Machine learning open-loop control of a mixing layer
We develop an open-loop control system using machine learning to destabilize and stabilize the mixing layer. The open-loop control law comprising harmonic functions is explored using the linear genetic programming in a purely data-driven and model-free manner. The best destabilization control law ex...
Saved in:
Published in | Physics of fluids (1994) Vol. 32; no. 11 |
---|---|
Main Author | |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.11.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-6631 1089-7666 |
DOI | 10.1063/5.0030071 |
Cover
Loading…
Abstract | We develop an open-loop control system using machine learning to destabilize and stabilize the mixing layer. The open-loop control law comprising harmonic functions is explored using the linear genetic programming in a purely data-driven and model-free manner. The best destabilization control law exhibits a square wave with two alternating duty cycles. The forced flow presents a 2.5 times increase in the fluctuation energy undergoing early multiple vortex-pairing. The best stabilization control law tames the mixing layer into pure Kelvin–Helmholtz vortices without following vortex-pairing. The 23% reduction of fluctuation energy is achieved under the dual high-frequency actuations. |
---|---|
AbstractList | We develop an open-loop control system using machine learning to destabilize and stabilize the mixing layer. The open-loop control law comprising harmonic functions is explored using the linear genetic programming in a purely data-driven and model-free manner. The best destabilization control law exhibits a square wave with two alternating duty cycles. The forced flow presents a 2.5 times increase in the fluctuation energy undergoing early multiple vortex-pairing. The best stabilization control law tames the mixing layer into pure Kelvin–Helmholtz vortices without following vortex-pairing. The 23% reduction of fluctuation energy is achieved under the dual high-frequency actuations. |
Author | Noack, Bernd R. |
Author_xml | – sequence: 4 givenname: Bernd R. surname: Noack fullname: Noack, Bernd R. organization: 3Center for Turbulence Control, Harbin Institute of Technology, Shenzhen, Room 312, Building C, University Town, Xili, Shenzhen 518058, People’s Republic of China |
BookMark | eNp9kN1LwzAUxYNMcJs--B8UfFLodtN8tHmU4RdMfNHnkKWJdnRJTTpx_70tnQoqPt0D93fO5Z4JGjnvDEKnGGYYOJmzGQAByPEBGmMoRJpzzke9ziHlnOAjNIlxDR0lMj5G9F7pl8qZpDYquMo9J74xLq29bxLtXRt8nXibqGRTvffbWu1MOEaHVtXRnOznFD1dXz0ubtPlw83d4nKZapoVbbpSSlhdMEII5qUy2oIpO4VLUTCN8zxjBDJDhcGaUwqQCayNUaCpoCu7IlN0NuQ2wb9uTWzl2m-D607KjLKcAqYs66jzgdLBxxiMlU2oNirsJAbZlyKZ3JfSsfMfrK5a1Vb9p6qq_3RcDI74SX7Fv_nwDcqmtP_Bv5M_AGObf4E |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1063_5_0143913 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124788 crossref_primary_10_1007_s00348_023_03587_x crossref_primary_10_1063_5_0223543 crossref_primary_10_1063_5_0262891 crossref_primary_10_1063_5_0060760 crossref_primary_10_1016_j_combustflame_2023_112716 crossref_primary_10_1063_5_0077050 crossref_primary_10_1016_j_ast_2023_108308 crossref_primary_10_1063_5_0176247 crossref_primary_10_1109_TIM_2021_3128692 crossref_primary_10_1063_5_0086492 crossref_primary_10_1063_5_0123451 crossref_primary_10_3390_en13225920 |
Cites_doi | 10.1063/1.5087540 10.1063/5.0006492 10.1017/jfm.2020.392 10.1007/s42241-020-0026-0 10.1017/s0022112001004827 10.1017/jfm.2020.785 10.1146/annurev.fl.27.010195.002111 10.1016/S0360-1285(96)00011-1 10.1063/1.3517297 10.1063/1.5115258 10.1017/jfm.2016.678 10.1007/s00348-019-2863-6 10.1007/s00348-018-2582-4 10.1146/annurev.fl.16.010184.002053 10.1017/s0022112008002073 10.1016/j.actaastro.2018.08.036 10.1063/5.0019299 10.1063/5.0022548 10.1007/s00348-003-0756-0 10.1146/annurev-fluid-010719-060214 10.1017/jfm.2014.355 10.1063/1.5116415 10.1063/1.5127202 10.1063/5.0020698 10.1063/1.5145276 |
ContentType | Journal Article |
Copyright | Author(s) 2020 Author(s). Published under license by AIP Publishing. |
Copyright_xml | – notice: Author(s) – notice: 2020 Author(s). Published under license by AIP Publishing. |
DBID | AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0030071 |
DatabaseName | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_5_0030071 |
Genre | Correspondence |
GrantInformation_xml | – fundername: Deutsche Forschungsgemeinschaft grantid: SE2504/2-1; SE2504/3-1 funderid: http://dx.doi.org/10.13039/501100001659 – fundername: Graduate Student Research Innovation Project of Hunan Province grantid: CX2018B027 – fundername: National Natural Science Foundation of China grantid: 91441121 funderid: http://dx.doi.org/10.13039/501100001809 – fundername: Agence Nationale de Recherches sur le Sida et les Hépatites Virales grantid: ANR-17-ASTR-0022; FlowCon funderid: http://dx.doi.org/10.13039/501100003323 |
GroupedDBID | -~X 1UP 2-P 29O 4.4 5VS AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NPSNA O-B P2P RIP RNS RQS SC5 TN5 UCJ WH7 ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c428t-baa9fc8533316daecf0ed16d1d985c17725302e49e1c64400291ceea0c494bfb3 |
ISSN | 1070-6631 |
IngestDate | Sun Jun 29 16:38:54 EDT 2025 Tue Jul 01 02:44:16 EDT 2025 Thu Apr 24 22:53:19 EDT 2025 Fri Jun 21 00:14:03 EDT 2024 Wed Nov 11 00:05:21 EST 2020 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | 1070-6631/2020/32(11)/111701/7/$30.00 Published under license by AIP Publishing. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c428t-baa9fc8533316daecf0ed16d1d985c17725302e49e1c64400291ceea0c494bfb3 |
Notes | SourceType-Scholarly Journals-1 ObjectType-Correspondence-1 content type line 14 |
ORCID | 0000-0003-0083-0779 0000-0002-6806-6108 |
OpenAccessLink | https://aip.scitation.org/doi/pdf/10.1063/5.0030071 |
PQID | 2457401452 |
PQPubID | 2050667 |
PageCount | 7 |
ParticipantIDs | scitation_primary_10_1063_5_0030071 crossref_primary_10_1063_5_0030071 crossref_citationtrail_10_1063_5_0030071 proquest_journals_2457401452 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201101 2020-11-01 |
PublicationDateYYYYMMDD | 2020-11-01 |
PublicationDate_xml | – month: 11 year: 2020 text: 20201101 day: 01 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2020 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Kaiser, Noack, Cordier, Spohn, Segond, Abel, Daviller, Östh, Krajnović, Niven (c25) 2014; 754 Cavalieri, Jordan, Gervais, Wei, Freund (c3) 2010; 22 Singh, Little (c10) 2020; 61 Ren, Hu, Tang (c15) 2020; 32 Rabault, Kuhnle (c21) 2019; 31 Ren, Wang, Tang (c19) 2019; 31 Coats (c12) 1997; 22 Tan, Li, Noack (c1) 2020; 32 Suzuki, Kasagi, Suzuki (c9) 2004; 36 Han, Huang (c17) 2020; 32 Noack, Stankiewicz, Morzyński, Schmid (c24) 2016; 809 Ghaemi (c4) 2020; 32 Li, Tan (c28) 2020; 32 Brunton, Noack, Koumoutsakos (c16) 2020; 52 Zhang, Tan, Yao (c2) 2019; 31 Tang, Rabault, Kuhnle, Wang, Wang (c20) 2020; 32 Zhou, Fan, Zhang, Li, Noack (c22) 2020; 897 Gutmark, Schadow, Yu (c6) 1995; 27 Tan, Zhang, Lv (c7) 2018; 152 Raibaudo, Zhong, Noack, Martinuzzi (c18) 2020; 32 Ho, Huerre (c5) 1984; 16 Wu, Fan, Zhou, Li, Noack (c27) 2018; 59 De Zhou, Wygnanski (c11) 2001; 441 Pastoor, Henning, Noack, King, Tadmor (c13) 2008; 608 (2023080706000975800_c4) 2020; 32 (2023080706000975800_c11) 2001; 441 (2023080706000975800_c24) 2016; 809 (2023080706000975800_c6) 1995; 27 (2023080706000975800_c15) 2020; 32 (2023080706000975800_c20) 2020; 32 (2023080706000975800_c28) 2020; 32 (2023080706000975800_c17) 2020; 32 2023080706000975800_c26 (2023080706000975800_c27) 2018; 59 (2023080706000975800_c8) 1992 (2023080706000975800_c12) 1997; 22 (2023080706000975800_c19) 2019; 31 (2023080706000975800_c22) 2020; 897 (2023080706000975800_c18) 2020; 32 (2023080706000975800_c10) 2020; 61 (2023080706000975800_c1) 2020; 32 (2023080706000975800_c23) 2007 (2023080706000975800_c5) 1984; 16 (2023080706000975800_c2) 2019; 31 (2023080706000975800_c3) 2010; 22 (2023080706000975800_c7) 2018; 152 (2023080706000975800_c13) 2008; 608 (2023080706000975800_c25) 2014; 754 (2023080706000975800_c21) 2019; 31 2023080706000975800_c14 (2023080706000975800_c16) 2020; 52 (2023080706000975800_c9) 2004; 36 |
References_xml | – volume: 32 start-page: 096102 year: 2020 ident: c1 article-title: On the cavity-actuated supersonic mixing layer downstream a thick splitter plate publication-title: Phys. Fluids – volume: 441 start-page: 139 year: 2001 ident: c11 article-title: The response of a mixing layer formed between parallel streams to a concomitant excitation at two frequencies publication-title: J. Fluid Mech. – volume: 52 start-page: 477 year: 2020 ident: c16 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. – volume: 809 start-page: 843 year: 2016 ident: c24 article-title: Recursive dynamic mode decomposition of transient and post-transient wake flows publication-title: J. Fluid Mech. – volume: 32 start-page: 080401 year: 2020 ident: c4 article-title: Passive and active control of turbulent flows publication-title: Phys. Fluids – volume: 31 start-page: 036102 year: 2019 ident: c2 article-title: Direct numerical simulation of spatially developing highly compressible mixing layer: Structural evolution and turbulent statistics publication-title: Phys. Fluids – volume: 16 start-page: 365 year: 1984 ident: c5 article-title: Perturbed free shear layers publication-title: Annu. Rev. Fluid Mech. – volume: 36 start-page: 498 year: 2004 ident: c9 article-title: Active control of an axisymmetric jet with distributed electromagnetic flap actuators publication-title: Exp. Fluids – volume: 754 start-page: 365 year: 2014 ident: c25 article-title: Cluster-based reduced-order modelling of a mixing layer publication-title: J. Fluid Mech. – volume: 31 start-page: 093601 year: 2019 ident: c19 article-title: Active control of vortex-induced vibration of a circular cylinder using machine learning publication-title: Phys. Fluids – volume: 22 start-page: 115113 year: 2010 ident: c3 article-title: Intermittent sound generation and its control in a free-shear flow publication-title: Phys. Fluids – volume: 27 start-page: 375 year: 1995 ident: c6 article-title: Mixing enhancement in supersonic free shear flows publication-title: Annu. Rev. Fluid Mech. – volume: 32 start-page: 015108 year: 2020 ident: c18 article-title: Machine learning strategies applied to the control of a fluidic pinball publication-title: Phys. Fluids – volume: 152 start-page: 310 year: 2018 ident: c7 article-title: A review on enhanced mixing methods in supersonic mixing layer flows publication-title: Acta Astronaut. – volume: 32 start-page: 247 year: 2020 ident: c15 article-title: Active flow control using machine learning: A brief review publication-title: J. Hydrodyn. – volume: 31 start-page: 094105 year: 2019 ident: c21 article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach publication-title: Phys. Fluids – volume: 59 start-page: 131 year: 2018 ident: c27 article-title: Jet mixing optimization using machine learning control publication-title: Exp. Fluids – volume: 32 start-page: 053605 year: 2020 ident: c20 article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning publication-title: Phys. Fluids – volume: 61 start-page: 36 year: 2020 ident: c10 article-title: Parametric study of Ns-DBD plasma actuators in a turbulent mixing layer publication-title: Exp. Fluids – volume: 22 start-page: 427 year: 1997 ident: c12 article-title: Coherent structures in combustion publication-title: Prog. Energy Combust. Sci. – volume: 608 start-page: 161 year: 2008 ident: c13 article-title: Feedback shear layer control for bluff body drag reduction publication-title: J. Fluid Mech. – volume: 32 start-page: 095108 year: 2020 ident: c17 article-title: Active control for drag reduction of turbulent channel flow based on convolutional neural networks publication-title: Phys. Fluids – volume: 897 start-page: A27 year: 2020 ident: c22 article-title: Artificial intelligence control of a turbulent jet publication-title: J. Fluid Mech. – volume: 32 start-page: 056104 year: 2020 ident: c28 article-title: Cluster-based Markov model to understand the transition dynamics of a supersonic mixing layer publication-title: Phys. Fluids – volume: 31 start-page: 036102 year: 2019 ident: 2023080706000975800_c2 article-title: Direct numerical simulation of spatially developing highly compressible mixing layer: Structural evolution and turbulent statistics publication-title: Phys. Fluids doi: 10.1063/1.5087540 – volume: 32 start-page: 053605 year: 2020 ident: 2023080706000975800_c20 article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning publication-title: Phys. Fluids doi: 10.1063/5.0006492 – volume: 897 start-page: A27 year: 2020 ident: 2023080706000975800_c22 article-title: Artificial intelligence control of a turbulent jet publication-title: J. Fluid Mech. doi: 10.1017/jfm.2020.392 – volume: 32 start-page: 247 year: 2020 ident: 2023080706000975800_c15 article-title: Active flow control using machine learning: A brief review publication-title: J. Hydrodyn. doi: 10.1007/s42241-020-0026-0 – volume: 441 start-page: 139 year: 2001 ident: 2023080706000975800_c11 article-title: The response of a mixing layer formed between parallel streams to a concomitant excitation at two frequencies publication-title: J. Fluid Mech. doi: 10.1017/s0022112001004827 – ident: 2023080706000975800_c26 doi: 10.1017/jfm.2020.785 – start-page: 177 year: 1992 ident: 2023080706000975800_c8 article-title: An experimental investigation of large scale instabilities in a low Reynolds number two-stream supersonic shear layer – volume: 27 start-page: 375 year: 1995 ident: 2023080706000975800_c6 article-title: Mixing enhancement in supersonic free shear flows publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.27.010195.002111 – volume: 22 start-page: 427 year: 1997 ident: 2023080706000975800_c12 article-title: Coherent structures in combustion publication-title: Prog. Energy Combust. Sci. doi: 10.1016/S0360-1285(96)00011-1 – volume: 22 start-page: 115113 year: 2010 ident: 2023080706000975800_c3 article-title: Intermittent sound generation and its control in a free-shear flow publication-title: Phys. Fluids doi: 10.1063/1.3517297 – volume: 31 start-page: 093601 year: 2019 ident: 2023080706000975800_c19 article-title: Active control of vortex-induced vibration of a circular cylinder using machine learning publication-title: Phys. Fluids doi: 10.1063/1.5115258 – volume: 809 start-page: 843 year: 2016 ident: 2023080706000975800_c24 article-title: Recursive dynamic mode decomposition of transient and post-transient wake flows publication-title: J. Fluid Mech. doi: 10.1017/jfm.2016.678 – volume: 61 start-page: 36 year: 2020 ident: 2023080706000975800_c10 article-title: Parametric study of Ns-DBD plasma actuators in a turbulent mixing layer publication-title: Exp. Fluids doi: 10.1007/s00348-019-2863-6 – volume: 59 start-page: 131 year: 2018 ident: 2023080706000975800_c27 article-title: Jet mixing optimization using machine learning control publication-title: Exp. Fluids doi: 10.1007/s00348-018-2582-4 – volume: 16 start-page: 365 year: 1984 ident: 2023080706000975800_c5 article-title: Perturbed free shear layers publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.16.010184.002053 – ident: 2023080706000975800_c14 – volume: 608 start-page: 161 year: 2008 ident: 2023080706000975800_c13 article-title: Feedback shear layer control for bluff body drag reduction publication-title: J. Fluid Mech. doi: 10.1017/s0022112008002073 – volume: 152 start-page: 310 year: 2018 ident: 2023080706000975800_c7 article-title: A review on enhanced mixing methods in supersonic mixing layer flows publication-title: Acta Astronaut. doi: 10.1016/j.actaastro.2018.08.036 – volume-title: Linear Genetic Programming year: 2007 ident: 2023080706000975800_c23 – volume: 32 start-page: 096102 year: 2020 ident: 2023080706000975800_c1 article-title: On the cavity-actuated supersonic mixing layer downstream a thick splitter plate publication-title: Phys. Fluids doi: 10.1063/5.0019299 – volume: 32 start-page: 080401 year: 2020 ident: 2023080706000975800_c4 article-title: Passive and active control of turbulent flows publication-title: Phys. Fluids doi: 10.1063/5.0022548 – volume: 36 start-page: 498 year: 2004 ident: 2023080706000975800_c9 article-title: Active control of an axisymmetric jet with distributed electromagnetic flap actuators publication-title: Exp. Fluids doi: 10.1007/s00348-003-0756-0 – volume: 52 start-page: 477 year: 2020 ident: 2023080706000975800_c16 article-title: Machine learning for fluid mechanics publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev-fluid-010719-060214 – volume: 754 start-page: 365 year: 2014 ident: 2023080706000975800_c25 article-title: Cluster-based reduced-order modelling of a mixing layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2014.355 – volume: 31 start-page: 094105 year: 2019 ident: 2023080706000975800_c21 article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach publication-title: Phys. Fluids doi: 10.1063/1.5116415 – volume: 32 start-page: 015108 year: 2020 ident: 2023080706000975800_c18 article-title: Machine learning strategies applied to the control of a fluidic pinball publication-title: Phys. Fluids doi: 10.1063/1.5127202 – volume: 32 start-page: 095108 year: 2020 ident: 2023080706000975800_c17 article-title: Active control for drag reduction of turbulent channel flow based on convolutional neural networks publication-title: Phys. Fluids doi: 10.1063/5.0020698 – volume: 32 start-page: 056104 year: 2020 ident: 2023080706000975800_c28 article-title: Cluster-based Markov model to understand the transition dynamics of a supersonic mixing layer publication-title: Phys. Fluids doi: 10.1063/1.5145276 |
SSID | ssj0003926 |
Score | 2.431529 |
Snippet | We develop an open-loop control system using machine learning to destabilize and stabilize the mixing layer. The open-loop control law comprising harmonic... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Computational fluid dynamics Control theory Destabilization Fluid dynamics Fluid flow Genetic algorithms Harmonic functions Machine learning Physics Square waves |
Title | Machine learning open-loop control of a mixing layer |
URI | http://dx.doi.org/10.1063/5.0030071 https://www.proquest.com/docview/2457401452 |
Volume | 32 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5tRWi8wMY2rfyYrLEHJGTWxI5bP7IxhNDKy0DiLbIdGyF1TVVatPHXc46dpBMVYnuJIsdxpO9zLp8vdz6Az04KrbNUU53YjHLLMyqF05SZfspsapSwPlF4eC5OL_nZVXbV1qirsktm-tDcL80r-R9WsQ159Vmy_8BsMyg24Dnyi0dkGI_P4nhYRULauvTD9YGvhUVHZTlpQtCr9MdfN7_91ZH6E2Nxoxqtwj9NFczhRvObImzbJCVf8A-clypYzK926nMZDxf9BLgoTBo_QTBt-HJT1Behyca2gaR9Eeqe1Paw9TfO65yQR3YWhQ2C491RzIuUl7CSokzvdWDl6Hj442fzLUT1JULUZ3h2vbeTYF-am_9WBK3Mf4UaIIQjLHzxL17DepTq5Cjg_gZe2PEmbETZTqJRvN2E1QjjW-CREFITQhpCSCSElI4oEgghFSHv4PLk-8W3UxrLUlCDa7UZ1UpJZ1DmMJaIQlnjerbAs6SQg8wkiIOvxGS5tIlBten_eyYoRVTPcMm10-w9dMbl2H4AolJlLIpc1e_jW6K1QjgGuEAvmOMW1VkX9mto8hoMXzpklFexA4LlWR5R7MKnpuskbFSyrNNOjW8e5_FtnvLMl2XkWdqFvQbzpwZZ0uuunLY98knhtp411jastXN1Bzqz6dzuosqb6Y9xKj0ArGdNUg |
linkProvider | EBSCOhost |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+open-loop+control+of+a+mixing+layer&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Noack%2C+Bernd+R.&rft.date=2020-11-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=32&rft.issue=11&rft_id=info:doi/10.1063%2F5.0030071 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |