81 year: 2012 ident: apj522286bib22 publication-title: ApJ doi: 10.1088/0004-637X/752/2/81 – volume: 444 start-page: L15 year: 2005 ident: apj522286bib13 publication-title: A&A doi: 10.1051/0004-6361:200500201 – volume: 476 start-page: 1347 year: 2007 ident: apj522286bib57 publication-title: A&A doi: 10.1051/0004-6361:20078269 – volume: 721 start-page: 1861 year: 2010 ident: apj522286bib1 publication-title: ApJ doi: 10.1088/0004-637X/721/2/1861 – volume: 346 start-page: 838 year: 2014 ident: apj522286bib78 publication-title: Sci doi: 10.1126/science.1256758 – volume: 699 start-page: 478 year: 2009 ident: apj522286bib24 publication-title: ApJ doi: 10.1088/0004-637X/699/1/478 – volume: 686 start-page: 1341 year: 2008 ident: apj522286bib17 publication-title: ApJ doi: 10.1086/591635 – volume: 60 start-page: 22 year: 1924 ident: apj522286bib51 publication-title: ApJ doi: 10.1086/142826 – volume: 699 start-page: 564 year: 2009 ident: apj522286bib72 publication-title: ApJ doi: 10.1088/0004-637X/699/1/564 – year: 2015 ident: apj522286bib9 – volume: 723 start-page: 1436 year: 2010 ident: apj522286bib21 publication-title: ApJ doi: 10.1088/0004-637X/723/2/1436 – volume: 751 start-page: 86 year: 2012 ident: apj522286bib35 publication-title: ApJ doi: 10.1088/0004-637X/751/2/86 – volume: 447 start-page: 183 year: 2007 ident: apj522286bib38 publication-title: Natur doi: 10.1038/nature05782 – volume: 385 start-page: 166 year: 2002 ident: apj522286bib69 publication-title: A&A doi: 10.1051/0004-6361:20020101 |
SSID | ssj0004299 |
Score | 2.6285868 |
Snippet | ABSTRACT Giant exoplanets orbiting very close to their parent star (hot Jupiters) are subject to tidal forces expected to synchronize their rotational and... Giant exoplanets orbiting very close to their parent star (hot Jupiters) are subject to tidal forces expected to synchronize their rotational and orbital... (ProQuest: ... denotes formulae and/or non-USASCII text omitted) Giant exoplanets orbiting very close to their parent star (hot Jupiters) are subject to tidal... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 106 |
SubjectTerms | ABSORPTION ASTROPHYSICS, COSMOLOGY AND ASTRONOMY ATMOSPHERIC CIRCULATION CARBON MONOXIDE COMPARATIVE EVALUATIONS DETECTION DISPERSIONS Distortion Extrasolar planets Gas giant planets Locking Orbits planets and satellites: atmospheres planets and satellites: fundamental parameters planets and satellites: individual (HD 189733 b) RESOLUTION ROTATION SATELLITE ATMOSPHERES SATELLITES SPECTRA Spectral resolution STARS Stellar winds techniques: spectroscopic TELESCOPES Transit VELOCITY |
Title | ROTATION AND WINDS OF EXOPLANET HD 189733 b MEASURED WITH HIGH-DISPERSION TRANSMISSION SPECTROSCOPY |
URI | https://iopscience.iop.org/article/10.3847/0004-637X/817/2/106 https://www.proquest.com/docview/1808632666 https://www.proquest.com/docview/1816023235 https://www.osti.gov/biblio/22887100 |
Volume | 817 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnR1Nb9Mw1GJDSFz4GKB1DGQkhDiQLrHjr2PUpqSIJlUatHKyZie5AM20pgf49TwnKQgQFeJiWdaz49h-n37vGaGXgoUmUMx6rJLKcxzaA7nZeFZJXqraKNa5_C9SnnwI363ZejC4dbEwzfVA-sdQ7RMF90vo8JsCLXWxB6HHqVhfyEBcEGjnR-g2lcA7XQBftvwZF0nUIP72HfqsQ38b5BfOdARfByrdAJ79QaU71jO7j_R-0r3HyafxrjVj--23fI7__1cP0L1BKsVRD_0Q3ao2J-g02jo7efPlK36Fu3pvBtmeoDvLvvYI2TwrOjMXjtIpvpyn0xXOZjheZ8v3URoXOJniQCpBKTZ4EQMVz2MHVyQ4mb9NPOe9EueOouMij9LVYt6RdwytkyLPVpNs-fExKmZxMUm84eEGz4I200LJyrr0K9j_IBAGFN7QUgGHxVjBjfSr0PqWUSKZsJQyyxSxrBZGhaKqRUmfoONNs6lOXUS5ZISVwEGFH4qaK0NLe8VBI5AGVEk1QmS_Z9oOSc3d2xqfNSg3bl3d5Xqo3bpqWFdNoJ2P0Jsfna77nB6HwV_DpukBt7eHQc_didGw2S4Fr3W-SrbVhAApD3x_hF7sT5IGLHZXM1ebqtnBmBJUS5CkOT8EE3CQsAhlZ_8-o6foLoh4g5_5OTpub3bVMxCjWvO8wxUoM3r5HTnQBf0 |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtR1Nb9Mw1NqGQFwQDNAKA4wEiAOhiR3b8YFD1KQkbE2qNGjlZM1OcoKmop3Qfhb_kOckG0KIissukWW9WPZ7fl_2e88IvRLM155kxmF1IB2roR2wm7VjZMAr2WjJupD_WcaTz_6nJVvuoZ_XuTDtehD976HZFwruUWj5m4IstbkHvsOpWI4DT4wJ9PPxumqGwMqT-vIHuG2bD2kENH5NyDQuJ4kzvCzgGDC3t_BlVVO5NUzQ84QGj8w3VMBqtBFcB27tG9cwSgImDKXMMEkMa4SWvqgbUVEYdh_dYhSUG7BQTs9-p2ISOVjc_Rz7Qkf_mvcfynAfFgyKoQXW_ksxdNpueh_dG8xUHPZIeYD26tUhOgo39uC8_XaJ3-Cu3Z-LbA7R7XnfeohMkZfduRcOswifpVm0wPkUx8t8fhpmcYmTCHuBFJRijWcxiPUitnBlgpP0Y-LYcJa4sCIel0WYLWZpJ-8x9E7KIl9M8vmXR6i8CXw_RgerdlUf2RTzgBFWgUoVri8aLjWtzDkHFyHQ4FvKESJXGFVmqHJuH9v4qsDbsWSwt-2-smRQQAZFoJ-P0Lvrn9Z9kY_d4G-BVGpg9s1u0GNLTwV72tbkNTZ4yWwVISDbPdcdoZdXdFbA1vau5nxVtxcwZgC-JpjWnO-C8TiYXISyJ_8_oxfozjyaqtM0O3mK7oL5N8SgH6OD7feL-hmYWFv9vNvUGKkbZqJfKBMjfw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Rotation+and+winds+of+exoplanet+HD+189733%C2%A0b+measured+with+high-dispersion+transmission+spectroscopy&rft.jtitle=The+Astrophysical+journal&rft.au=Brogi%2C+M.&rft.au=Kok%2C+R.+J.+de&rft.au=Snellen%2C+I.+A.+G.&rft.au=Schwarz%2C+H.&rft.date=2016-02-01&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=817&rft.issue=2&rft_id=info:doi/10.3847%2F0004-637X%2F817%2F2%2F106&rft.externalDocID=22887100 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |