PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA

ABSTRACT Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investiga...

Full description

Saved in:
Bibliographic Details
Published inThe Astrophysical journal Vol. 804; no. 2; pp. 114 - 24
Main Authors Berry, Christopher P. L., Mandel, Ilya, Middleton, Hannah, Singer, Leo P., Urban, Alex L., Vecchio, Alberto, Vitale, Salvatore, Cannon, Kipp, Farr, Ben, Farr, Will M., Graff, Philip B., Hanna, Chad, Haster, Carl-Johan, Mohapatra, Satya, Pankow, Chris, Price, Larry R., Sidery, Trevor, Veitch, John
Format Journal Article
LanguageEnglish
Published United Kingdom The American Astronomical Society 10.05.2015
Subjects
Online AccessGet full text

Cover

Loading…
Abstract ABSTRACT Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates without component spin to carry out inference on signals with moderate spins, but the total error is typically less than . The median 90% (50%) credible region for sky localization is ( ), with 3% (30%) of detected events localized within Early aLIGO, with only two detectors, will have a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible.
AbstractList Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates without component spin to carry out inference on signals with moderate spins, but the total error is typically less than 10{sup −3} M{sub ⊙}. The median 90% (50%) credible region for sky localization is ∼600 deg{sup 2} (∼150 deg{sup 2}), with 3% (30%) of detected events localized within 100 deg{sup 2}. Early aLIGO, with only two detectors, will have a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible.
Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates without component spin to carry out inference on signals with moderate spins, but the total error is typically less than 10 super(-3) M sub([middot in circle]). The median 90% (50%) credible region for sky localization is ~600 deg super(2) (~150 deg super(2)), with 3% (30%) of detected events localized within 100deg super(2). Early aLIGO, with only two detectors, will have a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible.
ABSTRACT Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs, but also to make inferences about the source systems. Binary neutron-star mergers are among the most promising sources. We investigate the performance of the parameter-estimation (PE) pipeline that will be used during the first observing run of the Advanced Laser Interferometer Gravitational-wave Observatory (aLIGO) in 2015: we concentrate on the ability to reconstruct the source location on the sky, but also consider the ability to measure masses and the distance. Accurate, rapid sky localization is necessary to alert electromagnetic (EM) observatories so that they can perform follow-up searches for counterpart transient events. We consider PE accuracy in the presence of non-stationary, non-Gaussian noise. We find that the character of the noise makes negligible difference to the PE performance at a given signal-to-noise ratio. The source luminosity distance can only be poorly constrained, since the median 90% (50%) credible interval scaled with respect to the true distance is 0.85 (0.38). However, the chirp mass is well measured. Our chirp-mass estimates are subject to systematic error because we used gravitational-waveform templates without component spin to carry out inference on signals with moderate spins, but the total error is typically less than . The median 90% (50%) credible region for sky localization is ( ), with 3% (30%) of detected events localized within Early aLIGO, with only two detectors, will have a sky-localization accuracy for binary neutron stars of hundreds of square degrees; this makes EM follow-up challenging, but not impossible.
Author Mohapatra, Satya
Berry, Christopher P. L.
Mandel, Ilya
Farr, Will M.
Singer, Leo P.
Cannon, Kipp
Hanna, Chad
Vitale, Salvatore
Farr, Ben
Pankow, Chris
Middleton, Hannah
Haster, Carl-Johan
Vecchio, Alberto
Price, Larry R.
Urban, Alex L.
Graff, Philip B.
Sidery, Trevor
Veitch, John
Author_xml – sequence: 1
  givenname: Christopher P. L.
  surname: Berry
  fullname: Berry, Christopher P. L.
  organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK
– sequence: 2
  givenname: Ilya
  orcidid: 0000-0002-6134-8946
  surname: Mandel
  fullname: Mandel, Ilya
  organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK
– sequence: 3
  givenname: Hannah
  surname: Middleton
  fullname: Middleton, Hannah
  organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK
– sequence: 4
  givenname: Leo P.
  surname: Singer
  fullname: Singer, Leo P.
  organization: NASA Goddard Space Flight Center Astrophysics Science Division, Code 661, Greenbelt, MD 20771, USA
– sequence: 5
  givenname: Alex L.
  surname: Urban
  fullname: Urban, Alex L.
  organization: Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
– sequence: 6
  givenname: Alberto
  surname: Vecchio
  fullname: Vecchio, Alberto
  organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK
– sequence: 7
  givenname: Salvatore
  surname: Vitale
  fullname: Vitale, Salvatore
  organization: Massachusetts Institute of Technology , 185 Albany St, Cambridge, MA 02139, USA
– sequence: 8
  givenname: Kipp
  surname: Cannon
  fullname: Cannon, Kipp
  organization: Canadian Institute for Theoretical Astrophysics , 60 St. George Street, University of Toronto, Toronto, Ontario, M5S 3H8, Canada
– sequence: 9
  givenname: Ben
  surname: Farr
  fullname: Farr, Ben
  organization: University of Chicago Enrico Fermi Institute, Chicago, IL 60637, USA
– sequence: 10
  givenname: Will M.
  surname: Farr
  fullname: Farr, Will M.
  organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK
– sequence: 11
  givenname: Philip B.
  surname: Graff
  fullname: Graff, Philip B.
  organization: Gravitational Astrophysics Lab , NASA Goddard Space Flight Center, Greenbelt, MD 20771, USA
– sequence: 12
  givenname: Chad
  surname: Hanna
  fullname: Hanna, Chad
  organization: University Park The Pennsylvania State University, PA 16802, USA
– sequence: 13
  givenname: Carl-Johan
  surname: Haster
  fullname: Haster, Carl-Johan
  organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK
– sequence: 14
  givenname: Satya
  surname: Mohapatra
  fullname: Mohapatra, Satya
  organization: Syracuse University , Syracuse, NY 13244, USA
– sequence: 15
  givenname: Chris
  surname: Pankow
  fullname: Pankow, Chris
  organization: Leonard E. Parker Center for Gravitation, Cosmology, and Astrophysics, University of Wisconsin-Milwaukee, Milwaukee, WI 53201, USA
– sequence: 16
  givenname: Larry R.
  surname: Price
  fullname: Price, Larry R.
  organization: California Institute of Technology LIGO Laboratory, Pasadena, CA 91125, USA
– sequence: 17
  givenname: Trevor
  surname: Sidery
  fullname: Sidery, Trevor
  organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK
– sequence: 18
  givenname: John
  surname: Veitch
  fullname: Veitch, John
  organization: University of Birmingham School of Physics & Astronomy, Birmingham, B15 2TT, UK
BackLink https://www.osti.gov/biblio/22883216$$D View this record in Osti.gov
BookMark eNqNkU1vnDAQhq0qlbpJ-gtysdRLLxR_8GGOLuvsIhGogO3HyTLGqKQb2GL20H9fo4166CHtaTTS84xm5r0GV-M0GgDuMPqAEWM-QijwIhp_9RkKfOJjHLwCGxxS5gU0jK_A5g_xBlxb-7i2JEk24McnXvEH0YgKirrJHniTlQW8Lyv4MSt49Q0W4tBUZeHVDa9gWvJc1KkoUlHDL1mzh5XgeebEFBZlVgu4PVRZsYPNXkC-_cwduIV5tiuhqPgteN2rozVvn-sNONyLJt17ebnLUp57OiBs8VSrIoOTtjVBzEjYGRL1rHO3tKRNkNYkUX0f0C5WYcda19KeMNohphOVhB2hN-DdZe5kl0FaPSxGf9fTOBq9SEIYowRHjnp_oU7z9PNs7CKfBqvN8ahGM52txHGMaERiTP4DJXEUsyhcUXpB9TxZO5tenubhSc2_JEZyzUqur5drEtJlJYl0WTkr-ctyS6tlmMZlVsPxH65_cYfpJB-n8zy6375o_AZfSJ9I
CitedBy_id crossref_primary_10_1103_PhysRevD_95_082006
crossref_primary_10_3847_1538_4357_ad6b2a
crossref_primary_10_1103_PhysRevD_103_104066
crossref_primary_10_3847_2041_8213_aaacd4
crossref_primary_10_1093_mnras_staa1776
crossref_primary_10_1093_mnras_stw1772
crossref_primary_10_1093_mnras_stw1893
crossref_primary_10_3847_1538_4357_aa62a4
crossref_primary_10_3847_1538_4357_aab665
crossref_primary_10_1088_1475_7516_2016_11_056
crossref_primary_10_3847_0004_637X_831_2_190
crossref_primary_10_1088_0004_637X_812_2_168
crossref_primary_10_3847_1538_4357_ad9f36
crossref_primary_10_1093_mnras_stw233
crossref_primary_10_1093_mnras_sty1703
crossref_primary_10_1103_PhysRevD_105_104062
crossref_primary_10_3847_2041_8213_aacf9f
crossref_primary_10_3847_2041_8213_abfb79
crossref_primary_10_1103_PhysRevD_103_124061
crossref_primary_10_3847_1538_4357_ac7f33
crossref_primary_10_1088_1361_6382_aab675
crossref_primary_10_3938_jkps_69_884
crossref_primary_10_1088_1538_3873_adbcd7
crossref_primary_10_1103_PhysRevD_93_024013
crossref_primary_10_3847_1538_4357_aaad0e
crossref_primary_10_1103_PhysRevD_104_083038
crossref_primary_10_1002_wics_1532
crossref_primary_10_1017_pasa_2015_49
crossref_primary_10_1103_PhysRevD_109_123014
crossref_primary_10_1142_S0217751X16410177
crossref_primary_10_1088_1361_6382_ab3cff
crossref_primary_10_1088_1361_6382_aa82d9
crossref_primary_10_3847_0004_637X_820_1_7
crossref_primary_10_1088_0264_9381_32_23_235017
crossref_primary_10_1088_1674_4527_21_12_308
crossref_primary_10_1007_s41114_020_00026_9
crossref_primary_10_1103_PhysRevD_94_084002
crossref_primary_10_1093_mnras_stac347
crossref_primary_10_3847_1538_4357_ac366d
crossref_primary_10_1103_PhysRevD_94_044031
crossref_primary_10_1103_PhysRevD_111_063034
crossref_primary_10_1103_PhysRevLett_124_251102
crossref_primary_10_1007_lrr_2016_1
crossref_primary_10_1103_PhysRevD_104_104008
crossref_primary_10_3847_1538_4357_aca480
crossref_primary_10_1088_1742_6596_716_1_012031
crossref_primary_10_3847_1538_4357_ac98b7
crossref_primary_10_1103_PhysRevD_93_064001
crossref_primary_10_3847_0004_637X_820_2_136
crossref_primary_10_3847_2041_8205_824_2_L24
crossref_primary_10_1093_mnras_stad3448
crossref_primary_10_1051_0004_6361_201731758
crossref_primary_10_1093_mnras_stz675
crossref_primary_10_1103_PhysRevX_6_041015
crossref_primary_10_1093_mnras_staa2850
crossref_primary_10_3847_0067_0049_225_1_8
crossref_primary_10_3847_2041_8205_829_1_L15
crossref_primary_10_1103_PhysRevX_9_031040
crossref_primary_10_1103_RevModPhys_94_025001
crossref_primary_10_1088_1361_6382_ab685e
crossref_primary_10_1103_PhysRevD_102_104020
crossref_primary_10_3847_2041_8213_ab75f5
crossref_primary_10_1103_PhysRevLett_116_241102
crossref_primary_10_1093_mnras_stad1030
crossref_primary_10_1103_PhysRevLett_119_161101
crossref_primary_10_1093_mnras_sty1066
crossref_primary_10_1103_PhysRevD_106_043504
crossref_primary_10_3847_1538_4357_aa6f0d
crossref_primary_10_1093_mnras_stae1908
crossref_primary_10_1103_PhysRevD_110_064068
crossref_primary_10_1103_PhysRevX_13_041039
crossref_primary_10_1103_PhysRevD_109_022001
crossref_primary_10_1093_mnras_stv2213
crossref_primary_10_3847_1538_4357_aa63ef
crossref_primary_10_1103_PhysRevD_100_104023
crossref_primary_10_1140_epjc_s10052_016_3912_4
crossref_primary_10_1088_1475_7516_2024_10_067
crossref_primary_10_1088_2041_8205_809_1_L8
crossref_primary_10_1103_PhysRevLett_115_141101
crossref_primary_10_3847_0004_637X_818_2_104
crossref_primary_10_3938_jkps_70_735
crossref_primary_10_3847_1538_4357_aaf893
crossref_primary_10_1093_mnrasl_slw239
crossref_primary_10_1088_0264_9381_32_23_235007
crossref_primary_10_3847_1538_4357_abb373
crossref_primary_10_1103_PhysRevD_94_024032
crossref_primary_10_1103_PhysRevD_92_044056
crossref_primary_10_1093_mnras_stab1492
crossref_primary_10_1088_0004_637X_808_2_186
crossref_primary_10_1007_s41114_018_0012_9
crossref_primary_10_1103_PhysRevD_101_122001
crossref_primary_10_1103_PhysRevX_13_011048
crossref_primary_10_1103_PhysRevLett_119_141101
crossref_primary_10_1103_PhysRevD_95_104036
crossref_primary_10_3847_1538_4357_aa9114
crossref_primary_10_1103_PhysRevD_103_104002
crossref_primary_10_3390_universe7110393
crossref_primary_10_1093_mnras_staf259
crossref_primary_10_1093_mnras_stw3292
crossref_primary_10_3847_1538_4357_aa850e
crossref_primary_10_1103_PhysRevD_106_024004
crossref_primary_10_3390_universe10010006
crossref_primary_10_1088_1475_7516_2024_05_027
crossref_primary_10_1103_PhysRevD_109_044051
crossref_primary_10_1103_PhysRevD_110_123029
crossref_primary_10_1103_PhysRevD_97_104064
crossref_primary_10_1051_0004_6361_201527712
crossref_primary_10_1093_mnras_stx1764
crossref_primary_10_1103_PhysRevX_11_021053
crossref_primary_10_3847_1538_4357_acf9a0
crossref_primary_10_1103_PhysRevD_105_043010
crossref_primary_10_3847_1538_4357_aa5ebb
crossref_primary_10_1088_1361_6382_aaf76d
crossref_primary_10_1093_mnras_stw3225
crossref_primary_10_1093_mnras_stw1720
crossref_primary_10_3847_0004_637X_825_2_116
crossref_primary_10_1103_PhysRevD_95_042001
crossref_primary_10_1093_mnras_stw1849
crossref_primary_10_1103_PhysRevD_108_023001
crossref_primary_10_1103_PhysRevD_110_084085
crossref_primary_10_1093_astrogeo_atab077
Cites_doi 10.1103/PhysRevLett.113.011102
10.1088/0004-637X/757/1/36
10.1103/PhysRevD.85.104045
10.1088/0004-637X/795/1/43
10.1086/382155
10.1103/PhysRevD.71.124043
10.1088/2041-8205/789/1/L5
10.1088/0004-637X/795/2/105
10.1103/PhysRevD.80.084043
10.1088/0264-9381/28/12/125023
10.1103/PhysRevD.67.104025
10.1088/0264-9381/28/10/105021
10.1088/0004-637X/775/1/18
10.1103/PhysRevD.63.042003
10.1088/1367-2630/11/12/123006
10.1088/0004-637X/778/1/66
10.1103/PhysRevD.82.102002
10.1088/0264-9381/26/7/073001
10.1088/0004-637X/748/2/136
10.1103/PhysRevLett.114.071104
10.1088/0264-9381/26/11/114007
10.12942/lrr-2009-2
10.1086/375713
10.1103/PhysRevD.89.022002
10.1088/0004-637X/784/1/8
10.12942/lrr-2012-4
10.1088/0264-9381/31/15/155005
10.1103/PhysRevD.86.084017
10.1088/0264-9381/32/1/015014
10.1103/PhysRevD.88.024025
10.1103/PhysRevD.76.104018
10.1088/0004-637X/784/2/119
10.1146/annurev-nucl-102711-095018
10.1111/j.1365-2966.2011.20288.x
10.1103/PhysRevD.89.042004
10.1103/PhysRevD.83.084053
10.1103/PhysRevD.88.062001
10.1088/0004-637X/739/2/99
10.1088/0264-9381/31/19/195010
10.1103/PhysRevD.71.084008
10.1088/0264-9381/23/15/009
10.1103/PhysRevD.87.024035
10.1088/0004-637X/741/2/103
10.1103/PhysRevD.81.062003
10.1038/nature02124
10.1088/0264-9381/27/11/114007
10.1088/0264-9381/25/18/184011
10.1103/PhysRevD.77.042001
10.1103/PhysRevD.90.024014
10.1103/PhysRevD.63.044023
10.1103/PhysRevD.52.848
10.1088/2041-8205/766/1/L14
10.1088/2041-8205/801/1/L1
10.1103/PhysRevD.79.124033
10.1086/595279
10.1103/PhysRevD.85.023535
10.1086/427976
10.1088/0264-9381/32/2/024001
10.1103/PhysRevD.87.124005
10.1088/0264-9381/27/8/084006
10.1088/0264-9381/27/17/173001
10.1103/PhysRevD.49.2658
10.1063/1.1835238
10.1103/PhysRevD.79.104023
10.1103/PhysRevD.66.027502
10.1088/0004-637X/767/2/124
10.1093/mnras/stu2225
10.1088/0004-637X/746/1/48
10.1103/PhysRevD.89.084060
10.1103/PhysRevD.91.042003
10.1088/0004-637X/725/2/1918
10.1088/0264-9381/32/11/115012
10.1093/mnras/stu642
10.1071/AS10046
10.1111/j.1365-2966.2009.14548.x
ContentType Journal Article
Copyright 2015. The American Astronomical Society. All rights reserved.
Copyright_xml – notice: 2015. The American Astronomical Society. All rights reserved.
DBID AAYXX
CITATION
7TG
7TV
C1K
KL.
8FD
H8D
L7M
OTOTI
DOI 10.1088/0004-637X/804/2/114
DatabaseName CrossRef
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Environmental Sciences and Pollution Management
Meteorological & Geoastrophysical Abstracts - Academic
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
OSTI.GOV
DatabaseTitle CrossRef
Meteorological & Geoastrophysical Abstracts
Pollution Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
Environmental Sciences and Pollution Management
Technology Research Database
Aerospace Database
Advanced Technologies Database with Aerospace
DatabaseTitleList
Technology Research Database
Meteorological & Geoastrophysical Abstracts

DeliveryMethod fulltext_linktorsrc
Discipline Astronomy & Astrophysics
Physics
DocumentTitleAlternate PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA
EISSN 1538-4357
EndPage 24
ExternalDocumentID 22883216
10_1088_0004_637X_804_2_114
apj510669
GroupedDBID -DZ
-~X
123
1JI
23N
2FS
2WC
4.4
6J9
85S
AAFWJ
AAGCD
AAJIO
AALHV
ABHWH
ACBEA
ACGFS
ACHIP
ACNCT
ADACN
ADIYS
AEFHF
AENEX
AFPKN
AKPSB
ALMA_UNASSIGNED_HOLDINGS
ASPBG
ATQHT
AVWKF
AZFZN
CJUJL
CRLBU
CS3
EBS
EJD
F5P
FRP
GROUPED_DOAJ
IJHAN
IOP
KOT
M~E
N5L
O3W
O43
OK1
PJBAE
RIN
RNS
ROL
SJN
SY9
T37
TN5
TR2
WH7
XSW
AAYXX
CITATION
7TG
7TV
C1K
KL.
8FD
H8D
L7M
ABPTK
OTOTI
ID FETCH-LOGICAL-c428t-aba6e19bbe47825de26f8d538b2b90cc29aff43d7a5d8bc293f283d08c9a95d23
IEDL.DBID O3W
ISSN 0004-637X
1538-4357
IngestDate Fri May 19 01:43:25 EDT 2023
Fri Jul 11 01:17:09 EDT 2025
Fri Jul 11 15:10:57 EDT 2025
Thu Apr 24 23:05:01 EDT 2025
Tue Jul 01 01:05:05 EDT 2025
Wed Aug 21 03:33:02 EDT 2024
IsDoiOpenAccess false
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 2
Language English
License http://iopscience.iop.org/info/page/text-and-data-mining
http://iopscience.iop.org/page/copyright
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-aba6e19bbe47825de26f8d538b2b90cc29aff43d7a5d8bc293f283d08c9a95d23
Notes ApJ97374
Compact Objects
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-6134-8946
OpenAccessLink https://iopscience.iop.org/article/10.1088/0004-637X/804/2/114/pdf
PQID 1727678652
PQPubID 23462
PageCount 24
ParticipantIDs proquest_miscellaneous_1727678652
osti_scitechconnect_22883216
iop_journals_10_1088_0004_637X_804_2_114
crossref_citationtrail_10_1088_0004_637X_804_2_114
crossref_primary_10_1088_0004_637X_804_2_114
proquest_miscellaneous_1770362712
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2015-05-10
PublicationDateYYYYMMDD 2015-05-10
PublicationDate_xml – month: 05
  year: 2015
  text: 2015-05-10
  day: 10
PublicationDecade 2010
PublicationPlace United Kingdom
PublicationPlace_xml – name: United Kingdom
PublicationTitle The Astrophysical journal
PublicationTitleAbbrev APJ
PublicationTitleAlternate Astrophys. J
PublicationYear 2015
Publisher The American Astronomical Society
Publisher_xml – name: The American Astronomical Society
References 44
MacKay D. J. C. (57) 2003
88
46
Aasi J. (6) 2015; 32
Farr W. M. (40) 2011; 741
Schutz B. F. (75) 2011; 28
van der Sluys M. (83) 2008; 25
Bulik T. (19) 2003; 589
Fan X. (38) 2014; 795
Mandel I. (59) 2010; 27
Bohé A. (17) 2013; 30
Cannon K. (26) 2012; 748
50
Barsotti L. (15) 2012
Hannam M. (48) 2013; 766
Kasliwal M. M. (52) 2014; 789
Metzger B. (60) 2012; 746
Röver C. (73) 2006; 23
10
11
Mandel I. (58) 2014; 31
12
56
13
Özel F. (67) 2010; 725
18
Nissanke S. (65) 2011; 739
1
Gorski K. (42) 2005; 622
Singer L. P. (79) 2014; 795
4
Rodriguez C. L. (72) 2014; 784
Moore C. J. (63) 2015; 32
Kramer M. (54) 2009; 26
Harry G. M. (49) 2010; 27
61
62
20
Acernese F. (9) 2015; 32
21
22
66
23
24
68
25
27
28
29
Aasi J. (3) 2014
Bartos I. (16) 2015; 801
Kreidberg L. (55) 2012; 757
Fairhurst S. (37) 2011; 28
Shoemaker D. (76) 2010
Raymond V. (70) 2009; 26
71
74
31
Nissanke S. (64) 2013; 767
32
Barnes J. (14) 2013; 775
33
77
34
Pürrer M. (69) 2014; 31
Acernese F. (8) 2009
Gregory P. C. (45) 2005
39
Aasi J. (2) 2013
Christensen N. (30) 2010; 27
Fairhurst S. (36) 2009; 11
Abadie J. (7) 2010; 27
DeGroot M. H. (35) 1975
80
Kiziltan B. (53) 2013; 778
81
82
41
85
Hanna C. (47) 2014; 784
Singer L. P. (78) 2014
86
Aasi J. (5) 2014; 31
43
Kalogera V. (51) 2004; 601
van der Sluys M. (84) 2008; 688
87
References_xml – ident: 4
  doi: 10.1103/PhysRevLett.113.011102
– volume: 757
  start-page: 36
  issn: 0004-637X
  year: 2012
  ident: 55
  publication-title: ApJ
  doi: 10.1088/0004-637X/757/1/36
– ident: 85
  doi: 10.1103/PhysRevD.85.104045
– volume: 795
  start-page: 43
  issn: 0004-637X
  year: 2014
  ident: 38
  publication-title: ApJ
  doi: 10.1088/0004-637X/795/1/43
– volume: 601
  start-page: L179
  issn: 0004-637X
  year: 2004
  ident: 51
  publication-title: ApJL
  doi: 10.1086/382155
– ident: 62
  doi: 10.1103/PhysRevD.71.124043
– volume: 789
  start-page: L5
  issn: 0004-637X
  year: 2014
  ident: 52
  publication-title: ApJL
  doi: 10.1088/2041-8205/789/1/L5
– volume: 795
  start-page: 105
  issn: 0004-637X
  year: 2014
  ident: 79
  publication-title: ApJ
  doi: 10.1088/0004-637X/795/2/105
– year: 2009
  ident: 8
  publication-title: Advanced Virgo Baseline Design, Virgo Tech. Rep. VIR-0027A-09
– ident: 21
  doi: 10.1103/PhysRevD.80.084043
– volume: 28
  issn: 0264-9381
  year: 2011
  ident: 75
  publication-title: CQGra
  doi: 10.1088/0264-9381/28/12/125023
– ident: 20
  doi: 10.1103/PhysRevD.67.104025
– volume: 28
  issn: 0264-9381
  year: 2011
  ident: 37
  publication-title: CQGra
  doi: 10.1088/0264-9381/28/10/105021
– volume: 775
  start-page: 18
  issn: 0004-637X
  year: 2013
  ident: 14
  publication-title: ApJ
  doi: 10.1088/0004-637X/775/1/18
– ident: 10
  doi: 10.1103/PhysRevD.63.042003
– volume: 11
  issn: 1078-1625
  year: 2009
  ident: 36
  publication-title: NJPh
  doi: 10.1088/1367-2630/11/12/123006
– volume: 778
  start-page: 66
  issn: 0004-637X
  year: 2013
  ident: 53
  publication-title: ApJ
  doi: 10.1088/0004-637X/778/1/66
– ident: 66
  doi: 10.1103/PhysRevD.82.102002
– volume: 26
  issn: 0264-9381
  year: 2009
  ident: 54
  publication-title: CQGra
  doi: 10.1088/0264-9381/26/7/073001
– volume: 748
  start-page: 136
  issn: 0004-637X
  year: 2012
  ident: 26
  publication-title: ApJ
  doi: 10.1088/0004-637X/748/2/136
– ident: 24
  doi: 10.1103/PhysRevLett.114.071104
– volume: 26
  issn: 0264-9381
  year: 2009
  ident: 70
  publication-title: CQGra
  doi: 10.1088/0264-9381/26/11/114007
– ident: 74
  doi: 10.12942/lrr-2009-2
– volume: 589
  start-page: L37
  issn: 0004-637X
  year: 2003
  ident: 19
  publication-title: ApJL
  doi: 10.1086/375713
– ident: 88
  doi: 10.1103/PhysRevD.89.022002
– volume: 784
  start-page: 8
  issn: 0004-637X
  year: 2014
  ident: 47
  publication-title: ApJ
  doi: 10.1088/0004-637X/784/1/8
– ident: 50
  doi: 10.12942/lrr-2012-4
– volume: 31
  start-page: 155005
  issn: 0264-9381
  year: 2014
  ident: 58
  publication-title: CQGra
  doi: 10.1088/0264-9381/31/15/155005
– ident: 18
  doi: 10.1103/PhysRevD.86.084017
– volume: 32
  start-page: 015014
  issn: 0264-9381
  year: 2015
  ident: 63
  publication-title: CQGra
  doi: 10.1088/0264-9381/32/1/015014
– ident: 27
  doi: 10.1103/PhysRevD.88.024025
– ident: 32
  doi: 10.1103/PhysRevD.76.104018
– volume: 784
  start-page: 119
  issn: 0004-637X
  year: 2014
  ident: 72
  publication-title: ApJ
  doi: 10.1088/0004-637X/784/2/119
– ident: 56
  doi: 10.1146/annurev-nucl-102711-095018
– ident: 43
  doi: 10.1111/j.1365-2966.2011.20288.x
– year: 2013
  ident: 2
– ident: 46
  doi: 10.1103/PhysRevD.89.042004
– ident: 29
  doi: 10.1103/PhysRevD.83.084053
– ident: 1
  doi: 10.1103/PhysRevD.88.062001
– volume: 739
  start-page: 99
  issn: 0004-637X
  year: 2011
  ident: 65
  publication-title: ApJ
  doi: 10.1088/0004-637X/739/2/99
– year: 2014
  ident: 3
– volume: 31
  issn: 0264-9381
  year: 2014
  ident: 69
  publication-title: CQGra
  doi: 10.1088/0264-9381/31/19/195010
– ident: 12
  doi: 10.1103/PhysRevD.71.084008
– volume: 23
  start-page: 4895
  issn: 0264-9381
  year: 2006
  ident: 73
  publication-title: CQGra
  doi: 10.1088/0264-9381/23/15/009
– ident: 13
  doi: 10.1103/PhysRevD.87.024035
– volume: 741
  start-page: 103
  issn: 0004-637X
  year: 2011
  ident: 40
  publication-title: ApJ
  doi: 10.1088/0004-637X/741/2/103
– year: 1975
  ident: 35
– ident: 87
  doi: 10.1103/PhysRevD.81.062003
– ident: 22
  doi: 10.1038/nature02124
– year: 2010
  ident: 76
  publication-title: Advanced LIGO Anticipated Sensitivity Curves, Tech. Rep. LIGO-T0900288-v3
– volume: 27
  issn: 0264-9381
  year: 2010
  ident: 59
  publication-title: CQGra
  doi: 10.1088/0264-9381/27/11/114007
– volume: 25
  issn: 0264-9381
  year: 2008
  ident: 83
  publication-title: CQGra
  doi: 10.1088/0264-9381/25/18/184011
– volume: 31
  issn: 0264-9381
  year: 2014
  ident: 5
  publication-title: CQGra
– ident: 82
  doi: 10.1103/PhysRevD.77.042001
– ident: 28
  doi: 10.1103/PhysRevD.88.024025
– ident: 39
  doi: 10.1103/PhysRevD.90.024014
– ident: 33
  doi: 10.1103/PhysRevD.63.044023
– ident: 68
  doi: 10.1103/PhysRevD.52.848
– volume: 766
  start-page: L14
  issn: 0004-637X
  year: 2013
  ident: 48
  publication-title: ApJL
  doi: 10.1088/2041-8205/766/1/L14
– volume: 30
  issn: 0264-9381
  year: 2013
  ident: 17
  publication-title: CQGra
– volume: 801
  start-page: L1
  issn: 0004-637X
  year: 2015
  ident: 16
  publication-title: ApJL
  doi: 10.1088/2041-8205/801/1/L1
– ident: 71
  doi: 10.1103/PhysRevD.79.124033
– volume: 688
  start-page: L61
  issn: 0004-637X
  year: 2008
  ident: 84
  publication-title: ApJL
  doi: 10.1086/595279
– year: 2012
  ident: 15
  publication-title: Early aLIGO Configurations: Example Scenarios Toward Design Sensitivity, Tech. Rep. LIGO-T1200307-v4
– ident: 81
  doi: 10.1103/PhysRevD.85.023535
– volume: 622
  start-page: 759
  issn: 0004-637X
  year: 2005
  ident: 42
  publication-title: ApJ
  doi: 10.1086/427976
– volume: 32
  issn: 0264-9381
  year: 2015
  ident: 9
  publication-title: CQGra
  doi: 10.1088/0264-9381/32/2/024001
– ident: 25
  doi: 10.1103/PhysRevD.87.124005
– volume: 27
  issn: 0264-9381
  year: 2010
  ident: 49
  publication-title: CQGra
  doi: 10.1088/0264-9381/27/8/084006
– volume: 27
  issn: 0264-9381
  year: 2010
  ident: 7
  publication-title: CQGra
  doi: 10.1088/0264-9381/27/17/173001
– ident: 31
  doi: 10.1103/PhysRevD.49.2658
– ident: 80
  doi: 10.1063/1.1835238
– ident: 11
  doi: 10.1103/PhysRevD.79.104023
– ident: 34
  doi: 10.1103/PhysRevD.66.027502
– volume: 767
  start-page: 124
  issn: 0004-637X
  year: 2013
  ident: 64
  publication-title: ApJ
  doi: 10.1088/0004-637X/767/2/124
– ident: 61
  doi: 10.1093/mnras/stu2225
– volume: 746
  start-page: 48
  issn: 0004-637X
  year: 2012
  ident: 60
  publication-title: ApJ
  doi: 10.1088/0004-637X/746/1/48
– ident: 77
  doi: 10.1103/PhysRevD.89.084060
– ident: 86
  doi: 10.1103/PhysRevD.91.042003
– volume: 725
  start-page: 1918
  issn: 0004-637X
  year: 2010
  ident: 67
  publication-title: ApJ
  doi: 10.1088/0004-637X/725/2/1918
– volume: 32
  issn: 0264-9381
  year: 2015
  ident: 6
  publication-title: CQGra
  doi: 10.1088/0264-9381/32/11/115012
– volume: 27
  issn: 0264-9381
  year: 2010
  ident: 30
  publication-title: CQGra
– year: 2014
  ident: 78
  publication-title: PhD thesis, California Institute of Technology
– year: 2003
  ident: 57
– ident: 44
  doi: 10.1093/mnras/stu642
– year: 2005
  ident: 45
– ident: 23
  doi: 10.1071/AS10046
– ident: 41
  doi: 10.1111/j.1365-2966.2009.14548.x
SSID ssj0004299
Score 2.5585053
Snippet ABSTRACT Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection...
Advanced ground-based gravitational-wave (GW) detectors begin operation imminently. Their intended goal is not only to make the first direct detection of GWs,...
SourceID osti
proquest
crossref
iop
SourceType Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 114
SubjectTerms ASTROPHYSICS, COSMOLOGY AND ASTRONOMY
BINARY STARS
COALESCENCE
DATA ANALYSIS
DETECTION
Detectors
DISTANCE
GRAVITATIONAL WAVES
Interferometers
Localization
LUMINOSITY
MASS
methods: data analysis
NEUTRON STARS
Noise
Position (location)
Searching
SIGNAL-TO-NOISE RATIO
Sky
stars: neutron
surveys
WAVE FORMS
Title PARAMETER ESTIMATION FOR BINARY NEUTRON-STAR COALESCENCES WITH REALISTIC NOISE DURING THE ADVANCED LIGO ERA
URI https://iopscience.iop.org/article/10.1088/0004-637X/804/2/114
https://www.proquest.com/docview/1727678652
https://www.proquest.com/docview/1770362712
https://www.osti.gov/biblio/22883216
Volume 804
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Rb9MwELbYEBIvCAZoZWMyEkI8ENo4TuI8mi6jQW1TpalWnqzYsV8GzbR2D_x77pIUhEAVb45kO5bPvvt89n1HyFsOW8Yy4XsMVgemMLNepbnzHA85i41vXYzxzrN5NFnxL-tw3Tvc2liY5rZX_R-h2BEFd1PYP4gTGHvAvSiI10Mx4kM29DGP9cNARAIPX3lw_TsukiU9_O0a7FmH_t3JH5bpCP4OWrqBffaXlm5Nz9VT8qTHjFR2I3xGHtjNCTmVW_RiN99_0He0LXdOiu0JebToSs_JzUIWcpYCZKXpssxmrUOKwsGPfsrmsvhK5-mqLFCrlrKg41xO0-UYnU5Lep2VE1qkcppBwzGd59kypZcrfDxBy0lKwZ5hXptLOs0-5zQt5AuyukrL8cTr0yt4Bs4cO5BJFVk_0dpygAlhbVnkRA0KUDOdjIxhSeUcD-q4Cmuh4TNwgEXqkTBJlYQ1C16S402zsaeEMqOR5MX6NgCrGBlRCwtATNfM1VY7PiBsP7XK9NzjmALjm2rvwIXAO3CuUB4K5KEYBksPyIdfjW476o3D1d-DzFS_BbeHq56jYBWsNGTKNfikyOwUw8zLzI8G5M1e4Ao2G96gVBvb3EOfgPbAukchO1QHOc1Y7LNX_z-iM_IYkFjotbSw5-R4d3dvXwPa2ekLcpTli4t2Yf8EWwDrYQ
linkProvider IOP Publishing
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1Nj9MwELXYRSAuCBbQdlnASAhxILRxnMQ5hjalgTat0lRbTlbs2BfYpqLdA_-emSTlQ6CKmyPZlpXxzDyPPW8IecVBZQwTrsNgd2AJM-OUilvHcp-zULvGhpjvPMuCyYp_XPvr33Nh6m1n-t9BsyUKbn9h9yBOYO4BdwIvXPfFgPdZHxB9f1vZE3Lb94IAyzfMvatfuZEs6iBwO-jAPPTvif7wTiewArDUNejaX5a6cT_jB-R-hxtp3K7yIbllNmfkPN5hJLu-_k5f06bdBip2Z-TOom09Il8WcR7PEoCtNFkW6awJSlE4_NH3aRbnn2mWrIocLWsR53Q4j6fJcoiBpyW9SosJzZN4msLAIc3m6TKhoxU-oKDFJKHg07C2zYhO0w9zmuTxY7IaJ8Vw4nQlFhwN5449yKUMjBspZThABb8yLLCiAiOomIoGWrOotJZ7VVj6lVDw6VnAI9VA6KiM_Ip5T8jppt6Yc0KZVkj0YlzjgWcMtKiEATCmKmYroyzvEXb4tVJ3_ONYBuOrbO7BhcB7cC5RHhLkIRkmTPfI25-Dti39xvHub0BmslPD3fGulyhYCbsN2XI1PivSe8mw-jJzgx55eRC4BIXDW5RyY-obmBMQH3j4wGfH-iCvGQtddvH_K3pB7i5GYzlNs09PyT0AZr7TsMRektP9txvzDMDPXj1vdvcPju3uRw
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=PARAMETER+ESTIMATION+FOR+BINARY+NEUTRON-STAR+COALESCENCES+WITH+REALISTIC+NOISE+DURING+THE+ADVANCED+LIGO+ERA&rft.jtitle=The+Astrophysical+journal&rft.au=Berry%2C+Christopher+P+L&rft.au=Mandel%2C+Ilya&rft.au=Middleton%2C+Hannah&rft.au=Singer%2C+Leo+P&rft.date=2015-05-10&rft.issn=0004-637X&rft.eissn=1538-4357&rft.volume=804&rft.issue=2&rft.spage=1&rft.epage=24&rft_id=info:doi/10.1088%2F0004-637X%2F804%2F2%2F114&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0004-637X&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0004-637X&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0004-637X&client=summon