PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA
ABSTRACT Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investiga...
Saved in:
Published in | The Astrophysical journal Vol. 804; no. 2; pp. 114 - 24 |
---|---|
Main Authors | , , , , , , , , , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
United Kingdom
The American Astronomical Society
10.05.2015
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | ABSTRACT Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates without component spin to carry out inference on signals with moderate spins, but the total error is typically less than . The median 90% (50%) credible region for sky localization is ( ), with 3% (30%) of detected events localized within Early aLIGO, with only two detectors, will have a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible. |
---|---|
AbstractList | Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates without component spin to carry out inference on signals with moderate spins, but the total error is typically less than 10{sup −3} M{sub ⊙}. The median 90% (50%) credible region for sky localization is ∼600 deg{sup 2} (∼150 deg{sup 2}), with 3% (30%) of detected events localized within 100 deg{sup 2}. Early aLIGO, with only two detectors, will have a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible. Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates without component spin to carry out inference on signals with moderate spins, but the total error is typically less than 10 super(-3) M sub([middot in circle]). The median 90% (50%) credible region for sky localization is ~600 deg super(2) (~150 deg super(2)), with 3% (30%) of detected events localized within 100deg super(2). Early aLIGO, with only two detectors, will have a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible. ABSTRACT Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates without component spin to carry out inference on signals with moderate spins, but the total error is typically less than . The median 90% (50%) credible region for sky localization is ( ), with 3% (30%) of detected events localized within Early aLIGO, with only two detectors, will have a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible. |
Author | Mohapatra, Satya Berry, Christopher P. L. Mandel, Ilya Farr, Will M. Singer, Leo P. Cannon, Kipp Hanna, Chad Vitale, Salvatore Farr, Ben Pankow, Chris Middleton, Hannah Haster, Carl-Johan Vecchio, Alberto Price, Larry R. Urban, Alex L. Graff, Philip B. Sidery, Trevor Veitch, John |
Author_xml | – sequence: 1 givenname: Christopher P. L. surname: Berry fullname: Berry, Christopher P. L. organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK – sequence: 2 givenname: Ilya orcidid: 0000-0002-6134-8946 surname: Mandel fullname: Mandel, Ilya organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK – sequence: 3 givenname: Hannah surname: Middleton fullname: Middleton, Hannah organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK – sequence: 4 givenname: Leo P. surname: Singer fullname: Singer, Leo P. organization: NASA Goddard Space Flight Center Astrophysics Science Division, Code 661, Greenbelt, MD 20771, USA – sequence: 5 givenname: Alex L. surname: Urban fullname: Urban, Alex L. organization: Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA – sequence: 6 givenname: Alberto surname: Vecchio fullname: Vecchio, Alberto organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK – sequence: 7 givenname: Salvatore surname: Vitale fullname: Vitale, Salvatore organization: Massachusetts Institute of Technology , 185 Albany St, Cambridge, MA 02139, USA – sequence: 8 givenname: Kipp surname: Cannon fullname: Cannon, Kipp organization: Canadian Institute for Theoretical Astrophysics , 60 St. George Street, University of Toronto, Toronto, Ontario, M5S 3H8, Canada – sequence: 9 givenname: Ben surname: Farr fullname: Farr, Ben organization: University of Chicago Enrico Fermi Institute, Chicago, IL 60637, USA – sequence: 10 givenname: Will M. surname: Farr fullname: Farr, Will M. organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK – sequence: 11 givenname: Philip B. surname: Graff fullname: Graff, Philip B. organization: Gravitational Astrophysics Lab , NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA – sequence: 12 givenname: Chad surname: Hanna fullname: Hanna, Chad organization: University Park The Pennsylvania State University, PA 16802, USA – sequence: 13 givenname: Carl-Johan surname: Haster fullname: Haster, Carl-Johan organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK – sequence: 14 givenname: Satya surname: Mohapatra fullname: Mohapatra, Satya organization: Syracuse University , Syracuse, NY 13244, USA – sequence: 15 givenname: Chris surname: Pankow fullname: Pankow, Chris organization: Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA – sequence: 16 givenname: Larry R. surname: Price fullname: Price, Larry R. organization: California Institute of Technology LIGO Laboratory, Pasadena, CA 91125, USA – sequence: 17 givenname: Trevor surname: Sidery fullname: Sidery, Trevor organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK – sequence: 18 givenname: John surname: Veitch fullname: Veitch, John organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK |
BackLink | https://www.osti.gov/biblio/22883216$$D View this record in Osti.gov |
BookMark | eNqNkU1vnDAQhq0qlbpJ-gtysdRLLxR_8GGOLuvsIhGogO3HyTLGqKQb2GL20H9fo4166CHtaTTS84xm5r0GV-M0GgDuMPqAEWM-QijwIhp_9RkKfOJjHLwCGxxS5gU0jK_A5g_xBlxb-7i2JEk24McnXvEH0YgKirrJHniTlQW8Lyv4MSt49Q0W4tBUZeHVDa9gWvJc1KkoUlHDL1mzh5XgeebEFBZlVgu4PVRZsYPNXkC-_cwduIV5tiuhqPgteN2rozVvn-sNONyLJt17ebnLUp57OiBs8VSrIoOTtjVBzEjYGRL1rHO3tKRNkNYkUX0f0C5WYcda19KeMNohphOVhB2hN-DdZe5kl0FaPSxGf9fTOBq9SEIYowRHjnp_oU7z9PNs7CKfBqvN8ahGM52txHGMaERiTP4DJXEUsyhcUXpB9TxZO5tenubhSc2_JEZyzUqur5drEtJlJYl0WTkr-ctyS6tlmMZlVsPxH65_cYfpJB-n8zy6375o_AZfSJ9I |
CitedBy_id | crossref_primary_10_1103_PhysRevD_95_082006 crossref_primary_10_3847_1538_4357_ad6b2a crossref_primary_10_1103_PhysRevD_103_104066 crossref_primary_10_3847_2041_8213_aaacd4 crossref_primary_10_1093_mnras_staa1776 crossref_primary_10_1093_mnras_stw1772 crossref_primary_10_1093_mnras_stw1893 crossref_primary_10_3847_1538_4357_aa62a4 crossref_primary_10_3847_1538_4357_aab665 crossref_primary_10_1088_1475_7516_2016_11_056 crossref_primary_10_3847_0004_637X_831_2_190 crossref_primary_10_1088_0004_637X_812_2_168 crossref_primary_10_3847_1538_4357_ad9f36 crossref_primary_10_1093_mnras_stw233 crossref_primary_10_1093_mnras_sty1703 crossref_primary_10_1103_PhysRevD_105_104062 crossref_primary_10_3847_2041_8213_aacf9f crossref_primary_10_3847_2041_8213_abfb79 crossref_primary_10_1103_PhysRevD_103_124061 crossref_primary_10_3847_1538_4357_ac7f33 crossref_primary_10_1088_1361_6382_aab675 crossref_primary_10_3938_jkps_69_884 crossref_primary_10_1088_1538_3873_adbcd7 crossref_primary_10_1103_PhysRevD_93_024013 crossref_primary_10_3847_1538_4357_aaad0e crossref_primary_10_1103_PhysRevD_104_083038 crossref_primary_10_1002_wics_1532 crossref_primary_10_1017_pasa_2015_49 crossref_primary_10_1103_PhysRevD_109_123014 crossref_primary_10_1142_S0217751X16410177 crossref_primary_10_1088_1361_6382_ab3cff crossref_primary_10_1088_1361_6382_aa82d9 crossref_primary_10_3847_0004_637X_820_1_7 crossref_primary_10_1088_0264_9381_32_23_235017 crossref_primary_10_1088_1674_4527_21_12_308 crossref_primary_10_1007_s41114_020_00026_9 crossref_primary_10_1103_PhysRevD_94_084002 crossref_primary_10_1093_mnras_stac347 crossref_primary_10_3847_1538_4357_ac366d crossref_primary_10_1103_PhysRevD_94_044031 crossref_primary_10_1103_PhysRevD_111_063034 crossref_primary_10_1103_PhysRevLett_124_251102 crossref_primary_10_1007_lrr_2016_1 crossref_primary_10_1103_PhysRevD_104_104008 crossref_primary_10_3847_1538_4357_aca480 crossref_primary_10_1088_1742_6596_716_1_012031 crossref_primary_10_3847_1538_4357_ac98b7 crossref_primary_10_1103_PhysRevD_93_064001 crossref_primary_10_3847_0004_637X_820_2_136 crossref_primary_10_3847_2041_8205_824_2_L24 crossref_primary_10_1093_mnras_stad3448 crossref_primary_10_1051_0004_6361_201731758 crossref_primary_10_1093_mnras_stz675 crossref_primary_10_1103_PhysRevX_6_041015 crossref_primary_10_1093_mnras_staa2850 crossref_primary_10_3847_0067_0049_225_1_8 crossref_primary_10_3847_2041_8205_829_1_L15 crossref_primary_10_1103_PhysRevX_9_031040 crossref_primary_10_1103_RevModPhys_94_025001 crossref_primary_10_1088_1361_6382_ab685e crossref_primary_10_1103_PhysRevD_102_104020 crossref_primary_10_3847_2041_8213_ab75f5 crossref_primary_10_1103_PhysRevLett_116_241102 crossref_primary_10_1093_mnras_stad1030 crossref_primary_10_1103_PhysRevLett_119_161101 crossref_primary_10_1093_mnras_sty1066 crossref_primary_10_1103_PhysRevD_106_043504 crossref_primary_10_3847_1538_4357_aa6f0d crossref_primary_10_1093_mnras_stae1908 crossref_primary_10_1103_PhysRevD_110_064068 crossref_primary_10_1103_PhysRevX_13_041039 crossref_primary_10_1103_PhysRevD_109_022001 crossref_primary_10_1093_mnras_stv2213 crossref_primary_10_3847_1538_4357_aa63ef crossref_primary_10_1103_PhysRevD_100_104023 crossref_primary_10_1140_epjc_s10052_016_3912_4 crossref_primary_10_1088_1475_7516_2024_10_067 crossref_primary_10_1088_2041_8205_809_1_L8 crossref_primary_10_1103_PhysRevLett_115_141101 crossref_primary_10_3847_0004_637X_818_2_104 crossref_primary_10_3938_jkps_70_735 crossref_primary_10_3847_1538_4357_aaf893 crossref_primary_10_1093_mnrasl_slw239 crossref_primary_10_1088_0264_9381_32_23_235007 crossref_primary_10_3847_1538_4357_abb373 crossref_primary_10_1103_PhysRevD_94_024032 crossref_primary_10_1103_PhysRevD_92_044056 crossref_primary_10_1093_mnras_stab1492 crossref_primary_10_1088_0004_637X_808_2_186 crossref_primary_10_1007_s41114_018_0012_9 crossref_primary_10_1103_PhysRevD_101_122001 crossref_primary_10_1103_PhysRevX_13_011048 crossref_primary_10_1103_PhysRevLett_119_141101 crossref_primary_10_1103_PhysRevD_95_104036 crossref_primary_10_3847_1538_4357_aa9114 crossref_primary_10_1103_PhysRevD_103_104002 crossref_primary_10_3390_universe7110393 crossref_primary_10_1093_mnras_staf259 crossref_primary_10_1093_mnras_stw3292 crossref_primary_10_3847_1538_4357_aa850e crossref_primary_10_1103_PhysRevD_106_024004 crossref_primary_10_3390_universe10010006 crossref_primary_10_1088_1475_7516_2024_05_027 crossref_primary_10_1103_PhysRevD_109_044051 crossref_primary_10_1103_PhysRevD_110_123029 crossref_primary_10_1103_PhysRevD_97_104064 crossref_primary_10_1051_0004_6361_201527712 crossref_primary_10_1093_mnras_stx1764 crossref_primary_10_1103_PhysRevX_11_021053 crossref_primary_10_3847_1538_4357_acf9a0 crossref_primary_10_1103_PhysRevD_105_043010 crossref_primary_10_3847_1538_4357_aa5ebb crossref_primary_10_1088_1361_6382_aaf76d crossref_primary_10_1093_mnras_stw3225 crossref_primary_10_1093_mnras_stw1720 crossref_primary_10_3847_0004_637X_825_2_116 crossref_primary_10_1103_PhysRevD_95_042001 crossref_primary_10_1093_mnras_stw1849 crossref_primary_10_1103_PhysRevD_108_023001 crossref_primary_10_1103_PhysRevD_110_084085 crossref_primary_10_1093_astrogeo_atab077 |
Cites_doi | 10.1103/PhysRevLett.113.011102 10.1088/0004-637X/757/1/36 10.1103/PhysRevD.85.104045 10.1088/0004-637X/795/1/43 10.1086/382155 10.1103/PhysRevD.71.124043 10.1088/2041-8205/789/1/L5 10.1088/0004-637X/795/2/105 10.1103/PhysRevD.80.084043 10.1088/0264-9381/28/12/125023 10.1103/PhysRevD.67.104025 10.1088/0264-9381/28/10/105021 10.1088/0004-637X/775/1/18 10.1103/PhysRevD.63.042003 10.1088/1367-2630/11/12/123006 10.1088/0004-637X/778/1/66 10.1103/PhysRevD.82.102002 10.1088/0264-9381/26/7/073001 10.1088/0004-637X/748/2/136 10.1103/PhysRevLett.114.071104 10.1088/0264-9381/26/11/114007 10.12942/lrr-2009-2 10.1086/375713 10.1103/PhysRevD.89.022002 10.1088/0004-637X/784/1/8 10.12942/lrr-2012-4 10.1088/0264-9381/31/15/155005 10.1103/PhysRevD.86.084017 10.1088/0264-9381/32/1/015014 10.1103/PhysRevD.88.024025 10.1103/PhysRevD.76.104018 10.1088/0004-637X/784/2/119 10.1146/annurev-nucl-102711-095018 10.1111/j.1365-2966.2011.20288.x 10.1103/PhysRevD.89.042004 10.1103/PhysRevD.83.084053 10.1103/PhysRevD.88.062001 10.1088/0004-637X/739/2/99 10.1088/0264-9381/31/19/195010 10.1103/PhysRevD.71.084008 10.1088/0264-9381/23/15/009 10.1103/PhysRevD.87.024035 10.1088/0004-637X/741/2/103 10.1103/PhysRevD.81.062003 10.1038/nature02124 10.1088/0264-9381/27/11/114007 10.1088/0264-9381/25/18/184011 10.1103/PhysRevD.77.042001 10.1103/PhysRevD.90.024014 10.1103/PhysRevD.63.044023 10.1103/PhysRevD.52.848 10.1088/2041-8205/766/1/L14 10.1088/2041-8205/801/1/L1 10.1103/PhysRevD.79.124033 10.1086/595279 10.1103/PhysRevD.85.023535 10.1086/427976 10.1088/0264-9381/32/2/024001 10.1103/PhysRevD.87.124005 10.1088/0264-9381/27/8/084006 10.1088/0264-9381/27/17/173001 10.1103/PhysRevD.49.2658 10.1063/1.1835238 10.1103/PhysRevD.79.104023 10.1103/PhysRevD.66.027502 10.1088/0004-637X/767/2/124 10.1093/mnras/stu2225 10.1088/0004-637X/746/1/48 10.1103/PhysRevD.89.084060 10.1103/PhysRevD.91.042003 10.1088/0004-637X/725/2/1918 10.1088/0264-9381/32/11/115012 10.1093/mnras/stu642 10.1071/AS10046 10.1111/j.1365-2966.2009.14548.x |
ContentType | Journal Article |
Copyright | 2015. The American Astronomical Society. All rights reserved. |
Copyright_xml | – notice: 2015. The American Astronomical Society. All rights reserved. |
DBID | AAYXX CITATION 7TG 7TV C1K KL. 8FD H8D L7M OTOTI |
DOI | 10.1088/0004-637X/804/2/114 |
DatabaseName | CrossRef Meteorological & Geoastrophysical Abstracts Pollution Abstracts Environmental Sciences and Pollution Management Meteorological & Geoastrophysical Abstracts - Academic Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace OSTI.GOV |
DatabaseTitle | CrossRef Meteorological & Geoastrophysical Abstracts Pollution Abstracts Meteorological & Geoastrophysical Abstracts - Academic Environmental Sciences and Pollution Management Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | Technology Research Database Meteorological & Geoastrophysical Abstracts |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Astronomy & Astrophysics Physics |
DocumentTitleAlternate | PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA |
EISSN | 1538-4357 |
EndPage | 24 |
ExternalDocumentID | 22883216 10_1088_0004_637X_804_2_114 apj510669 |
GroupedDBID | -DZ -~X 123 1JI 23N 2FS 2WC 4.4 6J9 85S AAFWJ AAGCD AAJIO AALHV ABHWH ACBEA ACGFS ACHIP ACNCT ADACN ADIYS AEFHF AENEX AFPKN AKPSB ALMA_UNASSIGNED_HOLDINGS ASPBG ATQHT AVWKF AZFZN CJUJL CRLBU CS3 EBS EJD F5P FRP GROUPED_DOAJ IJHAN IOP KOT M~E N5L O3W O43 OK1 PJBAE RIN RNS ROL SJN SY9 T37 TN5 TR2 WH7 XSW AAYXX CITATION 7TG 7TV C1K KL. 8FD H8D L7M ABPTK OTOTI |
ID | FETCH-LOGICAL-c428t-aba6e19bbe47825de26f8d538b2b90cc29aff43d7a5d8bc293f283d08c9a95d23 |
IEDL.DBID | O3W |
ISSN | 0004-637X 1538-4357 |
IngestDate | Fri May 19 01:43:25 EDT 2023 Fri Jul 11 01:17:09 EDT 2025 Fri Jul 11 15:10:57 EDT 2025 Thu Apr 24 23:05:01 EDT 2025 Tue Jul 01 01:05:05 EDT 2025 Wed Aug 21 03:33:02 EDT 2024 |
IsDoiOpenAccess | false |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 2 |
Language | English |
License | http://iopscience.iop.org/info/page/text-and-data-mining http://iopscience.iop.org/page/copyright |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-aba6e19bbe47825de26f8d538b2b90cc29aff43d7a5d8bc293f283d08c9a95d23 |
Notes | ApJ97374 Compact Objects ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-6134-8946 |
OpenAccessLink | https://iopscience.iop.org/article/10.1088/0004-637X/804/2/114/pdf |
PQID | 1727678652 |
PQPubID | 23462 |
PageCount | 24 |
ParticipantIDs | proquest_miscellaneous_1727678652 osti_scitechconnect_22883216 iop_journals_10_1088_0004_637X_804_2_114 crossref_citationtrail_10_1088_0004_637X_804_2_114 crossref_primary_10_1088_0004_637X_804_2_114 proquest_miscellaneous_1770362712 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2015-05-10 |
PublicationDateYYYYMMDD | 2015-05-10 |
PublicationDate_xml | – month: 05 year: 2015 text: 2015-05-10 day: 10 |
PublicationDecade | 2010 |
PublicationPlace | United Kingdom |
PublicationPlace_xml | – name: United Kingdom |
PublicationTitle | The Astrophysical journal |
PublicationTitleAbbrev | APJ |
PublicationTitleAlternate | Astrophys. J |
PublicationYear | 2015 |
Publisher | The American Astronomical Society |
Publisher_xml | – name: The American Astronomical Society |
References | 44 MacKay D. J. C. (57) 2003 88 46 Aasi J. (6) 2015; 32 Farr W. M. (40) 2011; 741 Schutz B. F. (75) 2011; 28 van der Sluys M. (83) 2008; 25 Bulik T. (19) 2003; 589 Fan X. (38) 2014; 795 Mandel I. (59) 2010; 27 Bohé A. (17) 2013; 30 Cannon K. (26) 2012; 748 50 Barsotti L. (15) 2012 Hannam M. (48) 2013; 766 Kasliwal M. M. (52) 2014; 789 Metzger B. (60) 2012; 746 Röver C. (73) 2006; 23 10 11 Mandel I. (58) 2014; 31 12 56 13 Özel F. (67) 2010; 725 18 Nissanke S. (65) 2011; 739 1 Gorski K. (42) 2005; 622 Singer L. P. (79) 2014; 795 4 Rodriguez C. L. (72) 2014; 784 Moore C. J. (63) 2015; 32 Kramer M. (54) 2009; 26 Harry G. M. (49) 2010; 27 61 62 20 Acernese F. (9) 2015; 32 21 22 66 23 24 68 25 27 28 29 Aasi J. (3) 2014 Bartos I. (16) 2015; 801 Kreidberg L. (55) 2012; 757 Fairhurst S. (37) 2011; 28 Shoemaker D. (76) 2010 Raymond V. (70) 2009; 26 71 74 31 Nissanke S. (64) 2013; 767 32 Barnes J. (14) 2013; 775 33 77 34 Pürrer M. (69) 2014; 31 Acernese F. (8) 2009 Gregory P. C. (45) 2005 39 Aasi J. (2) 2013 Christensen N. (30) 2010; 27 Fairhurst S. (36) 2009; 11 Abadie J. (7) 2010; 27 DeGroot M. H. (35) 1975 80 Kiziltan B. (53) 2013; 778 81 82 41 85 Hanna C. (47) 2014; 784 Singer L. P. (78) 2014 86 Aasi J. (5) 2014; 31 43 Kalogera V. (51) 2004; 601 van der Sluys M. (84) 2008; 688 87 |
References_xml | – ident: 4 doi: 10.1103/PhysRevLett.113.011102 – volume: 757 start-page: 36 issn: 0004-637X year: 2012 ident: 55 publication-title: ApJ doi: 10.1088/0004-637X/757/1/36 – ident: 85 doi: 10.1103/PhysRevD.85.104045 – volume: 795 start-page: 43 issn: 0004-637X year: 2014 ident: 38 publication-title: ApJ doi: 10.1088/0004-637X/795/1/43 – volume: 601 start-page: L179 issn: 0004-637X year: 2004 ident: 51 publication-title: ApJL doi: 10.1086/382155 – ident: 62 doi: 10.1103/PhysRevD.71.124043 – volume: 789 start-page: L5 issn: 0004-637X year: 2014 ident: 52 publication-title: ApJL doi: 10.1088/2041-8205/789/1/L5 – volume: 795 start-page: 105 issn: 0004-637X year: 2014 ident: 79 publication-title: ApJ doi: 10.1088/0004-637X/795/2/105 – year: 2009 ident: 8 publication-title: Advanced Virgo Baseline Design, Virgo Tech. Rep. VIR-0027A-09 – ident: 21 doi: 10.1103/PhysRevD.80.084043 – volume: 28 issn: 0264-9381 year: 2011 ident: 75 publication-title: CQGra doi: 10.1088/0264-9381/28/12/125023 – ident: 20 doi: 10.1103/PhysRevD.67.104025 – volume: 28 issn: 0264-9381 year: 2011 ident: 37 publication-title: CQGra doi: 10.1088/0264-9381/28/10/105021 – volume: 775 start-page: 18 issn: 0004-637X year: 2013 ident: 14 publication-title: ApJ doi: 10.1088/0004-637X/775/1/18 – ident: 10 doi: 10.1103/PhysRevD.63.042003 – volume: 11 issn: 1078-1625 year: 2009 ident: 36 publication-title: NJPh doi: 10.1088/1367-2630/11/12/123006 – volume: 778 start-page: 66 issn: 0004-637X year: 2013 ident: 53 publication-title: ApJ doi: 10.1088/0004-637X/778/1/66 – ident: 66 doi: 10.1103/PhysRevD.82.102002 – volume: 26 issn: 0264-9381 year: 2009 ident: 54 publication-title: CQGra doi: 10.1088/0264-9381/26/7/073001 – volume: 748 start-page: 136 issn: 0004-637X year: 2012 ident: 26 publication-title: ApJ doi: 10.1088/0004-637X/748/2/136 – ident: 24 doi: 10.1103/PhysRevLett.114.071104 – volume: 26 issn: 0264-9381 year: 2009 ident: 70 publication-title: CQGra doi: 10.1088/0264-9381/26/11/114007 – ident: 74 doi: 10.12942/lrr-2009-2 – volume: 589 start-page: L37 issn: 0004-637X year: 2003 ident: 19 publication-title: ApJL doi: 10.1086/375713 – ident: 88 doi: 10.1103/PhysRevD.89.022002 – volume: 784 start-page: 8 issn: 0004-637X year: 2014 ident: 47 publication-title: ApJ doi: 10.1088/0004-637X/784/1/8 – ident: 50 doi: 10.12942/lrr-2012-4 – volume: 31 start-page: 155005 issn: 0264-9381 year: 2014 ident: 58 publication-title: CQGra doi: 10.1088/0264-9381/31/15/155005 – ident: 18 doi: 10.1103/PhysRevD.86.084017 – volume: 32 start-page: 015014 issn: 0264-9381 year: 2015 ident: 63 publication-title: CQGra doi: 10.1088/0264-9381/32/1/015014 – ident: 27 doi: 10.1103/PhysRevD.88.024025 – ident: 32 doi: 10.1103/PhysRevD.76.104018 – volume: 784 start-page: 119 issn: 0004-637X year: 2014 ident: 72 publication-title: ApJ doi: 10.1088/0004-637X/784/2/119 – ident: 56 doi: 10.1146/annurev-nucl-102711-095018 – ident: 43 doi: 10.1111/j.1365-2966.2011.20288.x – year: 2013 ident: 2 – ident: 46 doi: 10.1103/PhysRevD.89.042004 – ident: 29 doi: 10.1103/PhysRevD.83.084053 – ident: 1 doi: 10.1103/PhysRevD.88.062001 – volume: 739 start-page: 99 issn: 0004-637X year: 2011 ident: 65 publication-title: ApJ doi: 10.1088/0004-637X/739/2/99 – year: 2014 ident: 3 – volume: 31 issn: 0264-9381 year: 2014 ident: 69 publication-title: CQGra doi: 10.1088/0264-9381/31/19/195010 – ident: 12 doi: 10.1103/PhysRevD.71.084008 – volume: 23 start-page: 4895 issn: 0264-9381 year: 2006 ident: 73 publication-title: CQGra doi: 10.1088/0264-9381/23/15/009 – ident: 13 doi: 10.1103/PhysRevD.87.024035 – volume: 741 start-page: 103 issn: 0004-637X year: 2011 ident: 40 publication-title: ApJ doi: 10.1088/0004-637X/741/2/103 – year: 1975 ident: 35 – ident: 87 doi: 10.1103/PhysRevD.81.062003 – ident: 22 doi: 10.1038/nature02124 – year: 2010 ident: 76 publication-title: Advanced LIGO Anticipated Sensitivity Curves, Tech. Rep. LIGO-T0900288-v3 – volume: 27 issn: 0264-9381 year: 2010 ident: 59 publication-title: CQGra doi: 10.1088/0264-9381/27/11/114007 – volume: 25 issn: 0264-9381 year: 2008 ident: 83 publication-title: CQGra doi: 10.1088/0264-9381/25/18/184011 – volume: 31 issn: 0264-9381 year: 2014 ident: 5 publication-title: CQGra – ident: 82 doi: 10.1103/PhysRevD.77.042001 – ident: 28 doi: 10.1103/PhysRevD.88.024025 – ident: 39 doi: 10.1103/PhysRevD.90.024014 – ident: 33 doi: 10.1103/PhysRevD.63.044023 – ident: 68 doi: 10.1103/PhysRevD.52.848 – volume: 766 start-page: L14 issn: 0004-637X year: 2013 ident: 48 publication-title: ApJL doi: 10.1088/2041-8205/766/1/L14 – volume: 30 issn: 0264-9381 year: 2013 ident: 17 publication-title: CQGra – volume: 801 start-page: L1 issn: 0004-637X year: 2015 ident: 16 publication-title: ApJL doi: 10.1088/2041-8205/801/1/L1 – ident: 71 doi: 10.1103/PhysRevD.79.124033 – volume: 688 start-page: L61 issn: 0004-637X year: 2008 ident: 84 publication-title: ApJL doi: 10.1086/595279 – year: 2012 ident: 15 publication-title: Early aLIGO Configurations: Example Scenarios Toward Design Sensitivity, Tech. Rep. LIGO-T1200307-v4 – ident: 81 doi: 10.1103/PhysRevD.85.023535 – volume: 622 start-page: 759 issn: 0004-637X year: 2005 ident: 42 publication-title: ApJ doi: 10.1086/427976 – volume: 32 issn: 0264-9381 year: 2015 ident: 9 publication-title: CQGra doi: 10.1088/0264-9381/32/2/024001 – ident: 25 doi: 10.1103/PhysRevD.87.124005 – volume: 27 issn: 0264-9381 year: 2010 ident: 49 publication-title: CQGra doi: 10.1088/0264-9381/27/8/084006 – volume: 27 issn: 0264-9381 year: 2010 ident: 7 publication-title: CQGra doi: 10.1088/0264-9381/27/17/173001 – ident: 31 doi: 10.1103/PhysRevD.49.2658 – ident: 80 doi: 10.1063/1.1835238 – ident: 11 doi: 10.1103/PhysRevD.79.104023 – ident: 34 doi: 10.1103/PhysRevD.66.027502 – volume: 767 start-page: 124 issn: 0004-637X year: 2013 ident: 64 publication-title: ApJ doi: 10.1088/0004-637X/767/2/124 – ident: 61 doi: 10.1093/mnras/stu2225 – volume: 746 start-page: 48 issn: 0004-637X year: 2012 ident: 60 publication-title: ApJ doi: 10.1088/0004-637X/746/1/48 – ident: 77 doi: 10.1103/PhysRevD.89.084060 – ident: 86 doi: 10.1103/PhysRevD.91.042003 – volume: 725 start-page: 1918 issn: 0004-637X year: 2010 ident: 67 publication-title: ApJ doi: 10.1088/0004-637X/725/2/1918 – volume: 32 issn: 0264-9381 year: 2015 ident: 6 publication-title: CQGra doi: 10.1088/0264-9381/32/11/115012 – volume: 27 issn: 0264-9381 year: 2010 ident: 30 publication-title: CQGra – year: 2014 ident: 78 publication-title: PhD thesis, California Institute of Technology – year: 2003 ident: 57 – ident: 44 doi: 10.1093/mnras/stu642 – year: 2005 ident: 45 – ident: 23 doi: 10.1071/AS10046 – ident: 41 doi: 10.1111/j.1365-2966.2009.14548.x |
SSID | ssj0004299 |
Score | 2.5585053 |
Snippet | ABSTRACT Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection... Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs,... |
SourceID | osti proquest crossref iop |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 114 |
SubjectTerms | ASTROPHYSICS, COSMOLOGY AND ASTRONOMY BINARY STARS COALESCENCE DATA ANALYSIS DETECTION Detectors DISTANCE GRAVITATIONAL WAVES Interferometers Localization LUMINOSITY MASS methods: data analysis NEUTRON STARS Noise Position (location) Searching SIGNAL-TO-NOISE RATIO Sky stars: neutron surveys WAVE FORMS |
Title | PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA |
URI | https://iopscience.iop.org/article/10.1088/0004-637X/804/2/114 https://www.proquest.com/docview/1727678652 https://www.proquest.com/docview/1770362712 https://www.osti.gov/biblio/22883216 |
Volume | 804 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELbYEBIvCAZoZWMyEkI8ENo4TuI8mi6jQW1TpalWnqzYsV8GzbR2D_x77pIUhEAVb45kO5bPvvt89n1HyFsOW8Yy4XsMVgemMLNepbnzHA85i41vXYzxzrN5NFnxL-tw3Tvc2liY5rZX_R-h2BEFd1PYP4gTGHvAvSiI10Mx4kM29DGP9cNARAIPX3lw_TsukiU9_O0a7FmH_t3JH5bpCP4OWrqBffaXlm5Nz9VT8qTHjFR2I3xGHtjNCTmVW_RiN99_0He0LXdOiu0JebToSs_JzUIWcpYCZKXpssxmrUOKwsGPfsrmsvhK5-mqLFCrlrKg41xO0-UYnU5Lep2VE1qkcppBwzGd59kypZcrfDxBy0lKwZ5hXptLOs0-5zQt5AuyukrL8cTr0yt4Bs4cO5BJFVk_0dpygAlhbVnkRA0KUDOdjIxhSeUcD-q4Cmuh4TNwgEXqkTBJlYQ1C16S402zsaeEMqOR5MX6NgCrGBlRCwtATNfM1VY7PiBsP7XK9NzjmALjm2rvwIXAO3CuUB4K5KEYBksPyIdfjW476o3D1d-DzFS_BbeHq56jYBWsNGTKNfikyOwUw8zLzI8G5M1e4Ao2G96gVBvb3EOfgPbAukchO1QHOc1Y7LNX_z-iM_IYkFjotbSw5-R4d3dvXwPa2ekLcpTli4t2Yf8EWwDrYQ |
linkProvider | IOP Publishing |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELXYRSAuCBbQdlnASAhxILRxnMQ5hjalgTat0lRbTlbs2BfYpqLdA_-emSTlQ6CKmyPZlpXxzDyPPW8IecVBZQwTrsNgd2AJM-OUilvHcp-zULvGhpjvPMuCyYp_XPvr33Nh6m1n-t9BsyUKbn9h9yBOYO4BdwIvXPfFgPdZHxB9f1vZE3Lb94IAyzfMvatfuZEs6iBwO-jAPPTvif7wTiewArDUNejaX5a6cT_jB-R-hxtp3K7yIbllNmfkPN5hJLu-_k5f06bdBip2Z-TOom09Il8WcR7PEoCtNFkW6awJSlE4_NH3aRbnn2mWrIocLWsR53Q4j6fJcoiBpyW9SosJzZN4msLAIc3m6TKhoxU-oKDFJKHg07C2zYhO0w9zmuTxY7IaJ8Vw4nQlFhwN5449yKUMjBspZThABb8yLLCiAiOomIoGWrOotJZ7VVj6lVDw6VnAI9VA6KiM_Ip5T8jppt6Yc0KZVkj0YlzjgWcMtKiEATCmKmYroyzvEXb4tVJ3_ONYBuOrbO7BhcB7cC5RHhLkIRkmTPfI25-Dti39xvHub0BmslPD3fGulyhYCbsN2XI1PivSe8mw-jJzgx55eRC4BIXDW5RyY-obmBMQH3j4wGfH-iCvGQtddvH_K3pB7i5GYzlNs09PyT0AZr7TsMRektP9txvzDMDPXj1vdvcPju3uRw |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PARAMETER+ESTIMATION+FOR+BINARY+NEUTRON-STAR+COALESCENCES+WITH+REALISTIC+NOISE+DURING+THE+ADVANCED+LIGO+ERA&rft.jtitle=The+Astrophysical+journal&rft.au=Berry%2C+Christopher+P+L&rft.au=Mandel%2C+Ilya&rft.au=Middleton%2C+Hannah&rft.au=Singer%2C+Leo+P&rft.date=2015-05-10&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=804&rft.issue=2&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1088%2F0004-637X%2F804%2F2%2F114&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon |