An overview of Sirtuins as potential therapeutic target: Structure, function and modulators
Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD+), waves of research have assessed the potential of Sirtuin as a therapeutic target. T...
Saved in:
Published in | European journal of medicinal chemistry Vol. 161; pp. 48 - 77 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
France
Elsevier Masson SAS
01.01.2019
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD+), waves of research have assessed the potential of Sirtuin as a therapeutic target. The Sirtuin family, which is widely distributed throughout the nature, has been divided into seven human isoforms (Sirt1-Sirt7). They are thought to be closely related to some aging diseases such as cardiovascular disorders, neurodegeneration, and tumors. Herein, we present a comprehensive review of the structure, function and modulators of Sirtuins, which is expected to be beneficial to relevant studies.
[Display omitted]
•The roles of Sirtuins are thoroughly discussed.•The functions of Sirtuins are outlined.•An overview for the modulators of Sirtuins is introduced in detail. |
---|---|
AbstractList | Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD
), waves of research have assessed the potential of Sirtuin as a therapeutic target. The Sirtuin family, which is widely distributed throughout the nature, has been divided into seven human isoforms (Sirt1-Sirt7). They are thought to be closely related to some aging diseases such as cardiovascular disorders, neurodegeneration, and tumors. Herein, we present a comprehensive review of the structure, function and modulators of Sirtuins, which is expected to be beneficial to relevant studies. Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD+), waves of research have assessed the potential of Sirtuin as a therapeutic target. The Sirtuin family, which is widely distributed throughout the nature, has been divided into seven human isoforms (Sirt1-Sirt7). They are thought to be closely related to some aging diseases such as cardiovascular disorders, neurodegeneration, and tumors. Herein, we present a comprehensive review of the structure, function and modulators of Sirtuins, which is expected to be beneficial to relevant studies. [Display omitted] •The roles of Sirtuins are thoroughly discussed.•The functions of Sirtuins are outlined.•An overview for the modulators of Sirtuins is introduced in detail. Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD+), waves of research have assessed the potential of Sirtuin as a therapeutic target. The Sirtuin family, which is widely distributed throughout the nature, has been divided into seven human isoforms (Sirt1-Sirt7). They are thought to be closely related to some aging diseases such as cardiovascular disorders, neurodegeneration, and tumors. Herein, we present a comprehensive review of the structure, function and modulators of Sirtuins, which is expected to be beneficial to relevant studies.Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD+), waves of research have assessed the potential of Sirtuin as a therapeutic target. The Sirtuin family, which is widely distributed throughout the nature, has been divided into seven human isoforms (Sirt1-Sirt7). They are thought to be closely related to some aging diseases such as cardiovascular disorders, neurodegeneration, and tumors. Herein, we present a comprehensive review of the structure, function and modulators of Sirtuins, which is expected to be beneficial to relevant studies. |
Author | Ye, Tinghong Liao, Mengya Wang, Xin Zhang, Yiwen He, Jun Ouyang, Hongling Ouyang, Liang Hu, Mingxing Wang, Yijie Li, Wenzhen |
Author_xml | – sequence: 1 givenname: Yijie surname: Wang fullname: Wang, Yijie organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China – sequence: 2 givenname: Jun surname: He fullname: He, Jun organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China – sequence: 3 givenname: Mengya surname: Liao fullname: Liao, Mengya organization: Sichuan Nursing Vocational College, Chengdu 610100, China – sequence: 4 givenname: Mingxing surname: Hu fullname: Hu, Mingxing organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China – sequence: 5 givenname: Wenzhen surname: Li fullname: Li, Wenzhen organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China – sequence: 6 givenname: Hongling surname: Ouyang fullname: Ouyang, Hongling organization: West China School of Pharmacy, Sichuan University, Chengdu 610041, China – sequence: 7 givenname: Xin surname: Wang fullname: Wang, Xin organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China – sequence: 8 givenname: Tinghong surname: Ye fullname: Ye, Tinghong organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China – sequence: 9 givenname: Yiwen orcidid: 0000-0002-4024-4881 surname: Zhang fullname: Zhang, Yiwen email: yiwenzhang@scu.edu.cn organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China – sequence: 10 givenname: Liang surname: Ouyang fullname: Ouyang, Liang email: ouyangliang@scu.edu.cn organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30342425$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU1PGzEQhq2KCkLgHyDkI4du8NeuNxyQEOoHElIP4cbBcuzZ4mjXDv6g6r-vo4QLh_YwGmn0vq9mnjlFRz54QOiCkgUltLveLGAzgXlZMEL7OloQ1n9CMyq7vuGsFUdoRhjjTcu4OEGnKW0IIW1HyDE64YQLJlg7Q893Hoc3iG8OfuMw4JWLuTifsE54GzL47PSI8wtEvYWSncFZx1-Qb_Aqx2JyifAFD8Wb7ILH2ls8BVtGnUNMZ-jzoMcE54c-R0_fvj7d_2gef35_uL97bIxgfW6WVrZCdnboZS9ZXbDjpKNtx3tYsq5eIgkBAlRLI9ZW1rJrJsVyzaxtreVzdLWP3cbwWiBlNblkYBy1h1CSYpRxWfMqiDm6PEjLegKrttFNOv5R7zyq4GYvMDGkFGFQxmW9uy1H7UZFidrBVxu1h6928HfTCr-axQfze_5_bLd7G1RG9Q9RJePAG7AugsnKBvfvgL8tyJ_X |
CitedBy_id | crossref_primary_10_1016_j_bmc_2020_115356 crossref_primary_10_30841_2708_8731_5_2022_265470 crossref_primary_10_3389_fchem_2022_948217 crossref_primary_10_1152_ajprenal_00091_2023 crossref_primary_10_1007_s00018_023_05093_z crossref_primary_10_1016_j_bmc_2021_116328 crossref_primary_10_1016_j_ejmech_2022_114363 crossref_primary_10_3389_fcell_2020_615461 crossref_primary_10_3390_genes12111698 crossref_primary_10_1111_phpp_12790 crossref_primary_10_1016_j_bcp_2023_115573 crossref_primary_10_3390_cells9030780 crossref_primary_10_1016_j_bmcl_2020_127458 crossref_primary_10_1016_j_cbi_2019_03_021 crossref_primary_10_1016_j_ijbiomac_2023_128270 crossref_primary_10_1155_2020_5238650 crossref_primary_10_1155_2021_9925771 crossref_primary_10_3390_antiox8050118 crossref_primary_10_3390_ijms23031499 crossref_primary_10_1016_j_jmgm_2019_02_014 crossref_primary_10_1007_s00394_021_02623_y crossref_primary_10_1016_j_neuroscience_2022_09_021 crossref_primary_10_2174_1570159X19666210609160017 crossref_primary_10_1038_s41598_023_28226_7 crossref_primary_10_1080_15592294_2019_1704349 crossref_primary_10_1002_ddr_70008 crossref_primary_10_1016_j_canlet_2021_10_039 crossref_primary_10_1039_D0RA06316A crossref_primary_10_1038_s41392_022_01257_8 crossref_primary_10_1016_j_bmcl_2024_129620 crossref_primary_10_3389_fcell_2020_589016 crossref_primary_10_1002_alz_12344 crossref_primary_10_2174_1389557522666220404090835 crossref_primary_10_31857_S0041377123060032 crossref_primary_10_1007_s12035_021_02387_w crossref_primary_10_1111_cas_16091 crossref_primary_10_1016_j_arr_2019_100983 crossref_primary_10_1016_j_bmc_2019_115231 crossref_primary_10_2174_1568026622666220422094744 crossref_primary_10_3390_cancers12092468 crossref_primary_10_1021_acs_joc_1c00812 crossref_primary_10_1021_acs_jmedchem_3c01979 crossref_primary_10_1016_j_phrs_2021_106050 crossref_primary_10_1016_j_ejmech_2020_112561 crossref_primary_10_2174_1389557522666220330144151 crossref_primary_10_3389_fphys_2022_953078 crossref_primary_10_1007_s10571_022_01265_w crossref_primary_10_1007_s11064_019_02809_1 crossref_primary_10_3390_antibiotics12020186 crossref_primary_10_3390_biom12070921 crossref_primary_10_1111_bph_15570 crossref_primary_10_1016_j_abb_2020_108260 crossref_primary_10_3389_fcell_2020_576946 crossref_primary_10_1016_j_bmc_2019_03_003 crossref_primary_10_3389_fragi_2024_1373741 crossref_primary_10_1016_j_bcp_2024_116320 crossref_primary_10_1186_s12864_024_10003_z crossref_primary_10_3389_fphar_2020_607796 crossref_primary_10_1016_j_ygeno_2025_111006 crossref_primary_10_18632_aging_202536 crossref_primary_10_1016_j_tips_2019_09_003 crossref_primary_10_38124_ijisrt_IJISRT24MAY2391 crossref_primary_10_3390_ijms20040974 crossref_primary_10_1111_febs_16353 crossref_primary_10_1016_j_intimp_2022_108671 crossref_primary_10_1002_biot_202200570 crossref_primary_10_3390_ijms24010728 crossref_primary_10_1016_j_coph_2019_11_007 crossref_primary_10_3390_life14060729 crossref_primary_10_1007_s12011_024_04397_w crossref_primary_10_1007_s40520_022_02257_y crossref_primary_10_1096_fj_202302665R crossref_primary_10_1007_s00204_021_03048_6 crossref_primary_10_1111_jcmm_16317 crossref_primary_10_2174_1566524023666230727093911 crossref_primary_10_1016_j_expneurol_2020_113484 crossref_primary_10_1016_j_japr_2021_100144 crossref_primary_10_1016_j_freeradbiomed_2020_05_024 crossref_primary_10_1161_HYPERTENSIONAHA_124_22072 crossref_primary_10_1016_j_ijbiomac_2024_134120 crossref_primary_10_1080_07391102_2021_2004925 crossref_primary_10_2139_ssrn_4000363 crossref_primary_10_3390_ijms25041956 crossref_primary_10_1016_j_bcp_2024_116034 crossref_primary_10_1134_S1990519X23700025 crossref_primary_10_1089_neu_2019_6933 crossref_primary_10_3390_molecules24152724 crossref_primary_10_1016_j_intimp_2022_108712 crossref_primary_10_1007_s00044_022_02869_z crossref_primary_10_1016_j_intimp_2020_106333 crossref_primary_10_3390_ph16010127 crossref_primary_10_1007_s00296_021_04951_y crossref_primary_10_1186_s12886_020_1330_8 crossref_primary_10_3390_biom10020347 crossref_primary_10_1152_physrev_00022_2019 crossref_primary_10_1155_2022_5812105 crossref_primary_10_3390_ijms20061381 crossref_primary_10_1007_s40265_024_02021_8 crossref_primary_10_1016_j_heliyon_2023_e13144 crossref_primary_10_17816_clinpract624496 crossref_primary_10_3389_fendo_2022_801303 crossref_primary_10_3390_cells10030660 crossref_primary_10_1038_s41598_024_53164_3 crossref_primary_10_1016_j_heliyon_2024_e37883 crossref_primary_10_1111_1462_2920_16198 crossref_primary_10_1016_j_plantsci_2020_110434 crossref_primary_10_3233_CBM_191253 crossref_primary_10_3390_molecules27144449 crossref_primary_10_1007_s00394_022_02989_7 crossref_primary_10_3389_fcvm_2022_894692 crossref_primary_10_1152_physiol_00002_2021 crossref_primary_10_1155_2019_4598167 crossref_primary_10_1021_acs_jmedchem_3c00337 crossref_primary_10_1007_s10565_020_09528_2 crossref_primary_10_1016_j_mam_2024_101273 crossref_primary_10_3389_fimmu_2024_1394925 crossref_primary_10_1155_2022_3200798 crossref_primary_10_1186_s13046_019_1030_5 crossref_primary_10_1038_s42255_024_01174_w crossref_primary_10_1080_13543776_2020_1749264 crossref_primary_10_3390_metabo11120840 crossref_primary_10_1016_j_ijbiomac_2024_130761 crossref_primary_10_3390_molecules24030424 crossref_primary_10_3390_nu14030653 crossref_primary_10_2174_1570180820666230418114000 crossref_primary_10_1021_acs_jmedchem_3c01496 crossref_primary_10_1039_D4RA05014B crossref_primary_10_1093_nar_gkaa392 crossref_primary_10_3389_fnut_2021_791861 crossref_primary_10_1021_acs_jmedchem_2c00687 crossref_primary_10_1080_10408398_2021_1995321 crossref_primary_10_1007_s00702_019_02005_z crossref_primary_10_1016_j_lfs_2024_122537 crossref_primary_10_1002_med_22076 crossref_primary_10_1002_ardp_202400661 crossref_primary_10_3390_ijms22115545 crossref_primary_10_3390_ijms23020973 crossref_primary_10_1172_JCI158978 crossref_primary_10_1007_s11010_022_04462_9 crossref_primary_10_3389_fendo_2019_00093 crossref_primary_10_2174_1389450124666221207090108 crossref_primary_10_1002_biot_202300232 crossref_primary_10_1080_17460441_2021_1915980 crossref_primary_10_1007_s00044_024_03249_5 crossref_primary_10_1080_07391102_2023_2268202 crossref_primary_10_3390_biom13081210 |
Cites_doi | 10.1016/j.bmcl.2017.09.049 10.1111/j.1474-9726.2007.00304.x 10.1038/onc.2008.436 10.1126/science.1099196 10.1073/pnas.0404184101 10.1007/s10495-017-1397-8 10.1038/nature01667 10.1016/j.molcel.2013.06.018 10.1093/carcin/bgv167 10.1074/jbc.M110.133892 10.1038/ng1018 10.1039/C4OB00860J 10.1016/bs.mie.2016.03.011 10.1371/journal.pntd.0006180 10.1007/s10571-009-9414-2 10.18632/oncotarget.1070 10.1021/acs.jmedchem.6b01690 10.1016/j.cell.2014.11.046 10.1016/j.cell.2009.02.026 10.1021/acs.jmedchem.5b00293 10.1074/jbc.M109.014928 10.1126/science.aaa2361 10.1016/j.bmcl.2014.03.026 10.1038/emm.2007.2 10.1074/jbc.M113.476903 10.1016/j.bmcl.2016.01.086 10.1093/nar/gkt642 10.1038/ncomms8645 10.1074/jbc.C112.403048 10.1016/j.febslet.2012.10.009 10.1016/j.celrep.2017.01.009 10.1016/j.celrep.2012.11.001 10.1016/S0092-8674(01)00524-4 10.2500/ajra.2016.30.4282 10.1124/jpet.107.134882 10.1074/jbc.M106779200 10.1097/GME.0b013e31827fdda4 10.1016/j.cmet.2007.07.003 10.1073/pnas.0408936102 10.1021/cb100376q 10.1371/journal.pone.0000784 10.1111/j.1474-9726.2009.00544.x 10.1093/cvr/cvn224 10.1016/j.molcel.2010.05.023 10.1177/1947601912474893 10.1074/jbc.M509329200 10.1002/hep.26101 10.1016/j.ab.2008.08.033 10.1016/j.bbagen.2013.08.016 10.1038/ncomms3327 10.1038/nature01960 10.1073/pnas.0609410104 10.1126/science.aad1171 10.1021/acs.jmedchem.7b00533 10.1016/j.molcel.2015.10.017 10.3233/JAD-151135 10.1038/srep09841 10.1016/j.cell.2006.06.057 10.1096/fasebj.10.11.8836039 10.1016/j.bmcl.2012.02.089 10.1021/jm050522v 10.1089/ars.2014.6213 10.1002/adsc.201700927 10.1016/j.neuron.2008.03.015 10.1016/S1097-2765(03)00038-8 10.1038/sj.emboj.7600244 10.1021/jm301431y 10.1074/jbc.M111.218990 10.1016/j.cell.2009.12.041 10.1038/nature12038 10.1016/j.yexcr.2014.07.013 10.1016/j.ccell.2016.04.005 10.1021/jm8014298 10.1016/j.cmet.2011.10.006 10.1111/j.1474-9726.2007.00335.x 10.1016/j.bbrc.2013.10.033 10.1021/jm400438k 10.1111/eci.12285 10.1101/gad.13.19.2570 10.1074/jbc.M110.124164 10.1242/jcs.042382 10.1016/S0092-8674(01)00527-X 10.1177/1087057106294710 10.1002/anie.201509843 10.1016/j.cellsig.2013.06.007 10.1016/j.ccr.2008.03.004 10.1093/genetics/93.1.37 10.1038/nature11043 10.1038/sj.emboj.7600570 10.1016/j.bbrc.2015.12.037 10.1074/jbc.M113.487736 10.1080/15384101.2016.1152427 10.1016/j.cell.2005.11.044 10.1021/acs.jmedchem.7b01648 10.1038/nature03354 10.1021/acs.jmedchem.6b01609 10.3390/ijms12096226 10.1016/j.ejmech.2017.04.010 10.1016/j.ccr.2011.02.014 10.1073/pnas.1117500108 10.1167/iovs.13-11681 10.1016/j.jsb.2013.02.012 10.1111/febs.12346 10.1021/ml3002709 10.7150/thno.18804 10.1016/j.str.2007.02.002 10.1155/2017/1750306 10.1016/j.cell.2005.03.035 10.1016/j.ccr.2009.11.023 10.1038/ncomms7263 10.1016/j.bbrc.2009.07.119 10.1158/0008-5472.CAN-05-3617 10.1074/jbc.M112.384511 10.1002/anie.201610082 10.1002/anie.201709050 10.1101/gad.1412706 10.4161/cc.8.16.9367 10.1038/nature06736 10.1016/j.bmc.2014.11.027 10.1101/gad.211342.112 10.1016/j.cell.2013.04.023 10.1093/eurheartj/ehu095 10.1126/science.289.5487.2126 10.1080/15548627.2015.1009778 10.1016/j.cmet.2010.11.015 10.1021/acs.jmedchem.5b01517 10.1074/mcp.M113.031377 10.1021/acs.biochem.5b00150 10.1038/bjc.2015.226 10.1126/science.1231097 10.1016/j.ccr.2013.02.024 10.1038/ncb3147 10.1074/jbc.M205670200 10.15252/embj.201593499 10.1016/j.semcdb.2016.07.020 10.1016/j.cmet.2008.08.017 10.1039/C7SC02738A 10.1242/jcs.073783 10.1101/gad.265462.115 10.1126/science.1169956 10.1016/j.bbr.2014.12.035 10.1038/89668 10.1074/jbc.M111830200 10.1038/srep08529 10.1016/j.molcel.2012.09.030 10.3892/or.2016.5063 10.1021/acs.jcim.6b00714 10.1016/j.cmet.2013.11.013 10.1002/1873-3468.12138 10.1021/jm500777s 10.1038/35065638 10.1016/j.pharep.2015.03.021 10.1002/cmdc.201402431 10.1016/j.str.2013.12.001 10.1038/ncomms10734 10.1021/np300258u 10.1021/cr500457h 10.1039/c2md00290f 10.1002/cmdc.200800104 10.1126/science.1202723 10.1021/jm3002108 10.1074/jbc.M609554200 10.1007/s12032-010-9766-y 10.1021/acs.jmedchem.5b01376 10.1371/journal.pone.0002020 10.1021/jm500930h 10.1126/science.1094637 10.1093/nar/gkv1504 10.1016/j.molcel.2013.05.012 10.1523/JNEUROSCI.3442-11.2012 10.1038/srep08181 10.1002/pro.50 10.1242/jcs.03397 10.1016/j.cell.2010.10.002 10.1021/jm4018064 10.1126/science.1143780 10.1016/j.cmet.2010.06.009 10.1002/cmdc.200900367 10.1002/anie.201108118 10.1002/cmdc.200700003 10.1016/j.freeradbiomed.2017.07.012 10.1016/j.molcel.2013.10.010 10.1074/jbc.M407484200 10.1038/nature08980 10.1016/j.ccr.2008.09.001 10.1016/j.molcel.2004.08.031 10.1021/ja2090417 10.1128/MCB.01448-06 10.1002/jcp.21091 10.1016/j.ejmech.2016.04.063 10.1021/jm901055u 10.1016/j.exger.2014.12.004 10.1073/pnas.0704329104 10.1101/gad.435107 10.1016/j.ejmech.2014.02.003 10.1038/nature06261 |
ContentType | Journal Article |
Copyright | 2018 Elsevier Masson SAS Copyright © 2018 Elsevier Masson SAS. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Masson SAS – notice: Copyright © 2018 Elsevier Masson SAS. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.ejmech.2018.10.028 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry Pharmacy, Therapeutics, & Pharmacology |
EISSN | 1768-3254 |
EndPage | 77 |
ExternalDocumentID | 30342425 10_1016_j_ejmech_2018_10_028 S0223523418308961 |
Genre | Journal Article Review |
GroupedDBID | --- --K --M .~1 0R~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 8P~ 9JM 9JN AACTN AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AARLI AATCM AAXUO ABFRF ABGSF ABJNI ABMAC ABOCM ABUDA ABYKQ ABZDS ACDAQ ACGFO ACIUM ACRLP ADBBV ADECG ADEZE ADUVX AEBSH AEFWE AEHWI AEKER AENEX AFKWA AFTJW AFXIZ AFZHZ AGHFR AGUBO AGYEJ AIEXJ AIKHN AITUG AJOXV AJSZI ALCLG ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AXJTR BKOJK BLXMC CS3 DOVZS DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F5P FDB FIRID FLBIZ FNPLU FYGXN G-Q GBLVA J1W KOM M2Y M34 M41 MO0 N9A O-L O9- OAUVE OGGZJ OZT P-8 P-9 P2P PC. Q38 RIG ROL RPZ SCC SDF SDG SES SPC SPCBC SSK SSP SSU SSZ T5K ~G- 1B1 29G 53G AAQXK AATTM AAXKI AAYOK AAYWO AAYXX ABFNM ABWVN ABXDB ACNNM ACRPL ACVFH ADCNI ADMUD ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRDE AGRNS AHHHB AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP ASPBG AVWKF AZFZN BNPGV CITATION FEDTE FGOYB G-2 HMS HMT HVGLF HZ~ IHE R2- SCB SEW SOC SPT SSH WUQ CGR CUY CVF ECM EIF NPM 7X8 |
ID | FETCH-LOGICAL-c428t-9d75476df87872600630615638e926254700e0e1a7c4bd74bddb2749b2dd5dd3 |
IEDL.DBID | .~1 |
ISSN | 0223-5234 1768-3254 |
IngestDate | Fri Jul 11 02:35:09 EDT 2025 Wed Feb 19 02:33:14 EST 2025 Tue Jul 01 03:41:52 EDT 2025 Thu Apr 24 23:16:09 EDT 2025 Fri Feb 23 02:49:03 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Protein structures Therapeutic potential Modulators Sirtuin family |
Language | English |
License | Copyright © 2018 Elsevier Masson SAS. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-9d75476df87872600630615638e926254700e0e1a7c4bd74bddb2749b2dd5dd3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 ObjectType-Review-3 content type line 23 |
ORCID | 0000-0002-4024-4881 |
PMID | 30342425 |
PQID | 2123715652 |
PQPubID | 23479 |
PageCount | 30 |
ParticipantIDs | proquest_miscellaneous_2123715652 pubmed_primary_30342425 crossref_citationtrail_10_1016_j_ejmech_2018_10_028 crossref_primary_10_1016_j_ejmech_2018_10_028 elsevier_sciencedirect_doi_10_1016_j_ejmech_2018_10_028 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2019-01-01 2019-01-00 2019-Jan-01 20190101 |
PublicationDateYYYYMMDD | 2019-01-01 |
PublicationDate_xml | – month: 01 year: 2019 text: 2019-01-01 day: 01 |
PublicationDecade | 2010 |
PublicationPlace | France |
PublicationPlace_xml | – name: France |
PublicationTitle | European journal of medicinal chemistry |
PublicationTitleAlternate | Eur J Med Chem |
PublicationYear | 2019 |
Publisher | Elsevier Masson SAS |
Publisher_xml | – name: Elsevier Masson SAS |
References | Chen, Zhou, Mueller-Steiner, Chen, Kwon, Yi, Mucke, Gan (bib46) 2005; 280 Medda, Russell, Higgins, McCarthy, Campbell, Slawin, Lane, Lain, Westwood (bib170) 2009; 52 Gaspar, Coron, KongThoo, Costa, Perez-Cabezas, Tavares, Roura-Ferrer, Ramos, Ronin, Major, Ciesielski, Pemberton, MacDougall, Ciapetti, Smith, Cordeiro-da-Silva (bib184) 2018; 12 McCord, Michishita, Hong, Berber, Boxer, Kusumoto, Guan, Shi, Gozani, Burlingame, Bohr, Chua (bib87) 2009; 1 Tatum, Sawada, Ota, Itoh, Zhan, Ieda, Nakagawa, Miyata, Suzuki (bib164) 2014; 24 Moreno-Risueno, Sozzani, Yardimci, Petricka, Vernoux, Blilou, Alonso, Winter, Ohler, Scheres, Benfey (bib115) 2015; 350 North, Marshall, Borra, Denu, Verdin (bib57) 2003; 11 Uciechowska, Schemies, Neugebauer, Huda, Schmitt, Meier, Verdin, Jung, Sippl (bib172) 2008; 3 Schiedel, Rumpf, Karaman, Lehotzky, Olah, Gerhardt, Ovadi, Sippl, Einsle, Jung (bib166) 2016; 59 Miranda, van Tits, Lohmann, Arsiwala, Winnik, Tailleux, Stein, Gomes, Suri, Ellis, Lutz, Hottiger, Sinclair, Auwerx, Schoonjans, Staels, Luscher, Matter (bib47) 2015; 36 Biella, Fusco, Nardo, Bernocchi, Colombo, Lichtenthaler, Forloni, Albani (bib54) 2016; 53 Puigserver, Rhee, Donovan, Walkey, Yoon, Oriente, Kitamura, Altomonte, Dong, Accili, Spiegelman (bib89) 2003; 423 Cui, Kamal, Ai, Xu, More, Wilson, Chen (bib161) 2014; 57 Kauppinen, Suuronen, Ojala, Kaarniranta, Salminen (bib37) 2013; 25 Tissenbaum, Guarente (bib25) 2001; 410 Kim, Noh, Jung, Eun, Bae, Kim, Chang, Shen, Park, Lee, Borlak, Nam (bib127) 2013; 57 Roessler, Tuting, Meleshin, Steegborn, Schutkowski (bib19) 2015; 58 Kakefuda, Fujita, Oyagi, Hyakkoku, Kojima, Umemura, Tsuruma, Shimazawa, Ito, Nozawa, Hara (bib116) 2009; 387 Huang, Song, Wang, Zhang, Wang, Jiang, Sun, Huang, Xiang, Hu, Li, Yang (bib186) 2017; 57 Yu, Qin, Wu, Qin, Nowsheen, Shan, Zayas, Pei, Lou, Wang (bib10) 2017; 18 Schmidt, Smith, Jackson, Denu (bib16) 2004; 279 Vaquero, Scher, Lee, Sutton, Cheng, Alt, Serrano, Sternglanz, Reinberg (bib49) 2006; 20 Kim, Patel, Muldoon-Jacobs, Bisht, Aykin-Burns, Pennington, van der Meer, Nguyen, Savage, Owens, Vassilopoulos, Ozden, Park, Singh, Abdulkadir, Spitz, Deng, Gius (bib119) 2010; 17 Hubbard, Gomes, Dai, Li, Case, Considine, Riera, Lee, S.Y, Lamming, Pentelute, Schuman, Stevens, Ling, Armour, Michan, Zhao, Jiang, Sweitzer, Blum, Disch, Ng, Howitz, Rolo, Hamuro, Moss, Perni, Ellis, Vlasuk, Sinclair (bib145) 2013; 339 Lara, Mai, Calvanese, Altucci, Lopez-Nieva, Martinez-Chantar, Varela-Rey, Rotili, Nebbioso, Ropero, Montoya, Oyarzabal, Velasco, Serrano, Witt, Villar-Garea, Imhof, Mato, Esteller, Fraga (bib169) 2009; 28 Someya, Yu, Hallows, Xu, Vann, Leeuwenburgh, Tanokura, Denu, Prolla (bib63) 2010; 143 Rothgiesser, Erener, Waibel, Luscher, Hottiger (bib48) 2010; 123 Tang (bib143) 2009; 29 Di Fruscia, Zacharioudakis, Liu, Moniot, Laohasinnarong, Khongkow, Harrison, Koltsida, Reynolds, Schmidtkunz, Jung, Chapman, Steegborn, Dexter, Sternberg, Lam, Fuchter (bib189) 2015; 10 Rodgers, Lerin, Haas, Gygi, Spiegelman, Puigserver (bib40) 2005; 434 Voogd, Vansterkenburg, Wilting, Janssen (bib174) 1993; 45 He, Hu, Zhang, Lin (bib198) 2014; 12 Tanno, Sakamoto, Miura, Shimamoto, Horio (bib6) 2007; 282 Chen, Seiler, Santiago-Reichelt, Felbel, Grummt, Voit (bib99) 2013; 52 Santos-Alves, Marques-Aleixo, Coxito, Balca, Rizo-Roca, Rocha-Rodrigues, Martins, Torrella, Oliveira, Moreno, Magalhaes, Ascensao (bib59) 2014; 44 Howitz, Bitterman, Cohen, Lamming, Lavu, Wood, Zipkin, Chung, Kisielewski, Zhang, Scherer, Sinclair (bib140) 2003; 425 Heltweg, Gatbonton, Schuler, Posakony, Li, Goehle, Kollipara, Depinho, Gu, Simon, Bedalov (bib107) 2006; 66 Taylor, Balabadra, Xiang, Woodman, Meade, Amore, Maxwell, Reeves, Bates, Luthi-Carter, Lowden, Kazantsev (bib177) 2011; 6 Bellamacina (bib133) 1996; 10 Cohen, Miller, Bitterman, Wall, Hekking, Kessler, Howitz, Gorospe, de Cabo, Sinclair (bib31) 2004; 305 Feige, Lagouge, Canto, Strehle, Houten, Milne, Lambert, Mataki, Elliott, Auwerx (bib154) 2008; 8 Rumpf, Schiedel, Karaman, Roessler, North, Lehotzky, Olah, Ladwein, Schmidtkunz, Gajer, Pannek, Steegborn, Sinclair, Gerhardt, Ovadi, Schutkowski, Sippl, Einsle, Jung (bib138) 2015; 6 Lin, Xu, Wang, Lin, Ruan, Liu, Jin, Huang, Chen (bib75) 2013; 441 Suzuki, Khan, Sawada, Imai, Itoh, Yamatsuta, Tokuda, Takeuchi, Seko, Nakagawa, Miyata (bib163) 2012; 55 Bereshchenko, Gu, Dalla-Favera (bib109) 2002; 32 Teng, Jing, Aramsangtienchai, He, Khan, Hu, Lin, Hao (bib22) 2015; 5 Zhong, D'Urso, Toiber, Sebastian, Henry, Vadysirisack, Guimaraes, Marinelli, Wikstrom, Nir, Clish, Vaitheesvaran, Iliopoulos, Kurland, Dor, Weissleder, Shirihai, Ellisen, Espinosa, Mostoslavsky (bib88) 2010; 140 Rardin, He, Nishida, Newman, Carrico, Danielson, Guo, Gut, Sahu, Li, Uppala, Fitch, Riiff, Zhu, Zhou, Mulhern, Stevens, Ilkayeva, Newgard, Jacobson, Hellerstein, Goetzman, Gibson, Verdin (bib74) 2013; 18 Csibi, Fendt, Li, Poulogiannis, Choo, Chapski, Jeong, Dempsey, Parkhitko, Morrison, Henske, Haigis, Cantley, Stephanopoulos, Yu, Blenis (bib65) 2013; 153 Firestein, Blander, Michan, Oberdoerffer, Ogino, Campbell, Bhimavarapu, Luikenhuis, de Cabo, Fuchs, Hahn, Guarente, Sinclair (bib33) 2008; 3 Bordone, Cohen, Robinson, Motta, van Veen, Czopik, Steele, Crowe, Marmor, Luo, Gu, Guarente (bib35) 2007; 6 Pan, Feldman, Devries, Dong, Edwards, Denu (bib21) 2011; 286 Klar, Fogel, Macleod (bib3) 1979; 93 Dai, Kustigian, Carney, Case, Considine, Hubbard, Perni, Riera, Szczepankiewicz, Vlasuk, Stein (bib144) 2010; 285 Shun, Lin, Hong, Lin, Liu (bib90) 2016; 30 Donmez, Arun, Chung, McLean, Lindquist, Guarente (bib114) 2012; 32 Finley, Carracedo, Lee, Souza, Egia, Zhang, Teruya-Feldstein, Moreira, Cardoso, Clish, Pandolfi, Haigis (bib58) 2011; 19 Gil, Barth, Kanfi, Cohen (bib81) 2013; 41 Lu, Zhang, Chen, Zou, Li, Wang, Wu, Zang, Yu, Zhuang, Xia, Wang (bib155) 2017; 112 Qiu, Brown, Hirschey, Verdin, Chen (bib64) 2010; 12 Gu, Ran, Liu, Liang (bib104) 2016; 590 Borra, O'Neill, Jackson, Marshall, Verdin, Foltz, Denu (bib12) 2002; 277 Yamagata, Goto, Nishimasu, Morimoto, Ishitani, Dohmae, Takeda, Nagai, Komuro, Suga, Nureki (bib5) 2014; 22 Bitterman, Anderson, Cohen, Latorre-Esteves, Sinclair (bib15) 2002; 277 Multani, Chang (bib84) 2007; 120 Serrano, Martinez-Redondo, Marazuela-Duque, Vazquez, Dooley, Voigt, Beck, Kane-Goldsmith, Tong, Rabanal, Fondevila, Munoz, Kruger, Tischfield, Vaquero (bib56) 2013; 27 Malik, Villanova, Tanaka, Aonuma, Roy, Berber, Pollack, Michishita-Kioi, Chua (bib129) 2015; 5 Schiedel, Rumpf, Karaman (bib202) 2016; 55 Vazquez, Thackray, Simonet, Kane-Goldsmith, Martinez-Redondo, Nguyen, Bunting, Vaquero, Tischfield, Serrano (bib105) 2016; 35 Dominy, Lee, Jedrychowski, Chim, Jurczak, Camporez, Ruan, Feldman, Pierce, Mostoslavsky, Denu, Clish, Yang, Shulman, Gygi, Puigserver (bib91) 2012; 48 Luo, Nikolaev, Imai, Chen, Su, Shiloh, Guarente, Gu (bib29) 2001; 107 Osborne, Cooney, Turner (bib8) 2014; 1840 Feldman, Dittenhafer-Reed, Kudo, Thelen, Ito, Yoshida, Denu (bib139) 2015; 54 Lin, Defossez, Guarente (bib24) 2000; 289 Nayagam, Wang, Tan, Poulsen, Goh, Ng, Wang, Song, Ni, Entzeroth, Stunkel (bib153) 2006; 11 He, Du, Lin (bib196) 2012; 134 Liou, Tanny, Kruger, Walz, Moazed (bib13) 2005; 121 Hoffmann, Breitenbucher, Schuler, Ehrenhofer-Murray (bib193) 2014; 289 Wang, Sengupta, Li, Kim, Cao, Xiao, Kim, Xu, Zheng, Chilton, Jia, Zheng, Appella, Wang, Ried, Deng (bib30) 2008; 14 Trevino-Saldana, Garcia-Rivas (bib152) 2017; 2017 Yi, Kang, Kim, Kong, Brown, Bae (bib151) 2013; 4 Vaquero, Scher, Lee, Erdjument-Bromage, Tempst, Reinberg (bib44) 2004; 16 Rasbach, Schnellmann (bib149) 2008; 325 Jin, Wei, Jiang, Peng, Cai, Mao, Dai, Choy, Bemis, Jirousek, Milne, Westphal, Perni (bib135) 2009; 284 Maksin-Matveev, Kanfi, Hochhauser, Isak, Cohen, Shainberg (bib98) 2015; 330 North, Verdin (bib7) 2007; 2 Potente, Ghaeni, Baldessari, Mostoslavsky, Rossig, Dequiedt, Haendeler, Mione, Dejana, Alt, Zeiher, Dimmeler (bib32) 2007; 21 Nakamura, Ogura, Ogura, Tanaka, Inagaki (bib77) 2012; 586 Huber, Schemies, Uciechowska, Wagner, Rumpf, Lewrick, Suss, Sippl, Jung, Bracher (bib181) 2010; 53 Park, Ozden, Jiang, Cha, Pennington, Aykin-Burns, Spitz, Gius, Kim (bib62) 2011; 12 Polletta, Vernucci, Carnevale, Arcangeli, Rotili, Palmerio, Steegborn, Nowak, Schutkowski, Pellegrini, Sansone, Villanova, Runci, Pucci, Morgante, Fini, Mai, Russo, Tafani (bib72) 2015; 11 Lerrer, Gertler, Cohen (bib96) 2016; 37 Tavares, Ouaissi, Kong, Loureiro, Kaur, Roy, Cordeiro-da-Silva (bib183) 2010; 5 Liu, Arun, Ellis, Peritore, Donmez (bib55) 2012; 287 Jing, Gesta, Kahn (bib50) 2007; 6 Kleszcz, Paluszczak, Baer-Dubowska (bib97) 2015; 67 Di Fruscia, Ho, Laohasinnarong, Khongkow, Kroll, Islam, Sternberg, Schmidtkunz, Jung, Lam, Fuchter (bib51) 2012; 3 Zhang, Wang, Chen, Zhou, Zheng, Liu, Wei, Cai, Liu, Liang (bib142) 2008; 80 Laurent, German, Saha, de Boer, Davies, Koves, Dephoure, Fischer, Boanca, Vaitheesvaran, Lovitch, Sharpe, Kurland, Steegborn, Gygi, Muoio, Ruderman, Haigis (bib70) 2013; 50 Mellini, Kokkola, Suuronen, Salo, Tolvanen, Mai, Lahtela-Kakkonen, Jarho (bib197) 2013; 56 Rajabi, Auth, Troelsen, Pannek, Bhatt, Fontenas, Hirschey, Steegborn, Madsen, Olsen (bib195) 2017; 56 Kiran, Chatterjee, Singh, Kaul, Wadhwa, Ramakrishna (bib9) 2013; 280 You, Rotili, Li, Kambach, Meleshin, Schutkowski, Chua, Mai, Steegborn (bib156) 2017; 56 Hubbi, Hu, Kshitiz, Gilkes, Semenza (bib103) 2013; 288 Chen, Blank, Iyer, Huang, Wang, Grummt, Voit (bib101) 2016; 7 Zhao, Allison, Condon, Zhang, Gheyi, Zhang, Ashok, Russell, MacEwan, Qian, Jamison, Luz (bib136) 2013; 56 Jiang, Khan, Wang, Charron, He, Sebastian, Du, Kim, Ge, Mostoslavsky, Hang, Hao, Lin (bib20) 2013; 496 Haigis, Mostoslavsky, Haigis, Fahie, Christodoulou, Murphy, Valenzuela, Yancopoulos, Karow, Blander, Wolberger, Prolla, Weindruch, Alt, Guarente (bib17) 2006; 126 Zhang, Smith, Meriin, Engemann, Russel, Roark, Washington, Maxwell, Marsh, Thompson, Wanker, Young, Housman, Bates, Sherman, Kazantsev (bib178) 2005; 102 Mathias, Greco, Oberstein, Budayeva, Chakrabarti, Rowland, Kang, Shenk, Cristea (bib71) 2014; 159 Xia, Geng Di Fruscia (10.1016/j.ejmech.2018.10.028_bib51) 2012; 3 Mostoslavsky (10.1016/j.ejmech.2018.10.028_bib82) 2006; 124 Tissenbaum (10.1016/j.ejmech.2018.10.028_bib25) 2001; 410 Firestein (10.1016/j.ejmech.2018.10.028_bib33) 2008; 3 Dominy (10.1016/j.ejmech.2018.10.028_bib91) 2012; 48 Tang (10.1016/j.ejmech.2018.10.028_bib143) 2009; 29 Parihar (10.1016/j.ejmech.2018.10.028_bib124) 2015; 61 Zhou (10.1016/j.ejmech.2018.10.028_bib137) 2012; 287 Rasbach (10.1016/j.ejmech.2018.10.028_bib149) 2008; 325 Bedalov (10.1016/j.ejmech.2018.10.028_bib27) 2016; 574 Dai (10.1016/j.ejmech.2018.10.028_bib160) 2015; 6 Li (10.1016/j.ejmech.2018.10.028_bib73) 2015; 60 Kim (10.1016/j.ejmech.2018.10.028_bib92) 2010; 12 Kaeberlein (10.1016/j.ejmech.2018.10.028_bib23) 1999; 13 Miyo (10.1016/j.ejmech.2018.10.028_bib66) 2015; 113 Crabbe (10.1016/j.ejmech.2018.10.028_bib83) 2007; 104 Jin (10.1016/j.ejmech.2018.10.028_bib118) 2009; 18 Borra (10.1016/j.ejmech.2018.10.028_bib12) 2002; 277 Nasrin (10.1016/j.ejmech.2018.10.028_bib68) 2010; 285 Khanfar (10.1016/j.ejmech.2018.10.028_bib180) 2014; 76 Bitterman (10.1016/j.ejmech.2018.10.028_bib15) 2002; 277 Lara (10.1016/j.ejmech.2018.10.028_bib169) 2009; 28 Cohen (10.1016/j.ejmech.2018.10.028_bib31) 2004; 305 Medda (10.1016/j.ejmech.2018.10.028_bib170) 2009; 52 Yang (10.1016/j.ejmech.2018.10.028_bib38) 2005; 24 Etchegaray (10.1016/j.ejmech.2018.10.028_bib85) 2015; 17 Liou (10.1016/j.ejmech.2018.10.028_bib13) 2005; 121 Cao (10.1016/j.ejmech.2018.10.028_bib146) 2015; 29 Polletta (10.1016/j.ejmech.2018.10.028_bib72) 2015; 11 Michishita (10.1016/j.ejmech.2018.10.028_bib79) 2009; 8 Hafner (10.1016/j.ejmech.2018.10.028_bib60) 2010; 2 Jing (10.1016/j.ejmech.2018.10.028_bib50) 2007; 6 Kanfi (10.1016/j.ejmech.2018.10.028_bib93) 2010; 9 McBurney (10.1016/j.ejmech.2018.10.028_bib28) 2013; 4 Klar (10.1016/j.ejmech.2018.10.028_bib3) 1979; 93 Zhang (10.1016/j.ejmech.2018.10.028_bib11) 2016; 44 Lim (10.1016/j.ejmech.2018.10.028_bib41) 2010; 38 Liu (10.1016/j.ejmech.2018.10.028_bib55) 2012; 287 Mao (10.1016/j.ejmech.2018.10.028_bib80) 2011; 332 Tanno (10.1016/j.ejmech.2018.10.028_bib6) 2007; 282 Vaziri (10.1016/j.ejmech.2018.10.028_bib36) 2001; 107 Chen (10.1016/j.ejmech.2018.10.028_bib46) 2005; 280 Schiedel (10.1016/j.ejmech.2018.10.028_bib202) 2016; 55 Liu (10.1016/j.ejmech.2018.10.028_bib123) 2015; 281 Rumpf (10.1016/j.ejmech.2018.10.028_bib138) 2015; 6 Vaquero (10.1016/j.ejmech.2018.10.028_bib44) 2004; 16 Tsai (10.1016/j.ejmech.2018.10.028_bib100) 2014; 13 Finley (10.1016/j.ejmech.2018.10.028_bib58) 2011; 19 Hirschey (10.1016/j.ejmech.2018.10.028_bib1) 2011; 14 Puigserver (10.1016/j.ejmech.2018.10.028_bib89) 2003; 423 Someya (10.1016/j.ejmech.2018.10.028_bib63) 2010; 143 Kumar (10.1016/j.ejmech.2018.10.028_bib106) 2016; 119 Shi (10.1016/j.ejmech.2018.10.028_bib131) 2016; 36 Moniot (10.1016/j.ejmech.2018.10.028_bib134) 2013; 182 Gil (10.1016/j.ejmech.2018.10.028_bib81) 2013; 41 Biella (10.1016/j.ejmech.2018.10.028_bib54) 2016; 53 Chen (10.1016/j.ejmech.2018.10.028_bib99) 2013; 52 Sakai (10.1016/j.ejmech.2018.10.028_bib117) 2015; 23 Park (10.1016/j.ejmech.2018.10.028_bib62) 2011; 12 Shun (10.1016/j.ejmech.2018.10.028_bib90) 2016; 30 Hubbi (10.1016/j.ejmech.2018.10.028_bib103) 2013; 288 Zhao (10.1016/j.ejmech.2018.10.028_bib136) 2013; 56 Luo (10.1016/j.ejmech.2018.10.028_bib29) 2001; 107 Tang (10.1016/j.ejmech.2018.10.028_bib130) 2017; 7 Uciechowska (10.1016/j.ejmech.2018.10.028_bib172) 2008; 3 Maurer (10.1016/j.ejmech.2018.10.028_bib173) 2012; 3 Rauh (10.1016/j.ejmech.2018.10.028_bib18) 2013; 4 Miranda (10.1016/j.ejmech.2018.10.028_bib47) 2015; 36 Mazumder (10.1016/j.ejmech.2018.10.028_bib110) 2007; 27 Hoffmann (10.1016/j.ejmech.2018.10.028_bib193) 2014; 289 Feige (10.1016/j.ejmech.2018.10.028_bib154) 2008; 8 Finnin (10.1016/j.ejmech.2018.10.028_bib132) 2001; 8 Gaspar (10.1016/j.ejmech.2018.10.028_bib184) 2018; 12 Grob (10.1016/j.ejmech.2018.10.028_bib102) 2009; 122 Cui (10.1016/j.ejmech.2018.10.028_bib161) 2014; 57 Gao (10.1016/j.ejmech.2018.10.028_bib61) 2016; 472 Mattagajasingh (10.1016/j.ejmech.2018.10.028_bib43) 2007; 104 Napper (10.1016/j.ejmech.2018.10.028_bib185) 2005; 48 Vakhrusheva (10.1016/j.ejmech.2018.10.028_bib125) 2008; 59 Yi (10.1016/j.ejmech.2018.10.028_bib151) 2013; 4 Zhang (10.1016/j.ejmech.2018.10.028_bib142) 2008; 80 Schlicker (10.1016/j.ejmech.2018.10.028_bib187) 2011; 3 Howitz (10.1016/j.ejmech.2018.10.028_bib140) 2003; 425 You (10.1016/j.ejmech.2018.10.028_bib156) 2017; 56 Kim (10.1016/j.ejmech.2018.10.028_bib119) 2010; 17 Nakamura (10.1016/j.ejmech.2018.10.028_bib77) 2012; 586 Di Fruscia (10.1016/j.ejmech.2018.10.028_bib189) 2015; 10 Atobe (10.1016/j.ejmech.2018.10.028_bib159) 2017; 27 Zhang (10.1016/j.ejmech.2018.10.028_bib95) 2016; 15 Laurent (10.1016/j.ejmech.2018.10.028_bib70) 2013; 50 Bereshchenko (10.1016/j.ejmech.2018.10.028_bib109) 2002; 32 Huang (10.1016/j.ejmech.2018.10.028_bib186) 2017; 57 Heltweg (10.1016/j.ejmech.2018.10.028_bib107) 2006; 66 Gu (10.1016/j.ejmech.2018.10.028_bib104) 2016; 590 Kleszcz (10.1016/j.ejmech.2018.10.028_bib97) 2015; 67 Trevino-Saldana (10.1016/j.ejmech.2018.10.028_bib152) 2017; 2017 Chopra (10.1016/j.ejmech.2018.10.028_bib53) 2012; 2 Kumar (10.1016/j.ejmech.2018.10.028_bib122) 2015; 22 Kakefuda (10.1016/j.ejmech.2018.10.028_bib116) 2009; 387 Mahajan (10.1016/j.ejmech.2018.10.028_bib171) 2014; 57 Quan (10.1016/j.ejmech.2018.10.028_bib157) 2015; 5 Kelly (10.1016/j.ejmech.2018.10.028_bib4) 2010; 15 Bordone (10.1016/j.ejmech.2018.10.028_bib35) 2007; 6 Morimoto (10.1016/j.ejmech.2018.10.028_bib199) 2012; 51 North (10.1016/j.ejmech.2018.10.028_bib7) 2007; 2 Jeong (10.1016/j.ejmech.2018.10.028_bib45) 2007; 39 Huber (10.1016/j.ejmech.2018.10.028_bib181) 2010; 53 Dao (10.1016/j.ejmech.2018.10.028_bib150) 2012; 75 Schuetz (10.1016/j.ejmech.2018.10.028_bib176) 2007; 15 Mathias (10.1016/j.ejmech.2018.10.028_bib71) 2014; 159 Kenyon (10.1016/j.ejmech.2018.10.028_bib94) 2010; 464 Zhang (10.1016/j.ejmech.2018.10.028_bib178) 2005; 102 Schmidt (10.1016/j.ejmech.2018.10.028_bib16) 2004; 279 Lin (10.1016/j.ejmech.2018.10.028_bib111) 2015; 10 Huang (10.1016/j.ejmech.2018.10.028_bib200) 2016; 26 Bellamacina (10.1016/j.ejmech.2018.10.028_bib133) 1996; 10 Rajabi (10.1016/j.ejmech.2018.10.028_bib195) 2017; 56 Teng (10.1016/j.ejmech.2018.10.028_bib22) 2015; 5 Choi (10.1016/j.ejmech.2018.10.028_bib179) 2012; 22 Potente (10.1016/j.ejmech.2018.10.028_bib32) 2007; 21 Donmez (10.1016/j.ejmech.2018.10.028_bib114) 2012; 32 Osborne (10.1016/j.ejmech.2018.10.028_bib8) 2014; 1840 Zhong (10.1016/j.ejmech.2018.10.028_bib88) 2010; 140 Lin (10.1016/j.ejmech.2018.10.028_bib75) 2013; 441 Haigis (10.1016/j.ejmech.2018.10.028_bib17) 2006; 126 Kim (10.1016/j.ejmech.2018.10.028_bib127) 2013; 57 Wang (10.1016/j.ejmech.2018.10.028_bib52) 2007; 6 Jin (10.1016/j.ejmech.2018.10.028_bib113) 2007; 213 Maksin-Matveev (10.1016/j.ejmech.2018.10.028_bib98) 2015; 330 Roessler (10.1016/j.ejmech.2018.10.028_bib19) 2015; 58 Jeong (10.1016/j.ejmech.2018.10.028_bib69) 2013; 23 Schiedel (10.1016/j.ejmech.2018.10.028_bib166) 2016; 59 Rodgers (10.1016/j.ejmech.2018.10.028_bib40) 2005; 434 Yeung (10.1016/j.ejmech.2018.10.028_bib112) 2004; 23 Mohrin (10.1016/j.ejmech.2018.10.028_bib128) 2015; 347 Jin (10.1016/j.ejmech.2018.10.028_bib135) 2009; 284 Xie (10.1016/j.ejmech.2018.10.028_bib203) 2018; 360 Serrano (10.1016/j.ejmech.2018.10.028_bib56) 2013; 27 Taylor (10.1016/j.ejmech.2018.10.028_bib177) 2011; 6 Tavares (10.1016/j.ejmech.2018.10.028_bib183) 2010; 5 McCord (10.1016/j.ejmech.2018.10.028_bib87) 2009; 1 Yu (10.1016/j.ejmech.2018.10.028_bib10) 2017; 18 Multani (10.1016/j.ejmech.2018.10.028_bib84) 2007; 120 Feldman (10.1016/j.ejmech.2018.10.028_bib139) 2015; 54 Nakagawa (10.1016/j.ejmech.2018.10.028_bib76) 2009; 137 Yamagata (10.1016/j.ejmech.2018.10.028_bib5) 2014; 22 Xia (10.1016/j.ejmech.2018.10.028_bib158) 2016; 59 Csibi (10.1016/j.ejmech.2018.10.028_bib65) 2013; 153 Kauppinen (10.1016/j.ejmech.2018.10.028_bib37) 2013; 25 Mellini (10.1016/j.ejmech.2018.10.028_bib197) 2013; 56 Kalbas (10.1016/j.ejmech.2018.10.028_bib201) 2018; 61 Gan (10.1016/j.ejmech.2018.10.028_bib34) 2008; 58 Mellini (10.1016/j.ejmech.2018.10.028_bib165) 2017; 8 Seifert (10.1016/j.ejmech.2018.10.028_bib192) 2014; 57 Lu (10.1016/j.ejmech.2018.10.028_bib155) 2017; 112 He (10.1016/j.ejmech.2018.10.028_bib196) 2012; 134 Gao (10.1016/j.ejmech.2018.10.028_bib120) 2013; 54 Moniot (10.1016/j.ejmech.2018.10.028_bib188) 2017; 60 Malik (10.1016/j.ejmech.2018.10.028_bib129) 2015; 5 Schnekenburger (10.1016/j.ejmech.2018.10.028_bib191) 2017; 60 Hubbard (10.1016/j.ejmech.2018.10.028_bib145) 2013; 339 Majumdar (10.1016/j.ejmech.2018.10.028_bib148) 2013; 20 Pan (10.1016/j.ejmech.2018.10.028_bib21) 2011; 286 Voogd (10.1016/j.ejmech.2018.10.028_bib174) 1993; 45 Lerrer (10.1016/j.ejmech.2018.10.028_bib96) 2016; 37 Rogina (10.1016/j.ejmech.2018.10.028_bib26) 2004; 101 Dioum (10.1016/j.ejmech.2018.10.028_bib42) 2009; 324 Qiu (10.1016/j.ejmech.2018.10.028_bib64) 2010; 12 Ai (10.1016/j.ejmech.2018.10.028_bib162) 2016; 59 Dai (10.1016/j.ejmech.2018.10.028_bib144) 2010; 285 Sundriyal (10.1016/j.ejmech.2018.10.028_bib190) 2017; 60 Toiber (10.1016/j.ejmech.2018.10.028_bib86) 2013; 51 Jing (10.1016/j.ejmech.2018.10.028_bib2) 2015; 115 Santos-Alves (10.1016/j.ejmech.2018.10.028_bib59) 2014; 44 Chen (10.1016/j.ejmech.2018.10.028_bib101) 2016; 7 Colombo (10.1016/j.ejmech.2018.10.028_bib121) 2011; 108 Jiang (10.1016/j.ejmech.2018.10.028_bib20) 2013; 496 Lee (10.1016/j.ejmech.2018.10.028_bib14) 2008; 383 Lain (10.1016/j.ejmech.2018.10.028_bib108) 2008; 13 Suzuki (10.1016/j.ejmech.2018.10.028_bib163) 2012; 55 Trapp (10.1016/j.ejmech.2018.10.028_bib175) 2007; 2 Yang (10.1016/j.ejmech.2018.10.028_bib167) 2017; 134 Vaquero (10.1016/j.ejmech.2018.10.028_bib49) 2006; 20 Outeiro (10.1016/j.ejmech.2018.10.028_bib147) 2007; 317 Milne (10.1016/j.ejmech.2018.10.028_bib141) 2007; 450 Rardin (10.1016/j.ejmech.2018.10.028_bib74) 2013; 18 Brunet (10.1016/j.ejmech.2018.10.028_bib39) 2004; 303 Wang (10.1016/j.ejmech.2018.10.028_bib30) 2008; 14 Jing (10.1016/j.ejmech.2018.10.028_bib194) 2016; 29 Michishita (10.1016/j.ejmech.2018.10.028_bib78) 2008; 452 Moreno-Risueno (10.1016/j. |
References_xml | – volume: 61 start-page: 130 year: 2015 end-page: 141 ident: bib124 article-title: Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases publication-title: Exp. Gerontol. – volume: 4 start-page: 2327 year: 2013 ident: bib18 article-title: An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms publication-title: Nat. Commun. – volume: 8 start-page: 347 year: 2008 end-page: 358 ident: bib154 article-title: Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation publication-title: Cell Metabol. – volume: 5 start-page: 8181 year: 2015 ident: bib157 article-title: Adjudin protects rodent cochlear hair cells against gentamicin ototoxicity via the SIRT3-ROS pathway publication-title: Sci. Rep. – volume: 13 start-page: 73 year: 2014 end-page: 83 ident: bib100 article-title: Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis publication-title: Mol. Cell. Proteomics – volume: 6 start-page: 6263 year: 2015 ident: bib138 article-title: Selective Sirt2 inhibition by ligand-induced rearrangement of the active site publication-title: Nat. Commun. – volume: 107 start-page: 149 year: 2001 end-page: 159 ident: bib36 article-title: hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase publication-title: Cell – volume: 27 start-page: 4828 year: 2017 end-page: 4831 ident: bib159 article-title: A series of novel indazole derivatives of Sirt 1 activator as osteogenic regulators publication-title: Bioorg. Med. Chem. Lett – volume: 54 start-page: 4717 year: 2013 end-page: 4733 ident: bib120 article-title: Mitochondrial permeability transition pore in inflammatory apoptosis of human conjunctival epithelial cells and T cells: effect of cyclosporin A publication-title: Invest. Ophthalmol. Vis. Sci. – volume: 52 start-page: 303 year: 2013 end-page: 313 ident: bib99 article-title: Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7 publication-title: Mol. Cell – volume: 29 start-page: 767 year: 2016 end-page: 768 ident: bib194 article-title: A SIRT2-selective inhibitor promotes c-myc oncoprotein degradation and exhibits broad anticancer activity publication-title: Cancer Cell – volume: 50 start-page: 686 year: 2013 end-page: 698 ident: bib70 article-title: SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase publication-title: Mol. Cell – volume: 53 start-page: 1193 year: 2016 end-page: 1207 ident: bib54 article-title: Sirtuin 2 inhibition improves cognitive performance and acts on amyloid-beta protein precursor processing in two Alzheimer's disease mouse models publication-title: J. Alzheim. Dis. – volume: 45 start-page: 177 year: 1993 end-page: 203 ident: bib174 article-title: Recent research on the biological activity of suramin publication-title: Pharmacol. Rev. – volume: 60 start-page: 661 year: 2015 end-page: 675 ident: bib73 article-title: NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance publication-title: Mol. Cell – volume: 22 start-page: 1169 year: 2017 end-page: 1188 ident: bib182 article-title: A novel sirtuin inhibitor, alters the cytoskeleton and mitochondrial metabolism promoting cell death in Leishmania amazonensis publication-title: Apoptosis – volume: 6 start-page: 759 year: 2007 end-page: 767 ident: bib35 article-title: SIRT1 transgenic mice show phenotypes resembling calorie restriction publication-title: Aging Cell – volume: 15 start-page: 313 year: 2010 end-page: 328 ident: bib4 article-title: A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 2 publication-title: Altern. Med. Rev. – volume: 39 start-page: 8 year: 2007 end-page: 13 ident: bib45 article-title: SIRT1 promotes DNA repair activity and deacetylation of Ku70 publication-title: Exp. Mol. Med. – volume: 20 start-page: 1256 year: 2006 end-page: 1261 ident: bib49 article-title: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis publication-title: Genes Dev. – volume: 279 start-page: 40122 year: 2004 end-page: 40129 ident: bib16 article-title: Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation publication-title: J. Biol. Chem. – volume: 18 start-page: 1229 year: 2017 end-page: 1240 ident: bib10 article-title: Regulation of serine-threonine kinase Akt activation by NAD(+)-Dependent deacetylase SIRT7 publication-title: Cell Rep. – volume: 54 start-page: 3037 year: 2015 end-page: 3050 ident: bib139 article-title: Kinetic and structural basis for acyl-group selectivity and NAD(+) dependence in sirtuin-catalyzed deacylation publication-title: Biochemistry – volume: 284 start-page: 24394 year: 2009 end-page: 24405 ident: bib135 article-title: Crystal structures of human SIRT3 displaying substrate-induced conformational changes publication-title: J. Biol. Chem. – volume: 287 start-page: 28307 year: 2012 end-page: 28314 ident: bib137 article-title: The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5) publication-title: J. Biol. Chem. – volume: 3 start-page: 1965 year: 2008 end-page: 1976 ident: bib172 article-title: Thiobarbiturates as sirtuin inhibitors: virtual screening, free-energy calculations, and biological testing publication-title: ChemMedChem – volume: 122 start-page: 489 year: 2009 end-page: 498 ident: bib102 article-title: Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis publication-title: J. Cell Sci. – volume: 5 start-page: 9841 year: 2015 ident: bib129 article-title: SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors publication-title: Sci. Rep. – volume: 586 start-page: 4076 year: 2012 end-page: 4081 ident: bib77 article-title: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice publication-title: FEBS Lett. – volume: 7 start-page: 1346 year: 2017 end-page: 1359 ident: bib130 article-title: Downregulation of SIRT7 by 5-fluorouracil induces radiosensitivity in human colorectal cancer publication-title: Theranostics – volume: 75 start-page: 1332 year: 2012 end-page: 1338 ident: bib150 article-title: Terpenylated coumarins as SIRT1 activators isolated from Ailanthus altissima publication-title: J. Nat. Prod. – volume: 8 start-page: 6400 year: 2017 end-page: 6408 ident: bib165 article-title: Potent mechanism-based sirtuin-2-selective inhibition by an in situ-generated occupant of the substrate-binding site, “selectivity pocket” and NAD(+)-binding site publication-title: Chem. Sci. – volume: 434 start-page: 113 year: 2005 end-page: 118 ident: bib40 article-title: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1 publication-title: Nature – volume: 57 start-page: 8340 year: 2014 end-page: 8357 ident: bib161 article-title: Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach publication-title: J. Med. Chem. – volume: 2 start-page: 1492 year: 2012 end-page: 1497 ident: bib53 article-title: The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington's disease mouse models publication-title: Cell Rep. – volume: 441 start-page: 191 year: 2013 end-page: 195 ident: bib75 article-title: SIRT5 desuccinylates and activates SOD1 to eliminate ROS publication-title: Biochem. Biophys. Res. Commun. – volume: 56 start-page: 6681 year: 2013 end-page: 6695 ident: bib197 article-title: Screen of pseudopeptidic inhibitors of human sirtuins 1-3: two lead compounds with antiproliferative effects in cancer cells publication-title: J. Med. Chem. – volume: 14 start-page: 312 year: 2008 end-page: 323 ident: bib30 article-title: Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice publication-title: Cancer Cell – volume: 472 start-page: 425 year: 2016 end-page: 431 ident: bib61 article-title: Deacetylation of MnSOD by PARP-regulated SIRT3 protects retinal capillary endothelial cells from hyperglycemia-induced damage publication-title: Biochem. Biophys. Res. Commun. – volume: 12 year: 2018 ident: bib184 article-title: Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease publication-title: PLoS Neglected Trop. Dis. – volume: 35 start-page: 1488 year: 2016 end-page: 1503 ident: bib105 article-title: SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair publication-title: EMBO J. – volume: 57 start-page: 3283 year: 2014 end-page: 3294 ident: bib171 article-title: Development of pyrazolone and isoxazol-5-one cambinol analogues as sirtuin inhibitors publication-title: J. Med. Chem. – volume: 27 start-page: 3511 year: 2007 end-page: 3520 ident: bib110 article-title: Interaction of a cyclin E fragment with Ku70 regulates Bax-mediated apoptosis publication-title: Mol. Cell Biol. – volume: 37 start-page: 108 year: 2016 end-page: 118 ident: bib96 article-title: The complex role of SIRT6 in carcinogenesis publication-title: Carcinogenesis – volume: 15 start-page: 1009 year: 2016 end-page: 1018 ident: bib95 article-title: Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-kappaB signaling publication-title: Cell Cycle – volume: 286 start-page: 14575 year: 2011 end-page: 14587 ident: bib21 article-title: Structure and biochemical functions of SIRT6 publication-title: J. Biol. Chem. – volume: 126 start-page: 941 year: 2006 end-page: 954 ident: bib17 article-title: SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells publication-title: Cell – volume: 137 start-page: 560 year: 2009 end-page: 570 ident: bib76 article-title: SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle publication-title: Cell – volume: 115 start-page: 2350 year: 2015 end-page: 2375 ident: bib2 article-title: Sirtuins in epigenetic regulation publication-title: Chem. Rev. – volume: 134 start-page: 230 year: 2017 end-page: 241 ident: bib167 article-title: Discovery of 2-((4,6-dimethylpyrimidin-2-yl)thio)-N-phenylacetamide derivatives as new potent and selective human sirtuin 2 inhibitors publication-title: Eur. J. Med. Chem. – volume: 280 start-page: 40364 year: 2005 end-page: 40374 ident: bib46 article-title: SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling publication-title: J. Biol. Chem. – volume: 3 start-page: 852 year: 2011 end-page: 872 ident: bib187 article-title: Structure-based development of novel sirtuin inhibitors publication-title: Aging (N Y) – volume: 57 start-page: 669 year: 2017 end-page: 679 ident: bib186 article-title: Discovery of new SIRT2 inhibitors by utilizing a consensus docking/scoring strategy and structure-activity relationship analysis publication-title: J. Chem. Inf. Model. – volume: 289 start-page: 2126 year: 2000 end-page: 2128 ident: bib24 article-title: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae publication-title: Science – volume: 53 start-page: 1383 year: 2010 end-page: 1386 ident: bib181 article-title: Novel 3-arylideneindolin-2-ones as inhibitors of NAD+ -dependent histone deacetylases (sirtuins) publication-title: J. Med. Chem. – volume: 124 start-page: 315 year: 2006 end-page: 329 ident: bib82 article-title: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6 publication-title: Cell – volume: 119 start-page: 45 year: 2016 end-page: 69 ident: bib106 article-title: How much successful are the medicinal chemists in modulation of SIRT1: a critical review publication-title: Eur. J. Med. Chem. – volume: 59 start-page: 71 year: 2016 end-page: 78 ident: bib158 article-title: A sirtuin activator and an anti-inflammatory molecule-multifaceted roles of adjudin and its potential applications for aging-related diseases publication-title: Semin. Cell Dev. Biol. – volume: 60 start-page: 4714 year: 2017 end-page: 4733 ident: bib191 article-title: Discovery and characterization of R/S-N-3-Cyanophenyl-N'-(6-tert-butoxycarbonylamino-3,4-dihydro-2,2-dimethyl-2H-1- benzopyran-4-yl)urea, a new histone deacetylase class III inhibitor exerting antiproliferative activity against cancer cell lines publication-title: J. Med. Chem. – volume: 2 start-page: e784 year: 2007 ident: bib7 article-title: Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis publication-title: PloS One – volume: 6 start-page: 505 year: 2007 end-page: 514 ident: bib52 article-title: SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction publication-title: Aging Cell – volume: 60 start-page: 1928 year: 2017 end-page: 1945 ident: bib190 article-title: Thienopyrimidinone based sirtuin-2 (SIRT2)-Selective inhibitors bind in the ligand induced selectivity pocket publication-title: J. Med. Chem. – volume: 464 start-page: 504 year: 2010 end-page: 512 ident: bib94 article-title: The genetics of ageing publication-title: Nature – volume: 44 start-page: 668 year: 2014 end-page: 677 ident: bib59 article-title: Exercise mitigates diclofenac-induced liver mitochondrial dysfunction publication-title: Eur. J. Clin. Invest. – volume: 12 start-page: 224 year: 2010 end-page: 236 ident: bib92 article-title: Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis publication-title: Cell Metabol. – volume: 288 start-page: 20768 year: 2013 end-page: 20775 ident: bib103 article-title: Sirtuin-7 inhibits the activity of hypoxia-inducible factors publication-title: J. Biol. Chem. – volume: 57 start-page: 9870 year: 2014 end-page: 9888 ident: bib192 article-title: Chroman-4-one- and chromone-based sirtuin 2 inhibitors with antiproliferative properties in cancer cells publication-title: J. Med. Chem. – volume: 410 start-page: 227 year: 2001 end-page: 230 ident: bib25 article-title: Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans publication-title: Nature – volume: 285 start-page: 31995 year: 2010 end-page: 32002 ident: bib68 article-title: SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells publication-title: J. Biol. Chem. – volume: 23 start-page: 328 year: 2015 end-page: 339 ident: bib117 article-title: Design, synthesis and structure-activity relationship studies of novel sirtuin 2 (SIRT2) inhibitors with a benzamide skeleton publication-title: Bioorg. Med. Chem. – volume: 4 start-page: 125 year: 2013 end-page: 134 ident: bib28 article-title: SIRT1 is a highly networked protein that mediates the adaptation to chronic physiological stress publication-title: Genes Cancer – volume: 11 start-page: 437 year: 2003 end-page: 444 ident: bib57 article-title: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase publication-title: Mol. Cell – volume: 387 start-page: 784 year: 2009 end-page: 788 ident: bib116 article-title: Sirtuin 1 overexpression mice show a reference memory deficit, but not neuroprotection publication-title: Biochem. Biophys. Res. Commun. – volume: 7 start-page: 10734 year: 2016 ident: bib101 article-title: SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing publication-title: Nat. Commun. – volume: 3 year: 2008 ident: bib33 article-title: The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth publication-title: PloS One – volume: 26 start-page: 1612 year: 2016 end-page: 1617 ident: bib200 article-title: Simple N(epsilon)-thioacetyl-lysine-containing cyclic peptides exhibiting highly potent sirtuin inhibition publication-title: Bioorg. Med. Chem. Lett – volume: 332 start-page: 1443 year: 2011 end-page: 1446 ident: bib80 article-title: SIRT6 promotes DNA repair under stress by activating PARP1 publication-title: Science – volume: 305 start-page: 390 year: 2004 end-page: 392 ident: bib31 article-title: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase publication-title: Science – volume: 425 start-page: 191 year: 2003 end-page: 196 ident: bib140 article-title: Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan publication-title: Nature – volume: 3 start-page: 373 year: 2012 end-page: 378 ident: bib51 article-title: The Discovery of novel 10,11-dihydro-5H-dibenz[b,f]azepine SIRT2 inhibitors publication-title: Medchemcomm – volume: 143 start-page: 802 year: 2010 end-page: 812 ident: bib63 article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction publication-title: Cell – volume: 20 start-page: 869 year: 2013 end-page: 876 ident: bib148 article-title: Resveratrol attenuated smokeless tobacco-induced vascular and metabolic complications in ovariectomized rats publication-title: Menopause – volume: 59 start-page: 201 year: 2008 end-page: 212 ident: bib125 article-title: Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging publication-title: J. Physiol. Pharmacol. – volume: 325 start-page: 536 year: 2008 end-page: 543 ident: bib149 article-title: Isoflavones promote mitochondrial biogenesis publication-title: J. Pharmacol. Exp. Therapeut. – volume: 24 start-page: 1021 year: 2005 end-page: 1032 ident: bib38 article-title: Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation publication-title: EMBO J. – volume: 12 start-page: 7498 year: 2014 end-page: 7502 ident: bib198 article-title: Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors publication-title: Org. Biomol. Chem. – volume: 67 start-page: 1068 year: 2015 end-page: 1080 ident: bib97 article-title: Targeting aberrant cancer metabolism - the role of sirtuins publication-title: Pharmacol. Rep. – volume: 8 start-page: 2664 year: 2009 end-page: 2666 ident: bib79 article-title: Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6 publication-title: Cell Cycle – volume: 123 start-page: 4251 year: 2010 end-page: 4258 ident: bib48 article-title: SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310 publication-title: J. Cell Sci. – volume: 56 start-page: 963 year: 2013 end-page: 969 ident: bib136 article-title: The 2.5 A crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition publication-title: J. Med. Chem. – volume: 108 start-page: 21069 year: 2011 end-page: 21074 ident: bib121 article-title: Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 16 start-page: 93 year: 2004 end-page: 105 ident: bib44 article-title: Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin publication-title: Mol. Cell – volume: 12 start-page: 6226 year: 2011 end-page: 6239 ident: bib62 article-title: Sirt3, mitochondrial ROS, ageing, and carcinogenesis publication-title: Int. J. Mol. Sci. – volume: 8 start-page: 621 year: 2001 end-page: 625 ident: bib132 article-title: Structure of the histone deacetylase SIRT2 publication-title: Nat. Struct. Biol. – volume: 285 start-page: 32695 year: 2010 end-page: 32703 ident: bib144 article-title: SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator publication-title: J. Biol. Chem. – volume: 281 start-page: 215 year: 2015 end-page: 221 ident: bib123 article-title: Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson's disease publication-title: Behav. Brain Res. – volume: 496 start-page: 110 year: 2013 end-page: 113 ident: bib20 article-title: SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine publication-title: Nature – volume: 13 start-page: 2570 year: 1999 end-page: 2580 ident: bib23 article-title: The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms publication-title: Genes Dev. – volume: 6 start-page: 7645 year: 2015 ident: bib160 article-title: Crystallographic structure of a small molecule SIRT1 activator-enzyme complex publication-title: Nat. Commun. – volume: 66 start-page: 4368 year: 2006 end-page: 4377 ident: bib107 article-title: Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes publication-title: Cancer Res. – volume: 23 start-page: 2369 year: 2004 end-page: 2380 ident: bib112 article-title: Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase publication-title: EMBO J. – volume: 450 start-page: 712 year: 2007 end-page: 716 ident: bib141 article-title: Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes publication-title: Nature – volume: 317 start-page: 516 year: 2007 end-page: 519 ident: bib147 article-title: Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease publication-title: Science – volume: 287 start-page: 32307 year: 2012 end-page: 32311 ident: bib55 article-title: Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein publication-title: J. Biol. Chem. – volume: 303 start-page: 2011 year: 2004 end-page: 2015 ident: bib39 article-title: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase publication-title: Science – volume: 22 start-page: 2789 year: 2012 end-page: 2793 ident: bib179 article-title: 3-(N-arylsulfamoyl)benzamides, inhibitors of human sirtuin type 2 (SIRT2) publication-title: Bioorg. Med. Chem. Lett – volume: 58 start-page: 7217 year: 2015 end-page: 7223 ident: bib19 article-title: A novel continuous assay for the deacylase sirtuin 5 and other deacetylases publication-title: J. Med. Chem. – volume: 15 start-page: 377 year: 2007 end-page: 389 ident: bib176 article-title: Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin publication-title: Structure – volume: 1840 start-page: 1295 year: 2014 end-page: 1302 ident: bib8 article-title: Are sirtuin deacylase enzymes important modulators of mitochondrial energy metabolism? publication-title: Bba-Gen Subjects – volume: 10 start-page: 1257 year: 1996 end-page: 1269 ident: bib133 article-title: The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins publication-title: Faseb. J. – volume: 60 start-page: 2344 year: 2017 end-page: 2360 ident: bib188 article-title: Development of 1,2,4-oxadiazoles as potent and selective inhibitors of the human deacetylase sirtuin 2: structure-activity relationship, X-ray crystal structure, and anticancer activity publication-title: J. Med. Chem. – volume: 28 start-page: 781 year: 2009 end-page: 791 ident: bib169 article-title: Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect publication-title: Oncogene – volume: 19 start-page: 416 year: 2011 end-page: 428 ident: bib58 article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization publication-title: Cancer Cell – volume: 30 start-page: 179 year: 2016 end-page: 185 ident: bib90 article-title: Sirtuin 6 modulates hypoxia-induced autophagy in nasal polyp fibroblasts via inhibition of glycolysis publication-title: Am. J. Rhinol. Allergy – volume: 9 start-page: 162 year: 2010 end-page: 173 ident: bib93 article-title: SIRT6 protects against pathological damage caused by diet-induced obesity publication-title: Aging Cell – volume: 38 start-page: 864 year: 2010 end-page: 878 ident: bib41 article-title: Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha publication-title: Mol. Cell – volume: 383 start-page: 174 year: 2008 end-page: 179 ident: bib14 article-title: Quantification of endogenous sirtuin metabolite O-acetyl-ADP-ribose publication-title: Anal. Biochem. – volume: 360 start-page: 194 year: 2018 end-page: 228 ident: bib203 article-title: Organocatalytic asymmetric synthesis of six-membered carbocycle -based spirocompounds publication-title: Adv. Synth. Catal. – volume: 18 start-page: 514 year: 2009 end-page: 525 ident: bib118 article-title: Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3 publication-title: Protein Sci. – volume: 282 start-page: 6823 year: 2007 end-page: 6832 ident: bib6 article-title: Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1 publication-title: J. Biol. Chem. – volume: 1 start-page: 109 year: 2009 end-page: 121 ident: bib87 article-title: SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair publication-title: Aging (N Y) – volume: 56 start-page: 1007 year: 2017 end-page: 1011 ident: bib156 article-title: Structural basis of sirtuin 6 activation by synthetic small molecules publication-title: Angew Chem. Int. Ed. Engl. – volume: 17 start-page: 41 year: 2010 end-page: 52 ident: bib119 article-title: SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress publication-title: Cancer Cell – volume: 153 start-page: 840 year: 2013 end-page: 854 ident: bib65 article-title: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4 publication-title: Cell – volume: 2 start-page: 1419 year: 2007 end-page: 1431 ident: bib175 article-title: Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins) publication-title: ChemMedChem – volume: 80 start-page: 191 year: 2008 end-page: 199 ident: bib142 article-title: Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice publication-title: Cardiovasc. Res. – volume: 12 start-page: 662 year: 2010 end-page: 667 ident: bib64 article-title: Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation publication-title: Cell Metabol. – volume: 2017 start-page: 1750306 year: 2017 ident: bib152 article-title: Regulation of sirtuin-mediated protein deacetylation by cardioprotective phytochemicals publication-title: Oxid. Med. Cell. Longev. – volume: 55 start-page: 2252 year: 2016 end-page: 2256 ident: bib202 article-title: Structure-based development of an affinity probe publication-title: Angew Chem. Int. Ed. Engl. – volume: 44 start-page: 3629 year: 2016 end-page: 3642 ident: bib11 article-title: Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents publication-title: Nucleic Acids Res. – volume: 22 start-page: 345 year: 2014 end-page: 352 ident: bib5 article-title: Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change publication-title: Structure – volume: 32 start-page: 606 year: 2002 end-page: 613 ident: bib109 article-title: Acetylation inactivates the transcriptional repressor BCL6 publication-title: Nat. Genet. – volume: 10 start-page: 69 year: 2015 end-page: 82 ident: bib189 article-title: The discovery of a highly selective 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one SIRT2 inhibitor that is neuroprotective in an in vitro Parkinson's disease model publication-title: ChemMedChem – volume: 159 start-page: 1615 year: 2014 end-page: 1625 ident: bib71 article-title: Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity publication-title: Cell – volume: 11 start-page: 253 year: 2015 end-page: 270 ident: bib72 article-title: SIRT5 regulation of ammonia-induced autophagy and mitophagy publication-title: Autophagy – volume: 57 start-page: 1055 year: 2013 end-page: 1067 ident: bib127 article-title: Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b publication-title: Hepatology – volume: 213 start-page: 88 year: 2007 end-page: 97 ident: bib113 article-title: Cytoplasm-localized SIRT1 enhances apoptosis publication-title: J. Cell. Physiol. – volume: 52 start-page: 2673 year: 2009 end-page: 2682 ident: bib170 article-title: Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity publication-title: J. Med. Chem. – volume: 51 start-page: 454 year: 2013 end-page: 468 ident: bib86 article-title: SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling publication-title: Mol. Cell – volume: 134 start-page: 1922 year: 2012 end-page: 1925 ident: bib196 article-title: Thiosuccinyl peptides as Sirt5-specific inhibitors publication-title: J. Am. Chem. Soc. – volume: 182 start-page: 136 year: 2013 end-page: 143 ident: bib134 article-title: Crystal structure analysis of human Sirt2 and its ADP-ribose complex publication-title: J. Struct. Biol. – volume: 58 start-page: 10 year: 2008 end-page: 14 ident: bib34 article-title: Paths of convergence: sirtuins in aging and neurodegeneration publication-title: Neuron – volume: 120 start-page: 713 year: 2007 end-page: 721 ident: bib84 article-title: WRN at telomeres: implications for aging and cancer publication-title: J. Cell Sci. – volume: 23 start-page: 450 year: 2013 end-page: 463 ident: bib69 article-title: SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism publication-title: Cancer Cell – volume: 140 start-page: 280 year: 2010 end-page: 293 ident: bib88 article-title: The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha publication-title: Cell – volume: 56 start-page: 14836 year: 2017 end-page: 14841 ident: bib195 article-title: Mechanism-based inhibitors of the human sirtuin 5 deacylase: structure-activity relationship, biostructural, and kinetic insight publication-title: Angew Chem. Int. Ed. Engl. – volume: 121 start-page: 515 year: 2005 end-page: 527 ident: bib13 article-title: Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation publication-title: Cell – volume: 107 start-page: 137 year: 2001 end-page: 148 ident: bib29 article-title: Negative control of p53 by Sir2alpha promotes cell survival under stress publication-title: Cell – volume: 24 start-page: 1871 year: 2014 end-page: 1874 ident: bib164 article-title: Identification of novel SIRT2-selective inhibitors using a click chemistry approach publication-title: Bioorg. Med. Chem. Lett – volume: 59 start-page: 1599 year: 2016 end-page: 1612 ident: bib166 article-title: Aminothiazoles as potent and selective Sirt2 inhibitors: a structure-activity relationship study publication-title: J. Med. Chem. – volume: 277 start-page: 45099 year: 2002 end-page: 45107 ident: bib15 article-title: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1 publication-title: J. Biol. Chem. – volume: 339 start-page: 1216 year: 2013 end-page: 1219 ident: bib145 article-title: Evidence for a common mechanism of SIRT1 regulation by allosteric activators publication-title: Science – volume: 280 start-page: 3451 year: 2013 end-page: 3466 ident: bib9 article-title: Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal publication-title: FEBS J. – volume: 2 start-page: 914 year: 2010 end-page: 923 ident: bib60 article-title: Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy publication-title: Aging (N Y) – volume: 423 start-page: 550 year: 2003 end-page: 555 ident: bib89 article-title: Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction publication-title: Nature – volume: 3 start-page: 1050 year: 2012 end-page: 1053 ident: bib173 article-title: Inhibitors of the NAD(+)-Dependent protein desuccinylase and demalonylase Sirt5 publication-title: ACS Med. Chem. Lett. – volume: 22 start-page: 1060 year: 2015 end-page: 1077 ident: bib122 article-title: Mitochondrial sirtuins and their relationships with metabolic disease and cancer publication-title: Antioxidants Redox Signal. – volume: 5 start-page: 8529 year: 2015 ident: bib22 article-title: Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies publication-title: Sci. Rep. – volume: 59 start-page: 2928 year: 2016 end-page: 2941 ident: bib162 article-title: 5-((3-Amidobenzyl)oxy)nicotinamides as Sirtuin 2 Inhibitors publication-title: J. Med. Chem. – volume: 276 start-page: 38837 year: 2001 end-page: 38843 ident: bib168 article-title: Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening publication-title: J. Biol. Chem. – volume: 10 year: 2015 ident: bib111 article-title: KAP1 deacetylation by SIRT1 promotes non-homologous end-joining repair publication-title: PloS One – volume: 48 start-page: 900 year: 2012 end-page: 913 ident: bib91 article-title: The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis publication-title: Mol. Cell – volume: 76 start-page: 414 year: 2014 end-page: 426 ident: bib180 article-title: Development and characterization of 3-(benzylsulfonamido)benzamides as potent and selective SIRT2 inhibitors publication-title: Eur. J. Med. Chem. – volume: 330 start-page: 81 year: 2015 end-page: 90 ident: bib98 article-title: Sirtuin 6 protects the heart from hypoxic damage publication-title: Exp. Cell Res. – volume: 13 start-page: 454 year: 2008 end-page: 463 ident: bib108 article-title: Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator publication-title: Cancer Cell – volume: 4 start-page: 984 year: 2013 end-page: 994 ident: bib151 article-title: Targeting mutant p53 by a SIRT1 activator YK-3-237 inhibits the proliferation of triple-negative breast cancer cells publication-title: Oncotarget – volume: 6 start-page: 540 year: 2011 end-page: 546 ident: bib177 article-title: A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase publication-title: ACS Chem. Biol. – volume: 112 start-page: 287 year: 2017 end-page: 297 ident: bib155 article-title: A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase publication-title: Free Radic. Biol. Med. – volume: 113 start-page: 492 year: 2015 end-page: 499 ident: bib66 article-title: Tumour-suppressive function of SIRT4 in human colorectal cancer publication-title: Br. J. Canc. – volume: 487 start-page: 114 year: 2012 end-page: 118 ident: bib126 article-title: SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation publication-title: Nature – volume: 29 start-page: 77 year: 2012 end-page: 83 ident: bib67 article-title: Upregulated INHBA expression is associated with poor survival in gastric cancer publication-title: Med. Oncol. – volume: 289 start-page: 5208 year: 2014 end-page: 5216 ident: bib193 article-title: A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer publication-title: J. Biol. Chem. – volume: 590 start-page: 1123 year: 2016 end-page: 1131 ident: bib104 article-title: miR-152 induces human dental pulp stem cell senescence by inhibiting SIRT7 expression publication-title: FEBS Lett. – volume: 32 start-page: 124 year: 2012 end-page: 132 ident: bib114 article-title: SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones publication-title: J. Neurosci. – volume: 21 start-page: 2644 year: 2007 end-page: 2658 ident: bib32 article-title: SIRT1 controls endothelial angiogenic functions during vascular growth publication-title: Genes Dev. – volume: 104 start-page: 2205 year: 2007 end-page: 2210 ident: bib83 article-title: Telomere dysfunction as a cause of genomic instability in Werner syndrome publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 51 start-page: 3423 year: 2012 end-page: 3427 ident: bib199 article-title: Discovery of macrocyclic peptides armed with a mechanism-based warhead: isoform-selective inhibition of human deacetylase SIRT2 publication-title: Angew Chem. Int. Ed. Engl. – volume: 277 start-page: 12632 year: 2002 end-page: 12641 ident: bib12 article-title: Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases publication-title: J. Biol. Chem. – volume: 25 start-page: 1939 year: 2013 end-page: 1948 ident: bib37 article-title: Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders publication-title: Cell. Signal. – volume: 18 start-page: 920 year: 2013 end-page: 933 ident: bib74 article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks publication-title: Cell Metabol. – volume: 36 start-page: 51 year: 2015 end-page: 59 ident: bib47 article-title: The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression publication-title: Eur. Heart J. – volume: 29 start-page: 1093 year: 2009 end-page: 1103 ident: bib143 article-title: Sirt1's complex roles in neuroprotection publication-title: Cell. Mol. Neurobiol. – volume: 48 start-page: 8045 year: 2005 end-page: 8054 ident: bib185 article-title: Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1 publication-title: J. Med. Chem. – volume: 93 start-page: 37 year: 1979 end-page: 50 ident: bib3 article-title: MAR1-a regulator of the HMa and HMalpha loci in Saccharomyces cerevisiae publication-title: Genetics – volume: 29 start-page: 1316 year: 2015 end-page: 1325 ident: bib146 article-title: Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol publication-title: Genes Dev. – volume: 36 start-page: 3051 year: 2016 end-page: 3057 ident: bib131 article-title: MicroRNA-3666-induced suppression of SIRT7 inhibits the growth of non-small cell lung cancer cells publication-title: Oncol. Rep. – volume: 350 start-page: 426 year: 2015 end-page: 430 ident: bib115 article-title: Transcriptional control of tissue formation throughout root development publication-title: Science – volume: 11 start-page: 959 year: 2006 end-page: 967 ident: bib153 article-title: SIRT1 modulating compounds from high-throughput screening as anti-inflammatory and insulin-sensitizing agents publication-title: J. Biomol. Screen – volume: 5 start-page: 140 year: 2010 end-page: 147 ident: bib183 article-title: Bisnaphthalimidopropyl derivatives as inhibitors of Leishmania SIR2 related protein 1 publication-title: ChemMedChem – volume: 452 start-page: 492 year: 2008 end-page: 496 ident: bib78 article-title: SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin publication-title: Nature – volume: 27 start-page: 639 year: 2013 end-page: 653 ident: bib56 article-title: The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation publication-title: Genes Dev. – volume: 101 start-page: 15998 year: 2004 end-page: 16003 ident: bib26 article-title: Sir2 mediates longevity in the fly through a pathway related to calorie restriction publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 102 start-page: 892 year: 2005 end-page: 897 ident: bib178 article-title: A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 324 start-page: 1289 year: 2009 end-page: 1293 ident: bib42 article-title: Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1 publication-title: Science – volume: 6 start-page: 105 year: 2007 end-page: 114 ident: bib50 article-title: SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation publication-title: Cell Metabol. – volume: 14 start-page: 718 year: 2011 end-page: 719 ident: bib1 article-title: Old enzymes, new tricks: sirtuins are NAD(+)-dependent de-acylases publication-title: Cell Metabol. – volume: 55 start-page: 5760 year: 2012 end-page: 5773 ident: bib163 article-title: Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors publication-title: J. Med. Chem. – volume: 574 start-page: 183 year: 2016 end-page: 211 ident: bib27 article-title: Biology, chemistry, and pharmacology of sirtuins publication-title: Methods Enzymol. – volume: 41 start-page: 8537 year: 2013 end-page: 8545 ident: bib81 article-title: SIRT6 exhibits nucleosome-dependent deacetylase activity publication-title: Nucleic Acids Res. – volume: 104 start-page: 14855 year: 2007 end-page: 14860 ident: bib43 article-title: SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase publication-title: Proc. Natl. Acad. Sci. U. S. A. – volume: 61 start-page: 2460 year: 2018 end-page: 2471 ident: bib201 article-title: Potent and selective inhibitors of human sirtuin 5 publication-title: J. Med. Chem. – volume: 17 start-page: 545 year: 2015 end-page: 557 ident: bib85 article-title: The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine publication-title: Nat. Cell Biol. – volume: 347 start-page: 1374 year: 2015 end-page: 1377 ident: bib128 article-title: Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging publication-title: Science – volume: 27 start-page: 4828 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib159 article-title: A series of novel indazole derivatives of Sirt 1 activator as osteogenic regulators publication-title: Bioorg. Med. Chem. Lett doi: 10.1016/j.bmcl.2017.09.049 – volume: 45 start-page: 177 year: 1993 ident: 10.1016/j.ejmech.2018.10.028_bib174 article-title: Recent research on the biological activity of suramin publication-title: Pharmacol. Rev. – volume: 6 start-page: 505 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib52 article-title: SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction publication-title: Aging Cell doi: 10.1111/j.1474-9726.2007.00304.x – volume: 28 start-page: 781 year: 2009 ident: 10.1016/j.ejmech.2018.10.028_bib169 article-title: Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect publication-title: Oncogene doi: 10.1038/onc.2008.436 – volume: 305 start-page: 390 year: 2004 ident: 10.1016/j.ejmech.2018.10.028_bib31 article-title: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase publication-title: Science doi: 10.1126/science.1099196 – volume: 101 start-page: 15998 year: 2004 ident: 10.1016/j.ejmech.2018.10.028_bib26 article-title: Sir2 mediates longevity in the fly through a pathway related to calorie restriction publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0404184101 – volume: 22 start-page: 1169 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib182 article-title: A novel sirtuin inhibitor, alters the cytoskeleton and mitochondrial metabolism promoting cell death in Leishmania amazonensis publication-title: Apoptosis doi: 10.1007/s10495-017-1397-8 – volume: 423 start-page: 550 year: 2003 ident: 10.1016/j.ejmech.2018.10.028_bib89 article-title: Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction publication-title: Nature doi: 10.1038/nature01667 – volume: 51 start-page: 454 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib86 article-title: SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.06.018 – volume: 37 start-page: 108 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib96 article-title: The complex role of SIRT6 in carcinogenesis publication-title: Carcinogenesis doi: 10.1093/carcin/bgv167 – volume: 285 start-page: 32695 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib144 article-title: SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.133892 – volume: 32 start-page: 606 year: 2002 ident: 10.1016/j.ejmech.2018.10.028_bib109 article-title: Acetylation inactivates the transcriptional repressor BCL6 publication-title: Nat. Genet. doi: 10.1038/ng1018 – volume: 12 start-page: 7498 year: 2014 ident: 10.1016/j.ejmech.2018.10.028_bib198 article-title: Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors publication-title: Org. Biomol. Chem. doi: 10.1039/C4OB00860J – volume: 574 start-page: 183 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib27 article-title: Biology, chemistry, and pharmacology of sirtuins publication-title: Methods Enzymol. doi: 10.1016/bs.mie.2016.03.011 – volume: 12 year: 2018 ident: 10.1016/j.ejmech.2018.10.028_bib184 article-title: Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease publication-title: PLoS Neglected Trop. Dis. doi: 10.1371/journal.pntd.0006180 – volume: 29 start-page: 1093 year: 2009 ident: 10.1016/j.ejmech.2018.10.028_bib143 article-title: Sirt1's complex roles in neuroprotection publication-title: Cell. Mol. Neurobiol. doi: 10.1007/s10571-009-9414-2 – volume: 4 start-page: 984 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib151 article-title: Targeting mutant p53 by a SIRT1 activator YK-3-237 inhibits the proliferation of triple-negative breast cancer cells publication-title: Oncotarget doi: 10.18632/oncotarget.1070 – volume: 60 start-page: 1928 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib190 article-title: Thienopyrimidinone based sirtuin-2 (SIRT2)-Selective inhibitors bind in the ligand induced selectivity pocket publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b01690 – volume: 159 start-page: 1615 year: 2014 ident: 10.1016/j.ejmech.2018.10.028_bib71 article-title: Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity publication-title: Cell doi: 10.1016/j.cell.2014.11.046 – volume: 137 start-page: 560 year: 2009 ident: 10.1016/j.ejmech.2018.10.028_bib76 article-title: SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle publication-title: Cell doi: 10.1016/j.cell.2009.02.026 – volume: 58 start-page: 7217 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib19 article-title: A novel continuous assay for the deacylase sirtuin 5 and other deacetylases publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b00293 – volume: 284 start-page: 24394 year: 2009 ident: 10.1016/j.ejmech.2018.10.028_bib135 article-title: Crystal structures of human SIRT3 displaying substrate-induced conformational changes publication-title: J. Biol. Chem. doi: 10.1074/jbc.M109.014928 – volume: 347 start-page: 1374 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib128 article-title: Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging publication-title: Science doi: 10.1126/science.aaa2361 – volume: 24 start-page: 1871 year: 2014 ident: 10.1016/j.ejmech.2018.10.028_bib164 article-title: Identification of novel SIRT2-selective inhibitors using a click chemistry approach publication-title: Bioorg. Med. Chem. Lett doi: 10.1016/j.bmcl.2014.03.026 – volume: 39 start-page: 8 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib45 article-title: SIRT1 promotes DNA repair activity and deacetylation of Ku70 publication-title: Exp. Mol. Med. doi: 10.1038/emm.2007.2 – volume: 288 start-page: 20768 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib103 article-title: Sirtuin-7 inhibits the activity of hypoxia-inducible factors publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.476903 – volume: 26 start-page: 1612 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib200 article-title: Simple N(epsilon)-thioacetyl-lysine-containing cyclic peptides exhibiting highly potent sirtuin inhibition publication-title: Bioorg. Med. Chem. Lett doi: 10.1016/j.bmcl.2016.01.086 – volume: 41 start-page: 8537 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib81 article-title: SIRT6 exhibits nucleosome-dependent deacetylase activity publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkt642 – volume: 6 start-page: 7645 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib160 article-title: Crystallographic structure of a small molecule SIRT1 activator-enzyme complex publication-title: Nat. Commun. doi: 10.1038/ncomms8645 – volume: 287 start-page: 32307 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib55 article-title: Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein publication-title: J. Biol. Chem. doi: 10.1074/jbc.C112.403048 – volume: 586 start-page: 4076 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib77 article-title: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice publication-title: FEBS Lett. doi: 10.1016/j.febslet.2012.10.009 – volume: 18 start-page: 1229 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib10 article-title: Regulation of serine-threonine kinase Akt activation by NAD(+)-Dependent deacetylase SIRT7 publication-title: Cell Rep. doi: 10.1016/j.celrep.2017.01.009 – volume: 2 start-page: 1492 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib53 article-title: The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington's disease mouse models publication-title: Cell Rep. doi: 10.1016/j.celrep.2012.11.001 – volume: 107 start-page: 137 year: 2001 ident: 10.1016/j.ejmech.2018.10.028_bib29 article-title: Negative control of p53 by Sir2alpha promotes cell survival under stress publication-title: Cell doi: 10.1016/S0092-8674(01)00524-4 – volume: 30 start-page: 179 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib90 article-title: Sirtuin 6 modulates hypoxia-induced autophagy in nasal polyp fibroblasts via inhibition of glycolysis publication-title: Am. J. Rhinol. Allergy doi: 10.2500/ajra.2016.30.4282 – volume: 325 start-page: 536 year: 2008 ident: 10.1016/j.ejmech.2018.10.028_bib149 article-title: Isoflavones promote mitochondrial biogenesis publication-title: J. Pharmacol. Exp. Therapeut. doi: 10.1124/jpet.107.134882 – volume: 276 start-page: 38837 year: 2001 ident: 10.1016/j.ejmech.2018.10.028_bib168 article-title: Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening publication-title: J. Biol. Chem. doi: 10.1074/jbc.M106779200 – volume: 20 start-page: 869 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib148 article-title: Resveratrol attenuated smokeless tobacco-induced vascular and metabolic complications in ovariectomized rats publication-title: Menopause doi: 10.1097/GME.0b013e31827fdda4 – volume: 6 start-page: 105 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib50 article-title: SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation publication-title: Cell Metabol. doi: 10.1016/j.cmet.2007.07.003 – volume: 102 start-page: 892 year: 2005 ident: 10.1016/j.ejmech.2018.10.028_bib178 article-title: A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0408936102 – volume: 6 start-page: 540 year: 2011 ident: 10.1016/j.ejmech.2018.10.028_bib177 article-title: A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase publication-title: ACS Chem. Biol. doi: 10.1021/cb100376q – volume: 2 start-page: e784 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib7 article-title: Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis publication-title: PloS One doi: 10.1371/journal.pone.0000784 – volume: 9 start-page: 162 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib93 article-title: SIRT6 protects against pathological damage caused by diet-induced obesity publication-title: Aging Cell doi: 10.1111/j.1474-9726.2009.00544.x – volume: 80 start-page: 191 year: 2008 ident: 10.1016/j.ejmech.2018.10.028_bib142 article-title: Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice publication-title: Cardiovasc. Res. doi: 10.1093/cvr/cvn224 – volume: 38 start-page: 864 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib41 article-title: Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha publication-title: Mol. Cell doi: 10.1016/j.molcel.2010.05.023 – volume: 4 start-page: 125 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib28 article-title: SIRT1 is a highly networked protein that mediates the adaptation to chronic physiological stress publication-title: Genes Cancer doi: 10.1177/1947601912474893 – volume: 280 start-page: 40364 year: 2005 ident: 10.1016/j.ejmech.2018.10.028_bib46 article-title: SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling publication-title: J. Biol. Chem. doi: 10.1074/jbc.M509329200 – volume: 57 start-page: 1055 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib127 article-title: Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b publication-title: Hepatology doi: 10.1002/hep.26101 – volume: 383 start-page: 174 year: 2008 ident: 10.1016/j.ejmech.2018.10.028_bib14 article-title: Quantification of endogenous sirtuin metabolite O-acetyl-ADP-ribose publication-title: Anal. Biochem. doi: 10.1016/j.ab.2008.08.033 – volume: 1840 start-page: 1295 year: 2014 ident: 10.1016/j.ejmech.2018.10.028_bib8 article-title: Are sirtuin deacylase enzymes important modulators of mitochondrial energy metabolism? publication-title: Bba-Gen Subjects doi: 10.1016/j.bbagen.2013.08.016 – volume: 4 start-page: 2327 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib18 article-title: An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms publication-title: Nat. Commun. doi: 10.1038/ncomms3327 – volume: 425 start-page: 191 year: 2003 ident: 10.1016/j.ejmech.2018.10.028_bib140 article-title: Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan publication-title: Nature doi: 10.1038/nature01960 – volume: 104 start-page: 2205 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib83 article-title: Telomere dysfunction as a cause of genomic instability in Werner syndrome publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0609410104 – volume: 350 start-page: 426 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib115 article-title: Transcriptional control of tissue formation throughout root development publication-title: Science doi: 10.1126/science.aad1171 – volume: 60 start-page: 4714 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib191 article-title: Discovery and characterization of R/S-N-3-Cyanophenyl-N'-(6-tert-butoxycarbonylamino-3,4-dihydro-2,2-dimethyl-2H-1- benzopyran-4-yl)urea, a new histone deacetylase class III inhibitor exerting antiproliferative activity against cancer cell lines publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.7b00533 – volume: 60 start-page: 661 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib73 article-title: NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance publication-title: Mol. Cell doi: 10.1016/j.molcel.2015.10.017 – volume: 53 start-page: 1193 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib54 article-title: Sirtuin 2 inhibition improves cognitive performance and acts on amyloid-beta protein precursor processing in two Alzheimer's disease mouse models publication-title: J. Alzheim. Dis. doi: 10.3233/JAD-151135 – volume: 5 start-page: 9841 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib129 article-title: SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors publication-title: Sci. Rep. doi: 10.1038/srep09841 – volume: 126 start-page: 941 year: 2006 ident: 10.1016/j.ejmech.2018.10.028_bib17 article-title: SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells publication-title: Cell doi: 10.1016/j.cell.2006.06.057 – volume: 10 start-page: 1257 year: 1996 ident: 10.1016/j.ejmech.2018.10.028_bib133 article-title: The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins publication-title: Faseb. J. doi: 10.1096/fasebj.10.11.8836039 – volume: 22 start-page: 2789 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib179 article-title: 3-(N-arylsulfamoyl)benzamides, inhibitors of human sirtuin type 2 (SIRT2) publication-title: Bioorg. Med. Chem. Lett doi: 10.1016/j.bmcl.2012.02.089 – volume: 48 start-page: 8045 year: 2005 ident: 10.1016/j.ejmech.2018.10.028_bib185 article-title: Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1 publication-title: J. Med. Chem. doi: 10.1021/jm050522v – volume: 22 start-page: 1060 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib122 article-title: Mitochondrial sirtuins and their relationships with metabolic disease and cancer publication-title: Antioxidants Redox Signal. doi: 10.1089/ars.2014.6213 – volume: 360 start-page: 194 year: 2018 ident: 10.1016/j.ejmech.2018.10.028_bib203 article-title: Organocatalytic asymmetric synthesis of six-membered carbocycle -based spirocompounds publication-title: Adv. Synth. Catal. doi: 10.1002/adsc.201700927 – volume: 58 start-page: 10 year: 2008 ident: 10.1016/j.ejmech.2018.10.028_bib34 article-title: Paths of convergence: sirtuins in aging and neurodegeneration publication-title: Neuron doi: 10.1016/j.neuron.2008.03.015 – volume: 11 start-page: 437 year: 2003 ident: 10.1016/j.ejmech.2018.10.028_bib57 article-title: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase publication-title: Mol. Cell doi: 10.1016/S1097-2765(03)00038-8 – volume: 23 start-page: 2369 year: 2004 ident: 10.1016/j.ejmech.2018.10.028_bib112 article-title: Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase publication-title: EMBO J. doi: 10.1038/sj.emboj.7600244 – volume: 56 start-page: 963 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib136 article-title: The 2.5 A crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition publication-title: J. Med. Chem. doi: 10.1021/jm301431y – volume: 286 start-page: 14575 year: 2011 ident: 10.1016/j.ejmech.2018.10.028_bib21 article-title: Structure and biochemical functions of SIRT6 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111.218990 – volume: 140 start-page: 280 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib88 article-title: The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha publication-title: Cell doi: 10.1016/j.cell.2009.12.041 – volume: 496 start-page: 110 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib20 article-title: SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine publication-title: Nature doi: 10.1038/nature12038 – volume: 330 start-page: 81 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib98 article-title: Sirtuin 6 protects the heart from hypoxic damage publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2014.07.013 – volume: 29 start-page: 767 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib194 article-title: A SIRT2-selective inhibitor promotes c-myc oncoprotein degradation and exhibits broad anticancer activity publication-title: Cancer Cell doi: 10.1016/j.ccell.2016.04.005 – volume: 52 start-page: 2673 year: 2009 ident: 10.1016/j.ejmech.2018.10.028_bib170 article-title: Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity publication-title: J. Med. Chem. doi: 10.1021/jm8014298 – volume: 14 start-page: 718 year: 2011 ident: 10.1016/j.ejmech.2018.10.028_bib1 article-title: Old enzymes, new tricks: sirtuins are NAD(+)-dependent de-acylases publication-title: Cell Metabol. doi: 10.1016/j.cmet.2011.10.006 – volume: 6 start-page: 759 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib35 article-title: SIRT1 transgenic mice show phenotypes resembling calorie restriction publication-title: Aging Cell doi: 10.1111/j.1474-9726.2007.00335.x – volume: 441 start-page: 191 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib75 article-title: SIRT5 desuccinylates and activates SOD1 to eliminate ROS publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2013.10.033 – volume: 56 start-page: 6681 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib197 article-title: Screen of pseudopeptidic inhibitors of human sirtuins 1-3: two lead compounds with antiproliferative effects in cancer cells publication-title: J. Med. Chem. doi: 10.1021/jm400438k – volume: 44 start-page: 668 year: 2014 ident: 10.1016/j.ejmech.2018.10.028_bib59 article-title: Exercise mitigates diclofenac-induced liver mitochondrial dysfunction publication-title: Eur. J. Clin. Invest. doi: 10.1111/eci.12285 – volume: 13 start-page: 2570 year: 1999 ident: 10.1016/j.ejmech.2018.10.028_bib23 article-title: The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms publication-title: Genes Dev. doi: 10.1101/gad.13.19.2570 – volume: 285 start-page: 31995 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib68 article-title: SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells publication-title: J. Biol. Chem. doi: 10.1074/jbc.M110.124164 – volume: 122 start-page: 489 year: 2009 ident: 10.1016/j.ejmech.2018.10.028_bib102 article-title: Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis publication-title: J. Cell Sci. doi: 10.1242/jcs.042382 – volume: 107 start-page: 149 year: 2001 ident: 10.1016/j.ejmech.2018.10.028_bib36 article-title: hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase publication-title: Cell doi: 10.1016/S0092-8674(01)00527-X – volume: 11 start-page: 959 year: 2006 ident: 10.1016/j.ejmech.2018.10.028_bib153 article-title: SIRT1 modulating compounds from high-throughput screening as anti-inflammatory and insulin-sensitizing agents publication-title: J. Biomol. Screen doi: 10.1177/1087057106294710 – volume: 55 start-page: 2252 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib202 article-title: Structure-based development of an affinity probe publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.201509843 – volume: 25 start-page: 1939 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib37 article-title: Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders publication-title: Cell. Signal. doi: 10.1016/j.cellsig.2013.06.007 – volume: 13 start-page: 454 year: 2008 ident: 10.1016/j.ejmech.2018.10.028_bib108 article-title: Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.03.004 – volume: 93 start-page: 37 year: 1979 ident: 10.1016/j.ejmech.2018.10.028_bib3 article-title: MAR1-a regulator of the HMa and HMalpha loci in Saccharomyces cerevisiae publication-title: Genetics doi: 10.1093/genetics/93.1.37 – volume: 487 start-page: 114 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib126 article-title: SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation publication-title: Nature doi: 10.1038/nature11043 – volume: 24 start-page: 1021 year: 2005 ident: 10.1016/j.ejmech.2018.10.028_bib38 article-title: Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation publication-title: EMBO J. doi: 10.1038/sj.emboj.7600570 – volume: 472 start-page: 425 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib61 article-title: Deacetylation of MnSOD by PARP-regulated SIRT3 protects retinal capillary endothelial cells from hyperglycemia-induced damage publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2015.12.037 – volume: 289 start-page: 5208 year: 2014 ident: 10.1016/j.ejmech.2018.10.028_bib193 article-title: A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer publication-title: J. Biol. Chem. doi: 10.1074/jbc.M113.487736 – volume: 1 start-page: 109 year: 2009 ident: 10.1016/j.ejmech.2018.10.028_bib87 article-title: SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair publication-title: Aging (N Y) – volume: 15 start-page: 1009 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib95 article-title: Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-kappaB signaling publication-title: Cell Cycle doi: 10.1080/15384101.2016.1152427 – volume: 124 start-page: 315 year: 2006 ident: 10.1016/j.ejmech.2018.10.028_bib82 article-title: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6 publication-title: Cell doi: 10.1016/j.cell.2005.11.044 – volume: 61 start-page: 2460 year: 2018 ident: 10.1016/j.ejmech.2018.10.028_bib201 article-title: Potent and selective inhibitors of human sirtuin 5 publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.7b01648 – volume: 434 start-page: 113 year: 2005 ident: 10.1016/j.ejmech.2018.10.028_bib40 article-title: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1 publication-title: Nature doi: 10.1038/nature03354 – volume: 60 start-page: 2344 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib188 article-title: Development of 1,2,4-oxadiazoles as potent and selective inhibitors of the human deacetylase sirtuin 2: structure-activity relationship, X-ray crystal structure, and anticancer activity publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.6b01609 – volume: 12 start-page: 6226 year: 2011 ident: 10.1016/j.ejmech.2018.10.028_bib62 article-title: Sirt3, mitochondrial ROS, ageing, and carcinogenesis publication-title: Int. J. Mol. Sci. doi: 10.3390/ijms12096226 – volume: 134 start-page: 230 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib167 article-title: Discovery of 2-((4,6-dimethylpyrimidin-2-yl)thio)-N-phenylacetamide derivatives as new potent and selective human sirtuin 2 inhibitors publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2017.04.010 – volume: 19 start-page: 416 year: 2011 ident: 10.1016/j.ejmech.2018.10.028_bib58 article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization publication-title: Cancer Cell doi: 10.1016/j.ccr.2011.02.014 – volume: 108 start-page: 21069 year: 2011 ident: 10.1016/j.ejmech.2018.10.028_bib121 article-title: Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.1117500108 – volume: 54 start-page: 4717 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib120 article-title: Mitochondrial permeability transition pore in inflammatory apoptosis of human conjunctival epithelial cells and T cells: effect of cyclosporin A publication-title: Invest. Ophthalmol. Vis. Sci. doi: 10.1167/iovs.13-11681 – volume: 182 start-page: 136 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib134 article-title: Crystal structure analysis of human Sirt2 and its ADP-ribose complex publication-title: J. Struct. Biol. doi: 10.1016/j.jsb.2013.02.012 – volume: 280 start-page: 3451 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib9 article-title: Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal publication-title: FEBS J. doi: 10.1111/febs.12346 – volume: 3 start-page: 1050 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib173 article-title: Inhibitors of the NAD(+)-Dependent protein desuccinylase and demalonylase Sirt5 publication-title: ACS Med. Chem. Lett. doi: 10.1021/ml3002709 – volume: 15 start-page: 313 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib4 article-title: A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 2 publication-title: Altern. Med. Rev. – volume: 7 start-page: 1346 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib130 article-title: Downregulation of SIRT7 by 5-fluorouracil induces radiosensitivity in human colorectal cancer publication-title: Theranostics doi: 10.7150/thno.18804 – volume: 15 start-page: 377 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib176 article-title: Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin publication-title: Structure doi: 10.1016/j.str.2007.02.002 – volume: 2017 start-page: 1750306 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib152 article-title: Regulation of sirtuin-mediated protein deacetylation by cardioprotective phytochemicals publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2017/1750306 – volume: 121 start-page: 515 year: 2005 ident: 10.1016/j.ejmech.2018.10.028_bib13 article-title: Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation publication-title: Cell doi: 10.1016/j.cell.2005.03.035 – volume: 17 start-page: 41 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib119 article-title: SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress publication-title: Cancer Cell doi: 10.1016/j.ccr.2009.11.023 – volume: 6 start-page: 6263 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib138 article-title: Selective Sirt2 inhibition by ligand-induced rearrangement of the active site publication-title: Nat. Commun. doi: 10.1038/ncomms7263 – volume: 387 start-page: 784 year: 2009 ident: 10.1016/j.ejmech.2018.10.028_bib116 article-title: Sirtuin 1 overexpression mice show a reference memory deficit, but not neuroprotection publication-title: Biochem. Biophys. Res. Commun. doi: 10.1016/j.bbrc.2009.07.119 – volume: 66 start-page: 4368 year: 2006 ident: 10.1016/j.ejmech.2018.10.028_bib107 article-title: Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes publication-title: Cancer Res. doi: 10.1158/0008-5472.CAN-05-3617 – volume: 287 start-page: 28307 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib137 article-title: The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5) publication-title: J. Biol. Chem. doi: 10.1074/jbc.M112.384511 – volume: 56 start-page: 1007 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib156 article-title: Structural basis of sirtuin 6 activation by synthetic small molecules publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.201610082 – volume: 56 start-page: 14836 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib195 article-title: Mechanism-based inhibitors of the human sirtuin 5 deacylase: structure-activity relationship, biostructural, and kinetic insight publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.201709050 – volume: 20 start-page: 1256 year: 2006 ident: 10.1016/j.ejmech.2018.10.028_bib49 article-title: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis publication-title: Genes Dev. doi: 10.1101/gad.1412706 – volume: 8 start-page: 2664 year: 2009 ident: 10.1016/j.ejmech.2018.10.028_bib79 article-title: Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6 publication-title: Cell Cycle doi: 10.4161/cc.8.16.9367 – volume: 452 start-page: 492 year: 2008 ident: 10.1016/j.ejmech.2018.10.028_bib78 article-title: SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin publication-title: Nature doi: 10.1038/nature06736 – volume: 23 start-page: 328 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib117 article-title: Design, synthesis and structure-activity relationship studies of novel sirtuin 2 (SIRT2) inhibitors with a benzamide skeleton publication-title: Bioorg. Med. Chem. doi: 10.1016/j.bmc.2014.11.027 – volume: 27 start-page: 639 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib56 article-title: The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation publication-title: Genes Dev. doi: 10.1101/gad.211342.112 – volume: 153 start-page: 840 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib65 article-title: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4 publication-title: Cell doi: 10.1016/j.cell.2013.04.023 – volume: 59 start-page: 201 issue: Suppl 9 year: 2008 ident: 10.1016/j.ejmech.2018.10.028_bib125 article-title: Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging publication-title: J. Physiol. Pharmacol. – volume: 36 start-page: 51 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib47 article-title: The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression publication-title: Eur. Heart J. doi: 10.1093/eurheartj/ehu095 – volume: 289 start-page: 2126 year: 2000 ident: 10.1016/j.ejmech.2018.10.028_bib24 article-title: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae publication-title: Science doi: 10.1126/science.289.5487.2126 – volume: 11 start-page: 253 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib72 article-title: SIRT5 regulation of ammonia-induced autophagy and mitophagy publication-title: Autophagy doi: 10.1080/15548627.2015.1009778 – volume: 12 start-page: 662 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib64 article-title: Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation publication-title: Cell Metabol. doi: 10.1016/j.cmet.2010.11.015 – volume: 59 start-page: 1599 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib166 article-title: Aminothiazoles as potent and selective Sirt2 inhibitors: a structure-activity relationship study publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b01517 – volume: 13 start-page: 73 year: 2014 ident: 10.1016/j.ejmech.2018.10.028_bib100 article-title: Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis publication-title: Mol. Cell. Proteomics doi: 10.1074/mcp.M113.031377 – volume: 54 start-page: 3037 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib139 article-title: Kinetic and structural basis for acyl-group selectivity and NAD(+) dependence in sirtuin-catalyzed deacylation publication-title: Biochemistry doi: 10.1021/acs.biochem.5b00150 – volume: 113 start-page: 492 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib66 article-title: Tumour-suppressive function of SIRT4 in human colorectal cancer publication-title: Br. J. Canc. doi: 10.1038/bjc.2015.226 – volume: 339 start-page: 1216 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib145 article-title: Evidence for a common mechanism of SIRT1 regulation by allosteric activators publication-title: Science doi: 10.1126/science.1231097 – volume: 23 start-page: 450 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib69 article-title: SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism publication-title: Cancer Cell doi: 10.1016/j.ccr.2013.02.024 – volume: 17 start-page: 545 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib85 article-title: The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine publication-title: Nat. Cell Biol. doi: 10.1038/ncb3147 – volume: 277 start-page: 45099 year: 2002 ident: 10.1016/j.ejmech.2018.10.028_bib15 article-title: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M205670200 – volume: 35 start-page: 1488 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib105 article-title: SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair publication-title: EMBO J. doi: 10.15252/embj.201593499 – volume: 59 start-page: 71 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib158 article-title: A sirtuin activator and an anti-inflammatory molecule-multifaceted roles of adjudin and its potential applications for aging-related diseases publication-title: Semin. Cell Dev. Biol. doi: 10.1016/j.semcdb.2016.07.020 – volume: 2 start-page: 914 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib60 article-title: Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy publication-title: Aging (N Y) – volume: 8 start-page: 347 year: 2008 ident: 10.1016/j.ejmech.2018.10.028_bib154 article-title: Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation publication-title: Cell Metabol. doi: 10.1016/j.cmet.2008.08.017 – volume: 8 start-page: 6400 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib165 article-title: Potent mechanism-based sirtuin-2-selective inhibition by an in situ-generated occupant of the substrate-binding site, “selectivity pocket” and NAD(+)-binding site publication-title: Chem. Sci. doi: 10.1039/C7SC02738A – volume: 123 start-page: 4251 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib48 article-title: SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310 publication-title: J. Cell Sci. doi: 10.1242/jcs.073783 – volume: 29 start-page: 1316 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib146 article-title: Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol publication-title: Genes Dev. doi: 10.1101/gad.265462.115 – volume: 324 start-page: 1289 year: 2009 ident: 10.1016/j.ejmech.2018.10.028_bib42 article-title: Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1 publication-title: Science doi: 10.1126/science.1169956 – volume: 281 start-page: 215 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib123 article-title: Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson's disease publication-title: Behav. Brain Res. doi: 10.1016/j.bbr.2014.12.035 – volume: 8 start-page: 621 year: 2001 ident: 10.1016/j.ejmech.2018.10.028_bib132 article-title: Structure of the histone deacetylase SIRT2 publication-title: Nat. Struct. Biol. doi: 10.1038/89668 – volume: 277 start-page: 12632 year: 2002 ident: 10.1016/j.ejmech.2018.10.028_bib12 article-title: Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases publication-title: J. Biol. Chem. doi: 10.1074/jbc.M111830200 – volume: 5 start-page: 8529 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib22 article-title: Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies publication-title: Sci. Rep. doi: 10.1038/srep08529 – volume: 48 start-page: 900 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib91 article-title: The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis publication-title: Mol. Cell doi: 10.1016/j.molcel.2012.09.030 – volume: 36 start-page: 3051 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib131 article-title: MicroRNA-3666-induced suppression of SIRT7 inhibits the growth of non-small cell lung cancer cells publication-title: Oncol. Rep. doi: 10.3892/or.2016.5063 – volume: 57 start-page: 669 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib186 article-title: Discovery of new SIRT2 inhibitors by utilizing a consensus docking/scoring strategy and structure-activity relationship analysis publication-title: J. Chem. Inf. Model. doi: 10.1021/acs.jcim.6b00714 – volume: 18 start-page: 920 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib74 article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks publication-title: Cell Metabol. doi: 10.1016/j.cmet.2013.11.013 – volume: 590 start-page: 1123 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib104 article-title: miR-152 induces human dental pulp stem cell senescence by inhibiting SIRT7 expression publication-title: FEBS Lett. doi: 10.1002/1873-3468.12138 – volume: 57 start-page: 8340 year: 2014 ident: 10.1016/j.ejmech.2018.10.028_bib161 article-title: Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach publication-title: J. Med. Chem. doi: 10.1021/jm500777s – volume: 410 start-page: 227 year: 2001 ident: 10.1016/j.ejmech.2018.10.028_bib25 article-title: Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans publication-title: Nature doi: 10.1038/35065638 – volume: 67 start-page: 1068 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib97 article-title: Targeting aberrant cancer metabolism - the role of sirtuins publication-title: Pharmacol. Rep. doi: 10.1016/j.pharep.2015.03.021 – volume: 10 start-page: 69 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib189 article-title: The discovery of a highly selective 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one SIRT2 inhibitor that is neuroprotective in an in vitro Parkinson's disease model publication-title: ChemMedChem doi: 10.1002/cmdc.201402431 – volume: 22 start-page: 345 year: 2014 ident: 10.1016/j.ejmech.2018.10.028_bib5 article-title: Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change publication-title: Structure doi: 10.1016/j.str.2013.12.001 – volume: 7 start-page: 10734 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib101 article-title: SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing publication-title: Nat. Commun. doi: 10.1038/ncomms10734 – volume: 75 start-page: 1332 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib150 article-title: Terpenylated coumarins as SIRT1 activators isolated from Ailanthus altissima publication-title: J. Nat. Prod. doi: 10.1021/np300258u – volume: 115 start-page: 2350 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib2 article-title: Sirtuins in epigenetic regulation publication-title: Chem. Rev. doi: 10.1021/cr500457h – volume: 3 start-page: 373 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib51 article-title: The Discovery of novel 10,11-dihydro-5H-dibenz[b,f]azepine SIRT2 inhibitors publication-title: Medchemcomm doi: 10.1039/c2md00290f – volume: 3 start-page: 1965 year: 2008 ident: 10.1016/j.ejmech.2018.10.028_bib172 article-title: Thiobarbiturates as sirtuin inhibitors: virtual screening, free-energy calculations, and biological testing publication-title: ChemMedChem doi: 10.1002/cmdc.200800104 – volume: 332 start-page: 1443 year: 2011 ident: 10.1016/j.ejmech.2018.10.028_bib80 article-title: SIRT6 promotes DNA repair under stress by activating PARP1 publication-title: Science doi: 10.1126/science.1202723 – volume: 55 start-page: 5760 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib163 article-title: Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors publication-title: J. Med. Chem. doi: 10.1021/jm3002108 – volume: 282 start-page: 6823 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib6 article-title: Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M609554200 – volume: 29 start-page: 77 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib67 article-title: Upregulated INHBA expression is associated with poor survival in gastric cancer publication-title: Med. Oncol. doi: 10.1007/s12032-010-9766-y – volume: 59 start-page: 2928 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib162 article-title: 5-((3-Amidobenzyl)oxy)nicotinamides as Sirtuin 2 Inhibitors publication-title: J. Med. Chem. doi: 10.1021/acs.jmedchem.5b01376 – volume: 3 year: 2008 ident: 10.1016/j.ejmech.2018.10.028_bib33 article-title: The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth publication-title: PloS One doi: 10.1371/journal.pone.0002020 – volume: 57 start-page: 9870 year: 2014 ident: 10.1016/j.ejmech.2018.10.028_bib192 article-title: Chroman-4-one- and chromone-based sirtuin 2 inhibitors with antiproliferative properties in cancer cells publication-title: J. Med. Chem. doi: 10.1021/jm500930h – volume: 303 start-page: 2011 year: 2004 ident: 10.1016/j.ejmech.2018.10.028_bib39 article-title: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase publication-title: Science doi: 10.1126/science.1094637 – volume: 44 start-page: 3629 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib11 article-title: Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1504 – volume: 3 start-page: 852 year: 2011 ident: 10.1016/j.ejmech.2018.10.028_bib187 article-title: Structure-based development of novel sirtuin inhibitors publication-title: Aging (N Y) – volume: 50 start-page: 686 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib70 article-title: SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.05.012 – volume: 32 start-page: 124 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib114 article-title: SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones publication-title: J. Neurosci. doi: 10.1523/JNEUROSCI.3442-11.2012 – volume: 5 start-page: 8181 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib157 article-title: Adjudin protects rodent cochlear hair cells against gentamicin ototoxicity via the SIRT3-ROS pathway publication-title: Sci. Rep. doi: 10.1038/srep08181 – volume: 18 start-page: 514 year: 2009 ident: 10.1016/j.ejmech.2018.10.028_bib118 article-title: Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3 publication-title: Protein Sci. doi: 10.1002/pro.50 – volume: 120 start-page: 713 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib84 article-title: WRN at telomeres: implications for aging and cancer publication-title: J. Cell Sci. doi: 10.1242/jcs.03397 – volume: 143 start-page: 802 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib63 article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction publication-title: Cell doi: 10.1016/j.cell.2010.10.002 – volume: 57 start-page: 3283 year: 2014 ident: 10.1016/j.ejmech.2018.10.028_bib171 article-title: Development of pyrazolone and isoxazol-5-one cambinol analogues as sirtuin inhibitors publication-title: J. Med. Chem. doi: 10.1021/jm4018064 – volume: 317 start-page: 516 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib147 article-title: Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease publication-title: Science doi: 10.1126/science.1143780 – volume: 12 start-page: 224 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib92 article-title: Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis publication-title: Cell Metabol. doi: 10.1016/j.cmet.2010.06.009 – volume: 5 start-page: 140 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib183 article-title: Bisnaphthalimidopropyl derivatives as inhibitors of Leishmania SIR2 related protein 1 publication-title: ChemMedChem doi: 10.1002/cmdc.200900367 – volume: 51 start-page: 3423 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib199 article-title: Discovery of macrocyclic peptides armed with a mechanism-based warhead: isoform-selective inhibition of human deacetylase SIRT2 publication-title: Angew Chem. Int. Ed. Engl. doi: 10.1002/anie.201108118 – volume: 2 start-page: 1419 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib175 article-title: Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins) publication-title: ChemMedChem doi: 10.1002/cmdc.200700003 – volume: 112 start-page: 287 year: 2017 ident: 10.1016/j.ejmech.2018.10.028_bib155 article-title: A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase publication-title: Free Radic. Biol. Med. doi: 10.1016/j.freeradbiomed.2017.07.012 – volume: 52 start-page: 303 year: 2013 ident: 10.1016/j.ejmech.2018.10.028_bib99 article-title: Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7 publication-title: Mol. Cell doi: 10.1016/j.molcel.2013.10.010 – volume: 279 start-page: 40122 year: 2004 ident: 10.1016/j.ejmech.2018.10.028_bib16 article-title: Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation publication-title: J. Biol. Chem. doi: 10.1074/jbc.M407484200 – volume: 464 start-page: 504 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib94 article-title: The genetics of ageing publication-title: Nature doi: 10.1038/nature08980 – volume: 14 start-page: 312 year: 2008 ident: 10.1016/j.ejmech.2018.10.028_bib30 article-title: Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice publication-title: Cancer Cell doi: 10.1016/j.ccr.2008.09.001 – volume: 16 start-page: 93 year: 2004 ident: 10.1016/j.ejmech.2018.10.028_bib44 article-title: Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin publication-title: Mol. Cell doi: 10.1016/j.molcel.2004.08.031 – volume: 134 start-page: 1922 year: 2012 ident: 10.1016/j.ejmech.2018.10.028_bib196 article-title: Thiosuccinyl peptides as Sirt5-specific inhibitors publication-title: J. Am. Chem. Soc. doi: 10.1021/ja2090417 – volume: 27 start-page: 3511 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib110 article-title: Interaction of a cyclin E fragment with Ku70 regulates Bax-mediated apoptosis publication-title: Mol. Cell Biol. doi: 10.1128/MCB.01448-06 – volume: 213 start-page: 88 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib113 article-title: Cytoplasm-localized SIRT1 enhances apoptosis publication-title: J. Cell. Physiol. doi: 10.1002/jcp.21091 – volume: 119 start-page: 45 year: 2016 ident: 10.1016/j.ejmech.2018.10.028_bib106 article-title: How much successful are the medicinal chemists in modulation of SIRT1: a critical review publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2016.04.063 – volume: 53 start-page: 1383 year: 2010 ident: 10.1016/j.ejmech.2018.10.028_bib181 article-title: Novel 3-arylideneindolin-2-ones as inhibitors of NAD+ -dependent histone deacetylases (sirtuins) publication-title: J. Med. Chem. doi: 10.1021/jm901055u – volume: 10 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib111 article-title: KAP1 deacetylation by SIRT1 promotes non-homologous end-joining repair publication-title: PloS One – volume: 61 start-page: 130 year: 2015 ident: 10.1016/j.ejmech.2018.10.028_bib124 article-title: Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases publication-title: Exp. Gerontol. doi: 10.1016/j.exger.2014.12.004 – volume: 104 start-page: 14855 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib43 article-title: SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase publication-title: Proc. Natl. Acad. Sci. U. S. A. doi: 10.1073/pnas.0704329104 – volume: 21 start-page: 2644 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib32 article-title: SIRT1 controls endothelial angiogenic functions during vascular growth publication-title: Genes Dev. doi: 10.1101/gad.435107 – volume: 76 start-page: 414 year: 2014 ident: 10.1016/j.ejmech.2018.10.028_bib180 article-title: Development and characterization of 3-(benzylsulfonamido)benzamides as potent and selective SIRT2 inhibitors publication-title: Eur. J. Med. Chem. doi: 10.1016/j.ejmech.2014.02.003 – volume: 450 start-page: 712 year: 2007 ident: 10.1016/j.ejmech.2018.10.028_bib141 article-title: Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes publication-title: Nature doi: 10.1038/nature06261 |
SSID | ssj0005600 |
Score | 2.6045184 |
SecondaryResourceType | review_article |
Snippet | Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 48 |
SubjectTerms | Animals Enzyme Inhibitors - chemistry Enzyme Inhibitors - pharmacology Humans Modulators Molecular Structure Protein structures Sirtuin family Sirtuins - antagonists & inhibitors Sirtuins - chemistry Sirtuins - metabolism Small Molecule Libraries - chemistry Small Molecule Libraries - pharmacology Structure-Activity Relationship Therapeutic potential |
Title | An overview of Sirtuins as potential therapeutic target: Structure, function and modulators |
URI | https://dx.doi.org/10.1016/j.ejmech.2018.10.028 https://www.ncbi.nlm.nih.gov/pubmed/30342425 https://www.proquest.com/docview/2123715652 |
Volume | 161 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5ED3oRra_6YgXx1Ni8N_FWilIVRWgFwUPY7G6hRZPStAcv_nZnsolVUAQPOWSzyy4zu_PIznwDcCpjrjw3si2hUmn5QgordaW2dBCkTih1zFPKHb67D3uP_s1T8LQE3ToXhsIqK9lvZHoprauWdkXN9mQ0avdR-6D1gFI48uwoLl0g3-e0y8_fv4R5hCYNBTuT0-XX6XNljJcev-rySsKJzinGi2qy_6yefjM_SzV0tQHrlf3IOmaJm7CkswasduuybQ04ezBg1G8tNljkVhUtdsYeFjDVb1vw3MkYxW_S3QDLh6w_ms7mo6xgomCTfEZRRDjRl_wsZqLGL1i_xJydT3WLkVok1jKRKfaaKyoGlk-LbRhcXQ66PasqtWBJ9D9mVqx4gLRTwwgPMGHWhx7ZOng4NQEK4jfb1rZ2BJd-qjg-KkV_Nk5dpQKlvB1YzvJM7wFzh9IWXkCGJcqHoRZxyB3XddCy4cKPwiZ4NYETWcGQUzWMl6SONxsnhi0JsYVakS1NsD5HTQwMxx_9ec275Nt2SlBT_DHypGZ1gpyj6xOR6XxeJKTkOdIkcJuwa_bA51o8QlJE8bf_73kPYA3fYvN35xCWkZP6CO2dWXpcbuhjWOlc3_buPwBvJP9S |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxtBEB8kebAvpVrbxlrdgviUa-5773wLQYlVg5AIgg_L3u4GEvQu5JIH_3tnbu-SFipCH-5lP9hlZnc-bmd-A3CqUq4DP3EdqTPlhFJJJ_OVcUwUZV6sTMozyh2-HcXD-_D3Q_SwA4MmF4bCKmvZb2V6Ja3rll5Nzd5iNuuNUfug9YBSOAncJCUXqE3oVFEL2v2r6-FoG-kR20wUHE9-V9hk0FVhXmb-bKpXCS_5RWFeVJb93xrqLQu00kSXn-BjbUKyvt3lHuyYfB92B03ltn04u7N41C9dNtmmV5VddsbutkjVL5_hsZ8zCuGk5wFWTNl4tlytZ3nJZMkWxYoCiXChP1K0mA0cP2fjCnZ2vTRdRpqRuMtkrtlzoakeWLEsD2ByeTEZDJ262oKj0AVZOanmSL1YTxO8wwRbHwdk7uD9NIQpiH2ua1zjSa7CTHP8dIYubZr5WkdaB1-glRe5-QbMnypXBhHZligipkamMfd830PjhsswiTsQNAQWqkYip4IYT6IJOZsLyxZBbKFWZEsHnM2shUXieGc8b3gn_jpRApXFOzN_NqwWyDl6QZG5KdalID3PkSaR34Gv9gxs9hIQmCJKwMP_XvcEdoeT2xtxczW6_g4fsCe1P3uOoIVcNT_Q_Fllx_XxfgUtxAIS |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+overview+of+Sirtuins+as+potential+therapeutic+target%3A+Structure%2C+function+and+modulators&rft.jtitle=European+journal+of+medicinal+chemistry&rft.au=Wang%2C+Yijie&rft.au=He%2C+Jun&rft.au=Liao%2C+Mengya&rft.au=Hu%2C+Mingxing&rft.date=2019-01-01&rft.issn=1768-3254&rft.eissn=1768-3254&rft.volume=161&rft.spage=48&rft_id=info:doi/10.1016%2Fj.ejmech.2018.10.028&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0223-5234&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0223-5234&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0223-5234&client=summon |