Machine learning open-loop control of a mixing layer

We develop an open-loop control system using machine learning to destabilize and stabilize the mixing layer. The open-loop control law comprising harmonic functions is explored using the linear genetic programming in a purely data-driven and model-free manner. The best destabilization control law ex...

Full description

Saved in:
Bibliographic Details
Published inPhysics of fluids (1994) Vol. 32; no. 11
Main Author Noack, Bernd R.
Format Journal Article
LanguageEnglish
Published Melville American Institute of Physics 01.11.2020
Subjects
Online AccessGet full text
ISSN1070-6631
1089-7666
DOI10.1063/5.0030071

Cover

Loading…
Abstract We develop an open-loop control system using machine learning to destabilize and stabilize the mixing layer. The open-loop control law comprising harmonic functions is explored using the linear genetic programming in a purely data-driven and model-free manner. The best destabilization control law exhibits a square wave with two alternating duty cycles. The forced flow presents a 2.5 times increase in the fluctuation energy undergoing early multiple vortex-pairing. The best stabilization control law tames the mixing layer into pure Kelvin–Helmholtz vortices without following vortex-pairing. The 23% reduction of fluctuation energy is achieved under the dual high-frequency actuations.
AbstractList We develop an open-loop control system using machine learning to destabilize and stabilize the mixing layer. The open-loop control law comprising harmonic functions is explored using the linear genetic programming in a purely data-driven and model-free manner. The best destabilization control law exhibits a square wave with two alternating duty cycles. The forced flow presents a 2.5 times increase in the fluctuation energy undergoing early multiple vortex-pairing. The best stabilization control law tames the mixing layer into pure Kelvin–Helmholtz vortices without following vortex-pairing. The 23% reduction of fluctuation energy is achieved under the dual high-frequency actuations.
Author Noack, Bernd R.
Author_xml – sequence: 4
  givenname: Bernd R.
  surname: Noack
  fullname: Noack, Bernd R.
  organization: 3Center for Turbulence Control, Harbin Institute of Technology, Shenzhen, Room 312, Building C, University Town, Xili, Shenzhen 518058, People’s Republic of China
BookMark eNp9kN1LwzAUxYNMcJs--B8UfFLodtN8tHmU4RdMfNHnkKWJdnRJTTpx_70tnQoqPt0D93fO5Z4JGjnvDEKnGGYYOJmzGQAByPEBGmMoRJpzzke9ziHlnOAjNIlxDR0lMj5G9F7pl8qZpDYquMo9J74xLq29bxLtXRt8nXibqGRTvffbWu1MOEaHVtXRnOznFD1dXz0ubtPlw83d4nKZapoVbbpSSlhdMEII5qUy2oIpO4VLUTCN8zxjBDJDhcGaUwqQCayNUaCpoCu7IlN0NuQ2wb9uTWzl2m-D607KjLKcAqYs66jzgdLBxxiMlU2oNirsJAbZlyKZ3JfSsfMfrK5a1Vb9p6qq_3RcDI74SX7Fv_nwDcqmtP_Bv5M_AGObf4E
CODEN PHFLE6
CitedBy_id crossref_primary_10_1063_5_0143913
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124788
crossref_primary_10_1007_s00348_023_03587_x
crossref_primary_10_1063_5_0223543
crossref_primary_10_1063_5_0262891
crossref_primary_10_1063_5_0060760
crossref_primary_10_1016_j_combustflame_2023_112716
crossref_primary_10_1063_5_0077050
crossref_primary_10_1016_j_ast_2023_108308
crossref_primary_10_1063_5_0176247
crossref_primary_10_1109_TIM_2021_3128692
crossref_primary_10_1063_5_0086492
crossref_primary_10_1063_5_0123451
crossref_primary_10_3390_en13225920
Cites_doi 10.1063/1.5087540
10.1063/5.0006492
10.1017/jfm.2020.392
10.1007/s42241-020-0026-0
10.1017/s0022112001004827
10.1017/jfm.2020.785
10.1146/annurev.fl.27.010195.002111
10.1016/S0360-1285(96)00011-1
10.1063/1.3517297
10.1063/1.5115258
10.1017/jfm.2016.678
10.1007/s00348-019-2863-6
10.1007/s00348-018-2582-4
10.1146/annurev.fl.16.010184.002053
10.1017/s0022112008002073
10.1016/j.actaastro.2018.08.036
10.1063/5.0019299
10.1063/5.0022548
10.1007/s00348-003-0756-0
10.1146/annurev-fluid-010719-060214
10.1017/jfm.2014.355
10.1063/1.5116415
10.1063/1.5127202
10.1063/5.0020698
10.1063/1.5145276
ContentType Journal Article
Copyright Author(s)
2020 Author(s). Published under license by AIP Publishing.
Copyright_xml – notice: Author(s)
– notice: 2020 Author(s). Published under license by AIP Publishing.
DBID AAYXX
CITATION
8FD
H8D
L7M
DOI 10.1063/5.0030071
DatabaseName CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList CrossRef
Technology Research Database

DeliveryMethod fulltext_linktorsrc
Discipline Applied Sciences
Physics
EISSN 1089-7666
ExternalDocumentID 10_1063_5_0030071
Genre Correspondence
GrantInformation_xml – fundername: Deutsche Forschungsgemeinschaft
  grantid: SE2504/2-1; SE2504/3-1
  funderid: http://dx.doi.org/10.13039/501100001659
– fundername: Graduate Student Research Innovation Project of Hunan Province
  grantid: CX2018B027
– fundername: National Natural Science Foundation of China
  grantid: 91441121
  funderid: http://dx.doi.org/10.13039/501100001809
– fundername: Agence Nationale de Recherches sur le Sida et les Hépatites Virales
  grantid: ANR-17-ASTR-0022; FlowCon
  funderid: http://dx.doi.org/10.13039/501100003323
GroupedDBID -~X
1UP
2-P
29O
4.4
5VS
AAAAW
AABDS
AAEUA
AAPUP
AAYIH
ABJNI
ACBRY
ACGFS
ACLYJ
ACNCT
ACZLF
ADCTM
AEJMO
AENEX
AFATG
AFHCQ
AGKCL
AGLKD
AGMXG
AGTJO
AHSDT
AIDUJ
AJJCW
AJQPL
ALEPV
ALMA_UNASSIGNED_HOLDINGS
ATXIE
AWQPM
BPZLN
CS3
DU5
EBS
ESX
F5P
FDOHQ
FFFMQ
HAM
H~9
M6X
M71
M73
NPSNA
O-B
P2P
RIP
RNS
RQS
SC5
TN5
UCJ
WH7
~02
AAGWI
AAYXX
ABJGX
ADMLS
BDMKI
CITATION
8FD
H8D
L7M
ID FETCH-LOGICAL-c428t-baa9fc8533316daecf0ed16d1d985c17725302e49e1c64400291ceea0c494bfb3
ISSN 1070-6631
IngestDate Sun Jun 29 16:38:54 EDT 2025
Tue Jul 01 02:44:16 EDT 2025
Thu Apr 24 22:53:19 EDT 2025
Fri Jun 21 00:14:03 EDT 2024
Wed Nov 11 00:05:21 EST 2020
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License 1070-6631/2020/32(11)/111701/7/$30.00
Published under license by AIP Publishing.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-baa9fc8533316daecf0ed16d1d985c17725302e49e1c64400291ceea0c494bfb3
Notes SourceType-Scholarly Journals-1
ObjectType-Correspondence-1
content type line 14
ORCID 0000-0003-0083-0779
0000-0002-6806-6108
OpenAccessLink https://aip.scitation.org/doi/pdf/10.1063/5.0030071
PQID 2457401452
PQPubID 2050667
PageCount 7
ParticipantIDs scitation_primary_10_1063_5_0030071
crossref_primary_10_1063_5_0030071
crossref_citationtrail_10_1063_5_0030071
proquest_journals_2457401452
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201101
2020-11-01
PublicationDateYYYYMMDD 2020-11-01
PublicationDate_xml – month: 11
  year: 2020
  text: 20201101
  day: 01
PublicationDecade 2020
PublicationPlace Melville
PublicationPlace_xml – name: Melville
PublicationTitle Physics of fluids (1994)
PublicationYear 2020
Publisher American Institute of Physics
Publisher_xml – name: American Institute of Physics
References Kaiser, Noack, Cordier, Spohn, Segond, Abel, Daviller, Östh, Krajnović, Niven (c25) 2014; 754
Cavalieri, Jordan, Gervais, Wei, Freund (c3) 2010; 22
Singh, Little (c10) 2020; 61
Ren, Hu, Tang (c15) 2020; 32
Rabault, Kuhnle (c21) 2019; 31
Ren, Wang, Tang (c19) 2019; 31
Coats (c12) 1997; 22
Tan, Li, Noack (c1) 2020; 32
Suzuki, Kasagi, Suzuki (c9) 2004; 36
Han, Huang (c17) 2020; 32
Noack, Stankiewicz, Morzyński, Schmid (c24) 2016; 809
Ghaemi (c4) 2020; 32
Li, Tan (c28) 2020; 32
Brunton, Noack, Koumoutsakos (c16) 2020; 52
Zhang, Tan, Yao (c2) 2019; 31
Tang, Rabault, Kuhnle, Wang, Wang (c20) 2020; 32
Zhou, Fan, Zhang, Li, Noack (c22) 2020; 897
Gutmark, Schadow, Yu (c6) 1995; 27
Tan, Zhang, Lv (c7) 2018; 152
Raibaudo, Zhong, Noack, Martinuzzi (c18) 2020; 32
Ho, Huerre (c5) 1984; 16
Wu, Fan, Zhou, Li, Noack (c27) 2018; 59
De Zhou, Wygnanski (c11) 2001; 441
Pastoor, Henning, Noack, King, Tadmor (c13) 2008; 608
(2023080706000975800_c4) 2020; 32
(2023080706000975800_c11) 2001; 441
(2023080706000975800_c24) 2016; 809
(2023080706000975800_c6) 1995; 27
(2023080706000975800_c15) 2020; 32
(2023080706000975800_c20) 2020; 32
(2023080706000975800_c28) 2020; 32
(2023080706000975800_c17) 2020; 32
2023080706000975800_c26
(2023080706000975800_c27) 2018; 59
(2023080706000975800_c8) 1992
(2023080706000975800_c12) 1997; 22
(2023080706000975800_c19) 2019; 31
(2023080706000975800_c22) 2020; 897
(2023080706000975800_c18) 2020; 32
(2023080706000975800_c10) 2020; 61
(2023080706000975800_c1) 2020; 32
(2023080706000975800_c23) 2007
(2023080706000975800_c5) 1984; 16
(2023080706000975800_c2) 2019; 31
(2023080706000975800_c3) 2010; 22
(2023080706000975800_c7) 2018; 152
(2023080706000975800_c13) 2008; 608
(2023080706000975800_c25) 2014; 754
(2023080706000975800_c21) 2019; 31
2023080706000975800_c14
(2023080706000975800_c16) 2020; 52
(2023080706000975800_c9) 2004; 36
References_xml – volume: 32
  start-page: 096102
  year: 2020
  ident: c1
  article-title: On the cavity-actuated supersonic mixing layer downstream a thick splitter plate
  publication-title: Phys. Fluids
– volume: 441
  start-page: 139
  year: 2001
  ident: c11
  article-title: The response of a mixing layer formed between parallel streams to a concomitant excitation at two frequencies
  publication-title: J. Fluid Mech.
– volume: 52
  start-page: 477
  year: 2020
  ident: c16
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
– volume: 809
  start-page: 843
  year: 2016
  ident: c24
  article-title: Recursive dynamic mode decomposition of transient and post-transient wake flows
  publication-title: J. Fluid Mech.
– volume: 32
  start-page: 080401
  year: 2020
  ident: c4
  article-title: Passive and active control of turbulent flows
  publication-title: Phys. Fluids
– volume: 31
  start-page: 036102
  year: 2019
  ident: c2
  article-title: Direct numerical simulation of spatially developing highly compressible mixing layer: Structural evolution and turbulent statistics
  publication-title: Phys. Fluids
– volume: 16
  start-page: 365
  year: 1984
  ident: c5
  article-title: Perturbed free shear layers
  publication-title: Annu. Rev. Fluid Mech.
– volume: 36
  start-page: 498
  year: 2004
  ident: c9
  article-title: Active control of an axisymmetric jet with distributed electromagnetic flap actuators
  publication-title: Exp. Fluids
– volume: 754
  start-page: 365
  year: 2014
  ident: c25
  article-title: Cluster-based reduced-order modelling of a mixing layer
  publication-title: J. Fluid Mech.
– volume: 31
  start-page: 093601
  year: 2019
  ident: c19
  article-title: Active control of vortex-induced vibration of a circular cylinder using machine learning
  publication-title: Phys. Fluids
– volume: 22
  start-page: 115113
  year: 2010
  ident: c3
  article-title: Intermittent sound generation and its control in a free-shear flow
  publication-title: Phys. Fluids
– volume: 27
  start-page: 375
  year: 1995
  ident: c6
  article-title: Mixing enhancement in supersonic free shear flows
  publication-title: Annu. Rev. Fluid Mech.
– volume: 32
  start-page: 015108
  year: 2020
  ident: c18
  article-title: Machine learning strategies applied to the control of a fluidic pinball
  publication-title: Phys. Fluids
– volume: 152
  start-page: 310
  year: 2018
  ident: c7
  article-title: A review on enhanced mixing methods in supersonic mixing layer flows
  publication-title: Acta Astronaut.
– volume: 32
  start-page: 247
  year: 2020
  ident: c15
  article-title: Active flow control using machine learning: A brief review
  publication-title: J. Hydrodyn.
– volume: 31
  start-page: 094105
  year: 2019
  ident: c21
  article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach
  publication-title: Phys. Fluids
– volume: 59
  start-page: 131
  year: 2018
  ident: c27
  article-title: Jet mixing optimization using machine learning control
  publication-title: Exp. Fluids
– volume: 32
  start-page: 053605
  year: 2020
  ident: c20
  article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning
  publication-title: Phys. Fluids
– volume: 61
  start-page: 36
  year: 2020
  ident: c10
  article-title: Parametric study of Ns-DBD plasma actuators in a turbulent mixing layer
  publication-title: Exp. Fluids
– volume: 22
  start-page: 427
  year: 1997
  ident: c12
  article-title: Coherent structures in combustion
  publication-title: Prog. Energy Combust. Sci.
– volume: 608
  start-page: 161
  year: 2008
  ident: c13
  article-title: Feedback shear layer control for bluff body drag reduction
  publication-title: J. Fluid Mech.
– volume: 32
  start-page: 095108
  year: 2020
  ident: c17
  article-title: Active control for drag reduction of turbulent channel flow based on convolutional neural networks
  publication-title: Phys. Fluids
– volume: 897
  start-page: A27
  year: 2020
  ident: c22
  article-title: Artificial intelligence control of a turbulent jet
  publication-title: J. Fluid Mech.
– volume: 32
  start-page: 056104
  year: 2020
  ident: c28
  article-title: Cluster-based Markov model to understand the transition dynamics of a supersonic mixing layer
  publication-title: Phys. Fluids
– volume: 31
  start-page: 036102
  year: 2019
  ident: 2023080706000975800_c2
  article-title: Direct numerical simulation of spatially developing highly compressible mixing layer: Structural evolution and turbulent statistics
  publication-title: Phys. Fluids
  doi: 10.1063/1.5087540
– volume: 32
  start-page: 053605
  year: 2020
  ident: 2023080706000975800_c20
  article-title: Robust active flow control over a range of Reynolds numbers using an artificial neural network trained through deep reinforcement learning
  publication-title: Phys. Fluids
  doi: 10.1063/5.0006492
– volume: 897
  start-page: A27
  year: 2020
  ident: 2023080706000975800_c22
  article-title: Artificial intelligence control of a turbulent jet
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2020.392
– volume: 32
  start-page: 247
  year: 2020
  ident: 2023080706000975800_c15
  article-title: Active flow control using machine learning: A brief review
  publication-title: J. Hydrodyn.
  doi: 10.1007/s42241-020-0026-0
– volume: 441
  start-page: 139
  year: 2001
  ident: 2023080706000975800_c11
  article-title: The response of a mixing layer formed between parallel streams to a concomitant excitation at two frequencies
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112001004827
– ident: 2023080706000975800_c26
  doi: 10.1017/jfm.2020.785
– start-page: 177
  year: 1992
  ident: 2023080706000975800_c8
  article-title: An experimental investigation of large scale instabilities in a low Reynolds number two-stream supersonic shear layer
– volume: 27
  start-page: 375
  year: 1995
  ident: 2023080706000975800_c6
  article-title: Mixing enhancement in supersonic free shear flows
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.27.010195.002111
– volume: 22
  start-page: 427
  year: 1997
  ident: 2023080706000975800_c12
  article-title: Coherent structures in combustion
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/S0360-1285(96)00011-1
– volume: 22
  start-page: 115113
  year: 2010
  ident: 2023080706000975800_c3
  article-title: Intermittent sound generation and its control in a free-shear flow
  publication-title: Phys. Fluids
  doi: 10.1063/1.3517297
– volume: 31
  start-page: 093601
  year: 2019
  ident: 2023080706000975800_c19
  article-title: Active control of vortex-induced vibration of a circular cylinder using machine learning
  publication-title: Phys. Fluids
  doi: 10.1063/1.5115258
– volume: 809
  start-page: 843
  year: 2016
  ident: 2023080706000975800_c24
  article-title: Recursive dynamic mode decomposition of transient and post-transient wake flows
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2016.678
– volume: 61
  start-page: 36
  year: 2020
  ident: 2023080706000975800_c10
  article-title: Parametric study of Ns-DBD plasma actuators in a turbulent mixing layer
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-019-2863-6
– volume: 59
  start-page: 131
  year: 2018
  ident: 2023080706000975800_c27
  article-title: Jet mixing optimization using machine learning control
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-018-2582-4
– volume: 16
  start-page: 365
  year: 1984
  ident: 2023080706000975800_c5
  article-title: Perturbed free shear layers
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev.fl.16.010184.002053
– ident: 2023080706000975800_c14
– volume: 608
  start-page: 161
  year: 2008
  ident: 2023080706000975800_c13
  article-title: Feedback shear layer control for bluff body drag reduction
  publication-title: J. Fluid Mech.
  doi: 10.1017/s0022112008002073
– volume: 152
  start-page: 310
  year: 2018
  ident: 2023080706000975800_c7
  article-title: A review on enhanced mixing methods in supersonic mixing layer flows
  publication-title: Acta Astronaut.
  doi: 10.1016/j.actaastro.2018.08.036
– volume-title: Linear Genetic Programming
  year: 2007
  ident: 2023080706000975800_c23
– volume: 32
  start-page: 096102
  year: 2020
  ident: 2023080706000975800_c1
  article-title: On the cavity-actuated supersonic mixing layer downstream a thick splitter plate
  publication-title: Phys. Fluids
  doi: 10.1063/5.0019299
– volume: 32
  start-page: 080401
  year: 2020
  ident: 2023080706000975800_c4
  article-title: Passive and active control of turbulent flows
  publication-title: Phys. Fluids
  doi: 10.1063/5.0022548
– volume: 36
  start-page: 498
  year: 2004
  ident: 2023080706000975800_c9
  article-title: Active control of an axisymmetric jet with distributed electromagnetic flap actuators
  publication-title: Exp. Fluids
  doi: 10.1007/s00348-003-0756-0
– volume: 52
  start-page: 477
  year: 2020
  ident: 2023080706000975800_c16
  article-title: Machine learning for fluid mechanics
  publication-title: Annu. Rev. Fluid Mech.
  doi: 10.1146/annurev-fluid-010719-060214
– volume: 754
  start-page: 365
  year: 2014
  ident: 2023080706000975800_c25
  article-title: Cluster-based reduced-order modelling of a mixing layer
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2014.355
– volume: 31
  start-page: 094105
  year: 2019
  ident: 2023080706000975800_c21
  article-title: Accelerating deep reinforcement learning strategies of flow control through a multi-environment approach
  publication-title: Phys. Fluids
  doi: 10.1063/1.5116415
– volume: 32
  start-page: 015108
  year: 2020
  ident: 2023080706000975800_c18
  article-title: Machine learning strategies applied to the control of a fluidic pinball
  publication-title: Phys. Fluids
  doi: 10.1063/1.5127202
– volume: 32
  start-page: 095108
  year: 2020
  ident: 2023080706000975800_c17
  article-title: Active control for drag reduction of turbulent channel flow based on convolutional neural networks
  publication-title: Phys. Fluids
  doi: 10.1063/5.0020698
– volume: 32
  start-page: 056104
  year: 2020
  ident: 2023080706000975800_c28
  article-title: Cluster-based Markov model to understand the transition dynamics of a supersonic mixing layer
  publication-title: Phys. Fluids
  doi: 10.1063/1.5145276
SSID ssj0003926
Score 2.431529
Snippet We develop an open-loop control system using machine learning to destabilize and stabilize the mixing layer. The open-loop control law comprising harmonic...
SourceID proquest
crossref
scitation
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
SubjectTerms Computational fluid dynamics
Control theory
Destabilization
Fluid dynamics
Fluid flow
Genetic algorithms
Harmonic functions
Machine learning
Physics
Square waves
Title Machine learning open-loop control of a mixing layer
URI http://dx.doi.org/10.1063/5.0030071
https://www.proquest.com/docview/2457401452
Volume 32
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fT9swED5tRWi8wMY2rfyYrLEHJGTWxI5bP7IxhNDKy0DiLbIdGyF1TVVatPHXc46dpBMVYnuJIsdxpO9zLp8vdz6Az04KrbNUU53YjHLLMyqF05SZfspsapSwPlF4eC5OL_nZVXbV1qirsktm-tDcL80r-R9WsQ159Vmy_8BsMyg24Dnyi0dkGI_P4nhYRULauvTD9YGvhUVHZTlpQtCr9MdfN7_91ZH6E2Nxoxqtwj9NFczhRvObImzbJCVf8A-clypYzK926nMZDxf9BLgoTBo_QTBt-HJT1Behyca2gaR9Eeqe1Paw9TfO65yQR3YWhQ2C491RzIuUl7CSokzvdWDl6Hj442fzLUT1JULUZ3h2vbeTYF-am_9WBK3Mf4UaIIQjLHzxL17DepTq5Cjg_gZe2PEmbETZTqJRvN2E1QjjW-CREFITQhpCSCSElI4oEgghFSHv4PLk-8W3UxrLUlCDa7UZ1UpJZ1DmMJaIQlnjerbAs6SQg8wkiIOvxGS5tIlBten_eyYoRVTPcMm10-w9dMbl2H4AolJlLIpc1e_jW6K1QjgGuEAvmOMW1VkX9mto8hoMXzpklFexA4LlWR5R7MKnpuskbFSyrNNOjW8e5_FtnvLMl2XkWdqFvQbzpwZZ0uuunLY98knhtp411jastXN1Bzqz6dzuosqb6Y9xKj0ArGdNUg
linkProvider EBSCOhost
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Machine+learning+open-loop+control+of+a+mixing+layer&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Noack%2C+Bernd+R.&rft.date=2020-11-01&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=32&rft.issue=11&rft_id=info:doi/10.1063%2F5.0030071
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon