Accelerated reactions of amines with carbon dioxide driven by superacid at the microdroplet interface

Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C-N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass s...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 12; no. 6; pp. 2242 - 225
Main Authors Huang, Kai-Hung, Wei, Zhenwei, Cooks, R. Graham
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.12.2020
The Royal Society of Chemistry
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C-N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas-liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO 2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines. Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk.
AbstractList Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C-N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas-liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO 2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines. Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk.
Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C–N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas–liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines.
Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C-N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas-liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines.
Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C–N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas–liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO 2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines.
Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C-N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas-liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines.Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C-N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas-liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines.
Author Wei, Zhenwei
Huang, Kai-Hung
Cooks, R. Graham
AuthorAffiliation Department of Chemistry
Purdue University
AuthorAffiliation_xml – name: Department of Chemistry
– name: Purdue University
Author_xml – sequence: 1
  givenname: Kai-Hung
  surname: Huang
  fullname: Huang, Kai-Hung
– sequence: 2
  givenname: Zhenwei
  surname: Wei
  fullname: Wei, Zhenwei
– sequence: 3
  givenname: R. Graham
  surname: Cooks
  fullname: Cooks, R. Graham
BackLink https://www.ncbi.nlm.nih.gov/pubmed/34163990$$D View this record in MEDLINE/PubMed
BookMark eNptkkuLFDEUhYOMOA9n414JuBmE1jyrK5uBpn3CgAt1HVLJjZ2hKmmT1Oj8e9P22OpgNrmQ7x7uuSen6CimCAg9oeQlJVy9cqRYIjsmzQN0woigi05ydXSoGTlG56Vck3Y4p5ItH6FjLmjHlSInCFbWwgjZVHA4g7E1pFhw8thMIULB30PdYGvykCJ2If0IDrDL4QYiHm5xmbet1waHTcV1A3gKNieX03aEikOskL2x8Bg99GYscH53n6Evb998Xr9fXH1892G9ulpYwfq6GJizwIfmR3jKTO-V7GkPpO-UA-CuFYzIXnjFwJNOEbP0ohdWcjkQai0_Q5d73e08TNDEYs1m1NscJpNvdTJB__sSw0Z_TTe6p0vFGWkCF3cCOX2boVQ9hdIWNJoIaS6aSSH6pSKSN_T5PfQ6zTk2e5qJRnRKdTvq2d8THUb5nUADXuyBtrdSMvgDQoneJaxfk0_rXwmvGkzuwTZUs4usuQnj_1ue7ltysQfpP5-G_wQTubKR
CitedBy_id crossref_primary_10_1021_jacs_4c02312
crossref_primary_10_1021_jacs_4c08018
crossref_primary_10_1360_SSC_2023_0205
crossref_primary_10_1021_acs_analchem_2c03518
crossref_primary_10_1039_D3SC01576A
crossref_primary_10_1002_cmtd_202400036
crossref_primary_10_1021_jacs_4c11037
crossref_primary_10_1016_j_ijms_2021_116639
crossref_primary_10_1073_pnas_2212642119
crossref_primary_10_1002_ange_202414746
crossref_primary_10_1039_D3AN01276J
crossref_primary_10_1073_pnas_2416353121
crossref_primary_10_1021_jasms_4c00011
crossref_primary_10_1021_acs_est_3c05470
crossref_primary_10_1016_j_ijms_2021_116754
crossref_primary_10_1021_acs_orglett_4c03782
crossref_primary_10_1021_acs_joc_4c02395
crossref_primary_10_3390_surfaces7040052
crossref_primary_10_1002_anie_202413122
crossref_primary_10_1021_acs_jpcb_3c06856
crossref_primary_10_1039_D4SC08402K
crossref_primary_10_1016_j_molstruc_2022_132701
crossref_primary_10_1021_jasms_3c00284
crossref_primary_10_1039_D4SC03014A
crossref_primary_10_1002_anie_202310884
crossref_primary_10_1039_D2CP05392F
crossref_primary_10_1021_acs_jpca_3c04143
crossref_primary_10_1002_ange_202403229
crossref_primary_10_1002_ange_202210765
crossref_primary_10_1021_jacs_3c04662
crossref_primary_10_1021_jacs_4c15493
crossref_primary_10_1002_anie_202214090
crossref_primary_10_1016_j_xcrp_2022_100917
crossref_primary_10_1002_rcm_9498
crossref_primary_10_1021_jacs_3c07374
crossref_primary_10_1021_acssuschemeng_3c03313
crossref_primary_10_1016_j_ijms_2021_116658
crossref_primary_10_1039_D2AN01422J
crossref_primary_10_1021_acs_jpclett_1c01083
crossref_primary_10_1039_D3SC03870J
crossref_primary_10_1021_acs_jpca_2c04462
crossref_primary_10_1021_acs_langmuir_2c00516
crossref_primary_10_1021_acs_jpclett_4c03613
crossref_primary_10_1021_jacs_4c03315
crossref_primary_10_1021_jacs_1c08879
crossref_primary_10_1021_acs_joc_3c01660
crossref_primary_10_1021_acs_est_2c07897
crossref_primary_10_1002_ange_202413122
crossref_primary_10_1021_jacs_2c07779
crossref_primary_10_1021_acs_analchem_1c02897
crossref_primary_10_1021_jacs_3c08249
crossref_primary_10_1039_D3FD00147D
crossref_primary_10_1039_D3CC03503D
crossref_primary_10_1021_acs_biomac_3c00104
crossref_primary_10_1021_acsenergylett_4c00427
crossref_primary_10_1073_pnas_2307977120
crossref_primary_10_1002_ange_202314784
crossref_primary_10_1021_acssuschemeng_4c03189
crossref_primary_10_1002_cplu_202200206
crossref_primary_10_1177_24726303211047839
crossref_primary_10_1021_jacs_5c01072
crossref_primary_10_1002_anie_202403229
crossref_primary_10_1146_annurev_physchem_052623_120718
crossref_primary_10_1021_acssuschemeng_4c08638
crossref_primary_10_1016_j_cis_2025_103436
crossref_primary_10_1002_aic_17701
crossref_primary_10_1021_jacs_3c08638
crossref_primary_10_1039_D3SC00259D
crossref_primary_10_1016_j_jcou_2022_102328
crossref_primary_10_1021_acsaem_4c01012
crossref_primary_10_1016_j_aca_2024_342811
crossref_primary_10_1360_SSC_2023_0192
crossref_primary_10_1016_j_supflu_2024_106511
crossref_primary_10_1002_jccs_202400085
crossref_primary_10_1073_pnas_2301206120
crossref_primary_10_1002_ange_202214090
crossref_primary_10_1021_acs_analchem_4c06040
crossref_primary_10_1021_acssuschemeng_2c02070
crossref_primary_10_1021_acs_inorgchem_1c03614
crossref_primary_10_1073_pnas_2219588120
crossref_primary_10_1021_jasms_4c00065
crossref_primary_10_1038_s41559_023_02193_8
crossref_primary_10_1002_anse_202300081
crossref_primary_10_1038_s41467_024_47879_0
crossref_primary_10_1002_ange_202310884
crossref_primary_10_1515_nanoph_2022_0714
crossref_primary_10_1002_anie_202414746
crossref_primary_10_1021_jacs_1c12028
crossref_primary_10_1016_j_jcis_2022_12_056
crossref_primary_10_1021_jacs_2c12236
crossref_primary_10_1039_D1SC02708E
crossref_primary_10_1002_ange_202300956
crossref_primary_10_1002_anie_202210765
crossref_primary_10_1039_D4SM01334D
crossref_primary_10_1016_j_envres_2022_113232
crossref_primary_10_1073_pnas_2309360120
crossref_primary_10_1002_mas_21913
crossref_primary_10_1021_jasms_1c00363
crossref_primary_10_1021_jacs_4c00529
crossref_primary_10_1021_acs_joc_4c01568
crossref_primary_10_1021_jasms_1c00126
crossref_primary_10_1039_D2RE00485B
crossref_primary_10_1002_elps_202100208
crossref_primary_10_1002_anie_202314784
crossref_primary_10_1002_cplu_202100449
crossref_primary_10_1039_D4SC03528C
crossref_primary_10_1002_anie_202300956
crossref_primary_10_1146_annurev_anchem_061622_030919
Cites_doi 10.1039/C8SC05539D
10.1021/acs.chemrev.7b00435
10.1002/anie.201906756
10.1146/annurev-physchem-121319-110654
10.1002/anie.201511352
10.1039/C5SC02740C
10.1021/ja410745a
10.1016/j.trac.2014.02.008
10.1039/C9SC06221A
10.1021/acs.jpclett.8b01129
10.1038/s41467-018-04023-z
10.1038/s41467-020-14877-x
10.1039/d0sc04611f
10.1002/anie.201507805
10.1021/cr4002758
10.1103/PhysRevLett.112.028301
10.1021/ac049848m
10.1021/ac0615807
10.1021/jacs.9b03227
10.1021/acs.jpclett.0c02061
10.1039/D0SC02467H
10.1016/0168-1176(92)85060-D
10.1039/C0SC00416B
10.1002/anie.201915561
10.1002/anie.201602270
10.1002/anie.201803186
10.1002/anie.201913069
10.1073/pnas.1718559115
10.1002/adsc.201801215
10.1039/D0AN00578A
10.1021/ja063445h
10.1039/C9SC05112K
10.1021/es901376a
10.1038/nclimate1332
10.1038/nature14327
10.1039/C9SC00704K
10.1021/acs.jpca.0c03225
10.1128/AEM.02473-10
10.1016/j.rser.2014.07.093
10.1002/anie.201000431
10.1073/pnas.1714896114
ContentType Journal Article
Copyright This journal is © The Royal Society of Chemistry.
Copyright Royal Society of Chemistry 2021
This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
Copyright_xml – notice: This journal is © The Royal Society of Chemistry.
– notice: Copyright Royal Society of Chemistry 2021
– notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/d0sc05625a
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList
Materials Research Database
PubMed

CrossRef
MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 225
ExternalDocumentID PMC8179320
34163990
10_1039_D0SC05625A
d0sc05625a
Genre Journal Article
GrantInformation_xml – fundername: ;
  grantid: CHE 1905087
GroupedDBID 0-7
0R
705
7~J
AAGNR
AAIWI
AAPBV
ABGFH
ACGFS
ACIWK
ADBBV
ADMRA
AENEX
AFVBQ
AGSTE
AGSWI
ALMA_UNASSIGNED_HOLDINGS
AOIJS
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
CKLOX
D0L
EE0
EF-
F5P
GROUPED_DOAJ
HYE
HZ
H~N
JG
O-G
O9-
OK1
R7C
R7D
RCNCU
ROYLF
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
0R~
53G
AAEMU
AAFWJ
AAJAE
AARTK
AAXHV
AAYXX
ABEMK
ABIQK
ABPDG
ABXOH
AEFDR
AESAV
AFLYV
AFPKN
AGEGJ
AGRSR
AHGCF
AKBGW
ANUXI
APEMP
CITATION
H13
HZ~
PGMZT
RAOCF
RNS
-JG
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c428t-b2dce3bc054f12a8f95818e0869dee3d08620584f92ef0690a7f484c535b01cc3
ISSN 2041-6520
IngestDate Thu Aug 21 18:43:08 EDT 2025
Thu Jul 10 19:28:50 EDT 2025
Fri Jul 25 06:58:57 EDT 2025
Thu Jan 02 22:55:26 EST 2025
Tue Jul 01 03:46:47 EDT 2025
Thu Apr 24 22:58:17 EDT 2025
Sat Jan 08 03:48:24 EST 2022
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 6
Language English
License This journal is © The Royal Society of Chemistry.
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-b2dce3bc054f12a8f95818e0869dee3d08620584f92ef0690a7f484c535b01cc3
Notes Electronic supplementary information (ESI) available. See DOI
10.1039/d0sc05625a
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-9581-9603
OpenAccessLink http://dx.doi.org/10.1039/d0sc05625a
PMID 34163990
PQID 2490569963
PQPubID 2047492
PageCount 9
ParticipantIDs crossref_primary_10_1039_D0SC05625A
crossref_citationtrail_10_1039_D0SC05625A
rsc_primary_d0sc05625a
pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179320
proquest_miscellaneous_2544879053
proquest_journals_2490569963
pubmed_primary_34163990
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 20201221
PublicationDateYYYYMMDD 2020-12-21
PublicationDate_xml – month: 12
  year: 2020
  text: 20201221
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2020
Publisher Royal Society of Chemistry
The Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
– name: The Royal Society of Chemistry
References D'Alessandro (D0SC05625A/cit6/1) 2010; 49
Fallah-Araghi (D0SC05625A/cit24/1) 2014; 112
Zhong (D0SC05625A/cit33/1) 2020; 11
Berg (D0SC05625A/cit1/1) 2011; 77
Li (D0SC05625A/cit16/1) 2016; 55
Banerjee (D0SC05625A/cit27/1) 2015; 54
Cao (D0SC05625A/cit18/1) 2020; 145
Leung (D0SC05625A/cit7/1) 2014; 39
Vaitheeswaran (D0SC05625A/cit19/1) 2006; 128
Rovelli (D0SC05625A/cit43/1) 2020
Sahota (D0SC05625A/cit25/1) 2019; 10
Gao (D0SC05625A/cit30/1) 2019; 10
Gross (D0SC05625A/cit40/1) 1992; 118
Artz (D0SC05625A/cit4/1) 2018; 118
Dabral (D0SC05625A/cit3/1) 2019; 361
Luo (D0SC05625A/cit32/1) 2020; 11
Espy (D0SC05625A/cit36/1) 2014; 57
Venter (D0SC05625A/cit42/1) 2006; 78
Ingram (D0SC05625A/cit37/1) 2016; 7
Takats (D0SC05625A/cit41/1) 2004; 76
Xiong (D0SC05625A/cit35/1) 2020; 11
Li (D0SC05625A/cit17/1) 2020
Nam (D0SC05625A/cit20/1) 2017; 114
Yan (D0SC05625A/cit14/1) 2016; 55
Basuri (D0SC05625A/cit28/1) 2020; 10
Lee (D0SC05625A/cit34/1) 2019; 141
Peters (D0SC05625A/cit2/1) 2012; 2
Cooks (D0SC05625A/cit38/1) 2018; 11
Narendra (D0SC05625A/cit23/1) 2020; 124
McDonald (D0SC05625A/cit11/1) 2015; 519
Girod (D0SC05625A/cit26/1) 2011; 2
Shi (D0SC05625A/cit8/1) 2020; 59
Mao (D0SC05625A/cit12/1) 2019; 59
Nam (D0SC05625A/cit21/1) 2018; 115
Lee (D0SC05625A/cit29/1) 2018; 9
Wei (D0SC05625A/cit15/1) 2020; 71
Puxty (D0SC05625A/cit9/1) 2009; 43
Zhou (D0SC05625A/cit22/1) 2018; 9
Tortajada (D0SC05625A/cit5/1) 2018; 57
Yang (D0SC05625A/cit39/1) 2019; 10
Aresta (D0SC05625A/cit13/1) 2014; 114
Niedermaier (D0SC05625A/cit10/1) 2014; 136
Gnanamani (D0SC05625A/cit31/1) 2020; 59
References_xml – volume: 10
  start-page: 3905
  issue: 14
  year: 2019
  ident: D0SC05625A/cit39/1
  publication-title: Chem. Sci.
  doi: 10.1039/C8SC05539D
– volume: 118
  start-page: 434
  issue: 2
  year: 2018
  ident: D0SC05625A/cit4/1
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.7b00435
– volume: 59
  start-page: 6984
  issue: 18
  year: 2020
  ident: D0SC05625A/cit8/1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201906756
– volume: 71
  start-page: 31
  year: 2020
  ident: D0SC05625A/cit15/1
  publication-title: Annu. Rev. Phys. Chem.
  doi: 10.1146/annurev-physchem-121319-110654
– volume: 11
  start-page: 1
  year: 2018
  ident: D0SC05625A/cit38/1
  publication-title: TrAC, Trends Anal. Chem.
– volume: 55
  start-page: 3433
  issue: 10
  year: 2016
  ident: D0SC05625A/cit16/1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201511352
– volume: 7
  start-page: 39
  issue: 1
  year: 2016
  ident: D0SC05625A/cit37/1
  publication-title: Chem. Sci.
  doi: 10.1039/C5SC02740C
– volume: 136
  start-page: 436
  issue: 1
  year: 2014
  ident: D0SC05625A/cit10/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja410745a
– volume: 57
  start-page: 135
  year: 2014
  ident: D0SC05625A/cit36/1
  publication-title: TrAC, Trends Anal. Chem.
  doi: 10.1016/j.trac.2014.02.008
– volume: 11
  start-page: 2558
  issue: 9
  year: 2020
  ident: D0SC05625A/cit32/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC06221A
– volume: 9
  start-page: 2928
  issue: 11
  year: 2018
  ident: D0SC05625A/cit22/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.8b01129
– volume: 9
  start-page: 1562
  issue: 1
  year: 2018
  ident: D0SC05625A/cit29/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-04023-z
– volume: 11
  start-page: 1049
  issue: 1
  year: 2020
  ident: D0SC05625A/cit33/1
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-020-14877-x
– year: 2020
  ident: D0SC05625A/cit43/1
  publication-title: Chem. Sci.
  doi: 10.1039/d0sc04611f
– volume: 54
  start-page: 14795
  issue: 49
  year: 2015
  ident: D0SC05625A/cit27/1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201507805
– volume: 114
  start-page: 1709
  issue: 3
  year: 2014
  ident: D0SC05625A/cit13/1
  publication-title: Chem. Rev.
  doi: 10.1021/cr4002758
– volume: 112
  start-page: 028301
  issue: 2
  year: 2014
  ident: D0SC05625A/cit24/1
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.112.028301
– volume: 76
  start-page: 4050
  issue: 14
  year: 2004
  ident: D0SC05625A/cit41/1
  publication-title: Anal. Chem.
  doi: 10.1021/ac049848m
– volume: 78
  start-page: 8549
  issue: 24
  year: 2006
  ident: D0SC05625A/cit42/1
  publication-title: Anal. Chem.
  doi: 10.1021/ac0615807
– volume: 141
  start-page: 10585
  issue: 27
  year: 2019
  ident: D0SC05625A/cit34/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b03227
– volume: 11
  start-page: 7423
  issue: 17
  year: 2020
  ident: D0SC05625A/cit35/1
  publication-title: J. Phys. Chem. Lett.
  doi: 10.1021/acs.jpclett.0c02061
– volume: 10
  start-page: 12686
  issue: 47
  year: 2020
  ident: D0SC05625A/cit28/1
  publication-title: Chem. Sci.
  doi: 10.1039/D0SC02467H
– volume: 118
  start-page: 137
  year: 1992
  ident: D0SC05625A/cit40/1
  publication-title: Int. J. Mass Spectrom. Ion Processes
  doi: 10.1016/0168-1176(92)85060-D
– volume: 2
  start-page: 501
  issue: 3
  year: 2011
  ident: D0SC05625A/cit26/1
  publication-title: Chem. Sci.
  doi: 10.1039/C0SC00416B
– volume: 59
  start-page: 19468
  issue: 44
  year: 2019
  ident: D0SC05625A/cit12/1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201915561
– volume: 55
  start-page: 12960
  issue: 42
  year: 2016
  ident: D0SC05625A/cit14/1
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602270
– volume: 57
  start-page: 15948
  issue: 49
  year: 2018
  ident: D0SC05625A/cit5/1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201803186
– volume: 59
  start-page: 3069
  issue: 8
  year: 2020
  ident: D0SC05625A/cit31/1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201913069
– volume: 115
  start-page: 36
  issue: 1
  year: 2018
  ident: D0SC05625A/cit21/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1718559115
– volume: 361
  start-page: 223
  issue: 2
  year: 2019
  ident: D0SC05625A/cit3/1
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201801215
– volume: 145
  start-page: 4844
  issue: 14
  year: 2020
  ident: D0SC05625A/cit18/1
  publication-title: Analyst
  doi: 10.1039/D0AN00578A
– volume: 128
  start-page: 13490
  issue: 41
  year: 2006
  ident: D0SC05625A/cit19/1
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063445h
– volume: 10
  start-page: 10974
  issue: 48
  year: 2019
  ident: D0SC05625A/cit30/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC05112K
– start-page: e4585
  year: 2020
  ident: D0SC05625A/cit17/1
  publication-title: J. Mass Spectrom.
– volume: 43
  start-page: 6427
  issue: 16
  year: 2009
  ident: D0SC05625A/cit9/1
  publication-title: Environ. Sci. Technol.
  doi: 10.1021/es901376a
– volume: 2
  start-page: 2
  issue: 1
  year: 2012
  ident: D0SC05625A/cit2/1
  publication-title: Nat. Clim. Change
  doi: 10.1038/nclimate1332
– volume: 519
  start-page: 303
  issue: 7543
  year: 2015
  ident: D0SC05625A/cit11/1
  publication-title: Nature
  doi: 10.1038/nature14327
– volume: 10
  start-page: 4822
  issue: 18
  year: 2019
  ident: D0SC05625A/cit25/1
  publication-title: Chem. Sci.
  doi: 10.1039/C9SC00704K
– volume: 124
  start-page: 4984
  issue: 24
  year: 2020
  ident: D0SC05625A/cit23/1
  publication-title: J. Phys. Chem. A
  doi: 10.1021/acs.jpca.0c03225
– volume: 77
  start-page: 1925
  issue: 6
  year: 2011
  ident: D0SC05625A/cit1/1
  publication-title: Appl. Environ. Microbiol.
  doi: 10.1128/AEM.02473-10
– volume: 39
  start-page: 426
  year: 2014
  ident: D0SC05625A/cit7/1
  publication-title: Renew. Sustain. Energy Rev.
  doi: 10.1016/j.rser.2014.07.093
– volume: 49
  start-page: 6058
  issue: 35
  year: 2010
  ident: D0SC05625A/cit6/1
  publication-title: Angew. Chem., Int. Ed. Engl.
  doi: 10.1002/anie.201000431
– volume: 114
  start-page: 12396
  issue: 47
  year: 2017
  ident: D0SC05625A/cit20/1
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1714896114
SSID ssj0000331527
Score 2.6098456
Snippet Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2242
SubjectTerms Amines
Carbon dioxide
Carboxylic acids
Chemistry
Diamines
Imidazole
Ionization
Ions
Mass spectrometry
Protonation
Reaction products
Reagents
Title Accelerated reactions of amines with carbon dioxide driven by superacid at the microdroplet interface
URI https://www.ncbi.nlm.nih.gov/pubmed/34163990
https://www.proquest.com/docview/2490569963
https://www.proquest.com/docview/2544879053
https://pubmed.ncbi.nlm.nih.gov/PMC8179320
Volume 12
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbY3QNcEK9lC8vKCC6oypLYTtocqwKqQHCALVq4VH5qI7HpKk3F49czfsRN1UUCLlEVTx71fLFnxjOfEXqe0UIbMjIJZ0wlTKUmEQVhiSp0wUeZGBFtHcX3H4rZnL09z883qbyuuqQVp_LXtXUl_6NVOAd6tVWy_6DZeFM4Ab9Bv3AEDcPxr3Q8kRJmDUv2YGtQfImCS83glzabPeSV80aAilW1_FEpPVSNHd-s1blaX8G1slKhoHF4aZPzVGNTylvHI9EYLre5DDp6ga4ayK4Bd1VfvaDCbB3C0O94lczWYXZ0C0Aue-Drha6_6yougICl7yM-p0Nfut0PRhCX2OErnP2YRVKWJUVO_FKL7p_znEVx0CU9cG2NoMSzbYXZmPiy6J2BPqWWJ1WlK2ktuLw3ncUkw03jHjog4EXAMHjw8fP8_EsMwqWUhm1944t3FLa0fLm5wbbRsuOJ7CbU7jXd_jHOTjm7g24HBwNPPFruohu6voduTrt9_e4j3UMNjqjBS4M9arBFDfaowQE12KMGi584ogbzFgNqcB81OKLmAZq_eX02nSVhs41EggfaJoLA21MBf5iZjPCxKXOw5TR4vKXSmirr-qZgrZqSaGPprfnIsDGTOc1FmklJD9F-vaz1EcIMXFTJMs4ZyZhSOddjyoqCKEHHLDNigF50vbmQgYnebojybeEyImi5eJV-mrqenwzQsyh75flXrpU67pSyCN_nakFYCa3gz9MBehqbobPtkhiv9XINMjkDjx3kQOah12F8DLW-ChhrAzTa0m4UsMzs2y11deEY2sd22iNw5SHgIMpv8PToTw2P0a3NZ3WM9ttmrZ-A1duKExctOgkI_g33wbFO
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+reactions+of+amines+with+carbon+dioxide+driven+by+superacid+at+the+microdroplet+interface&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Huang%2C+Kai-Hung&rft.au=Wei%2C+Zhenwei&rft.au=Cooks%2C+R.+Graham&rft.date=2020-12-21&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=6&rft.spage=2242&rft.epage=225&rft_id=info:doi/10.1039%2Fd0sc05625a&rft.externalDocID=d0sc05625a
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon