Accelerated reactions of amines with carbon dioxide driven by superacid at the microdroplet interface
Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C-N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass s...
Saved in:
Published in | Chemical science (Cambridge) Vol. 12; no. 6; pp. 2242 - 225 |
---|---|
Main Authors | , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.12.2020
The Royal Society of Chemistry |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C-N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas-liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO
2
followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines.
Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. |
---|---|
AbstractList | Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C-N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas-liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO
2
followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines.
Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C–N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas–liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines. Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C-N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas-liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines. Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C–N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas–liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO 2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines. Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C-N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas-liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines.Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon dioxide undergoes C-N bond formation reactions with amines at the interface of droplets to form carbamic acids. Electrospray ionization mass spectrometry displays the reaction products in the form of the protonated and deprotonated carbamic acid. Electrosonic spray ionization (ESSI) utilizing carbon dioxide as nebulization gas, confines reaction to the gas-liquid interface where it proceeds much faster than in the bulk. Intriguingly, trace amounts of water accelerate the reaction, presumably by formation of superacid or superbase at the water interface. The suggested mechanism of protonation of CO2 followed by nucleophilic attack by the amine is analogous to that previously advanced for imidazole formation from carboxylic acids and diamines. |
Author | Wei, Zhenwei Huang, Kai-Hung Cooks, R. Graham |
AuthorAffiliation | Department of Chemistry Purdue University |
AuthorAffiliation_xml | – name: Department of Chemistry – name: Purdue University |
Author_xml | – sequence: 1 givenname: Kai-Hung surname: Huang fullname: Huang, Kai-Hung – sequence: 2 givenname: Zhenwei surname: Wei fullname: Wei, Zhenwei – sequence: 3 givenname: R. Graham surname: Cooks fullname: Cooks, R. Graham |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/34163990$$D View this record in MEDLINE/PubMed |
BookMark | eNptkkuLFDEUhYOMOA9n414JuBmE1jyrK5uBpn3CgAt1HVLJjZ2hKmmT1Oj8e9P22OpgNrmQ7x7uuSen6CimCAg9oeQlJVy9cqRYIjsmzQN0woigi05ydXSoGTlG56Vck3Y4p5ItH6FjLmjHlSInCFbWwgjZVHA4g7E1pFhw8thMIULB30PdYGvykCJ2If0IDrDL4QYiHm5xmbet1waHTcV1A3gKNieX03aEikOskL2x8Bg99GYscH53n6Evb998Xr9fXH1892G9ulpYwfq6GJizwIfmR3jKTO-V7GkPpO-UA-CuFYzIXnjFwJNOEbP0ohdWcjkQai0_Q5d73e08TNDEYs1m1NscJpNvdTJB__sSw0Z_TTe6p0vFGWkCF3cCOX2boVQ9hdIWNJoIaS6aSSH6pSKSN_T5PfQ6zTk2e5qJRnRKdTvq2d8THUb5nUADXuyBtrdSMvgDQoneJaxfk0_rXwmvGkzuwTZUs4usuQnj_1ue7ltysQfpP5-G_wQTubKR |
CitedBy_id | crossref_primary_10_1021_jacs_4c02312 crossref_primary_10_1021_jacs_4c08018 crossref_primary_10_1360_SSC_2023_0205 crossref_primary_10_1021_acs_analchem_2c03518 crossref_primary_10_1039_D3SC01576A crossref_primary_10_1002_cmtd_202400036 crossref_primary_10_1021_jacs_4c11037 crossref_primary_10_1016_j_ijms_2021_116639 crossref_primary_10_1073_pnas_2212642119 crossref_primary_10_1002_ange_202414746 crossref_primary_10_1039_D3AN01276J crossref_primary_10_1073_pnas_2416353121 crossref_primary_10_1021_jasms_4c00011 crossref_primary_10_1021_acs_est_3c05470 crossref_primary_10_1016_j_ijms_2021_116754 crossref_primary_10_1021_acs_orglett_4c03782 crossref_primary_10_1021_acs_joc_4c02395 crossref_primary_10_3390_surfaces7040052 crossref_primary_10_1002_anie_202413122 crossref_primary_10_1021_acs_jpcb_3c06856 crossref_primary_10_1039_D4SC08402K crossref_primary_10_1016_j_molstruc_2022_132701 crossref_primary_10_1021_jasms_3c00284 crossref_primary_10_1039_D4SC03014A crossref_primary_10_1002_anie_202310884 crossref_primary_10_1039_D2CP05392F crossref_primary_10_1021_acs_jpca_3c04143 crossref_primary_10_1002_ange_202403229 crossref_primary_10_1002_ange_202210765 crossref_primary_10_1021_jacs_3c04662 crossref_primary_10_1021_jacs_4c15493 crossref_primary_10_1002_anie_202214090 crossref_primary_10_1016_j_xcrp_2022_100917 crossref_primary_10_1002_rcm_9498 crossref_primary_10_1021_jacs_3c07374 crossref_primary_10_1021_acssuschemeng_3c03313 crossref_primary_10_1016_j_ijms_2021_116658 crossref_primary_10_1039_D2AN01422J crossref_primary_10_1021_acs_jpclett_1c01083 crossref_primary_10_1039_D3SC03870J crossref_primary_10_1021_acs_jpca_2c04462 crossref_primary_10_1021_acs_langmuir_2c00516 crossref_primary_10_1021_acs_jpclett_4c03613 crossref_primary_10_1021_jacs_4c03315 crossref_primary_10_1021_jacs_1c08879 crossref_primary_10_1021_acs_joc_3c01660 crossref_primary_10_1021_acs_est_2c07897 crossref_primary_10_1002_ange_202413122 crossref_primary_10_1021_jacs_2c07779 crossref_primary_10_1021_acs_analchem_1c02897 crossref_primary_10_1021_jacs_3c08249 crossref_primary_10_1039_D3FD00147D crossref_primary_10_1039_D3CC03503D crossref_primary_10_1021_acs_biomac_3c00104 crossref_primary_10_1021_acsenergylett_4c00427 crossref_primary_10_1073_pnas_2307977120 crossref_primary_10_1002_ange_202314784 crossref_primary_10_1021_acssuschemeng_4c03189 crossref_primary_10_1002_cplu_202200206 crossref_primary_10_1177_24726303211047839 crossref_primary_10_1021_jacs_5c01072 crossref_primary_10_1002_anie_202403229 crossref_primary_10_1146_annurev_physchem_052623_120718 crossref_primary_10_1021_acssuschemeng_4c08638 crossref_primary_10_1016_j_cis_2025_103436 crossref_primary_10_1002_aic_17701 crossref_primary_10_1021_jacs_3c08638 crossref_primary_10_1039_D3SC00259D crossref_primary_10_1016_j_jcou_2022_102328 crossref_primary_10_1021_acsaem_4c01012 crossref_primary_10_1016_j_aca_2024_342811 crossref_primary_10_1360_SSC_2023_0192 crossref_primary_10_1016_j_supflu_2024_106511 crossref_primary_10_1002_jccs_202400085 crossref_primary_10_1073_pnas_2301206120 crossref_primary_10_1002_ange_202214090 crossref_primary_10_1021_acs_analchem_4c06040 crossref_primary_10_1021_acssuschemeng_2c02070 crossref_primary_10_1021_acs_inorgchem_1c03614 crossref_primary_10_1073_pnas_2219588120 crossref_primary_10_1021_jasms_4c00065 crossref_primary_10_1038_s41559_023_02193_8 crossref_primary_10_1002_anse_202300081 crossref_primary_10_1038_s41467_024_47879_0 crossref_primary_10_1002_ange_202310884 crossref_primary_10_1515_nanoph_2022_0714 crossref_primary_10_1002_anie_202414746 crossref_primary_10_1021_jacs_1c12028 crossref_primary_10_1016_j_jcis_2022_12_056 crossref_primary_10_1021_jacs_2c12236 crossref_primary_10_1039_D1SC02708E crossref_primary_10_1002_ange_202300956 crossref_primary_10_1002_anie_202210765 crossref_primary_10_1039_D4SM01334D crossref_primary_10_1016_j_envres_2022_113232 crossref_primary_10_1073_pnas_2309360120 crossref_primary_10_1002_mas_21913 crossref_primary_10_1021_jasms_1c00363 crossref_primary_10_1021_jacs_4c00529 crossref_primary_10_1021_acs_joc_4c01568 crossref_primary_10_1021_jasms_1c00126 crossref_primary_10_1039_D2RE00485B crossref_primary_10_1002_elps_202100208 crossref_primary_10_1002_anie_202314784 crossref_primary_10_1002_cplu_202100449 crossref_primary_10_1039_D4SC03528C crossref_primary_10_1002_anie_202300956 crossref_primary_10_1146_annurev_anchem_061622_030919 |
Cites_doi | 10.1039/C8SC05539D 10.1021/acs.chemrev.7b00435 10.1002/anie.201906756 10.1146/annurev-physchem-121319-110654 10.1002/anie.201511352 10.1039/C5SC02740C 10.1021/ja410745a 10.1016/j.trac.2014.02.008 10.1039/C9SC06221A 10.1021/acs.jpclett.8b01129 10.1038/s41467-018-04023-z 10.1038/s41467-020-14877-x 10.1039/d0sc04611f 10.1002/anie.201507805 10.1021/cr4002758 10.1103/PhysRevLett.112.028301 10.1021/ac049848m 10.1021/ac0615807 10.1021/jacs.9b03227 10.1021/acs.jpclett.0c02061 10.1039/D0SC02467H 10.1016/0168-1176(92)85060-D 10.1039/C0SC00416B 10.1002/anie.201915561 10.1002/anie.201602270 10.1002/anie.201803186 10.1002/anie.201913069 10.1073/pnas.1718559115 10.1002/adsc.201801215 10.1039/D0AN00578A 10.1021/ja063445h 10.1039/C9SC05112K 10.1021/es901376a 10.1038/nclimate1332 10.1038/nature14327 10.1039/C9SC00704K 10.1021/acs.jpca.0c03225 10.1128/AEM.02473-10 10.1016/j.rser.2014.07.093 10.1002/anie.201000431 10.1073/pnas.1714896114 |
ContentType | Journal Article |
Copyright | This journal is © The Royal Society of Chemistry. Copyright Royal Society of Chemistry 2021 This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
Copyright_xml | – notice: This journal is © The Royal Society of Chemistry. – notice: Copyright Royal Society of Chemistry 2021 – notice: This journal is © The Royal Society of Chemistry 2021 The Royal Society of Chemistry |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/d0sc05625a |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | Materials Research Database PubMed CrossRef MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 225 |
ExternalDocumentID | PMC8179320 34163990 10_1039_D0SC05625A d0sc05625a |
Genre | Journal Article |
GrantInformation_xml | – fundername: ; grantid: CHE 1905087 |
GroupedDBID | 0-7 0R 705 7~J AAGNR AAIWI AAPBV ABGFH ACGFS ACIWK ADBBV ADMRA AENEX AFVBQ AGSTE AGSWI ALMA_UNASSIGNED_HOLDINGS AOIJS AUDPV AZFZN BCNDV BLAPV BSQNT C6K CKLOX D0L EE0 EF- F5P GROUPED_DOAJ HYE HZ H~N JG O-G O9- OK1 R7C R7D RCNCU ROYLF RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ 0R~ 53G AAEMU AAFWJ AAJAE AARTK AAXHV AAYXX ABEMK ABIQK ABPDG ABXOH AEFDR AESAV AFLYV AFPKN AGEGJ AGRSR AHGCF AKBGW ANUXI APEMP CITATION H13 HZ~ PGMZT RAOCF RNS -JG NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c428t-b2dce3bc054f12a8f95818e0869dee3d08620584f92ef0690a7f484c535b01cc3 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 18:43:08 EDT 2025 Thu Jul 10 19:28:50 EDT 2025 Fri Jul 25 06:58:57 EDT 2025 Thu Jan 02 22:55:26 EST 2025 Tue Jul 01 03:46:47 EDT 2025 Thu Apr 24 22:58:17 EDT 2025 Sat Jan 08 03:48:24 EST 2022 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 6 |
Language | English |
License | This journal is © The Royal Society of Chemistry. |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c428t-b2dce3bc054f12a8f95818e0869dee3d08620584f92ef0690a7f484c535b01cc3 |
Notes | Electronic supplementary information (ESI) available. See DOI 10.1039/d0sc05625a ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-9581-9603 |
OpenAccessLink | http://dx.doi.org/10.1039/d0sc05625a |
PMID | 34163990 |
PQID | 2490569963 |
PQPubID | 2047492 |
PageCount | 9 |
ParticipantIDs | crossref_primary_10_1039_D0SC05625A crossref_citationtrail_10_1039_D0SC05625A rsc_primary_d0sc05625a pubmedcentral_primary_oai_pubmedcentral_nih_gov_8179320 proquest_miscellaneous_2544879053 proquest_journals_2490569963 pubmed_primary_34163990 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 20201221 |
PublicationDateYYYYMMDD | 2020-12-21 |
PublicationDate_xml | – month: 12 year: 2020 text: 20201221 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2020 |
Publisher | Royal Society of Chemistry The Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry – name: The Royal Society of Chemistry |
References | D'Alessandro (D0SC05625A/cit6/1) 2010; 49 Fallah-Araghi (D0SC05625A/cit24/1) 2014; 112 Zhong (D0SC05625A/cit33/1) 2020; 11 Berg (D0SC05625A/cit1/1) 2011; 77 Li (D0SC05625A/cit16/1) 2016; 55 Banerjee (D0SC05625A/cit27/1) 2015; 54 Cao (D0SC05625A/cit18/1) 2020; 145 Leung (D0SC05625A/cit7/1) 2014; 39 Vaitheeswaran (D0SC05625A/cit19/1) 2006; 128 Rovelli (D0SC05625A/cit43/1) 2020 Sahota (D0SC05625A/cit25/1) 2019; 10 Gao (D0SC05625A/cit30/1) 2019; 10 Gross (D0SC05625A/cit40/1) 1992; 118 Artz (D0SC05625A/cit4/1) 2018; 118 Dabral (D0SC05625A/cit3/1) 2019; 361 Luo (D0SC05625A/cit32/1) 2020; 11 Espy (D0SC05625A/cit36/1) 2014; 57 Venter (D0SC05625A/cit42/1) 2006; 78 Ingram (D0SC05625A/cit37/1) 2016; 7 Takats (D0SC05625A/cit41/1) 2004; 76 Xiong (D0SC05625A/cit35/1) 2020; 11 Li (D0SC05625A/cit17/1) 2020 Nam (D0SC05625A/cit20/1) 2017; 114 Yan (D0SC05625A/cit14/1) 2016; 55 Basuri (D0SC05625A/cit28/1) 2020; 10 Lee (D0SC05625A/cit34/1) 2019; 141 Peters (D0SC05625A/cit2/1) 2012; 2 Cooks (D0SC05625A/cit38/1) 2018; 11 Narendra (D0SC05625A/cit23/1) 2020; 124 McDonald (D0SC05625A/cit11/1) 2015; 519 Girod (D0SC05625A/cit26/1) 2011; 2 Shi (D0SC05625A/cit8/1) 2020; 59 Mao (D0SC05625A/cit12/1) 2019; 59 Nam (D0SC05625A/cit21/1) 2018; 115 Lee (D0SC05625A/cit29/1) 2018; 9 Wei (D0SC05625A/cit15/1) 2020; 71 Puxty (D0SC05625A/cit9/1) 2009; 43 Zhou (D0SC05625A/cit22/1) 2018; 9 Tortajada (D0SC05625A/cit5/1) 2018; 57 Yang (D0SC05625A/cit39/1) 2019; 10 Aresta (D0SC05625A/cit13/1) 2014; 114 Niedermaier (D0SC05625A/cit10/1) 2014; 136 Gnanamani (D0SC05625A/cit31/1) 2020; 59 |
References_xml | – volume: 10 start-page: 3905 issue: 14 year: 2019 ident: D0SC05625A/cit39/1 publication-title: Chem. Sci. doi: 10.1039/C8SC05539D – volume: 118 start-page: 434 issue: 2 year: 2018 ident: D0SC05625A/cit4/1 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.7b00435 – volume: 59 start-page: 6984 issue: 18 year: 2020 ident: D0SC05625A/cit8/1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201906756 – volume: 71 start-page: 31 year: 2020 ident: D0SC05625A/cit15/1 publication-title: Annu. Rev. Phys. Chem. doi: 10.1146/annurev-physchem-121319-110654 – volume: 11 start-page: 1 year: 2018 ident: D0SC05625A/cit38/1 publication-title: TrAC, Trends Anal. Chem. – volume: 55 start-page: 3433 issue: 10 year: 2016 ident: D0SC05625A/cit16/1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201511352 – volume: 7 start-page: 39 issue: 1 year: 2016 ident: D0SC05625A/cit37/1 publication-title: Chem. Sci. doi: 10.1039/C5SC02740C – volume: 136 start-page: 436 issue: 1 year: 2014 ident: D0SC05625A/cit10/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja410745a – volume: 57 start-page: 135 year: 2014 ident: D0SC05625A/cit36/1 publication-title: TrAC, Trends Anal. Chem. doi: 10.1016/j.trac.2014.02.008 – volume: 11 start-page: 2558 issue: 9 year: 2020 ident: D0SC05625A/cit32/1 publication-title: Chem. Sci. doi: 10.1039/C9SC06221A – volume: 9 start-page: 2928 issue: 11 year: 2018 ident: D0SC05625A/cit22/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.8b01129 – volume: 9 start-page: 1562 issue: 1 year: 2018 ident: D0SC05625A/cit29/1 publication-title: Nat. Commun. doi: 10.1038/s41467-018-04023-z – volume: 11 start-page: 1049 issue: 1 year: 2020 ident: D0SC05625A/cit33/1 publication-title: Nat. Commun. doi: 10.1038/s41467-020-14877-x – year: 2020 ident: D0SC05625A/cit43/1 publication-title: Chem. Sci. doi: 10.1039/d0sc04611f – volume: 54 start-page: 14795 issue: 49 year: 2015 ident: D0SC05625A/cit27/1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201507805 – volume: 114 start-page: 1709 issue: 3 year: 2014 ident: D0SC05625A/cit13/1 publication-title: Chem. Rev. doi: 10.1021/cr4002758 – volume: 112 start-page: 028301 issue: 2 year: 2014 ident: D0SC05625A/cit24/1 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.112.028301 – volume: 76 start-page: 4050 issue: 14 year: 2004 ident: D0SC05625A/cit41/1 publication-title: Anal. Chem. doi: 10.1021/ac049848m – volume: 78 start-page: 8549 issue: 24 year: 2006 ident: D0SC05625A/cit42/1 publication-title: Anal. Chem. doi: 10.1021/ac0615807 – volume: 141 start-page: 10585 issue: 27 year: 2019 ident: D0SC05625A/cit34/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b03227 – volume: 11 start-page: 7423 issue: 17 year: 2020 ident: D0SC05625A/cit35/1 publication-title: J. Phys. Chem. Lett. doi: 10.1021/acs.jpclett.0c02061 – volume: 10 start-page: 12686 issue: 47 year: 2020 ident: D0SC05625A/cit28/1 publication-title: Chem. Sci. doi: 10.1039/D0SC02467H – volume: 118 start-page: 137 year: 1992 ident: D0SC05625A/cit40/1 publication-title: Int. J. Mass Spectrom. Ion Processes doi: 10.1016/0168-1176(92)85060-D – volume: 2 start-page: 501 issue: 3 year: 2011 ident: D0SC05625A/cit26/1 publication-title: Chem. Sci. doi: 10.1039/C0SC00416B – volume: 59 start-page: 19468 issue: 44 year: 2019 ident: D0SC05625A/cit12/1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201915561 – volume: 55 start-page: 12960 issue: 42 year: 2016 ident: D0SC05625A/cit14/1 publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602270 – volume: 57 start-page: 15948 issue: 49 year: 2018 ident: D0SC05625A/cit5/1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201803186 – volume: 59 start-page: 3069 issue: 8 year: 2020 ident: D0SC05625A/cit31/1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201913069 – volume: 115 start-page: 36 issue: 1 year: 2018 ident: D0SC05625A/cit21/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1718559115 – volume: 361 start-page: 223 issue: 2 year: 2019 ident: D0SC05625A/cit3/1 publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201801215 – volume: 145 start-page: 4844 issue: 14 year: 2020 ident: D0SC05625A/cit18/1 publication-title: Analyst doi: 10.1039/D0AN00578A – volume: 128 start-page: 13490 issue: 41 year: 2006 ident: D0SC05625A/cit19/1 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063445h – volume: 10 start-page: 10974 issue: 48 year: 2019 ident: D0SC05625A/cit30/1 publication-title: Chem. Sci. doi: 10.1039/C9SC05112K – start-page: e4585 year: 2020 ident: D0SC05625A/cit17/1 publication-title: J. Mass Spectrom. – volume: 43 start-page: 6427 issue: 16 year: 2009 ident: D0SC05625A/cit9/1 publication-title: Environ. Sci. Technol. doi: 10.1021/es901376a – volume: 2 start-page: 2 issue: 1 year: 2012 ident: D0SC05625A/cit2/1 publication-title: Nat. Clim. Change doi: 10.1038/nclimate1332 – volume: 519 start-page: 303 issue: 7543 year: 2015 ident: D0SC05625A/cit11/1 publication-title: Nature doi: 10.1038/nature14327 – volume: 10 start-page: 4822 issue: 18 year: 2019 ident: D0SC05625A/cit25/1 publication-title: Chem. Sci. doi: 10.1039/C9SC00704K – volume: 124 start-page: 4984 issue: 24 year: 2020 ident: D0SC05625A/cit23/1 publication-title: J. Phys. Chem. A doi: 10.1021/acs.jpca.0c03225 – volume: 77 start-page: 1925 issue: 6 year: 2011 ident: D0SC05625A/cit1/1 publication-title: Appl. Environ. Microbiol. doi: 10.1128/AEM.02473-10 – volume: 39 start-page: 426 year: 2014 ident: D0SC05625A/cit7/1 publication-title: Renew. Sustain. Energy Rev. doi: 10.1016/j.rser.2014.07.093 – volume: 49 start-page: 6058 issue: 35 year: 2010 ident: D0SC05625A/cit6/1 publication-title: Angew. Chem., Int. Ed. Engl. doi: 10.1002/anie.201000431 – volume: 114 start-page: 12396 issue: 47 year: 2017 ident: D0SC05625A/cit20/1 publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1714896114 |
SSID | ssj0000331527 |
Score | 2.6098456 |
Snippet | Microdroplets display distinctive interfacial chemistry, manifested as accelerated reactions relative to those observed for the same reagents in bulk. Carbon... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2242 |
SubjectTerms | Amines Carbon dioxide Carboxylic acids Chemistry Diamines Imidazole Ionization Ions Mass spectrometry Protonation Reaction products Reagents |
Title | Accelerated reactions of amines with carbon dioxide driven by superacid at the microdroplet interface |
URI | https://www.ncbi.nlm.nih.gov/pubmed/34163990 https://www.proquest.com/docview/2490569963 https://www.proquest.com/docview/2544879053 https://pubmed.ncbi.nlm.nih.gov/PMC8179320 |
Volume | 12 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lj9MwELbY3QNcEK9lC8vKCC6oypLYTtocqwKqQHCALVq4VH5qI7HpKk3F49czfsRN1UUCLlEVTx71fLFnxjOfEXqe0UIbMjIJZ0wlTKUmEQVhiSp0wUeZGBFtHcX3H4rZnL09z883qbyuuqQVp_LXtXUl_6NVOAd6tVWy_6DZeFM4Ab9Bv3AEDcPxr3Q8kRJmDUv2YGtQfImCS83glzabPeSV80aAilW1_FEpPVSNHd-s1blaX8G1slKhoHF4aZPzVGNTylvHI9EYLre5DDp6ga4ayK4Bd1VfvaDCbB3C0O94lczWYXZ0C0Aue-Drha6_6yougICl7yM-p0Nfut0PRhCX2OErnP2YRVKWJUVO_FKL7p_znEVx0CU9cG2NoMSzbYXZmPiy6J2BPqWWJ1WlK2ktuLw3ncUkw03jHjog4EXAMHjw8fP8_EsMwqWUhm1944t3FLa0fLm5wbbRsuOJ7CbU7jXd_jHOTjm7g24HBwNPPFruohu6voduTrt9_e4j3UMNjqjBS4M9arBFDfaowQE12KMGi584ogbzFgNqcB81OKLmAZq_eX02nSVhs41EggfaJoLA21MBf5iZjPCxKXOw5TR4vKXSmirr-qZgrZqSaGPprfnIsDGTOc1FmklJD9F-vaz1EcIMXFTJMs4ZyZhSOddjyoqCKEHHLDNigF50vbmQgYnebojybeEyImi5eJV-mrqenwzQsyh75flXrpU67pSyCN_nakFYCa3gz9MBehqbobPtkhiv9XINMjkDjx3kQOah12F8DLW-ChhrAzTa0m4UsMzs2y11deEY2sd22iNw5SHgIMpv8PToTw2P0a3NZ3WM9ttmrZ-A1duKExctOgkI_g33wbFO |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Accelerated+reactions+of+amines+with+carbon+dioxide+driven+by+superacid+at+the+microdroplet+interface&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Huang%2C+Kai-Hung&rft.au=Wei%2C+Zhenwei&rft.au=Cooks%2C+R.+Graham&rft.date=2020-12-21&rft.issn=2041-6520&rft.eissn=2041-6539&rft.volume=12&rft.issue=6&rft.spage=2242&rft.epage=225&rft_id=info:doi/10.1039%2Fd0sc05625a&rft.externalDocID=d0sc05625a |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |