An overview of Sirtuins as potential therapeutic target: Structure, function and modulators

Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD+), waves of research have assessed the potential of Sirtuin as a therapeutic target. T...

Full description

Saved in:
Bibliographic Details
Published inEuropean journal of medicinal chemistry Vol. 161; pp. 48 - 77
Main Authors Wang, Yijie, He, Jun, Liao, Mengya, Hu, Mingxing, Li, Wenzhen, Ouyang, Hongling, Wang, Xin, Ye, Tinghong, Zhang, Yiwen, Ouyang, Liang
Format Journal Article
LanguageEnglish
Published France Elsevier Masson SAS 01.01.2019
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD+), waves of research have assessed the potential of Sirtuin as a therapeutic target. The Sirtuin family, which is widely distributed throughout the nature, has been divided into seven human isoforms (Sirt1-Sirt7). They are thought to be closely related to some aging diseases such as cardiovascular disorders, neurodegeneration, and tumors. Herein, we present a comprehensive review of the structure, function and modulators of Sirtuins, which is expected to be beneficial to relevant studies. [Display omitted] •The roles of Sirtuins are thoroughly discussed.•The functions of Sirtuins are outlined.•An overview for the modulators of Sirtuins is introduced in detail.
AbstractList Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD ), waves of research have assessed the potential of Sirtuin as a therapeutic target. The Sirtuin family, which is widely distributed throughout the nature, has been divided into seven human isoforms (Sirt1-Sirt7). They are thought to be closely related to some aging diseases such as cardiovascular disorders, neurodegeneration, and tumors. Herein, we present a comprehensive review of the structure, function and modulators of Sirtuins, which is expected to be beneficial to relevant studies.
Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD+), waves of research have assessed the potential of Sirtuin as a therapeutic target. The Sirtuin family, which is widely distributed throughout the nature, has been divided into seven human isoforms (Sirt1-Sirt7). They are thought to be closely related to some aging diseases such as cardiovascular disorders, neurodegeneration, and tumors. Herein, we present a comprehensive review of the structure, function and modulators of Sirtuins, which is expected to be beneficial to relevant studies. [Display omitted] •The roles of Sirtuins are thoroughly discussed.•The functions of Sirtuins are outlined.•An overview for the modulators of Sirtuins is introduced in detail.
Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD+), waves of research have assessed the potential of Sirtuin as a therapeutic target. The Sirtuin family, which is widely distributed throughout the nature, has been divided into seven human isoforms (Sirt1-Sirt7). They are thought to be closely related to some aging diseases such as cardiovascular disorders, neurodegeneration, and tumors. Herein, we present a comprehensive review of the structure, function and modulators of Sirtuins, which is expected to be beneficial to relevant studies.Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in the presence of nicotinamide adenine dinucleotide (NAD+), waves of research have assessed the potential of Sirtuin as a therapeutic target. The Sirtuin family, which is widely distributed throughout the nature, has been divided into seven human isoforms (Sirt1-Sirt7). They are thought to be closely related to some aging diseases such as cardiovascular disorders, neurodegeneration, and tumors. Herein, we present a comprehensive review of the structure, function and modulators of Sirtuins, which is expected to be beneficial to relevant studies.
Author Ye, Tinghong
Liao, Mengya
Wang, Xin
Zhang, Yiwen
He, Jun
Ouyang, Hongling
Ouyang, Liang
Hu, Mingxing
Wang, Yijie
Li, Wenzhen
Author_xml – sequence: 1
  givenname: Yijie
  surname: Wang
  fullname: Wang, Yijie
  organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
– sequence: 2
  givenname: Jun
  surname: He
  fullname: He, Jun
  organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
– sequence: 3
  givenname: Mengya
  surname: Liao
  fullname: Liao, Mengya
  organization: Sichuan Nursing Vocational College, Chengdu 610100, China
– sequence: 4
  givenname: Mingxing
  surname: Hu
  fullname: Hu, Mingxing
  organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
– sequence: 5
  givenname: Wenzhen
  surname: Li
  fullname: Li, Wenzhen
  organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
– sequence: 6
  givenname: Hongling
  surname: Ouyang
  fullname: Ouyang, Hongling
  organization: West China School of Pharmacy, Sichuan University, Chengdu 610041, China
– sequence: 7
  givenname: Xin
  surname: Wang
  fullname: Wang, Xin
  organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
– sequence: 8
  givenname: Tinghong
  surname: Ye
  fullname: Ye, Tinghong
  organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
– sequence: 9
  givenname: Yiwen
  orcidid: 0000-0002-4024-4881
  surname: Zhang
  fullname: Zhang, Yiwen
  email: yiwenzhang@scu.edu.cn
  organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
– sequence: 10
  givenname: Liang
  surname: Ouyang
  fullname: Ouyang, Liang
  email: ouyangliang@scu.edu.cn
  organization: State Key Laboratory of Biotherapy & Cancer Center, West China Hospital, Sichuan University, Collaborative Innovation Center of Biotherapy, Chengdu 610041, China
BackLink https://www.ncbi.nlm.nih.gov/pubmed/30342425$$D View this record in MEDLINE/PubMed
BookMark eNqFkU1PGzEQhq2KCkLgHyDkI4du8NeuNxyQEOoHElIP4cbBcuzZ4mjXDv6g6r-vo4QLh_YwGmn0vq9mnjlFRz54QOiCkgUltLveLGAzgXlZMEL7OloQ1n9CMyq7vuGsFUdoRhjjTcu4OEGnKW0IIW1HyDE64YQLJlg7Q893Hoc3iG8OfuMw4JWLuTifsE54GzL47PSI8wtEvYWSncFZx1-Qb_Aqx2JyifAFD8Wb7ILH2ls8BVtGnUNMZ-jzoMcE54c-R0_fvj7d_2gef35_uL97bIxgfW6WVrZCdnboZS9ZXbDjpKNtx3tYsq5eIgkBAlRLI9ZW1rJrJsVyzaxtreVzdLWP3cbwWiBlNblkYBy1h1CSYpRxWfMqiDm6PEjLegKrttFNOv5R7zyq4GYvMDGkFGFQxmW9uy1H7UZFidrBVxu1h6928HfTCr-axQfze_5_bLd7G1RG9Q9RJePAG7AugsnKBvfvgL8tyJ_X
CitedBy_id crossref_primary_10_1016_j_bmc_2020_115356
crossref_primary_10_30841_2708_8731_5_2022_265470
crossref_primary_10_3389_fchem_2022_948217
crossref_primary_10_1152_ajprenal_00091_2023
crossref_primary_10_1007_s00018_023_05093_z
crossref_primary_10_1016_j_bmc_2021_116328
crossref_primary_10_1016_j_ejmech_2022_114363
crossref_primary_10_3389_fcell_2020_615461
crossref_primary_10_3390_genes12111698
crossref_primary_10_1111_phpp_12790
crossref_primary_10_1016_j_bcp_2023_115573
crossref_primary_10_3390_cells9030780
crossref_primary_10_1016_j_bmcl_2020_127458
crossref_primary_10_1016_j_cbi_2019_03_021
crossref_primary_10_1016_j_ijbiomac_2023_128270
crossref_primary_10_1155_2020_5238650
crossref_primary_10_1155_2021_9925771
crossref_primary_10_3390_antiox8050118
crossref_primary_10_3390_ijms23031499
crossref_primary_10_1016_j_jmgm_2019_02_014
crossref_primary_10_1007_s00394_021_02623_y
crossref_primary_10_1016_j_neuroscience_2022_09_021
crossref_primary_10_2174_1570159X19666210609160017
crossref_primary_10_1038_s41598_023_28226_7
crossref_primary_10_1080_15592294_2019_1704349
crossref_primary_10_1002_ddr_70008
crossref_primary_10_1016_j_canlet_2021_10_039
crossref_primary_10_1039_D0RA06316A
crossref_primary_10_1038_s41392_022_01257_8
crossref_primary_10_1016_j_bmcl_2024_129620
crossref_primary_10_3389_fcell_2020_589016
crossref_primary_10_1002_alz_12344
crossref_primary_10_2174_1389557522666220404090835
crossref_primary_10_31857_S0041377123060032
crossref_primary_10_1007_s12035_021_02387_w
crossref_primary_10_1111_cas_16091
crossref_primary_10_1016_j_arr_2019_100983
crossref_primary_10_1016_j_bmc_2019_115231
crossref_primary_10_2174_1568026622666220422094744
crossref_primary_10_3390_cancers12092468
crossref_primary_10_1021_acs_joc_1c00812
crossref_primary_10_1021_acs_jmedchem_3c01979
crossref_primary_10_1016_j_phrs_2021_106050
crossref_primary_10_1016_j_ejmech_2020_112561
crossref_primary_10_2174_1389557522666220330144151
crossref_primary_10_3389_fphys_2022_953078
crossref_primary_10_1007_s10571_022_01265_w
crossref_primary_10_1007_s11064_019_02809_1
crossref_primary_10_3390_antibiotics12020186
crossref_primary_10_3390_biom12070921
crossref_primary_10_1111_bph_15570
crossref_primary_10_1016_j_abb_2020_108260
crossref_primary_10_3389_fcell_2020_576946
crossref_primary_10_1016_j_bmc_2019_03_003
crossref_primary_10_3389_fragi_2024_1373741
crossref_primary_10_1016_j_bcp_2024_116320
crossref_primary_10_1186_s12864_024_10003_z
crossref_primary_10_3389_fphar_2020_607796
crossref_primary_10_1016_j_ygeno_2025_111006
crossref_primary_10_18632_aging_202536
crossref_primary_10_1016_j_tips_2019_09_003
crossref_primary_10_38124_ijisrt_IJISRT24MAY2391
crossref_primary_10_3390_ijms20040974
crossref_primary_10_1111_febs_16353
crossref_primary_10_1016_j_intimp_2022_108671
crossref_primary_10_1002_biot_202200570
crossref_primary_10_3390_ijms24010728
crossref_primary_10_1016_j_coph_2019_11_007
crossref_primary_10_3390_life14060729
crossref_primary_10_1007_s12011_024_04397_w
crossref_primary_10_1007_s40520_022_02257_y
crossref_primary_10_1096_fj_202302665R
crossref_primary_10_1007_s00204_021_03048_6
crossref_primary_10_1111_jcmm_16317
crossref_primary_10_2174_1566524023666230727093911
crossref_primary_10_1016_j_expneurol_2020_113484
crossref_primary_10_1016_j_japr_2021_100144
crossref_primary_10_1016_j_freeradbiomed_2020_05_024
crossref_primary_10_1161_HYPERTENSIONAHA_124_22072
crossref_primary_10_1016_j_ijbiomac_2024_134120
crossref_primary_10_1080_07391102_2021_2004925
crossref_primary_10_2139_ssrn_4000363
crossref_primary_10_3390_ijms25041956
crossref_primary_10_1016_j_bcp_2024_116034
crossref_primary_10_1134_S1990519X23700025
crossref_primary_10_1089_neu_2019_6933
crossref_primary_10_3390_molecules24152724
crossref_primary_10_1016_j_intimp_2022_108712
crossref_primary_10_1007_s00044_022_02869_z
crossref_primary_10_1016_j_intimp_2020_106333
crossref_primary_10_3390_ph16010127
crossref_primary_10_1007_s00296_021_04951_y
crossref_primary_10_1186_s12886_020_1330_8
crossref_primary_10_3390_biom10020347
crossref_primary_10_1152_physrev_00022_2019
crossref_primary_10_1155_2022_5812105
crossref_primary_10_3390_ijms20061381
crossref_primary_10_1007_s40265_024_02021_8
crossref_primary_10_1016_j_heliyon_2023_e13144
crossref_primary_10_17816_clinpract624496
crossref_primary_10_3389_fendo_2022_801303
crossref_primary_10_3390_cells10030660
crossref_primary_10_1038_s41598_024_53164_3
crossref_primary_10_1016_j_heliyon_2024_e37883
crossref_primary_10_1111_1462_2920_16198
crossref_primary_10_1016_j_plantsci_2020_110434
crossref_primary_10_3233_CBM_191253
crossref_primary_10_3390_molecules27144449
crossref_primary_10_1007_s00394_022_02989_7
crossref_primary_10_3389_fcvm_2022_894692
crossref_primary_10_1152_physiol_00002_2021
crossref_primary_10_1155_2019_4598167
crossref_primary_10_1021_acs_jmedchem_3c00337
crossref_primary_10_1007_s10565_020_09528_2
crossref_primary_10_1016_j_mam_2024_101273
crossref_primary_10_3389_fimmu_2024_1394925
crossref_primary_10_1155_2022_3200798
crossref_primary_10_1186_s13046_019_1030_5
crossref_primary_10_1038_s42255_024_01174_w
crossref_primary_10_1080_13543776_2020_1749264
crossref_primary_10_3390_metabo11120840
crossref_primary_10_1016_j_ijbiomac_2024_130761
crossref_primary_10_3390_molecules24030424
crossref_primary_10_3390_nu14030653
crossref_primary_10_2174_1570180820666230418114000
crossref_primary_10_1021_acs_jmedchem_3c01496
crossref_primary_10_1039_D4RA05014B
crossref_primary_10_1093_nar_gkaa392
crossref_primary_10_3389_fnut_2021_791861
crossref_primary_10_1021_acs_jmedchem_2c00687
crossref_primary_10_1080_10408398_2021_1995321
crossref_primary_10_1007_s00702_019_02005_z
crossref_primary_10_1016_j_lfs_2024_122537
crossref_primary_10_1002_med_22076
crossref_primary_10_1002_ardp_202400661
crossref_primary_10_3390_ijms22115545
crossref_primary_10_3390_ijms23020973
crossref_primary_10_1172_JCI158978
crossref_primary_10_1007_s11010_022_04462_9
crossref_primary_10_3389_fendo_2019_00093
crossref_primary_10_2174_1389450124666221207090108
crossref_primary_10_1002_biot_202300232
crossref_primary_10_1080_17460441_2021_1915980
crossref_primary_10_1007_s00044_024_03249_5
crossref_primary_10_1080_07391102_2023_2268202
crossref_primary_10_3390_biom13081210
Cites_doi 10.1016/j.bmcl.2017.09.049
10.1111/j.1474-9726.2007.00304.x
10.1038/onc.2008.436
10.1126/science.1099196
10.1073/pnas.0404184101
10.1007/s10495-017-1397-8
10.1038/nature01667
10.1016/j.molcel.2013.06.018
10.1093/carcin/bgv167
10.1074/jbc.M110.133892
10.1038/ng1018
10.1039/C4OB00860J
10.1016/bs.mie.2016.03.011
10.1371/journal.pntd.0006180
10.1007/s10571-009-9414-2
10.18632/oncotarget.1070
10.1021/acs.jmedchem.6b01690
10.1016/j.cell.2014.11.046
10.1016/j.cell.2009.02.026
10.1021/acs.jmedchem.5b00293
10.1074/jbc.M109.014928
10.1126/science.aaa2361
10.1016/j.bmcl.2014.03.026
10.1038/emm.2007.2
10.1074/jbc.M113.476903
10.1016/j.bmcl.2016.01.086
10.1093/nar/gkt642
10.1038/ncomms8645
10.1074/jbc.C112.403048
10.1016/j.febslet.2012.10.009
10.1016/j.celrep.2017.01.009
10.1016/j.celrep.2012.11.001
10.1016/S0092-8674(01)00524-4
10.2500/ajra.2016.30.4282
10.1124/jpet.107.134882
10.1074/jbc.M106779200
10.1097/GME.0b013e31827fdda4
10.1016/j.cmet.2007.07.003
10.1073/pnas.0408936102
10.1021/cb100376q
10.1371/journal.pone.0000784
10.1111/j.1474-9726.2009.00544.x
10.1093/cvr/cvn224
10.1016/j.molcel.2010.05.023
10.1177/1947601912474893
10.1074/jbc.M509329200
10.1002/hep.26101
10.1016/j.ab.2008.08.033
10.1016/j.bbagen.2013.08.016
10.1038/ncomms3327
10.1038/nature01960
10.1073/pnas.0609410104
10.1126/science.aad1171
10.1021/acs.jmedchem.7b00533
10.1016/j.molcel.2015.10.017
10.3233/JAD-151135
10.1038/srep09841
10.1016/j.cell.2006.06.057
10.1096/fasebj.10.11.8836039
10.1016/j.bmcl.2012.02.089
10.1021/jm050522v
10.1089/ars.2014.6213
10.1002/adsc.201700927
10.1016/j.neuron.2008.03.015
10.1016/S1097-2765(03)00038-8
10.1038/sj.emboj.7600244
10.1021/jm301431y
10.1074/jbc.M111.218990
10.1016/j.cell.2009.12.041
10.1038/nature12038
10.1016/j.yexcr.2014.07.013
10.1016/j.ccell.2016.04.005
10.1021/jm8014298
10.1016/j.cmet.2011.10.006
10.1111/j.1474-9726.2007.00335.x
10.1016/j.bbrc.2013.10.033
10.1021/jm400438k
10.1111/eci.12285
10.1101/gad.13.19.2570
10.1074/jbc.M110.124164
10.1242/jcs.042382
10.1016/S0092-8674(01)00527-X
10.1177/1087057106294710
10.1002/anie.201509843
10.1016/j.cellsig.2013.06.007
10.1016/j.ccr.2008.03.004
10.1093/genetics/93.1.37
10.1038/nature11043
10.1038/sj.emboj.7600570
10.1016/j.bbrc.2015.12.037
10.1074/jbc.M113.487736
10.1080/15384101.2016.1152427
10.1016/j.cell.2005.11.044
10.1021/acs.jmedchem.7b01648
10.1038/nature03354
10.1021/acs.jmedchem.6b01609
10.3390/ijms12096226
10.1016/j.ejmech.2017.04.010
10.1016/j.ccr.2011.02.014
10.1073/pnas.1117500108
10.1167/iovs.13-11681
10.1016/j.jsb.2013.02.012
10.1111/febs.12346
10.1021/ml3002709
10.7150/thno.18804
10.1016/j.str.2007.02.002
10.1155/2017/1750306
10.1016/j.cell.2005.03.035
10.1016/j.ccr.2009.11.023
10.1038/ncomms7263
10.1016/j.bbrc.2009.07.119
10.1158/0008-5472.CAN-05-3617
10.1074/jbc.M112.384511
10.1002/anie.201610082
10.1002/anie.201709050
10.1101/gad.1412706
10.4161/cc.8.16.9367
10.1038/nature06736
10.1016/j.bmc.2014.11.027
10.1101/gad.211342.112
10.1016/j.cell.2013.04.023
10.1093/eurheartj/ehu095
10.1126/science.289.5487.2126
10.1080/15548627.2015.1009778
10.1016/j.cmet.2010.11.015
10.1021/acs.jmedchem.5b01517
10.1074/mcp.M113.031377
10.1021/acs.biochem.5b00150
10.1038/bjc.2015.226
10.1126/science.1231097
10.1016/j.ccr.2013.02.024
10.1038/ncb3147
10.1074/jbc.M205670200
10.15252/embj.201593499
10.1016/j.semcdb.2016.07.020
10.1016/j.cmet.2008.08.017
10.1039/C7SC02738A
10.1242/jcs.073783
10.1101/gad.265462.115
10.1126/science.1169956
10.1016/j.bbr.2014.12.035
10.1038/89668
10.1074/jbc.M111830200
10.1038/srep08529
10.1016/j.molcel.2012.09.030
10.3892/or.2016.5063
10.1021/acs.jcim.6b00714
10.1016/j.cmet.2013.11.013
10.1002/1873-3468.12138
10.1021/jm500777s
10.1038/35065638
10.1016/j.pharep.2015.03.021
10.1002/cmdc.201402431
10.1016/j.str.2013.12.001
10.1038/ncomms10734
10.1021/np300258u
10.1021/cr500457h
10.1039/c2md00290f
10.1002/cmdc.200800104
10.1126/science.1202723
10.1021/jm3002108
10.1074/jbc.M609554200
10.1007/s12032-010-9766-y
10.1021/acs.jmedchem.5b01376
10.1371/journal.pone.0002020
10.1021/jm500930h
10.1126/science.1094637
10.1093/nar/gkv1504
10.1016/j.molcel.2013.05.012
10.1523/JNEUROSCI.3442-11.2012
10.1038/srep08181
10.1002/pro.50
10.1242/jcs.03397
10.1016/j.cell.2010.10.002
10.1021/jm4018064
10.1126/science.1143780
10.1016/j.cmet.2010.06.009
10.1002/cmdc.200900367
10.1002/anie.201108118
10.1002/cmdc.200700003
10.1016/j.freeradbiomed.2017.07.012
10.1016/j.molcel.2013.10.010
10.1074/jbc.M407484200
10.1038/nature08980
10.1016/j.ccr.2008.09.001
10.1016/j.molcel.2004.08.031
10.1021/ja2090417
10.1128/MCB.01448-06
10.1002/jcp.21091
10.1016/j.ejmech.2016.04.063
10.1021/jm901055u
10.1016/j.exger.2014.12.004
10.1073/pnas.0704329104
10.1101/gad.435107
10.1016/j.ejmech.2014.02.003
10.1038/nature06261
ContentType Journal Article
Copyright 2018 Elsevier Masson SAS
Copyright © 2018 Elsevier Masson SAS. All rights reserved.
Copyright_xml – notice: 2018 Elsevier Masson SAS
– notice: Copyright © 2018 Elsevier Masson SAS. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.ejmech.2018.10.028
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
Pharmacy, Therapeutics, & Pharmacology
EISSN 1768-3254
EndPage 77
ExternalDocumentID 30342425
10_1016_j_ejmech_2018_10_028
S0223523418308961
Genre Journal Article
Review
GroupedDBID ---
--K
--M
.~1
0R~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
8P~
9JM
9JN
AACTN
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AARLI
AATCM
AAXUO
ABFRF
ABGSF
ABJNI
ABMAC
ABOCM
ABUDA
ABYKQ
ABZDS
ACDAQ
ACGFO
ACIUM
ACRLP
ADBBV
ADECG
ADEZE
ADUVX
AEBSH
AEFWE
AEHWI
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AFZHZ
AGHFR
AGUBO
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
AJSZI
ALCLG
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DOVZS
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FLBIZ
FNPLU
FYGXN
G-Q
GBLVA
J1W
KOM
M2Y
M34
M41
MO0
N9A
O-L
O9-
OAUVE
OGGZJ
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SES
SPC
SPCBC
SSK
SSP
SSU
SSZ
T5K
~G-
1B1
29G
53G
AAQXK
AATTM
AAXKI
AAYOK
AAYWO
AAYXX
ABFNM
ABWVN
ABXDB
ACNNM
ACRPL
ACVFH
ADCNI
ADMUD
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRDE
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
FEDTE
FGOYB
G-2
HMS
HMT
HVGLF
HZ~
IHE
R2-
SCB
SEW
SOC
SPT
SSH
WUQ
CGR
CUY
CVF
ECM
EIF
NPM
7X8
ID FETCH-LOGICAL-c428t-9d75476df87872600630615638e926254700e0e1a7c4bd74bddb2749b2dd5dd3
IEDL.DBID .~1
ISSN 0223-5234
1768-3254
IngestDate Fri Jul 11 02:35:09 EDT 2025
Wed Feb 19 02:33:14 EST 2025
Tue Jul 01 03:41:52 EDT 2025
Thu Apr 24 23:16:09 EDT 2025
Fri Feb 23 02:49:03 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Protein structures
Therapeutic potential
Modulators
Sirtuin family
Language English
License Copyright © 2018 Elsevier Masson SAS. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-9d75476df87872600630615638e926254700e0e1a7c4bd74bddb2749b2dd5dd3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
ObjectType-Review-3
content type line 23
ORCID 0000-0002-4024-4881
PMID 30342425
PQID 2123715652
PQPubID 23479
PageCount 30
ParticipantIDs proquest_miscellaneous_2123715652
pubmed_primary_30342425
crossref_citationtrail_10_1016_j_ejmech_2018_10_028
crossref_primary_10_1016_j_ejmech_2018_10_028
elsevier_sciencedirect_doi_10_1016_j_ejmech_2018_10_028
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2019-01-01
2019-01-00
2019-Jan-01
20190101
PublicationDateYYYYMMDD 2019-01-01
PublicationDate_xml – month: 01
  year: 2019
  text: 2019-01-01
  day: 01
PublicationDecade 2010
PublicationPlace France
PublicationPlace_xml – name: France
PublicationTitle European journal of medicinal chemistry
PublicationTitleAlternate Eur J Med Chem
PublicationYear 2019
Publisher Elsevier Masson SAS
Publisher_xml – name: Elsevier Masson SAS
References Chen, Zhou, Mueller-Steiner, Chen, Kwon, Yi, Mucke, Gan (bib46) 2005; 280
Medda, Russell, Higgins, McCarthy, Campbell, Slawin, Lane, Lain, Westwood (bib170) 2009; 52
Gaspar, Coron, KongThoo, Costa, Perez-Cabezas, Tavares, Roura-Ferrer, Ramos, Ronin, Major, Ciesielski, Pemberton, MacDougall, Ciapetti, Smith, Cordeiro-da-Silva (bib184) 2018; 12
McCord, Michishita, Hong, Berber, Boxer, Kusumoto, Guan, Shi, Gozani, Burlingame, Bohr, Chua (bib87) 2009; 1
Tatum, Sawada, Ota, Itoh, Zhan, Ieda, Nakagawa, Miyata, Suzuki (bib164) 2014; 24
Moreno-Risueno, Sozzani, Yardimci, Petricka, Vernoux, Blilou, Alonso, Winter, Ohler, Scheres, Benfey (bib115) 2015; 350
North, Marshall, Borra, Denu, Verdin (bib57) 2003; 11
Uciechowska, Schemies, Neugebauer, Huda, Schmitt, Meier, Verdin, Jung, Sippl (bib172) 2008; 3
Schiedel, Rumpf, Karaman, Lehotzky, Olah, Gerhardt, Ovadi, Sippl, Einsle, Jung (bib166) 2016; 59
Miranda, van Tits, Lohmann, Arsiwala, Winnik, Tailleux, Stein, Gomes, Suri, Ellis, Lutz, Hottiger, Sinclair, Auwerx, Schoonjans, Staels, Luscher, Matter (bib47) 2015; 36
Biella, Fusco, Nardo, Bernocchi, Colombo, Lichtenthaler, Forloni, Albani (bib54) 2016; 53
Puigserver, Rhee, Donovan, Walkey, Yoon, Oriente, Kitamura, Altomonte, Dong, Accili, Spiegelman (bib89) 2003; 423
Cui, Kamal, Ai, Xu, More, Wilson, Chen (bib161) 2014; 57
Kauppinen, Suuronen, Ojala, Kaarniranta, Salminen (bib37) 2013; 25
Tissenbaum, Guarente (bib25) 2001; 410
Kim, Noh, Jung, Eun, Bae, Kim, Chang, Shen, Park, Lee, Borlak, Nam (bib127) 2013; 57
Roessler, Tuting, Meleshin, Steegborn, Schutkowski (bib19) 2015; 58
Kakefuda, Fujita, Oyagi, Hyakkoku, Kojima, Umemura, Tsuruma, Shimazawa, Ito, Nozawa, Hara (bib116) 2009; 387
Huang, Song, Wang, Zhang, Wang, Jiang, Sun, Huang, Xiang, Hu, Li, Yang (bib186) 2017; 57
Yu, Qin, Wu, Qin, Nowsheen, Shan, Zayas, Pei, Lou, Wang (bib10) 2017; 18
Schmidt, Smith, Jackson, Denu (bib16) 2004; 279
Vaquero, Scher, Lee, Sutton, Cheng, Alt, Serrano, Sternglanz, Reinberg (bib49) 2006; 20
Kim, Patel, Muldoon-Jacobs, Bisht, Aykin-Burns, Pennington, van der Meer, Nguyen, Savage, Owens, Vassilopoulos, Ozden, Park, Singh, Abdulkadir, Spitz, Deng, Gius (bib119) 2010; 17
Hubbard, Gomes, Dai, Li, Case, Considine, Riera, Lee, S.Y, Lamming, Pentelute, Schuman, Stevens, Ling, Armour, Michan, Zhao, Jiang, Sweitzer, Blum, Disch, Ng, Howitz, Rolo, Hamuro, Moss, Perni, Ellis, Vlasuk, Sinclair (bib145) 2013; 339
Lara, Mai, Calvanese, Altucci, Lopez-Nieva, Martinez-Chantar, Varela-Rey, Rotili, Nebbioso, Ropero, Montoya, Oyarzabal, Velasco, Serrano, Witt, Villar-Garea, Imhof, Mato, Esteller, Fraga (bib169) 2009; 28
Someya, Yu, Hallows, Xu, Vann, Leeuwenburgh, Tanokura, Denu, Prolla (bib63) 2010; 143
Rothgiesser, Erener, Waibel, Luscher, Hottiger (bib48) 2010; 123
Tang (bib143) 2009; 29
Di Fruscia, Zacharioudakis, Liu, Moniot, Laohasinnarong, Khongkow, Harrison, Koltsida, Reynolds, Schmidtkunz, Jung, Chapman, Steegborn, Dexter, Sternberg, Lam, Fuchter (bib189) 2015; 10
Rodgers, Lerin, Haas, Gygi, Spiegelman, Puigserver (bib40) 2005; 434
Voogd, Vansterkenburg, Wilting, Janssen (bib174) 1993; 45
He, Hu, Zhang, Lin (bib198) 2014; 12
Tanno, Sakamoto, Miura, Shimamoto, Horio (bib6) 2007; 282
Chen, Seiler, Santiago-Reichelt, Felbel, Grummt, Voit (bib99) 2013; 52
Santos-Alves, Marques-Aleixo, Coxito, Balca, Rizo-Roca, Rocha-Rodrigues, Martins, Torrella, Oliveira, Moreno, Magalhaes, Ascensao (bib59) 2014; 44
Howitz, Bitterman, Cohen, Lamming, Lavu, Wood, Zipkin, Chung, Kisielewski, Zhang, Scherer, Sinclair (bib140) 2003; 425
Heltweg, Gatbonton, Schuler, Posakony, Li, Goehle, Kollipara, Depinho, Gu, Simon, Bedalov (bib107) 2006; 66
Taylor, Balabadra, Xiang, Woodman, Meade, Amore, Maxwell, Reeves, Bates, Luthi-Carter, Lowden, Kazantsev (bib177) 2011; 6
Bellamacina (bib133) 1996; 10
Cohen, Miller, Bitterman, Wall, Hekking, Kessler, Howitz, Gorospe, de Cabo, Sinclair (bib31) 2004; 305
Feige, Lagouge, Canto, Strehle, Houten, Milne, Lambert, Mataki, Elliott, Auwerx (bib154) 2008; 8
Rumpf, Schiedel, Karaman, Roessler, North, Lehotzky, Olah, Ladwein, Schmidtkunz, Gajer, Pannek, Steegborn, Sinclair, Gerhardt, Ovadi, Schutkowski, Sippl, Einsle, Jung (bib138) 2015; 6
Lin, Xu, Wang, Lin, Ruan, Liu, Jin, Huang, Chen (bib75) 2013; 441
Suzuki, Khan, Sawada, Imai, Itoh, Yamatsuta, Tokuda, Takeuchi, Seko, Nakagawa, Miyata (bib163) 2012; 55
Bereshchenko, Gu, Dalla-Favera (bib109) 2002; 32
Teng, Jing, Aramsangtienchai, He, Khan, Hu, Lin, Hao (bib22) 2015; 5
Zhong, D'Urso, Toiber, Sebastian, Henry, Vadysirisack, Guimaraes, Marinelli, Wikstrom, Nir, Clish, Vaitheesvaran, Iliopoulos, Kurland, Dor, Weissleder, Shirihai, Ellisen, Espinosa, Mostoslavsky (bib88) 2010; 140
Rardin, He, Nishida, Newman, Carrico, Danielson, Guo, Gut, Sahu, Li, Uppala, Fitch, Riiff, Zhu, Zhou, Mulhern, Stevens, Ilkayeva, Newgard, Jacobson, Hellerstein, Goetzman, Gibson, Verdin (bib74) 2013; 18
Csibi, Fendt, Li, Poulogiannis, Choo, Chapski, Jeong, Dempsey, Parkhitko, Morrison, Henske, Haigis, Cantley, Stephanopoulos, Yu, Blenis (bib65) 2013; 153
Firestein, Blander, Michan, Oberdoerffer, Ogino, Campbell, Bhimavarapu, Luikenhuis, de Cabo, Fuchs, Hahn, Guarente, Sinclair (bib33) 2008; 3
Bordone, Cohen, Robinson, Motta, van Veen, Czopik, Steele, Crowe, Marmor, Luo, Gu, Guarente (bib35) 2007; 6
Pan, Feldman, Devries, Dong, Edwards, Denu (bib21) 2011; 286
Klar, Fogel, Macleod (bib3) 1979; 93
Dai, Kustigian, Carney, Case, Considine, Hubbard, Perni, Riera, Szczepankiewicz, Vlasuk, Stein (bib144) 2010; 285
Shun, Lin, Hong, Lin, Liu (bib90) 2016; 30
Donmez, Arun, Chung, McLean, Lindquist, Guarente (bib114) 2012; 32
Finley, Carracedo, Lee, Souza, Egia, Zhang, Teruya-Feldstein, Moreira, Cardoso, Clish, Pandolfi, Haigis (bib58) 2011; 19
Gil, Barth, Kanfi, Cohen (bib81) 2013; 41
Lu, Zhang, Chen, Zou, Li, Wang, Wu, Zang, Yu, Zhuang, Xia, Wang (bib155) 2017; 112
Qiu, Brown, Hirschey, Verdin, Chen (bib64) 2010; 12
Gu, Ran, Liu, Liang (bib104) 2016; 590
Borra, O'Neill, Jackson, Marshall, Verdin, Foltz, Denu (bib12) 2002; 277
Yamagata, Goto, Nishimasu, Morimoto, Ishitani, Dohmae, Takeda, Nagai, Komuro, Suga, Nureki (bib5) 2014; 22
Bitterman, Anderson, Cohen, Latorre-Esteves, Sinclair (bib15) 2002; 277
Multani, Chang (bib84) 2007; 120
Serrano, Martinez-Redondo, Marazuela-Duque, Vazquez, Dooley, Voigt, Beck, Kane-Goldsmith, Tong, Rabanal, Fondevila, Munoz, Kruger, Tischfield, Vaquero (bib56) 2013; 27
Malik, Villanova, Tanaka, Aonuma, Roy, Berber, Pollack, Michishita-Kioi, Chua (bib129) 2015; 5
Schiedel, Rumpf, Karaman (bib202) 2016; 55
Vazquez, Thackray, Simonet, Kane-Goldsmith, Martinez-Redondo, Nguyen, Bunting, Vaquero, Tischfield, Serrano (bib105) 2016; 35
Dominy, Lee, Jedrychowski, Chim, Jurczak, Camporez, Ruan, Feldman, Pierce, Mostoslavsky, Denu, Clish, Yang, Shulman, Gygi, Puigserver (bib91) 2012; 48
Luo, Nikolaev, Imai, Chen, Su, Shiloh, Guarente, Gu (bib29) 2001; 107
Osborne, Cooney, Turner (bib8) 2014; 1840
Feldman, Dittenhafer-Reed, Kudo, Thelen, Ito, Yoshida, Denu (bib139) 2015; 54
Lin, Defossez, Guarente (bib24) 2000; 289
Nayagam, Wang, Tan, Poulsen, Goh, Ng, Wang, Song, Ni, Entzeroth, Stunkel (bib153) 2006; 11
He, Du, Lin (bib196) 2012; 134
Liou, Tanny, Kruger, Walz, Moazed (bib13) 2005; 121
Hoffmann, Breitenbucher, Schuler, Ehrenhofer-Murray (bib193) 2014; 289
Wang, Sengupta, Li, Kim, Cao, Xiao, Kim, Xu, Zheng, Chilton, Jia, Zheng, Appella, Wang, Ried, Deng (bib30) 2008; 14
Trevino-Saldana, Garcia-Rivas (bib152) 2017; 2017
Yi, Kang, Kim, Kong, Brown, Bae (bib151) 2013; 4
Vaquero, Scher, Lee, Erdjument-Bromage, Tempst, Reinberg (bib44) 2004; 16
Rasbach, Schnellmann (bib149) 2008; 325
Jin, Wei, Jiang, Peng, Cai, Mao, Dai, Choy, Bemis, Jirousek, Milne, Westphal, Perni (bib135) 2009; 284
Maksin-Matveev, Kanfi, Hochhauser, Isak, Cohen, Shainberg (bib98) 2015; 330
North, Verdin (bib7) 2007; 2
Potente, Ghaeni, Baldessari, Mostoslavsky, Rossig, Dequiedt, Haendeler, Mione, Dejana, Alt, Zeiher, Dimmeler (bib32) 2007; 21
Nakamura, Ogura, Ogura, Tanaka, Inagaki (bib77) 2012; 586
Huber, Schemies, Uciechowska, Wagner, Rumpf, Lewrick, Suss, Sippl, Jung, Bracher (bib181) 2010; 53
Park, Ozden, Jiang, Cha, Pennington, Aykin-Burns, Spitz, Gius, Kim (bib62) 2011; 12
Polletta, Vernucci, Carnevale, Arcangeli, Rotili, Palmerio, Steegborn, Nowak, Schutkowski, Pellegrini, Sansone, Villanova, Runci, Pucci, Morgante, Fini, Mai, Russo, Tafani (bib72) 2015; 11
Lerrer, Gertler, Cohen (bib96) 2016; 37
Tavares, Ouaissi, Kong, Loureiro, Kaur, Roy, Cordeiro-da-Silva (bib183) 2010; 5
Liu, Arun, Ellis, Peritore, Donmez (bib55) 2012; 287
Jing, Gesta, Kahn (bib50) 2007; 6
Kleszcz, Paluszczak, Baer-Dubowska (bib97) 2015; 67
Di Fruscia, Ho, Laohasinnarong, Khongkow, Kroll, Islam, Sternberg, Schmidtkunz, Jung, Lam, Fuchter (bib51) 2012; 3
Zhang, Wang, Chen, Zhou, Zheng, Liu, Wei, Cai, Liu, Liang (bib142) 2008; 80
Laurent, German, Saha, de Boer, Davies, Koves, Dephoure, Fischer, Boanca, Vaitheesvaran, Lovitch, Sharpe, Kurland, Steegborn, Gygi, Muoio, Ruderman, Haigis (bib70) 2013; 50
Mellini, Kokkola, Suuronen, Salo, Tolvanen, Mai, Lahtela-Kakkonen, Jarho (bib197) 2013; 56
Rajabi, Auth, Troelsen, Pannek, Bhatt, Fontenas, Hirschey, Steegborn, Madsen, Olsen (bib195) 2017; 56
Kiran, Chatterjee, Singh, Kaul, Wadhwa, Ramakrishna (bib9) 2013; 280
You, Rotili, Li, Kambach, Meleshin, Schutkowski, Chua, Mai, Steegborn (bib156) 2017; 56
Hubbi, Hu, Kshitiz, Gilkes, Semenza (bib103) 2013; 288
Chen, Blank, Iyer, Huang, Wang, Grummt, Voit (bib101) 2016; 7
Zhao, Allison, Condon, Zhang, Gheyi, Zhang, Ashok, Russell, MacEwan, Qian, Jamison, Luz (bib136) 2013; 56
Jiang, Khan, Wang, Charron, He, Sebastian, Du, Kim, Ge, Mostoslavsky, Hang, Hao, Lin (bib20) 2013; 496
Haigis, Mostoslavsky, Haigis, Fahie, Christodoulou, Murphy, Valenzuela, Yancopoulos, Karow, Blander, Wolberger, Prolla, Weindruch, Alt, Guarente (bib17) 2006; 126
Zhang, Smith, Meriin, Engemann, Russel, Roark, Washington, Maxwell, Marsh, Thompson, Wanker, Young, Housman, Bates, Sherman, Kazantsev (bib178) 2005; 102
Mathias, Greco, Oberstein, Budayeva, Chakrabarti, Rowland, Kang, Shenk, Cristea (bib71) 2014; 159
Xia, Geng
Di Fruscia (10.1016/j.ejmech.2018.10.028_bib51) 2012; 3
Mostoslavsky (10.1016/j.ejmech.2018.10.028_bib82) 2006; 124
Tissenbaum (10.1016/j.ejmech.2018.10.028_bib25) 2001; 410
Firestein (10.1016/j.ejmech.2018.10.028_bib33) 2008; 3
Dominy (10.1016/j.ejmech.2018.10.028_bib91) 2012; 48
Tang (10.1016/j.ejmech.2018.10.028_bib143) 2009; 29
Parihar (10.1016/j.ejmech.2018.10.028_bib124) 2015; 61
Zhou (10.1016/j.ejmech.2018.10.028_bib137) 2012; 287
Rasbach (10.1016/j.ejmech.2018.10.028_bib149) 2008; 325
Bedalov (10.1016/j.ejmech.2018.10.028_bib27) 2016; 574
Dai (10.1016/j.ejmech.2018.10.028_bib160) 2015; 6
Li (10.1016/j.ejmech.2018.10.028_bib73) 2015; 60
Kim (10.1016/j.ejmech.2018.10.028_bib92) 2010; 12
Kaeberlein (10.1016/j.ejmech.2018.10.028_bib23) 1999; 13
Miyo (10.1016/j.ejmech.2018.10.028_bib66) 2015; 113
Crabbe (10.1016/j.ejmech.2018.10.028_bib83) 2007; 104
Jin (10.1016/j.ejmech.2018.10.028_bib118) 2009; 18
Borra (10.1016/j.ejmech.2018.10.028_bib12) 2002; 277
Nasrin (10.1016/j.ejmech.2018.10.028_bib68) 2010; 285
Khanfar (10.1016/j.ejmech.2018.10.028_bib180) 2014; 76
Bitterman (10.1016/j.ejmech.2018.10.028_bib15) 2002; 277
Lara (10.1016/j.ejmech.2018.10.028_bib169) 2009; 28
Cohen (10.1016/j.ejmech.2018.10.028_bib31) 2004; 305
Medda (10.1016/j.ejmech.2018.10.028_bib170) 2009; 52
Yang (10.1016/j.ejmech.2018.10.028_bib38) 2005; 24
Etchegaray (10.1016/j.ejmech.2018.10.028_bib85) 2015; 17
Liou (10.1016/j.ejmech.2018.10.028_bib13) 2005; 121
Cao (10.1016/j.ejmech.2018.10.028_bib146) 2015; 29
Polletta (10.1016/j.ejmech.2018.10.028_bib72) 2015; 11
Michishita (10.1016/j.ejmech.2018.10.028_bib79) 2009; 8
Hafner (10.1016/j.ejmech.2018.10.028_bib60) 2010; 2
Jing (10.1016/j.ejmech.2018.10.028_bib50) 2007; 6
Kanfi (10.1016/j.ejmech.2018.10.028_bib93) 2010; 9
McBurney (10.1016/j.ejmech.2018.10.028_bib28) 2013; 4
Klar (10.1016/j.ejmech.2018.10.028_bib3) 1979; 93
Zhang (10.1016/j.ejmech.2018.10.028_bib11) 2016; 44
Lim (10.1016/j.ejmech.2018.10.028_bib41) 2010; 38
Liu (10.1016/j.ejmech.2018.10.028_bib55) 2012; 287
Mao (10.1016/j.ejmech.2018.10.028_bib80) 2011; 332
Tanno (10.1016/j.ejmech.2018.10.028_bib6) 2007; 282
Vaziri (10.1016/j.ejmech.2018.10.028_bib36) 2001; 107
Chen (10.1016/j.ejmech.2018.10.028_bib46) 2005; 280
Schiedel (10.1016/j.ejmech.2018.10.028_bib202) 2016; 55
Liu (10.1016/j.ejmech.2018.10.028_bib123) 2015; 281
Rumpf (10.1016/j.ejmech.2018.10.028_bib138) 2015; 6
Vaquero (10.1016/j.ejmech.2018.10.028_bib44) 2004; 16
Tsai (10.1016/j.ejmech.2018.10.028_bib100) 2014; 13
Finley (10.1016/j.ejmech.2018.10.028_bib58) 2011; 19
Hirschey (10.1016/j.ejmech.2018.10.028_bib1) 2011; 14
Puigserver (10.1016/j.ejmech.2018.10.028_bib89) 2003; 423
Someya (10.1016/j.ejmech.2018.10.028_bib63) 2010; 143
Kumar (10.1016/j.ejmech.2018.10.028_bib106) 2016; 119
Shi (10.1016/j.ejmech.2018.10.028_bib131) 2016; 36
Moniot (10.1016/j.ejmech.2018.10.028_bib134) 2013; 182
Gil (10.1016/j.ejmech.2018.10.028_bib81) 2013; 41
Biella (10.1016/j.ejmech.2018.10.028_bib54) 2016; 53
Chen (10.1016/j.ejmech.2018.10.028_bib99) 2013; 52
Sakai (10.1016/j.ejmech.2018.10.028_bib117) 2015; 23
Park (10.1016/j.ejmech.2018.10.028_bib62) 2011; 12
Shun (10.1016/j.ejmech.2018.10.028_bib90) 2016; 30
Hubbi (10.1016/j.ejmech.2018.10.028_bib103) 2013; 288
Zhao (10.1016/j.ejmech.2018.10.028_bib136) 2013; 56
Luo (10.1016/j.ejmech.2018.10.028_bib29) 2001; 107
Tang (10.1016/j.ejmech.2018.10.028_bib130) 2017; 7
Uciechowska (10.1016/j.ejmech.2018.10.028_bib172) 2008; 3
Maurer (10.1016/j.ejmech.2018.10.028_bib173) 2012; 3
Rauh (10.1016/j.ejmech.2018.10.028_bib18) 2013; 4
Miranda (10.1016/j.ejmech.2018.10.028_bib47) 2015; 36
Mazumder (10.1016/j.ejmech.2018.10.028_bib110) 2007; 27
Hoffmann (10.1016/j.ejmech.2018.10.028_bib193) 2014; 289
Feige (10.1016/j.ejmech.2018.10.028_bib154) 2008; 8
Finnin (10.1016/j.ejmech.2018.10.028_bib132) 2001; 8
Gaspar (10.1016/j.ejmech.2018.10.028_bib184) 2018; 12
Grob (10.1016/j.ejmech.2018.10.028_bib102) 2009; 122
Cui (10.1016/j.ejmech.2018.10.028_bib161) 2014; 57
Gao (10.1016/j.ejmech.2018.10.028_bib61) 2016; 472
Mattagajasingh (10.1016/j.ejmech.2018.10.028_bib43) 2007; 104
Napper (10.1016/j.ejmech.2018.10.028_bib185) 2005; 48
Vakhrusheva (10.1016/j.ejmech.2018.10.028_bib125) 2008; 59
Yi (10.1016/j.ejmech.2018.10.028_bib151) 2013; 4
Zhang (10.1016/j.ejmech.2018.10.028_bib142) 2008; 80
Schlicker (10.1016/j.ejmech.2018.10.028_bib187) 2011; 3
Howitz (10.1016/j.ejmech.2018.10.028_bib140) 2003; 425
You (10.1016/j.ejmech.2018.10.028_bib156) 2017; 56
Kim (10.1016/j.ejmech.2018.10.028_bib119) 2010; 17
Nakamura (10.1016/j.ejmech.2018.10.028_bib77) 2012; 586
Di Fruscia (10.1016/j.ejmech.2018.10.028_bib189) 2015; 10
Atobe (10.1016/j.ejmech.2018.10.028_bib159) 2017; 27
Zhang (10.1016/j.ejmech.2018.10.028_bib95) 2016; 15
Laurent (10.1016/j.ejmech.2018.10.028_bib70) 2013; 50
Bereshchenko (10.1016/j.ejmech.2018.10.028_bib109) 2002; 32
Huang (10.1016/j.ejmech.2018.10.028_bib186) 2017; 57
Heltweg (10.1016/j.ejmech.2018.10.028_bib107) 2006; 66
Gu (10.1016/j.ejmech.2018.10.028_bib104) 2016; 590
Kleszcz (10.1016/j.ejmech.2018.10.028_bib97) 2015; 67
Trevino-Saldana (10.1016/j.ejmech.2018.10.028_bib152) 2017; 2017
Chopra (10.1016/j.ejmech.2018.10.028_bib53) 2012; 2
Kumar (10.1016/j.ejmech.2018.10.028_bib122) 2015; 22
Kakefuda (10.1016/j.ejmech.2018.10.028_bib116) 2009; 387
Mahajan (10.1016/j.ejmech.2018.10.028_bib171) 2014; 57
Quan (10.1016/j.ejmech.2018.10.028_bib157) 2015; 5
Kelly (10.1016/j.ejmech.2018.10.028_bib4) 2010; 15
Bordone (10.1016/j.ejmech.2018.10.028_bib35) 2007; 6
Morimoto (10.1016/j.ejmech.2018.10.028_bib199) 2012; 51
North (10.1016/j.ejmech.2018.10.028_bib7) 2007; 2
Jeong (10.1016/j.ejmech.2018.10.028_bib45) 2007; 39
Huber (10.1016/j.ejmech.2018.10.028_bib181) 2010; 53
Dao (10.1016/j.ejmech.2018.10.028_bib150) 2012; 75
Schuetz (10.1016/j.ejmech.2018.10.028_bib176) 2007; 15
Mathias (10.1016/j.ejmech.2018.10.028_bib71) 2014; 159
Kenyon (10.1016/j.ejmech.2018.10.028_bib94) 2010; 464
Zhang (10.1016/j.ejmech.2018.10.028_bib178) 2005; 102
Schmidt (10.1016/j.ejmech.2018.10.028_bib16) 2004; 279
Lin (10.1016/j.ejmech.2018.10.028_bib111) 2015; 10
Huang (10.1016/j.ejmech.2018.10.028_bib200) 2016; 26
Bellamacina (10.1016/j.ejmech.2018.10.028_bib133) 1996; 10
Rajabi (10.1016/j.ejmech.2018.10.028_bib195) 2017; 56
Teng (10.1016/j.ejmech.2018.10.028_bib22) 2015; 5
Choi (10.1016/j.ejmech.2018.10.028_bib179) 2012; 22
Potente (10.1016/j.ejmech.2018.10.028_bib32) 2007; 21
Donmez (10.1016/j.ejmech.2018.10.028_bib114) 2012; 32
Osborne (10.1016/j.ejmech.2018.10.028_bib8) 2014; 1840
Zhong (10.1016/j.ejmech.2018.10.028_bib88) 2010; 140
Lin (10.1016/j.ejmech.2018.10.028_bib75) 2013; 441
Haigis (10.1016/j.ejmech.2018.10.028_bib17) 2006; 126
Kim (10.1016/j.ejmech.2018.10.028_bib127) 2013; 57
Wang (10.1016/j.ejmech.2018.10.028_bib52) 2007; 6
Jin (10.1016/j.ejmech.2018.10.028_bib113) 2007; 213
Maksin-Matveev (10.1016/j.ejmech.2018.10.028_bib98) 2015; 330
Roessler (10.1016/j.ejmech.2018.10.028_bib19) 2015; 58
Jeong (10.1016/j.ejmech.2018.10.028_bib69) 2013; 23
Schiedel (10.1016/j.ejmech.2018.10.028_bib166) 2016; 59
Rodgers (10.1016/j.ejmech.2018.10.028_bib40) 2005; 434
Yeung (10.1016/j.ejmech.2018.10.028_bib112) 2004; 23
Mohrin (10.1016/j.ejmech.2018.10.028_bib128) 2015; 347
Jin (10.1016/j.ejmech.2018.10.028_bib135) 2009; 284
Xie (10.1016/j.ejmech.2018.10.028_bib203) 2018; 360
Serrano (10.1016/j.ejmech.2018.10.028_bib56) 2013; 27
Taylor (10.1016/j.ejmech.2018.10.028_bib177) 2011; 6
Tavares (10.1016/j.ejmech.2018.10.028_bib183) 2010; 5
McCord (10.1016/j.ejmech.2018.10.028_bib87) 2009; 1
Yu (10.1016/j.ejmech.2018.10.028_bib10) 2017; 18
Multani (10.1016/j.ejmech.2018.10.028_bib84) 2007; 120
Feldman (10.1016/j.ejmech.2018.10.028_bib139) 2015; 54
Nakagawa (10.1016/j.ejmech.2018.10.028_bib76) 2009; 137
Yamagata (10.1016/j.ejmech.2018.10.028_bib5) 2014; 22
Xia (10.1016/j.ejmech.2018.10.028_bib158) 2016; 59
Csibi (10.1016/j.ejmech.2018.10.028_bib65) 2013; 153
Kauppinen (10.1016/j.ejmech.2018.10.028_bib37) 2013; 25
Mellini (10.1016/j.ejmech.2018.10.028_bib197) 2013; 56
Kalbas (10.1016/j.ejmech.2018.10.028_bib201) 2018; 61
Gan (10.1016/j.ejmech.2018.10.028_bib34) 2008; 58
Mellini (10.1016/j.ejmech.2018.10.028_bib165) 2017; 8
Seifert (10.1016/j.ejmech.2018.10.028_bib192) 2014; 57
Lu (10.1016/j.ejmech.2018.10.028_bib155) 2017; 112
He (10.1016/j.ejmech.2018.10.028_bib196) 2012; 134
Gao (10.1016/j.ejmech.2018.10.028_bib120) 2013; 54
Moniot (10.1016/j.ejmech.2018.10.028_bib188) 2017; 60
Malik (10.1016/j.ejmech.2018.10.028_bib129) 2015; 5
Schnekenburger (10.1016/j.ejmech.2018.10.028_bib191) 2017; 60
Hubbard (10.1016/j.ejmech.2018.10.028_bib145) 2013; 339
Majumdar (10.1016/j.ejmech.2018.10.028_bib148) 2013; 20
Pan (10.1016/j.ejmech.2018.10.028_bib21) 2011; 286
Voogd (10.1016/j.ejmech.2018.10.028_bib174) 1993; 45
Lerrer (10.1016/j.ejmech.2018.10.028_bib96) 2016; 37
Rogina (10.1016/j.ejmech.2018.10.028_bib26) 2004; 101
Dioum (10.1016/j.ejmech.2018.10.028_bib42) 2009; 324
Qiu (10.1016/j.ejmech.2018.10.028_bib64) 2010; 12
Ai (10.1016/j.ejmech.2018.10.028_bib162) 2016; 59
Dai (10.1016/j.ejmech.2018.10.028_bib144) 2010; 285
Sundriyal (10.1016/j.ejmech.2018.10.028_bib190) 2017; 60
Toiber (10.1016/j.ejmech.2018.10.028_bib86) 2013; 51
Jing (10.1016/j.ejmech.2018.10.028_bib2) 2015; 115
Santos-Alves (10.1016/j.ejmech.2018.10.028_bib59) 2014; 44
Chen (10.1016/j.ejmech.2018.10.028_bib101) 2016; 7
Colombo (10.1016/j.ejmech.2018.10.028_bib121) 2011; 108
Jiang (10.1016/j.ejmech.2018.10.028_bib20) 2013; 496
Lee (10.1016/j.ejmech.2018.10.028_bib14) 2008; 383
Lain (10.1016/j.ejmech.2018.10.028_bib108) 2008; 13
Suzuki (10.1016/j.ejmech.2018.10.028_bib163) 2012; 55
Trapp (10.1016/j.ejmech.2018.10.028_bib175) 2007; 2
Yang (10.1016/j.ejmech.2018.10.028_bib167) 2017; 134
Vaquero (10.1016/j.ejmech.2018.10.028_bib49) 2006; 20
Outeiro (10.1016/j.ejmech.2018.10.028_bib147) 2007; 317
Milne (10.1016/j.ejmech.2018.10.028_bib141) 2007; 450
Rardin (10.1016/j.ejmech.2018.10.028_bib74) 2013; 18
Brunet (10.1016/j.ejmech.2018.10.028_bib39) 2004; 303
Wang (10.1016/j.ejmech.2018.10.028_bib30) 2008; 14
Jing (10.1016/j.ejmech.2018.10.028_bib194) 2016; 29
Michishita (10.1016/j.ejmech.2018.10.028_bib78) 2008; 452
Moreno-Risueno (10.1016/j.
References_xml – volume: 61
  start-page: 130
  year: 2015
  end-page: 141
  ident: bib124
  article-title: Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases
  publication-title: Exp. Gerontol.
– volume: 4
  start-page: 2327
  year: 2013
  ident: bib18
  article-title: An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms
  publication-title: Nat. Commun.
– volume: 8
  start-page: 347
  year: 2008
  end-page: 358
  ident: bib154
  article-title: Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
  publication-title: Cell Metabol.
– volume: 5
  start-page: 8181
  year: 2015
  ident: bib157
  article-title: Adjudin protects rodent cochlear hair cells against gentamicin ototoxicity via the SIRT3-ROS pathway
  publication-title: Sci. Rep.
– volume: 13
  start-page: 73
  year: 2014
  end-page: 83
  ident: bib100
  article-title: Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis
  publication-title: Mol. Cell. Proteomics
– volume: 6
  start-page: 6263
  year: 2015
  ident: bib138
  article-title: Selective Sirt2 inhibition by ligand-induced rearrangement of the active site
  publication-title: Nat. Commun.
– volume: 107
  start-page: 149
  year: 2001
  end-page: 159
  ident: bib36
  article-title: hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase
  publication-title: Cell
– volume: 27
  start-page: 4828
  year: 2017
  end-page: 4831
  ident: bib159
  article-title: A series of novel indazole derivatives of Sirt 1 activator as osteogenic regulators
  publication-title: Bioorg. Med. Chem. Lett
– volume: 54
  start-page: 4717
  year: 2013
  end-page: 4733
  ident: bib120
  article-title: Mitochondrial permeability transition pore in inflammatory apoptosis of human conjunctival epithelial cells and T cells: effect of cyclosporin A
  publication-title: Invest. Ophthalmol. Vis. Sci.
– volume: 52
  start-page: 303
  year: 2013
  end-page: 313
  ident: bib99
  article-title: Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7
  publication-title: Mol. Cell
– volume: 29
  start-page: 767
  year: 2016
  end-page: 768
  ident: bib194
  article-title: A SIRT2-selective inhibitor promotes c-myc oncoprotein degradation and exhibits broad anticancer activity
  publication-title: Cancer Cell
– volume: 50
  start-page: 686
  year: 2013
  end-page: 698
  ident: bib70
  article-title: SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
  publication-title: Mol. Cell
– volume: 53
  start-page: 1193
  year: 2016
  end-page: 1207
  ident: bib54
  article-title: Sirtuin 2 inhibition improves cognitive performance and acts on amyloid-beta protein precursor processing in two Alzheimer's disease mouse models
  publication-title: J. Alzheim. Dis.
– volume: 45
  start-page: 177
  year: 1993
  end-page: 203
  ident: bib174
  article-title: Recent research on the biological activity of suramin
  publication-title: Pharmacol. Rev.
– volume: 60
  start-page: 661
  year: 2015
  end-page: 675
  ident: bib73
  article-title: NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance
  publication-title: Mol. Cell
– volume: 22
  start-page: 1169
  year: 2017
  end-page: 1188
  ident: bib182
  article-title: A novel sirtuin inhibitor, alters the cytoskeleton and mitochondrial metabolism promoting cell death in Leishmania amazonensis
  publication-title: Apoptosis
– volume: 6
  start-page: 759
  year: 2007
  end-page: 767
  ident: bib35
  article-title: SIRT1 transgenic mice show phenotypes resembling calorie restriction
  publication-title: Aging Cell
– volume: 15
  start-page: 313
  year: 2010
  end-page: 328
  ident: bib4
  article-title: A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 2
  publication-title: Altern. Med. Rev.
– volume: 39
  start-page: 8
  year: 2007
  end-page: 13
  ident: bib45
  article-title: SIRT1 promotes DNA repair activity and deacetylation of Ku70
  publication-title: Exp. Mol. Med.
– volume: 20
  start-page: 1256
  year: 2006
  end-page: 1261
  ident: bib49
  article-title: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
  publication-title: Genes Dev.
– volume: 279
  start-page: 40122
  year: 2004
  end-page: 40129
  ident: bib16
  article-title: Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation
  publication-title: J. Biol. Chem.
– volume: 18
  start-page: 1229
  year: 2017
  end-page: 1240
  ident: bib10
  article-title: Regulation of serine-threonine kinase Akt activation by NAD(+)-Dependent deacetylase SIRT7
  publication-title: Cell Rep.
– volume: 54
  start-page: 3037
  year: 2015
  end-page: 3050
  ident: bib139
  article-title: Kinetic and structural basis for acyl-group selectivity and NAD(+) dependence in sirtuin-catalyzed deacylation
  publication-title: Biochemistry
– volume: 284
  start-page: 24394
  year: 2009
  end-page: 24405
  ident: bib135
  article-title: Crystal structures of human SIRT3 displaying substrate-induced conformational changes
  publication-title: J. Biol. Chem.
– volume: 287
  start-page: 28307
  year: 2012
  end-page: 28314
  ident: bib137
  article-title: The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5)
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 1965
  year: 2008
  end-page: 1976
  ident: bib172
  article-title: Thiobarbiturates as sirtuin inhibitors: virtual screening, free-energy calculations, and biological testing
  publication-title: ChemMedChem
– volume: 122
  start-page: 489
  year: 2009
  end-page: 498
  ident: bib102
  article-title: Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis
  publication-title: J. Cell Sci.
– volume: 5
  start-page: 9841
  year: 2015
  ident: bib129
  article-title: SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors
  publication-title: Sci. Rep.
– volume: 586
  start-page: 4076
  year: 2012
  end-page: 4081
  ident: bib77
  article-title: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice
  publication-title: FEBS Lett.
– volume: 7
  start-page: 1346
  year: 2017
  end-page: 1359
  ident: bib130
  article-title: Downregulation of SIRT7 by 5-fluorouracil induces radiosensitivity in human colorectal cancer
  publication-title: Theranostics
– volume: 75
  start-page: 1332
  year: 2012
  end-page: 1338
  ident: bib150
  article-title: Terpenylated coumarins as SIRT1 activators isolated from Ailanthus altissima
  publication-title: J. Nat. Prod.
– volume: 8
  start-page: 6400
  year: 2017
  end-page: 6408
  ident: bib165
  article-title: Potent mechanism-based sirtuin-2-selective inhibition by an in situ-generated occupant of the substrate-binding site, “selectivity pocket” and NAD(+)-binding site
  publication-title: Chem. Sci.
– volume: 434
  start-page: 113
  year: 2005
  end-page: 118
  ident: bib40
  article-title: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
  publication-title: Nature
– volume: 57
  start-page: 8340
  year: 2014
  end-page: 8357
  ident: bib161
  article-title: Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach
  publication-title: J. Med. Chem.
– volume: 2
  start-page: 1492
  year: 2012
  end-page: 1497
  ident: bib53
  article-title: The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington's disease mouse models
  publication-title: Cell Rep.
– volume: 441
  start-page: 191
  year: 2013
  end-page: 195
  ident: bib75
  article-title: SIRT5 desuccinylates and activates SOD1 to eliminate ROS
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 56
  start-page: 6681
  year: 2013
  end-page: 6695
  ident: bib197
  article-title: Screen of pseudopeptidic inhibitors of human sirtuins 1-3: two lead compounds with antiproliferative effects in cancer cells
  publication-title: J. Med. Chem.
– volume: 14
  start-page: 312
  year: 2008
  end-page: 323
  ident: bib30
  article-title: Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice
  publication-title: Cancer Cell
– volume: 472
  start-page: 425
  year: 2016
  end-page: 431
  ident: bib61
  article-title: Deacetylation of MnSOD by PARP-regulated SIRT3 protects retinal capillary endothelial cells from hyperglycemia-induced damage
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 12
  year: 2018
  ident: bib184
  article-title: Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease
  publication-title: PLoS Neglected Trop. Dis.
– volume: 35
  start-page: 1488
  year: 2016
  end-page: 1503
  ident: bib105
  article-title: SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair
  publication-title: EMBO J.
– volume: 57
  start-page: 3283
  year: 2014
  end-page: 3294
  ident: bib171
  article-title: Development of pyrazolone and isoxazol-5-one cambinol analogues as sirtuin inhibitors
  publication-title: J. Med. Chem.
– volume: 27
  start-page: 3511
  year: 2007
  end-page: 3520
  ident: bib110
  article-title: Interaction of a cyclin E fragment with Ku70 regulates Bax-mediated apoptosis
  publication-title: Mol. Cell Biol.
– volume: 37
  start-page: 108
  year: 2016
  end-page: 118
  ident: bib96
  article-title: The complex role of SIRT6 in carcinogenesis
  publication-title: Carcinogenesis
– volume: 15
  start-page: 1009
  year: 2016
  end-page: 1018
  ident: bib95
  article-title: Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-kappaB signaling
  publication-title: Cell Cycle
– volume: 286
  start-page: 14575
  year: 2011
  end-page: 14587
  ident: bib21
  article-title: Structure and biochemical functions of SIRT6
  publication-title: J. Biol. Chem.
– volume: 126
  start-page: 941
  year: 2006
  end-page: 954
  ident: bib17
  article-title: SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
  publication-title: Cell
– volume: 137
  start-page: 560
  year: 2009
  end-page: 570
  ident: bib76
  article-title: SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
  publication-title: Cell
– volume: 115
  start-page: 2350
  year: 2015
  end-page: 2375
  ident: bib2
  article-title: Sirtuins in epigenetic regulation
  publication-title: Chem. Rev.
– volume: 134
  start-page: 230
  year: 2017
  end-page: 241
  ident: bib167
  article-title: Discovery of 2-((4,6-dimethylpyrimidin-2-yl)thio)-N-phenylacetamide derivatives as new potent and selective human sirtuin 2 inhibitors
  publication-title: Eur. J. Med. Chem.
– volume: 280
  start-page: 40364
  year: 2005
  end-page: 40374
  ident: bib46
  article-title: SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling
  publication-title: J. Biol. Chem.
– volume: 3
  start-page: 852
  year: 2011
  end-page: 872
  ident: bib187
  article-title: Structure-based development of novel sirtuin inhibitors
  publication-title: Aging (N Y)
– volume: 57
  start-page: 669
  year: 2017
  end-page: 679
  ident: bib186
  article-title: Discovery of new SIRT2 inhibitors by utilizing a consensus docking/scoring strategy and structure-activity relationship analysis
  publication-title: J. Chem. Inf. Model.
– volume: 289
  start-page: 2126
  year: 2000
  end-page: 2128
  ident: bib24
  article-title: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
  publication-title: Science
– volume: 53
  start-page: 1383
  year: 2010
  end-page: 1386
  ident: bib181
  article-title: Novel 3-arylideneindolin-2-ones as inhibitors of NAD+ -dependent histone deacetylases (sirtuins)
  publication-title: J. Med. Chem.
– volume: 124
  start-page: 315
  year: 2006
  end-page: 329
  ident: bib82
  article-title: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
  publication-title: Cell
– volume: 119
  start-page: 45
  year: 2016
  end-page: 69
  ident: bib106
  article-title: How much successful are the medicinal chemists in modulation of SIRT1: a critical review
  publication-title: Eur. J. Med. Chem.
– volume: 59
  start-page: 71
  year: 2016
  end-page: 78
  ident: bib158
  article-title: A sirtuin activator and an anti-inflammatory molecule-multifaceted roles of adjudin and its potential applications for aging-related diseases
  publication-title: Semin. Cell Dev. Biol.
– volume: 60
  start-page: 4714
  year: 2017
  end-page: 4733
  ident: bib191
  article-title: Discovery and characterization of R/S-N-3-Cyanophenyl-N'-(6-tert-butoxycarbonylamino-3,4-dihydro-2,2-dimethyl-2H-1- benzopyran-4-yl)urea, a new histone deacetylase class III inhibitor exerting antiproliferative activity against cancer cell lines
  publication-title: J. Med. Chem.
– volume: 2
  start-page: e784
  year: 2007
  ident: bib7
  article-title: Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis
  publication-title: PloS One
– volume: 6
  start-page: 505
  year: 2007
  end-page: 514
  ident: bib52
  article-title: SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
  publication-title: Aging Cell
– volume: 60
  start-page: 1928
  year: 2017
  end-page: 1945
  ident: bib190
  article-title: Thienopyrimidinone based sirtuin-2 (SIRT2)-Selective inhibitors bind in the ligand induced selectivity pocket
  publication-title: J. Med. Chem.
– volume: 464
  start-page: 504
  year: 2010
  end-page: 512
  ident: bib94
  article-title: The genetics of ageing
  publication-title: Nature
– volume: 44
  start-page: 668
  year: 2014
  end-page: 677
  ident: bib59
  article-title: Exercise mitigates diclofenac-induced liver mitochondrial dysfunction
  publication-title: Eur. J. Clin. Invest.
– volume: 12
  start-page: 224
  year: 2010
  end-page: 236
  ident: bib92
  article-title: Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
  publication-title: Cell Metabol.
– volume: 288
  start-page: 20768
  year: 2013
  end-page: 20775
  ident: bib103
  article-title: Sirtuin-7 inhibits the activity of hypoxia-inducible factors
  publication-title: J. Biol. Chem.
– volume: 57
  start-page: 9870
  year: 2014
  end-page: 9888
  ident: bib192
  article-title: Chroman-4-one- and chromone-based sirtuin 2 inhibitors with antiproliferative properties in cancer cells
  publication-title: J. Med. Chem.
– volume: 410
  start-page: 227
  year: 2001
  end-page: 230
  ident: bib25
  article-title: Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
  publication-title: Nature
– volume: 285
  start-page: 31995
  year: 2010
  end-page: 32002
  ident: bib68
  article-title: SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
  publication-title: J. Biol. Chem.
– volume: 23
  start-page: 328
  year: 2015
  end-page: 339
  ident: bib117
  article-title: Design, synthesis and structure-activity relationship studies of novel sirtuin 2 (SIRT2) inhibitors with a benzamide skeleton
  publication-title: Bioorg. Med. Chem.
– volume: 4
  start-page: 125
  year: 2013
  end-page: 134
  ident: bib28
  article-title: SIRT1 is a highly networked protein that mediates the adaptation to chronic physiological stress
  publication-title: Genes Cancer
– volume: 11
  start-page: 437
  year: 2003
  end-page: 444
  ident: bib57
  article-title: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
  publication-title: Mol. Cell
– volume: 387
  start-page: 784
  year: 2009
  end-page: 788
  ident: bib116
  article-title: Sirtuin 1 overexpression mice show a reference memory deficit, but not neuroprotection
  publication-title: Biochem. Biophys. Res. Commun.
– volume: 7
  start-page: 10734
  year: 2016
  ident: bib101
  article-title: SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing
  publication-title: Nat. Commun.
– volume: 3
  year: 2008
  ident: bib33
  article-title: The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
  publication-title: PloS One
– volume: 26
  start-page: 1612
  year: 2016
  end-page: 1617
  ident: bib200
  article-title: Simple N(epsilon)-thioacetyl-lysine-containing cyclic peptides exhibiting highly potent sirtuin inhibition
  publication-title: Bioorg. Med. Chem. Lett
– volume: 332
  start-page: 1443
  year: 2011
  end-page: 1446
  ident: bib80
  article-title: SIRT6 promotes DNA repair under stress by activating PARP1
  publication-title: Science
– volume: 305
  start-page: 390
  year: 2004
  end-page: 392
  ident: bib31
  article-title: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
  publication-title: Science
– volume: 425
  start-page: 191
  year: 2003
  end-page: 196
  ident: bib140
  article-title: Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
  publication-title: Nature
– volume: 3
  start-page: 373
  year: 2012
  end-page: 378
  ident: bib51
  article-title: The Discovery of novel 10,11-dihydro-5H-dibenz[b,f]azepine SIRT2 inhibitors
  publication-title: Medchemcomm
– volume: 143
  start-page: 802
  year: 2010
  end-page: 812
  ident: bib63
  article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
  publication-title: Cell
– volume: 20
  start-page: 869
  year: 2013
  end-page: 876
  ident: bib148
  article-title: Resveratrol attenuated smokeless tobacco-induced vascular and metabolic complications in ovariectomized rats
  publication-title: Menopause
– volume: 59
  start-page: 201
  year: 2008
  end-page: 212
  ident: bib125
  article-title: Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging
  publication-title: J. Physiol. Pharmacol.
– volume: 325
  start-page: 536
  year: 2008
  end-page: 543
  ident: bib149
  article-title: Isoflavones promote mitochondrial biogenesis
  publication-title: J. Pharmacol. Exp. Therapeut.
– volume: 24
  start-page: 1021
  year: 2005
  end-page: 1032
  ident: bib38
  article-title: Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation
  publication-title: EMBO J.
– volume: 12
  start-page: 7498
  year: 2014
  end-page: 7502
  ident: bib198
  article-title: Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors
  publication-title: Org. Biomol. Chem.
– volume: 67
  start-page: 1068
  year: 2015
  end-page: 1080
  ident: bib97
  article-title: Targeting aberrant cancer metabolism - the role of sirtuins
  publication-title: Pharmacol. Rep.
– volume: 8
  start-page: 2664
  year: 2009
  end-page: 2666
  ident: bib79
  article-title: Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6
  publication-title: Cell Cycle
– volume: 123
  start-page: 4251
  year: 2010
  end-page: 4258
  ident: bib48
  article-title: SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310
  publication-title: J. Cell Sci.
– volume: 56
  start-page: 963
  year: 2013
  end-page: 969
  ident: bib136
  article-title: The 2.5 A crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition
  publication-title: J. Med. Chem.
– volume: 108
  start-page: 21069
  year: 2011
  end-page: 21074
  ident: bib121
  article-title: Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 16
  start-page: 93
  year: 2004
  end-page: 105
  ident: bib44
  article-title: Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
  publication-title: Mol. Cell
– volume: 12
  start-page: 6226
  year: 2011
  end-page: 6239
  ident: bib62
  article-title: Sirt3, mitochondrial ROS, ageing, and carcinogenesis
  publication-title: Int. J. Mol. Sci.
– volume: 8
  start-page: 621
  year: 2001
  end-page: 625
  ident: bib132
  article-title: Structure of the histone deacetylase SIRT2
  publication-title: Nat. Struct. Biol.
– volume: 285
  start-page: 32695
  year: 2010
  end-page: 32703
  ident: bib144
  article-title: SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator
  publication-title: J. Biol. Chem.
– volume: 281
  start-page: 215
  year: 2015
  end-page: 221
  ident: bib123
  article-title: Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson's disease
  publication-title: Behav. Brain Res.
– volume: 496
  start-page: 110
  year: 2013
  end-page: 113
  ident: bib20
  article-title: SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine
  publication-title: Nature
– volume: 13
  start-page: 2570
  year: 1999
  end-page: 2580
  ident: bib23
  article-title: The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
  publication-title: Genes Dev.
– volume: 6
  start-page: 7645
  year: 2015
  ident: bib160
  article-title: Crystallographic structure of a small molecule SIRT1 activator-enzyme complex
  publication-title: Nat. Commun.
– volume: 66
  start-page: 4368
  year: 2006
  end-page: 4377
  ident: bib107
  article-title: Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes
  publication-title: Cancer Res.
– volume: 23
  start-page: 2369
  year: 2004
  end-page: 2380
  ident: bib112
  article-title: Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase
  publication-title: EMBO J.
– volume: 450
  start-page: 712
  year: 2007
  end-page: 716
  ident: bib141
  article-title: Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
  publication-title: Nature
– volume: 317
  start-page: 516
  year: 2007
  end-page: 519
  ident: bib147
  article-title: Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease
  publication-title: Science
– volume: 287
  start-page: 32307
  year: 2012
  end-page: 32311
  ident: bib55
  article-title: Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein
  publication-title: J. Biol. Chem.
– volume: 303
  start-page: 2011
  year: 2004
  end-page: 2015
  ident: bib39
  article-title: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
  publication-title: Science
– volume: 22
  start-page: 2789
  year: 2012
  end-page: 2793
  ident: bib179
  article-title: 3-(N-arylsulfamoyl)benzamides, inhibitors of human sirtuin type 2 (SIRT2)
  publication-title: Bioorg. Med. Chem. Lett
– volume: 58
  start-page: 7217
  year: 2015
  end-page: 7223
  ident: bib19
  article-title: A novel continuous assay for the deacylase sirtuin 5 and other deacetylases
  publication-title: J. Med. Chem.
– volume: 15
  start-page: 377
  year: 2007
  end-page: 389
  ident: bib176
  article-title: Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin
  publication-title: Structure
– volume: 1840
  start-page: 1295
  year: 2014
  end-page: 1302
  ident: bib8
  article-title: Are sirtuin deacylase enzymes important modulators of mitochondrial energy metabolism?
  publication-title: Bba-Gen Subjects
– volume: 10
  start-page: 1257
  year: 1996
  end-page: 1269
  ident: bib133
  article-title: The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins
  publication-title: Faseb. J.
– volume: 60
  start-page: 2344
  year: 2017
  end-page: 2360
  ident: bib188
  article-title: Development of 1,2,4-oxadiazoles as potent and selective inhibitors of the human deacetylase sirtuin 2: structure-activity relationship, X-ray crystal structure, and anticancer activity
  publication-title: J. Med. Chem.
– volume: 28
  start-page: 781
  year: 2009
  end-page: 791
  ident: bib169
  article-title: Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect
  publication-title: Oncogene
– volume: 19
  start-page: 416
  year: 2011
  end-page: 428
  ident: bib58
  article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
  publication-title: Cancer Cell
– volume: 30
  start-page: 179
  year: 2016
  end-page: 185
  ident: bib90
  article-title: Sirtuin 6 modulates hypoxia-induced autophagy in nasal polyp fibroblasts via inhibition of glycolysis
  publication-title: Am. J. Rhinol. Allergy
– volume: 9
  start-page: 162
  year: 2010
  end-page: 173
  ident: bib93
  article-title: SIRT6 protects against pathological damage caused by diet-induced obesity
  publication-title: Aging Cell
– volume: 38
  start-page: 864
  year: 2010
  end-page: 878
  ident: bib41
  article-title: Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha
  publication-title: Mol. Cell
– volume: 383
  start-page: 174
  year: 2008
  end-page: 179
  ident: bib14
  article-title: Quantification of endogenous sirtuin metabolite O-acetyl-ADP-ribose
  publication-title: Anal. Biochem.
– volume: 360
  start-page: 194
  year: 2018
  end-page: 228
  ident: bib203
  article-title: Organocatalytic asymmetric synthesis of six-membered carbocycle -based spirocompounds
  publication-title: Adv. Synth. Catal.
– volume: 18
  start-page: 514
  year: 2009
  end-page: 525
  ident: bib118
  article-title: Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3
  publication-title: Protein Sci.
– volume: 282
  start-page: 6823
  year: 2007
  end-page: 6832
  ident: bib6
  article-title: Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
  publication-title: J. Biol. Chem.
– volume: 1
  start-page: 109
  year: 2009
  end-page: 121
  ident: bib87
  article-title: SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair
  publication-title: Aging (N Y)
– volume: 56
  start-page: 1007
  year: 2017
  end-page: 1011
  ident: bib156
  article-title: Structural basis of sirtuin 6 activation by synthetic small molecules
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 17
  start-page: 41
  year: 2010
  end-page: 52
  ident: bib119
  article-title: SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
  publication-title: Cancer Cell
– volume: 153
  start-page: 840
  year: 2013
  end-page: 854
  ident: bib65
  article-title: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
  publication-title: Cell
– volume: 2
  start-page: 1419
  year: 2007
  end-page: 1431
  ident: bib175
  article-title: Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins)
  publication-title: ChemMedChem
– volume: 80
  start-page: 191
  year: 2008
  end-page: 199
  ident: bib142
  article-title: Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice
  publication-title: Cardiovasc. Res.
– volume: 12
  start-page: 662
  year: 2010
  end-page: 667
  ident: bib64
  article-title: Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
  publication-title: Cell Metabol.
– volume: 2017
  start-page: 1750306
  year: 2017
  ident: bib152
  article-title: Regulation of sirtuin-mediated protein deacetylation by cardioprotective phytochemicals
  publication-title: Oxid. Med. Cell. Longev.
– volume: 55
  start-page: 2252
  year: 2016
  end-page: 2256
  ident: bib202
  article-title: Structure-based development of an affinity probe
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 44
  start-page: 3629
  year: 2016
  end-page: 3642
  ident: bib11
  article-title: Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents
  publication-title: Nucleic Acids Res.
– volume: 22
  start-page: 345
  year: 2014
  end-page: 352
  ident: bib5
  article-title: Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change
  publication-title: Structure
– volume: 32
  start-page: 606
  year: 2002
  end-page: 613
  ident: bib109
  article-title: Acetylation inactivates the transcriptional repressor BCL6
  publication-title: Nat. Genet.
– volume: 10
  start-page: 69
  year: 2015
  end-page: 82
  ident: bib189
  article-title: The discovery of a highly selective 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one SIRT2 inhibitor that is neuroprotective in an in vitro Parkinson's disease model
  publication-title: ChemMedChem
– volume: 159
  start-page: 1615
  year: 2014
  end-page: 1625
  ident: bib71
  article-title: Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity
  publication-title: Cell
– volume: 11
  start-page: 253
  year: 2015
  end-page: 270
  ident: bib72
  article-title: SIRT5 regulation of ammonia-induced autophagy and mitophagy
  publication-title: Autophagy
– volume: 57
  start-page: 1055
  year: 2013
  end-page: 1067
  ident: bib127
  article-title: Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b
  publication-title: Hepatology
– volume: 213
  start-page: 88
  year: 2007
  end-page: 97
  ident: bib113
  article-title: Cytoplasm-localized SIRT1 enhances apoptosis
  publication-title: J. Cell. Physiol.
– volume: 52
  start-page: 2673
  year: 2009
  end-page: 2682
  ident: bib170
  article-title: Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity
  publication-title: J. Med. Chem.
– volume: 51
  start-page: 454
  year: 2013
  end-page: 468
  ident: bib86
  article-title: SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling
  publication-title: Mol. Cell
– volume: 134
  start-page: 1922
  year: 2012
  end-page: 1925
  ident: bib196
  article-title: Thiosuccinyl peptides as Sirt5-specific inhibitors
  publication-title: J. Am. Chem. Soc.
– volume: 182
  start-page: 136
  year: 2013
  end-page: 143
  ident: bib134
  article-title: Crystal structure analysis of human Sirt2 and its ADP-ribose complex
  publication-title: J. Struct. Biol.
– volume: 58
  start-page: 10
  year: 2008
  end-page: 14
  ident: bib34
  article-title: Paths of convergence: sirtuins in aging and neurodegeneration
  publication-title: Neuron
– volume: 120
  start-page: 713
  year: 2007
  end-page: 721
  ident: bib84
  article-title: WRN at telomeres: implications for aging and cancer
  publication-title: J. Cell Sci.
– volume: 23
  start-page: 450
  year: 2013
  end-page: 463
  ident: bib69
  article-title: SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
  publication-title: Cancer Cell
– volume: 140
  start-page: 280
  year: 2010
  end-page: 293
  ident: bib88
  article-title: The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
  publication-title: Cell
– volume: 56
  start-page: 14836
  year: 2017
  end-page: 14841
  ident: bib195
  article-title: Mechanism-based inhibitors of the human sirtuin 5 deacylase: structure-activity relationship, biostructural, and kinetic insight
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 121
  start-page: 515
  year: 2005
  end-page: 527
  ident: bib13
  article-title: Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation
  publication-title: Cell
– volume: 107
  start-page: 137
  year: 2001
  end-page: 148
  ident: bib29
  article-title: Negative control of p53 by Sir2alpha promotes cell survival under stress
  publication-title: Cell
– volume: 24
  start-page: 1871
  year: 2014
  end-page: 1874
  ident: bib164
  article-title: Identification of novel SIRT2-selective inhibitors using a click chemistry approach
  publication-title: Bioorg. Med. Chem. Lett
– volume: 59
  start-page: 1599
  year: 2016
  end-page: 1612
  ident: bib166
  article-title: Aminothiazoles as potent and selective Sirt2 inhibitors: a structure-activity relationship study
  publication-title: J. Med. Chem.
– volume: 277
  start-page: 45099
  year: 2002
  end-page: 45107
  ident: bib15
  article-title: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
  publication-title: J. Biol. Chem.
– volume: 339
  start-page: 1216
  year: 2013
  end-page: 1219
  ident: bib145
  article-title: Evidence for a common mechanism of SIRT1 regulation by allosteric activators
  publication-title: Science
– volume: 280
  start-page: 3451
  year: 2013
  end-page: 3466
  ident: bib9
  article-title: Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal
  publication-title: FEBS J.
– volume: 2
  start-page: 914
  year: 2010
  end-page: 923
  ident: bib60
  article-title: Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
  publication-title: Aging (N Y)
– volume: 423
  start-page: 550
  year: 2003
  end-page: 555
  ident: bib89
  article-title: Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
  publication-title: Nature
– volume: 3
  start-page: 1050
  year: 2012
  end-page: 1053
  ident: bib173
  article-title: Inhibitors of the NAD(+)-Dependent protein desuccinylase and demalonylase Sirt5
  publication-title: ACS Med. Chem. Lett.
– volume: 22
  start-page: 1060
  year: 2015
  end-page: 1077
  ident: bib122
  article-title: Mitochondrial sirtuins and their relationships with metabolic disease and cancer
  publication-title: Antioxidants Redox Signal.
– volume: 5
  start-page: 8529
  year: 2015
  ident: bib22
  article-title: Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies
  publication-title: Sci. Rep.
– volume: 59
  start-page: 2928
  year: 2016
  end-page: 2941
  ident: bib162
  article-title: 5-((3-Amidobenzyl)oxy)nicotinamides as Sirtuin 2 Inhibitors
  publication-title: J. Med. Chem.
– volume: 276
  start-page: 38837
  year: 2001
  end-page: 38843
  ident: bib168
  article-title: Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening
  publication-title: J. Biol. Chem.
– volume: 10
  year: 2015
  ident: bib111
  article-title: KAP1 deacetylation by SIRT1 promotes non-homologous end-joining repair
  publication-title: PloS One
– volume: 48
  start-page: 900
  year: 2012
  end-page: 913
  ident: bib91
  article-title: The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis
  publication-title: Mol. Cell
– volume: 76
  start-page: 414
  year: 2014
  end-page: 426
  ident: bib180
  article-title: Development and characterization of 3-(benzylsulfonamido)benzamides as potent and selective SIRT2 inhibitors
  publication-title: Eur. J. Med. Chem.
– volume: 330
  start-page: 81
  year: 2015
  end-page: 90
  ident: bib98
  article-title: Sirtuin 6 protects the heart from hypoxic damage
  publication-title: Exp. Cell Res.
– volume: 13
  start-page: 454
  year: 2008
  end-page: 463
  ident: bib108
  article-title: Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator
  publication-title: Cancer Cell
– volume: 4
  start-page: 984
  year: 2013
  end-page: 994
  ident: bib151
  article-title: Targeting mutant p53 by a SIRT1 activator YK-3-237 inhibits the proliferation of triple-negative breast cancer cells
  publication-title: Oncotarget
– volume: 6
  start-page: 540
  year: 2011
  end-page: 546
  ident: bib177
  article-title: A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase
  publication-title: ACS Chem. Biol.
– volume: 112
  start-page: 287
  year: 2017
  end-page: 297
  ident: bib155
  article-title: A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase
  publication-title: Free Radic. Biol. Med.
– volume: 113
  start-page: 492
  year: 2015
  end-page: 499
  ident: bib66
  article-title: Tumour-suppressive function of SIRT4 in human colorectal cancer
  publication-title: Br. J. Canc.
– volume: 487
  start-page: 114
  year: 2012
  end-page: 118
  ident: bib126
  article-title: SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
  publication-title: Nature
– volume: 29
  start-page: 77
  year: 2012
  end-page: 83
  ident: bib67
  article-title: Upregulated INHBA expression is associated with poor survival in gastric cancer
  publication-title: Med. Oncol.
– volume: 289
  start-page: 5208
  year: 2014
  end-page: 5216
  ident: bib193
  article-title: A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer
  publication-title: J. Biol. Chem.
– volume: 590
  start-page: 1123
  year: 2016
  end-page: 1131
  ident: bib104
  article-title: miR-152 induces human dental pulp stem cell senescence by inhibiting SIRT7 expression
  publication-title: FEBS Lett.
– volume: 32
  start-page: 124
  year: 2012
  end-page: 132
  ident: bib114
  article-title: SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones
  publication-title: J. Neurosci.
– volume: 21
  start-page: 2644
  year: 2007
  end-page: 2658
  ident: bib32
  article-title: SIRT1 controls endothelial angiogenic functions during vascular growth
  publication-title: Genes Dev.
– volume: 104
  start-page: 2205
  year: 2007
  end-page: 2210
  ident: bib83
  article-title: Telomere dysfunction as a cause of genomic instability in Werner syndrome
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 51
  start-page: 3423
  year: 2012
  end-page: 3427
  ident: bib199
  article-title: Discovery of macrocyclic peptides armed with a mechanism-based warhead: isoform-selective inhibition of human deacetylase SIRT2
  publication-title: Angew Chem. Int. Ed. Engl.
– volume: 277
  start-page: 12632
  year: 2002
  end-page: 12641
  ident: bib12
  article-title: Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases
  publication-title: J. Biol. Chem.
– volume: 25
  start-page: 1939
  year: 2013
  end-page: 1948
  ident: bib37
  article-title: Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders
  publication-title: Cell. Signal.
– volume: 18
  start-page: 920
  year: 2013
  end-page: 933
  ident: bib74
  article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
  publication-title: Cell Metabol.
– volume: 36
  start-page: 51
  year: 2015
  end-page: 59
  ident: bib47
  article-title: The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression
  publication-title: Eur. Heart J.
– volume: 29
  start-page: 1093
  year: 2009
  end-page: 1103
  ident: bib143
  article-title: Sirt1's complex roles in neuroprotection
  publication-title: Cell. Mol. Neurobiol.
– volume: 48
  start-page: 8045
  year: 2005
  end-page: 8054
  ident: bib185
  article-title: Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1
  publication-title: J. Med. Chem.
– volume: 93
  start-page: 37
  year: 1979
  end-page: 50
  ident: bib3
  article-title: MAR1-a regulator of the HMa and HMalpha loci in Saccharomyces cerevisiae
  publication-title: Genetics
– volume: 29
  start-page: 1316
  year: 2015
  end-page: 1325
  ident: bib146
  article-title: Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol
  publication-title: Genes Dev.
– volume: 36
  start-page: 3051
  year: 2016
  end-page: 3057
  ident: bib131
  article-title: MicroRNA-3666-induced suppression of SIRT7 inhibits the growth of non-small cell lung cancer cells
  publication-title: Oncol. Rep.
– volume: 350
  start-page: 426
  year: 2015
  end-page: 430
  ident: bib115
  article-title: Transcriptional control of tissue formation throughout root development
  publication-title: Science
– volume: 11
  start-page: 959
  year: 2006
  end-page: 967
  ident: bib153
  article-title: SIRT1 modulating compounds from high-throughput screening as anti-inflammatory and insulin-sensitizing agents
  publication-title: J. Biomol. Screen
– volume: 5
  start-page: 140
  year: 2010
  end-page: 147
  ident: bib183
  article-title: Bisnaphthalimidopropyl derivatives as inhibitors of Leishmania SIR2 related protein 1
  publication-title: ChemMedChem
– volume: 452
  start-page: 492
  year: 2008
  end-page: 496
  ident: bib78
  article-title: SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
  publication-title: Nature
– volume: 27
  start-page: 639
  year: 2013
  end-page: 653
  ident: bib56
  article-title: The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation
  publication-title: Genes Dev.
– volume: 101
  start-page: 15998
  year: 2004
  end-page: 16003
  ident: bib26
  article-title: Sir2 mediates longevity in the fly through a pathway related to calorie restriction
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 102
  start-page: 892
  year: 2005
  end-page: 897
  ident: bib178
  article-title: A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 324
  start-page: 1289
  year: 2009
  end-page: 1293
  ident: bib42
  article-title: Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1
  publication-title: Science
– volume: 6
  start-page: 105
  year: 2007
  end-page: 114
  ident: bib50
  article-title: SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation
  publication-title: Cell Metabol.
– volume: 14
  start-page: 718
  year: 2011
  end-page: 719
  ident: bib1
  article-title: Old enzymes, new tricks: sirtuins are NAD(+)-dependent de-acylases
  publication-title: Cell Metabol.
– volume: 55
  start-page: 5760
  year: 2012
  end-page: 5773
  ident: bib163
  article-title: Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors
  publication-title: J. Med. Chem.
– volume: 574
  start-page: 183
  year: 2016
  end-page: 211
  ident: bib27
  article-title: Biology, chemistry, and pharmacology of sirtuins
  publication-title: Methods Enzymol.
– volume: 41
  start-page: 8537
  year: 2013
  end-page: 8545
  ident: bib81
  article-title: SIRT6 exhibits nucleosome-dependent deacetylase activity
  publication-title: Nucleic Acids Res.
– volume: 104
  start-page: 14855
  year: 2007
  end-page: 14860
  ident: bib43
  article-title: SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
– volume: 61
  start-page: 2460
  year: 2018
  end-page: 2471
  ident: bib201
  article-title: Potent and selective inhibitors of human sirtuin 5
  publication-title: J. Med. Chem.
– volume: 17
  start-page: 545
  year: 2015
  end-page: 557
  ident: bib85
  article-title: The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine
  publication-title: Nat. Cell Biol.
– volume: 347
  start-page: 1374
  year: 2015
  end-page: 1377
  ident: bib128
  article-title: Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging
  publication-title: Science
– volume: 27
  start-page: 4828
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib159
  article-title: A series of novel indazole derivatives of Sirt 1 activator as osteogenic regulators
  publication-title: Bioorg. Med. Chem. Lett
  doi: 10.1016/j.bmcl.2017.09.049
– volume: 45
  start-page: 177
  year: 1993
  ident: 10.1016/j.ejmech.2018.10.028_bib174
  article-title: Recent research on the biological activity of suramin
  publication-title: Pharmacol. Rev.
– volume: 6
  start-page: 505
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib52
  article-title: SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2007.00304.x
– volume: 28
  start-page: 781
  year: 2009
  ident: 10.1016/j.ejmech.2018.10.028_bib169
  article-title: Salermide, a Sirtuin inhibitor with a strong cancer-specific proapoptotic effect
  publication-title: Oncogene
  doi: 10.1038/onc.2008.436
– volume: 305
  start-page: 390
  year: 2004
  ident: 10.1016/j.ejmech.2018.10.028_bib31
  article-title: Calorie restriction promotes mammalian cell survival by inducing the SIRT1 deacetylase
  publication-title: Science
  doi: 10.1126/science.1099196
– volume: 101
  start-page: 15998
  year: 2004
  ident: 10.1016/j.ejmech.2018.10.028_bib26
  article-title: Sir2 mediates longevity in the fly through a pathway related to calorie restriction
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0404184101
– volume: 22
  start-page: 1169
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib182
  article-title: A novel sirtuin inhibitor, alters the cytoskeleton and mitochondrial metabolism promoting cell death in Leishmania amazonensis
  publication-title: Apoptosis
  doi: 10.1007/s10495-017-1397-8
– volume: 423
  start-page: 550
  year: 2003
  ident: 10.1016/j.ejmech.2018.10.028_bib89
  article-title: Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction
  publication-title: Nature
  doi: 10.1038/nature01667
– volume: 51
  start-page: 454
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib86
  article-title: SIRT6 recruits SNF2H to DNA break sites, preventing genomic instability through chromatin remodeling
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.06.018
– volume: 37
  start-page: 108
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib96
  article-title: The complex role of SIRT6 in carcinogenesis
  publication-title: Carcinogenesis
  doi: 10.1093/carcin/bgv167
– volume: 285
  start-page: 32695
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib144
  article-title: SIRT1 activation by small molecules: kinetic and biophysical evidence for direct interaction of enzyme and activator
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.133892
– volume: 32
  start-page: 606
  year: 2002
  ident: 10.1016/j.ejmech.2018.10.028_bib109
  article-title: Acetylation inactivates the transcriptional repressor BCL6
  publication-title: Nat. Genet.
  doi: 10.1038/ng1018
– volume: 12
  start-page: 7498
  year: 2014
  ident: 10.1016/j.ejmech.2018.10.028_bib198
  article-title: Thiomyristoyl peptides as cell-permeable Sirt6 inhibitors
  publication-title: Org. Biomol. Chem.
  doi: 10.1039/C4OB00860J
– volume: 574
  start-page: 183
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib27
  article-title: Biology, chemistry, and pharmacology of sirtuins
  publication-title: Methods Enzymol.
  doi: 10.1016/bs.mie.2016.03.011
– volume: 12
  year: 2018
  ident: 10.1016/j.ejmech.2018.10.028_bib184
  article-title: Inhibitors of Trypanosoma cruzi Sir2 related protein 1 as potential drugs against Chagas disease
  publication-title: PLoS Neglected Trop. Dis.
  doi: 10.1371/journal.pntd.0006180
– volume: 29
  start-page: 1093
  year: 2009
  ident: 10.1016/j.ejmech.2018.10.028_bib143
  article-title: Sirt1's complex roles in neuroprotection
  publication-title: Cell. Mol. Neurobiol.
  doi: 10.1007/s10571-009-9414-2
– volume: 4
  start-page: 984
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib151
  article-title: Targeting mutant p53 by a SIRT1 activator YK-3-237 inhibits the proliferation of triple-negative breast cancer cells
  publication-title: Oncotarget
  doi: 10.18632/oncotarget.1070
– volume: 60
  start-page: 1928
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib190
  article-title: Thienopyrimidinone based sirtuin-2 (SIRT2)-Selective inhibitors bind in the ligand induced selectivity pocket
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b01690
– volume: 159
  start-page: 1615
  year: 2014
  ident: 10.1016/j.ejmech.2018.10.028_bib71
  article-title: Sirtuin 4 is a lipoamidase regulating pyruvate dehydrogenase complex activity
  publication-title: Cell
  doi: 10.1016/j.cell.2014.11.046
– volume: 137
  start-page: 560
  year: 2009
  ident: 10.1016/j.ejmech.2018.10.028_bib76
  article-title: SIRT5 Deacetylates carbamoyl phosphate synthetase 1 and regulates the urea cycle
  publication-title: Cell
  doi: 10.1016/j.cell.2009.02.026
– volume: 58
  start-page: 7217
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib19
  article-title: A novel continuous assay for the deacylase sirtuin 5 and other deacetylases
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b00293
– volume: 284
  start-page: 24394
  year: 2009
  ident: 10.1016/j.ejmech.2018.10.028_bib135
  article-title: Crystal structures of human SIRT3 displaying substrate-induced conformational changes
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M109.014928
– volume: 347
  start-page: 1374
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib128
  article-title: Stem cell aging. A mitochondrial UPR-mediated metabolic checkpoint regulates hematopoietic stem cell aging
  publication-title: Science
  doi: 10.1126/science.aaa2361
– volume: 24
  start-page: 1871
  year: 2014
  ident: 10.1016/j.ejmech.2018.10.028_bib164
  article-title: Identification of novel SIRT2-selective inhibitors using a click chemistry approach
  publication-title: Bioorg. Med. Chem. Lett
  doi: 10.1016/j.bmcl.2014.03.026
– volume: 39
  start-page: 8
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib45
  article-title: SIRT1 promotes DNA repair activity and deacetylation of Ku70
  publication-title: Exp. Mol. Med.
  doi: 10.1038/emm.2007.2
– volume: 288
  start-page: 20768
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib103
  article-title: Sirtuin-7 inhibits the activity of hypoxia-inducible factors
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.476903
– volume: 26
  start-page: 1612
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib200
  article-title: Simple N(epsilon)-thioacetyl-lysine-containing cyclic peptides exhibiting highly potent sirtuin inhibition
  publication-title: Bioorg. Med. Chem. Lett
  doi: 10.1016/j.bmcl.2016.01.086
– volume: 41
  start-page: 8537
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib81
  article-title: SIRT6 exhibits nucleosome-dependent deacetylase activity
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkt642
– volume: 6
  start-page: 7645
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib160
  article-title: Crystallographic structure of a small molecule SIRT1 activator-enzyme complex
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms8645
– volume: 287
  start-page: 32307
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib55
  article-title: Sirtuin 2 (SIRT2) enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via deacetylating forkhead box O3a (Foxo3a) and activating Bim protein
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.C112.403048
– volume: 586
  start-page: 4076
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib77
  article-title: SIRT5 deacetylates and activates urate oxidase in liver mitochondria of mice
  publication-title: FEBS Lett.
  doi: 10.1016/j.febslet.2012.10.009
– volume: 18
  start-page: 1229
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib10
  article-title: Regulation of serine-threonine kinase Akt activation by NAD(+)-Dependent deacetylase SIRT7
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2017.01.009
– volume: 2
  start-page: 1492
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib53
  article-title: The sirtuin 2 inhibitor AK-7 is neuroprotective in Huntington's disease mouse models
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2012.11.001
– volume: 107
  start-page: 137
  year: 2001
  ident: 10.1016/j.ejmech.2018.10.028_bib29
  article-title: Negative control of p53 by Sir2alpha promotes cell survival under stress
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00524-4
– volume: 30
  start-page: 179
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib90
  article-title: Sirtuin 6 modulates hypoxia-induced autophagy in nasal polyp fibroblasts via inhibition of glycolysis
  publication-title: Am. J. Rhinol. Allergy
  doi: 10.2500/ajra.2016.30.4282
– volume: 325
  start-page: 536
  year: 2008
  ident: 10.1016/j.ejmech.2018.10.028_bib149
  article-title: Isoflavones promote mitochondrial biogenesis
  publication-title: J. Pharmacol. Exp. Therapeut.
  doi: 10.1124/jpet.107.134882
– volume: 276
  start-page: 38837
  year: 2001
  ident: 10.1016/j.ejmech.2018.10.028_bib168
  article-title: Identification of a class of small molecule inhibitors of the sirtuin family of NAD-dependent deacetylases by phenotypic screening
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M106779200
– volume: 20
  start-page: 869
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib148
  article-title: Resveratrol attenuated smokeless tobacco-induced vascular and metabolic complications in ovariectomized rats
  publication-title: Menopause
  doi: 10.1097/GME.0b013e31827fdda4
– volume: 6
  start-page: 105
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib50
  article-title: SIRT2 regulates adipocyte differentiation through FoxO1 acetylation/deacetylation
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2007.07.003
– volume: 102
  start-page: 892
  year: 2005
  ident: 10.1016/j.ejmech.2018.10.028_bib178
  article-title: A potent small molecule inhibits polyglutamine aggregation in Huntington's disease neurons and suppresses neurodegeneration in vivo
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0408936102
– volume: 6
  start-page: 540
  year: 2011
  ident: 10.1016/j.ejmech.2018.10.028_bib177
  article-title: A brain-permeable small molecule reduces neuronal cholesterol by inhibiting activity of sirtuin 2 deacetylase
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb100376q
– volume: 2
  start-page: e784
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib7
  article-title: Interphase nucleo-cytoplasmic shuttling and localization of SIRT2 during mitosis
  publication-title: PloS One
  doi: 10.1371/journal.pone.0000784
– volume: 9
  start-page: 162
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib93
  article-title: SIRT6 protects against pathological damage caused by diet-induced obesity
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2009.00544.x
– volume: 80
  start-page: 191
  year: 2008
  ident: 10.1016/j.ejmech.2018.10.028_bib142
  article-title: Endothelium-specific overexpression of class III deacetylase SIRT1 decreases atherosclerosis in apolipoprotein E-deficient mice
  publication-title: Cardiovasc. Res.
  doi: 10.1093/cvr/cvn224
– volume: 38
  start-page: 864
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib41
  article-title: Sirtuin 1 modulates cellular responses to hypoxia by deacetylating hypoxia-inducible factor 1alpha
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2010.05.023
– volume: 4
  start-page: 125
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib28
  article-title: SIRT1 is a highly networked protein that mediates the adaptation to chronic physiological stress
  publication-title: Genes Cancer
  doi: 10.1177/1947601912474893
– volume: 280
  start-page: 40364
  year: 2005
  ident: 10.1016/j.ejmech.2018.10.028_bib46
  article-title: SIRT1 protects against microglia-dependent amyloid-beta toxicity through inhibiting NF-kappaB signaling
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M509329200
– volume: 57
  start-page: 1055
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib127
  article-title: Sirtuin7 oncogenic potential in human hepatocellular carcinoma and its regulation by the tumor suppressors MiR-125a-5p and MiR-125b
  publication-title: Hepatology
  doi: 10.1002/hep.26101
– volume: 383
  start-page: 174
  year: 2008
  ident: 10.1016/j.ejmech.2018.10.028_bib14
  article-title: Quantification of endogenous sirtuin metabolite O-acetyl-ADP-ribose
  publication-title: Anal. Biochem.
  doi: 10.1016/j.ab.2008.08.033
– volume: 1840
  start-page: 1295
  year: 2014
  ident: 10.1016/j.ejmech.2018.10.028_bib8
  article-title: Are sirtuin deacylase enzymes important modulators of mitochondrial energy metabolism?
  publication-title: Bba-Gen Subjects
  doi: 10.1016/j.bbagen.2013.08.016
– volume: 4
  start-page: 2327
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib18
  article-title: An acetylome peptide microarray reveals specificities and deacetylation substrates for all human sirtuin isoforms
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3327
– volume: 425
  start-page: 191
  year: 2003
  ident: 10.1016/j.ejmech.2018.10.028_bib140
  article-title: Small molecule activators of sirtuins extend Saccharomyces cerevisiae lifespan
  publication-title: Nature
  doi: 10.1038/nature01960
– volume: 104
  start-page: 2205
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib83
  article-title: Telomere dysfunction as a cause of genomic instability in Werner syndrome
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0609410104
– volume: 350
  start-page: 426
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib115
  article-title: Transcriptional control of tissue formation throughout root development
  publication-title: Science
  doi: 10.1126/science.aad1171
– volume: 60
  start-page: 4714
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib191
  article-title: Discovery and characterization of R/S-N-3-Cyanophenyl-N'-(6-tert-butoxycarbonylamino-3,4-dihydro-2,2-dimethyl-2H-1- benzopyran-4-yl)urea, a new histone deacetylase class III inhibitor exerting antiproliferative activity against cancer cell lines
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.7b00533
– volume: 60
  start-page: 661
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib73
  article-title: NADP(+)-IDH mutations promote hypersuccinylation that impairs mitochondria respiration and induces apoptosis resistance
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2015.10.017
– volume: 53
  start-page: 1193
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib54
  article-title: Sirtuin 2 inhibition improves cognitive performance and acts on amyloid-beta protein precursor processing in two Alzheimer's disease mouse models
  publication-title: J. Alzheim. Dis.
  doi: 10.3233/JAD-151135
– volume: 5
  start-page: 9841
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib129
  article-title: SIRT7 inactivation reverses metastatic phenotypes in epithelial and mesenchymal tumors
  publication-title: Sci. Rep.
  doi: 10.1038/srep09841
– volume: 126
  start-page: 941
  year: 2006
  ident: 10.1016/j.ejmech.2018.10.028_bib17
  article-title: SIRT4 inhibits glutamate dehydrogenase and opposes the effects of calorie restriction in pancreatic beta cells
  publication-title: Cell
  doi: 10.1016/j.cell.2006.06.057
– volume: 10
  start-page: 1257
  year: 1996
  ident: 10.1016/j.ejmech.2018.10.028_bib133
  article-title: The nicotinamide dinucleotide binding motif: a comparison of nucleotide binding proteins
  publication-title: Faseb. J.
  doi: 10.1096/fasebj.10.11.8836039
– volume: 22
  start-page: 2789
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib179
  article-title: 3-(N-arylsulfamoyl)benzamides, inhibitors of human sirtuin type 2 (SIRT2)
  publication-title: Bioorg. Med. Chem. Lett
  doi: 10.1016/j.bmcl.2012.02.089
– volume: 48
  start-page: 8045
  year: 2005
  ident: 10.1016/j.ejmech.2018.10.028_bib185
  article-title: Discovery of indoles as potent and selective inhibitors of the deacetylase SIRT1
  publication-title: J. Med. Chem.
  doi: 10.1021/jm050522v
– volume: 22
  start-page: 1060
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib122
  article-title: Mitochondrial sirtuins and their relationships with metabolic disease and cancer
  publication-title: Antioxidants Redox Signal.
  doi: 10.1089/ars.2014.6213
– volume: 360
  start-page: 194
  year: 2018
  ident: 10.1016/j.ejmech.2018.10.028_bib203
  article-title: Organocatalytic asymmetric synthesis of six-membered carbocycle -based spirocompounds
  publication-title: Adv. Synth. Catal.
  doi: 10.1002/adsc.201700927
– volume: 58
  start-page: 10
  year: 2008
  ident: 10.1016/j.ejmech.2018.10.028_bib34
  article-title: Paths of convergence: sirtuins in aging and neurodegeneration
  publication-title: Neuron
  doi: 10.1016/j.neuron.2008.03.015
– volume: 11
  start-page: 437
  year: 2003
  ident: 10.1016/j.ejmech.2018.10.028_bib57
  article-title: The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase
  publication-title: Mol. Cell
  doi: 10.1016/S1097-2765(03)00038-8
– volume: 23
  start-page: 2369
  year: 2004
  ident: 10.1016/j.ejmech.2018.10.028_bib112
  article-title: Modulation of NF-kappaB-dependent transcription and cell survival by the SIRT1 deacetylase
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600244
– volume: 56
  start-page: 963
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib136
  article-title: The 2.5 A crystal structure of the SIRT1 catalytic domain bound to nicotinamide adenine dinucleotide (NAD+) and an indole (EX527 analogue) reveals a novel mechanism of histone deacetylase inhibition
  publication-title: J. Med. Chem.
  doi: 10.1021/jm301431y
– volume: 286
  start-page: 14575
  year: 2011
  ident: 10.1016/j.ejmech.2018.10.028_bib21
  article-title: Structure and biochemical functions of SIRT6
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111.218990
– volume: 140
  start-page: 280
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib88
  article-title: The histone deacetylase Sirt6 regulates glucose homeostasis via Hif1alpha
  publication-title: Cell
  doi: 10.1016/j.cell.2009.12.041
– volume: 496
  start-page: 110
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib20
  article-title: SIRT6 regulates TNF-alpha secretion through hydrolysis of long-chain fatty acyl lysine
  publication-title: Nature
  doi: 10.1038/nature12038
– volume: 330
  start-page: 81
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib98
  article-title: Sirtuin 6 protects the heart from hypoxic damage
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2014.07.013
– volume: 29
  start-page: 767
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib194
  article-title: A SIRT2-selective inhibitor promotes c-myc oncoprotein degradation and exhibits broad anticancer activity
  publication-title: Cancer Cell
  doi: 10.1016/j.ccell.2016.04.005
– volume: 52
  start-page: 2673
  year: 2009
  ident: 10.1016/j.ejmech.2018.10.028_bib170
  article-title: Novel cambinol analogs as sirtuin inhibitors: synthesis, biological evaluation, and rationalization of activity
  publication-title: J. Med. Chem.
  doi: 10.1021/jm8014298
– volume: 14
  start-page: 718
  year: 2011
  ident: 10.1016/j.ejmech.2018.10.028_bib1
  article-title: Old enzymes, new tricks: sirtuins are NAD(+)-dependent de-acylases
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2011.10.006
– volume: 6
  start-page: 759
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib35
  article-title: SIRT1 transgenic mice show phenotypes resembling calorie restriction
  publication-title: Aging Cell
  doi: 10.1111/j.1474-9726.2007.00335.x
– volume: 441
  start-page: 191
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib75
  article-title: SIRT5 desuccinylates and activates SOD1 to eliminate ROS
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2013.10.033
– volume: 56
  start-page: 6681
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib197
  article-title: Screen of pseudopeptidic inhibitors of human sirtuins 1-3: two lead compounds with antiproliferative effects in cancer cells
  publication-title: J. Med. Chem.
  doi: 10.1021/jm400438k
– volume: 44
  start-page: 668
  year: 2014
  ident: 10.1016/j.ejmech.2018.10.028_bib59
  article-title: Exercise mitigates diclofenac-induced liver mitochondrial dysfunction
  publication-title: Eur. J. Clin. Invest.
  doi: 10.1111/eci.12285
– volume: 13
  start-page: 2570
  year: 1999
  ident: 10.1016/j.ejmech.2018.10.028_bib23
  article-title: The SIR2/3/4 complex and SIR2 alone promote longevity in Saccharomyces cerevisiae by two different mechanisms
  publication-title: Genes Dev.
  doi: 10.1101/gad.13.19.2570
– volume: 285
  start-page: 31995
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib68
  article-title: SIRT4 regulates fatty acid oxidation and mitochondrial gene expression in liver and muscle cells
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M110.124164
– volume: 122
  start-page: 489
  year: 2009
  ident: 10.1016/j.ejmech.2018.10.028_bib102
  article-title: Involvement of SIRT7 in resumption of rDNA transcription at the exit from mitosis
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.042382
– volume: 107
  start-page: 149
  year: 2001
  ident: 10.1016/j.ejmech.2018.10.028_bib36
  article-title: hSIR2(SIRT1) functions as an NAD-dependent p53 deacetylase
  publication-title: Cell
  doi: 10.1016/S0092-8674(01)00527-X
– volume: 11
  start-page: 959
  year: 2006
  ident: 10.1016/j.ejmech.2018.10.028_bib153
  article-title: SIRT1 modulating compounds from high-throughput screening as anti-inflammatory and insulin-sensitizing agents
  publication-title: J. Biomol. Screen
  doi: 10.1177/1087057106294710
– volume: 55
  start-page: 2252
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib202
  article-title: Structure-based development of an affinity probe
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201509843
– volume: 25
  start-page: 1939
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib37
  article-title: Antagonistic crosstalk between NF-kappaB and SIRT1 in the regulation of inflammation and metabolic disorders
  publication-title: Cell. Signal.
  doi: 10.1016/j.cellsig.2013.06.007
– volume: 13
  start-page: 454
  year: 2008
  ident: 10.1016/j.ejmech.2018.10.028_bib108
  article-title: Discovery, in vivo activity, and mechanism of action of a small-molecule p53 activator
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.03.004
– volume: 93
  start-page: 37
  year: 1979
  ident: 10.1016/j.ejmech.2018.10.028_bib3
  article-title: MAR1-a regulator of the HMa and HMalpha loci in Saccharomyces cerevisiae
  publication-title: Genetics
  doi: 10.1093/genetics/93.1.37
– volume: 487
  start-page: 114
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib126
  article-title: SIRT7 links H3K18 deacetylation to maintenance of oncogenic transformation
  publication-title: Nature
  doi: 10.1038/nature11043
– volume: 24
  start-page: 1021
  year: 2005
  ident: 10.1016/j.ejmech.2018.10.028_bib38
  article-title: Suppression of FOXO1 activity by FHL2 through SIRT1-mediated deacetylation
  publication-title: EMBO J.
  doi: 10.1038/sj.emboj.7600570
– volume: 472
  start-page: 425
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib61
  article-title: Deacetylation of MnSOD by PARP-regulated SIRT3 protects retinal capillary endothelial cells from hyperglycemia-induced damage
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2015.12.037
– volume: 289
  start-page: 5208
  year: 2014
  ident: 10.1016/j.ejmech.2018.10.028_bib193
  article-title: A novel sirtuin 2 (SIRT2) inhibitor with p53-dependent pro-apoptotic activity in non-small cell lung cancer
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M113.487736
– volume: 1
  start-page: 109
  year: 2009
  ident: 10.1016/j.ejmech.2018.10.028_bib87
  article-title: SIRT6 stabilizes DNA-dependent protein kinase at chromatin for DNA double-strand break repair
  publication-title: Aging (N Y)
– volume: 15
  start-page: 1009
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib95
  article-title: Calorie restriction-induced SIRT6 activation delays aging by suppressing NF-kappaB signaling
  publication-title: Cell Cycle
  doi: 10.1080/15384101.2016.1152427
– volume: 124
  start-page: 315
  year: 2006
  ident: 10.1016/j.ejmech.2018.10.028_bib82
  article-title: Genomic instability and aging-like phenotype in the absence of mammalian SIRT6
  publication-title: Cell
  doi: 10.1016/j.cell.2005.11.044
– volume: 61
  start-page: 2460
  year: 2018
  ident: 10.1016/j.ejmech.2018.10.028_bib201
  article-title: Potent and selective inhibitors of human sirtuin 5
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.7b01648
– volume: 434
  start-page: 113
  year: 2005
  ident: 10.1016/j.ejmech.2018.10.028_bib40
  article-title: Nutrient control of glucose homeostasis through a complex of PGC-1alpha and SIRT1
  publication-title: Nature
  doi: 10.1038/nature03354
– volume: 60
  start-page: 2344
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib188
  article-title: Development of 1,2,4-oxadiazoles as potent and selective inhibitors of the human deacetylase sirtuin 2: structure-activity relationship, X-ray crystal structure, and anticancer activity
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.6b01609
– volume: 12
  start-page: 6226
  year: 2011
  ident: 10.1016/j.ejmech.2018.10.028_bib62
  article-title: Sirt3, mitochondrial ROS, ageing, and carcinogenesis
  publication-title: Int. J. Mol. Sci.
  doi: 10.3390/ijms12096226
– volume: 134
  start-page: 230
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib167
  article-title: Discovery of 2-((4,6-dimethylpyrimidin-2-yl)thio)-N-phenylacetamide derivatives as new potent and selective human sirtuin 2 inhibitors
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2017.04.010
– volume: 19
  start-page: 416
  year: 2011
  ident: 10.1016/j.ejmech.2018.10.028_bib58
  article-title: SIRT3 opposes reprogramming of cancer cell metabolism through HIF1alpha destabilization
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2011.02.014
– volume: 108
  start-page: 21069
  year: 2011
  ident: 10.1016/j.ejmech.2018.10.028_bib121
  article-title: Molecular basis for the differential use of glucose and glutamine in cell proliferation as revealed by synchronized HeLa cells
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.1117500108
– volume: 54
  start-page: 4717
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib120
  article-title: Mitochondrial permeability transition pore in inflammatory apoptosis of human conjunctival epithelial cells and T cells: effect of cyclosporin A
  publication-title: Invest. Ophthalmol. Vis. Sci.
  doi: 10.1167/iovs.13-11681
– volume: 182
  start-page: 136
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib134
  article-title: Crystal structure analysis of human Sirt2 and its ADP-ribose complex
  publication-title: J. Struct. Biol.
  doi: 10.1016/j.jsb.2013.02.012
– volume: 280
  start-page: 3451
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib9
  article-title: Intracellular distribution of human SIRT7 and mapping of the nuclear/nucleolar localization signal
  publication-title: FEBS J.
  doi: 10.1111/febs.12346
– volume: 3
  start-page: 1050
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib173
  article-title: Inhibitors of the NAD(+)-Dependent protein desuccinylase and demalonylase Sirt5
  publication-title: ACS Med. Chem. Lett.
  doi: 10.1021/ml3002709
– volume: 15
  start-page: 313
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib4
  article-title: A review of the sirtuin system, its clinical implications, and the potential role of dietary activators like resveratrol: part 2
  publication-title: Altern. Med. Rev.
– volume: 7
  start-page: 1346
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib130
  article-title: Downregulation of SIRT7 by 5-fluorouracil induces radiosensitivity in human colorectal cancer
  publication-title: Theranostics
  doi: 10.7150/thno.18804
– volume: 15
  start-page: 377
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib176
  article-title: Structural basis of inhibition of the human NAD+-dependent deacetylase SIRT5 by suramin
  publication-title: Structure
  doi: 10.1016/j.str.2007.02.002
– volume: 2017
  start-page: 1750306
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib152
  article-title: Regulation of sirtuin-mediated protein deacetylation by cardioprotective phytochemicals
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2017/1750306
– volume: 121
  start-page: 515
  year: 2005
  ident: 10.1016/j.ejmech.2018.10.028_bib13
  article-title: Assembly of the SIR complex and its regulation by O-acetyl-ADP-ribose, a product of NAD-dependent histone deacetylation
  publication-title: Cell
  doi: 10.1016/j.cell.2005.03.035
– volume: 17
  start-page: 41
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib119
  article-title: SIRT3 is a mitochondria-localized tumor suppressor required for maintenance of mitochondrial integrity and metabolism during stress
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2009.11.023
– volume: 6
  start-page: 6263
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib138
  article-title: Selective Sirt2 inhibition by ligand-induced rearrangement of the active site
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms7263
– volume: 387
  start-page: 784
  year: 2009
  ident: 10.1016/j.ejmech.2018.10.028_bib116
  article-title: Sirtuin 1 overexpression mice show a reference memory deficit, but not neuroprotection
  publication-title: Biochem. Biophys. Res. Commun.
  doi: 10.1016/j.bbrc.2009.07.119
– volume: 66
  start-page: 4368
  year: 2006
  ident: 10.1016/j.ejmech.2018.10.028_bib107
  article-title: Antitumor activity of a small-molecule inhibitor of human silent information regulator 2 enzymes
  publication-title: Cancer Res.
  doi: 10.1158/0008-5472.CAN-05-3617
– volume: 287
  start-page: 28307
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib137
  article-title: The bicyclic intermediate structure provides insights into the desuccinylation mechanism of human sirtuin 5 (SIRT5)
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M112.384511
– volume: 56
  start-page: 1007
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib156
  article-title: Structural basis of sirtuin 6 activation by synthetic small molecules
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201610082
– volume: 56
  start-page: 14836
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib195
  article-title: Mechanism-based inhibitors of the human sirtuin 5 deacylase: structure-activity relationship, biostructural, and kinetic insight
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201709050
– volume: 20
  start-page: 1256
  year: 2006
  ident: 10.1016/j.ejmech.2018.10.028_bib49
  article-title: SirT2 is a histone deacetylase with preference for histone H4 Lys 16 during mitosis
  publication-title: Genes Dev.
  doi: 10.1101/gad.1412706
– volume: 8
  start-page: 2664
  year: 2009
  ident: 10.1016/j.ejmech.2018.10.028_bib79
  article-title: Cell cycle-dependent deacetylation of telomeric histone H3 lysine K56 by human SIRT6
  publication-title: Cell Cycle
  doi: 10.4161/cc.8.16.9367
– volume: 452
  start-page: 492
  year: 2008
  ident: 10.1016/j.ejmech.2018.10.028_bib78
  article-title: SIRT6 is a histone H3 lysine 9 deacetylase that modulates telomeric chromatin
  publication-title: Nature
  doi: 10.1038/nature06736
– volume: 23
  start-page: 328
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib117
  article-title: Design, synthesis and structure-activity relationship studies of novel sirtuin 2 (SIRT2) inhibitors with a benzamide skeleton
  publication-title: Bioorg. Med. Chem.
  doi: 10.1016/j.bmc.2014.11.027
– volume: 27
  start-page: 639
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib56
  article-title: The tumor suppressor SirT2 regulates cell cycle progression and genome stability by modulating the mitotic deposition of H4K20 methylation
  publication-title: Genes Dev.
  doi: 10.1101/gad.211342.112
– volume: 153
  start-page: 840
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib65
  article-title: The mTORC1 pathway stimulates glutamine metabolism and cell proliferation by repressing SIRT4
  publication-title: Cell
  doi: 10.1016/j.cell.2013.04.023
– volume: 59
  start-page: 201
  issue: Suppl 9
  year: 2008
  ident: 10.1016/j.ejmech.2018.10.028_bib125
  article-title: Sirt7-dependent inhibition of cell growth and proliferation might be instrumental to mediate tissue integrity during aging
  publication-title: J. Physiol. Pharmacol.
– volume: 36
  start-page: 51
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib47
  article-title: The Sirt1 activator SRT3025 provides atheroprotection in Apoe-/- mice by reducing hepatic Pcsk9 secretion and enhancing Ldlr expression
  publication-title: Eur. Heart J.
  doi: 10.1093/eurheartj/ehu095
– volume: 289
  start-page: 2126
  year: 2000
  ident: 10.1016/j.ejmech.2018.10.028_bib24
  article-title: Requirement of NAD and SIR2 for life-span extension by calorie restriction in Saccharomyces cerevisiae
  publication-title: Science
  doi: 10.1126/science.289.5487.2126
– volume: 11
  start-page: 253
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib72
  article-title: SIRT5 regulation of ammonia-induced autophagy and mitophagy
  publication-title: Autophagy
  doi: 10.1080/15548627.2015.1009778
– volume: 12
  start-page: 662
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib64
  article-title: Calorie restriction reduces oxidative stress by SIRT3-mediated SOD2 activation
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2010.11.015
– volume: 59
  start-page: 1599
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib166
  article-title: Aminothiazoles as potent and selective Sirt2 inhibitors: a structure-activity relationship study
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b01517
– volume: 13
  start-page: 73
  year: 2014
  ident: 10.1016/j.ejmech.2018.10.028_bib100
  article-title: Sirtuin 7 plays a role in ribosome biogenesis and protein synthesis
  publication-title: Mol. Cell. Proteomics
  doi: 10.1074/mcp.M113.031377
– volume: 54
  start-page: 3037
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib139
  article-title: Kinetic and structural basis for acyl-group selectivity and NAD(+) dependence in sirtuin-catalyzed deacylation
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.5b00150
– volume: 113
  start-page: 492
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib66
  article-title: Tumour-suppressive function of SIRT4 in human colorectal cancer
  publication-title: Br. J. Canc.
  doi: 10.1038/bjc.2015.226
– volume: 339
  start-page: 1216
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib145
  article-title: Evidence for a common mechanism of SIRT1 regulation by allosteric activators
  publication-title: Science
  doi: 10.1126/science.1231097
– volume: 23
  start-page: 450
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib69
  article-title: SIRT4 has tumor-suppressive activity and regulates the cellular metabolic response to DNA damage by inhibiting mitochondrial glutamine metabolism
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2013.02.024
– volume: 17
  start-page: 545
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib85
  article-title: The histone deacetylase SIRT6 controls embryonic stem cell fate via TET-mediated production of 5-hydroxymethylcytosine
  publication-title: Nat. Cell Biol.
  doi: 10.1038/ncb3147
– volume: 277
  start-page: 45099
  year: 2002
  ident: 10.1016/j.ejmech.2018.10.028_bib15
  article-title: Inhibition of silencing and accelerated aging by nicotinamide, a putative negative regulator of yeast sir2 and human SIRT1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M205670200
– volume: 35
  start-page: 1488
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib105
  article-title: SIRT7 promotes genome integrity and modulates non-homologous end joining DNA repair
  publication-title: EMBO J.
  doi: 10.15252/embj.201593499
– volume: 59
  start-page: 71
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib158
  article-title: A sirtuin activator and an anti-inflammatory molecule-multifaceted roles of adjudin and its potential applications for aging-related diseases
  publication-title: Semin. Cell Dev. Biol.
  doi: 10.1016/j.semcdb.2016.07.020
– volume: 2
  start-page: 914
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib60
  article-title: Regulation of the mPTP by SIRT3-mediated deacetylation of CypD at lysine 166 suppresses age-related cardiac hypertrophy
  publication-title: Aging (N Y)
– volume: 8
  start-page: 347
  year: 2008
  ident: 10.1016/j.ejmech.2018.10.028_bib154
  article-title: Specific SIRT1 activation mimics low energy levels and protects against diet-induced metabolic disorders by enhancing fat oxidation
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2008.08.017
– volume: 8
  start-page: 6400
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib165
  article-title: Potent mechanism-based sirtuin-2-selective inhibition by an in situ-generated occupant of the substrate-binding site, “selectivity pocket” and NAD(+)-binding site
  publication-title: Chem. Sci.
  doi: 10.1039/C7SC02738A
– volume: 123
  start-page: 4251
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib48
  article-title: SIRT2 regulates NF-kappaB dependent gene expression through deacetylation of p65 Lys310
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.073783
– volume: 29
  start-page: 1316
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib146
  article-title: Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol
  publication-title: Genes Dev.
  doi: 10.1101/gad.265462.115
– volume: 324
  start-page: 1289
  year: 2009
  ident: 10.1016/j.ejmech.2018.10.028_bib42
  article-title: Regulation of hypoxia-inducible factor 2alpha signaling by the stress-responsive deacetylase sirtuin 1
  publication-title: Science
  doi: 10.1126/science.1169956
– volume: 281
  start-page: 215
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib123
  article-title: Protective role of SIRT5 against motor deficit and dopaminergic degeneration in MPTP-induced mice model of Parkinson's disease
  publication-title: Behav. Brain Res.
  doi: 10.1016/j.bbr.2014.12.035
– volume: 8
  start-page: 621
  year: 2001
  ident: 10.1016/j.ejmech.2018.10.028_bib132
  article-title: Structure of the histone deacetylase SIRT2
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/89668
– volume: 277
  start-page: 12632
  year: 2002
  ident: 10.1016/j.ejmech.2018.10.028_bib12
  article-title: Conserved enzymatic production and biological effect of O-acetyl-ADP-ribose by silent information regulator 2-like NAD+-dependent deacetylases
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M111830200
– volume: 5
  start-page: 8529
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib22
  article-title: Efficient demyristoylase activity of SIRT2 revealed by kinetic and structural studies
  publication-title: Sci. Rep.
  doi: 10.1038/srep08529
– volume: 48
  start-page: 900
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib91
  article-title: The deacetylase Sirt6 activates the acetyltransferase GCN5 and suppresses hepatic gluconeogenesis
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2012.09.030
– volume: 36
  start-page: 3051
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib131
  article-title: MicroRNA-3666-induced suppression of SIRT7 inhibits the growth of non-small cell lung cancer cells
  publication-title: Oncol. Rep.
  doi: 10.3892/or.2016.5063
– volume: 57
  start-page: 669
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib186
  article-title: Discovery of new SIRT2 inhibitors by utilizing a consensus docking/scoring strategy and structure-activity relationship analysis
  publication-title: J. Chem. Inf. Model.
  doi: 10.1021/acs.jcim.6b00714
– volume: 18
  start-page: 920
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib74
  article-title: SIRT5 regulates the mitochondrial lysine succinylome and metabolic networks
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2013.11.013
– volume: 590
  start-page: 1123
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib104
  article-title: miR-152 induces human dental pulp stem cell senescence by inhibiting SIRT7 expression
  publication-title: FEBS Lett.
  doi: 10.1002/1873-3468.12138
– volume: 57
  start-page: 8340
  year: 2014
  ident: 10.1016/j.ejmech.2018.10.028_bib161
  article-title: Discovery of potent and selective sirtuin 2 (SIRT2) inhibitors using a fragment-based approach
  publication-title: J. Med. Chem.
  doi: 10.1021/jm500777s
– volume: 410
  start-page: 227
  year: 2001
  ident: 10.1016/j.ejmech.2018.10.028_bib25
  article-title: Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans
  publication-title: Nature
  doi: 10.1038/35065638
– volume: 67
  start-page: 1068
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib97
  article-title: Targeting aberrant cancer metabolism - the role of sirtuins
  publication-title: Pharmacol. Rep.
  doi: 10.1016/j.pharep.2015.03.021
– volume: 10
  start-page: 69
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib189
  article-title: The discovery of a highly selective 5,6,7,8-tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidin-4(3H)-one SIRT2 inhibitor that is neuroprotective in an in vitro Parkinson's disease model
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.201402431
– volume: 22
  start-page: 345
  year: 2014
  ident: 10.1016/j.ejmech.2018.10.028_bib5
  article-title: Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change
  publication-title: Structure
  doi: 10.1016/j.str.2013.12.001
– volume: 7
  start-page: 10734
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib101
  article-title: SIRT7-dependent deacetylation of the U3-55k protein controls pre-rRNA processing
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms10734
– volume: 75
  start-page: 1332
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib150
  article-title: Terpenylated coumarins as SIRT1 activators isolated from Ailanthus altissima
  publication-title: J. Nat. Prod.
  doi: 10.1021/np300258u
– volume: 115
  start-page: 2350
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib2
  article-title: Sirtuins in epigenetic regulation
  publication-title: Chem. Rev.
  doi: 10.1021/cr500457h
– volume: 3
  start-page: 373
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib51
  article-title: The Discovery of novel 10,11-dihydro-5H-dibenz[b,f]azepine SIRT2 inhibitors
  publication-title: Medchemcomm
  doi: 10.1039/c2md00290f
– volume: 3
  start-page: 1965
  year: 2008
  ident: 10.1016/j.ejmech.2018.10.028_bib172
  article-title: Thiobarbiturates as sirtuin inhibitors: virtual screening, free-energy calculations, and biological testing
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.200800104
– volume: 332
  start-page: 1443
  year: 2011
  ident: 10.1016/j.ejmech.2018.10.028_bib80
  article-title: SIRT6 promotes DNA repair under stress by activating PARP1
  publication-title: Science
  doi: 10.1126/science.1202723
– volume: 55
  start-page: 5760
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib163
  article-title: Design, synthesis, and biological activity of a novel series of human sirtuin-2-selective inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/jm3002108
– volume: 282
  start-page: 6823
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib6
  article-title: Nucleocytoplasmic shuttling of the NAD+-dependent histone deacetylase SIRT1
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M609554200
– volume: 29
  start-page: 77
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib67
  article-title: Upregulated INHBA expression is associated with poor survival in gastric cancer
  publication-title: Med. Oncol.
  doi: 10.1007/s12032-010-9766-y
– volume: 59
  start-page: 2928
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib162
  article-title: 5-((3-Amidobenzyl)oxy)nicotinamides as Sirtuin 2 Inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/acs.jmedchem.5b01376
– volume: 3
  year: 2008
  ident: 10.1016/j.ejmech.2018.10.028_bib33
  article-title: The SIRT1 deacetylase suppresses intestinal tumorigenesis and colon cancer growth
  publication-title: PloS One
  doi: 10.1371/journal.pone.0002020
– volume: 57
  start-page: 9870
  year: 2014
  ident: 10.1016/j.ejmech.2018.10.028_bib192
  article-title: Chroman-4-one- and chromone-based sirtuin 2 inhibitors with antiproliferative properties in cancer cells
  publication-title: J. Med. Chem.
  doi: 10.1021/jm500930h
– volume: 303
  start-page: 2011
  year: 2004
  ident: 10.1016/j.ejmech.2018.10.028_bib39
  article-title: Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase
  publication-title: Science
  doi: 10.1126/science.1094637
– volume: 44
  start-page: 3629
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib11
  article-title: Dicer interacts with SIRT7 and regulates H3K18 deacetylation in response to DNA damaging agents
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1504
– volume: 3
  start-page: 852
  year: 2011
  ident: 10.1016/j.ejmech.2018.10.028_bib187
  article-title: Structure-based development of novel sirtuin inhibitors
  publication-title: Aging (N Y)
– volume: 50
  start-page: 686
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib70
  article-title: SIRT4 coordinates the balance between lipid synthesis and catabolism by repressing malonyl CoA decarboxylase
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.05.012
– volume: 32
  start-page: 124
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib114
  article-title: SIRT1 protects against alpha-synuclein aggregation by activating molecular chaperones
  publication-title: J. Neurosci.
  doi: 10.1523/JNEUROSCI.3442-11.2012
– volume: 5
  start-page: 8181
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib157
  article-title: Adjudin protects rodent cochlear hair cells against gentamicin ototoxicity via the SIRT3-ROS pathway
  publication-title: Sci. Rep.
  doi: 10.1038/srep08181
– volume: 18
  start-page: 514
  year: 2009
  ident: 10.1016/j.ejmech.2018.10.028_bib118
  article-title: Biochemical characterization, localization, and tissue distribution of the longer form of mouse SIRT3
  publication-title: Protein Sci.
  doi: 10.1002/pro.50
– volume: 120
  start-page: 713
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib84
  article-title: WRN at telomeres: implications for aging and cancer
  publication-title: J. Cell Sci.
  doi: 10.1242/jcs.03397
– volume: 143
  start-page: 802
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib63
  article-title: Sirt3 mediates reduction of oxidative damage and prevention of age-related hearing loss under caloric restriction
  publication-title: Cell
  doi: 10.1016/j.cell.2010.10.002
– volume: 57
  start-page: 3283
  year: 2014
  ident: 10.1016/j.ejmech.2018.10.028_bib171
  article-title: Development of pyrazolone and isoxazol-5-one cambinol analogues as sirtuin inhibitors
  publication-title: J. Med. Chem.
  doi: 10.1021/jm4018064
– volume: 317
  start-page: 516
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib147
  article-title: Sirtuin 2 inhibitors rescue alpha-synuclein-mediated toxicity in models of Parkinson's disease
  publication-title: Science
  doi: 10.1126/science.1143780
– volume: 12
  start-page: 224
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib92
  article-title: Hepatic-specific disruption of SIRT6 in mice results in fatty liver formation due to enhanced glycolysis and triglyceride synthesis
  publication-title: Cell Metabol.
  doi: 10.1016/j.cmet.2010.06.009
– volume: 5
  start-page: 140
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib183
  article-title: Bisnaphthalimidopropyl derivatives as inhibitors of Leishmania SIR2 related protein 1
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.200900367
– volume: 51
  start-page: 3423
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib199
  article-title: Discovery of macrocyclic peptides armed with a mechanism-based warhead: isoform-selective inhibition of human deacetylase SIRT2
  publication-title: Angew Chem. Int. Ed. Engl.
  doi: 10.1002/anie.201108118
– volume: 2
  start-page: 1419
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib175
  article-title: Structure-activity studies on suramin analogues as inhibitors of NAD+-dependent histone deacetylases (sirtuins)
  publication-title: ChemMedChem
  doi: 10.1002/cmdc.200700003
– volume: 112
  start-page: 287
  year: 2017
  ident: 10.1016/j.ejmech.2018.10.028_bib155
  article-title: A small molecule activator of SIRT3 promotes deacetylation and activation of manganese superoxide dismutase
  publication-title: Free Radic. Biol. Med.
  doi: 10.1016/j.freeradbiomed.2017.07.012
– volume: 52
  start-page: 303
  year: 2013
  ident: 10.1016/j.ejmech.2018.10.028_bib99
  article-title: Repression of RNA polymerase I upon stress is caused by inhibition of RNA-dependent deacetylation of PAF53 by SIRT7
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2013.10.010
– volume: 279
  start-page: 40122
  year: 2004
  ident: 10.1016/j.ejmech.2018.10.028_bib16
  article-title: Coenzyme specificity of Sir2 protein deacetylases: implications for physiological regulation
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M407484200
– volume: 464
  start-page: 504
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib94
  article-title: The genetics of ageing
  publication-title: Nature
  doi: 10.1038/nature08980
– volume: 14
  start-page: 312
  year: 2008
  ident: 10.1016/j.ejmech.2018.10.028_bib30
  article-title: Impaired DNA damage response, genome instability, and tumorigenesis in SIRT1 mutant mice
  publication-title: Cancer Cell
  doi: 10.1016/j.ccr.2008.09.001
– volume: 16
  start-page: 93
  year: 2004
  ident: 10.1016/j.ejmech.2018.10.028_bib44
  article-title: Human SirT1 interacts with histone H1 and promotes formation of facultative heterochromatin
  publication-title: Mol. Cell
  doi: 10.1016/j.molcel.2004.08.031
– volume: 134
  start-page: 1922
  year: 2012
  ident: 10.1016/j.ejmech.2018.10.028_bib196
  article-title: Thiosuccinyl peptides as Sirt5-specific inhibitors
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja2090417
– volume: 27
  start-page: 3511
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib110
  article-title: Interaction of a cyclin E fragment with Ku70 regulates Bax-mediated apoptosis
  publication-title: Mol. Cell Biol.
  doi: 10.1128/MCB.01448-06
– volume: 213
  start-page: 88
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib113
  article-title: Cytoplasm-localized SIRT1 enhances apoptosis
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.21091
– volume: 119
  start-page: 45
  year: 2016
  ident: 10.1016/j.ejmech.2018.10.028_bib106
  article-title: How much successful are the medicinal chemists in modulation of SIRT1: a critical review
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2016.04.063
– volume: 53
  start-page: 1383
  year: 2010
  ident: 10.1016/j.ejmech.2018.10.028_bib181
  article-title: Novel 3-arylideneindolin-2-ones as inhibitors of NAD+ -dependent histone deacetylases (sirtuins)
  publication-title: J. Med. Chem.
  doi: 10.1021/jm901055u
– volume: 10
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib111
  article-title: KAP1 deacetylation by SIRT1 promotes non-homologous end-joining repair
  publication-title: PloS One
– volume: 61
  start-page: 130
  year: 2015
  ident: 10.1016/j.ejmech.2018.10.028_bib124
  article-title: Mitochondrial sirtuins: emerging roles in metabolic regulations, energy homeostasis and diseases
  publication-title: Exp. Gerontol.
  doi: 10.1016/j.exger.2014.12.004
– volume: 104
  start-page: 14855
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib43
  article-title: SIRT1 promotes endothelium-dependent vascular relaxation by activating endothelial nitric oxide synthase
  publication-title: Proc. Natl. Acad. Sci. U. S. A.
  doi: 10.1073/pnas.0704329104
– volume: 21
  start-page: 2644
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib32
  article-title: SIRT1 controls endothelial angiogenic functions during vascular growth
  publication-title: Genes Dev.
  doi: 10.1101/gad.435107
– volume: 76
  start-page: 414
  year: 2014
  ident: 10.1016/j.ejmech.2018.10.028_bib180
  article-title: Development and characterization of 3-(benzylsulfonamido)benzamides as potent and selective SIRT2 inhibitors
  publication-title: Eur. J. Med. Chem.
  doi: 10.1016/j.ejmech.2014.02.003
– volume: 450
  start-page: 712
  year: 2007
  ident: 10.1016/j.ejmech.2018.10.028_bib141
  article-title: Small molecule activators of SIRT1 as therapeutics for the treatment of type 2 diabetes
  publication-title: Nature
  doi: 10.1038/nature06261
SSID ssj0005600
Score 2.6045184
SecondaryResourceType review_article
Snippet Sirtuin (Yeast Silent Information RegulatorsⅡ, Sir2) was first discovered in the 1970s. Because of its function by removing acetylated groups from histones in...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 48
SubjectTerms Animals
Enzyme Inhibitors - chemistry
Enzyme Inhibitors - pharmacology
Humans
Modulators
Molecular Structure
Protein structures
Sirtuin family
Sirtuins - antagonists & inhibitors
Sirtuins - chemistry
Sirtuins - metabolism
Small Molecule Libraries - chemistry
Small Molecule Libraries - pharmacology
Structure-Activity Relationship
Therapeutic potential
Title An overview of Sirtuins as potential therapeutic target: Structure, function and modulators
URI https://dx.doi.org/10.1016/j.ejmech.2018.10.028
https://www.ncbi.nlm.nih.gov/pubmed/30342425
https://www.proquest.com/docview/2123715652
Volume 161
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEB5ED3oRra_6YgXx1Ni8N_FWilIVRWgFwUPY7G6hRZPStAcv_nZnsolVUAQPOWSzyy4zu_PIznwDcCpjrjw3si2hUmn5QgordaW2dBCkTih1zFPKHb67D3uP_s1T8LQE3ToXhsIqK9lvZHoprauWdkXN9mQ0avdR-6D1gFI48uwoLl0g3-e0y8_fv4R5hCYNBTuT0-XX6XNljJcev-rySsKJzinGi2qy_6yefjM_SzV0tQHrlf3IOmaJm7CkswasduuybQ04ezBg1G8tNljkVhUtdsYeFjDVb1vw3MkYxW_S3QDLh6w_ms7mo6xgomCTfEZRRDjRl_wsZqLGL1i_xJydT3WLkVok1jKRKfaaKyoGlk-LbRhcXQ66PasqtWBJ9D9mVqx4gLRTwwgPMGHWhx7ZOng4NQEK4jfb1rZ2BJd-qjg-KkV_Nk5dpQKlvB1YzvJM7wFzh9IWXkCGJcqHoRZxyB3XddCy4cKPwiZ4NYETWcGQUzWMl6SONxsnhi0JsYVakS1NsD5HTQwMxx_9ec275Nt2SlBT_DHypGZ1gpyj6xOR6XxeJKTkOdIkcJuwa_bA51o8QlJE8bf_73kPYA3fYvN35xCWkZP6CO2dWXpcbuhjWOlc3_buPwBvJP9S
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3dSxtBEB8kebAvpVrbxlrdgviUa-5773wLQYlVg5AIgg_L3u4GEvQu5JIH_3tnbu-SFipCH-5lP9hlZnc-bmd-A3CqUq4DP3EdqTPlhFJJJ_OVcUwUZV6sTMozyh2-HcXD-_D3Q_SwA4MmF4bCKmvZb2V6Ja3rll5Nzd5iNuuNUfug9YBSOAncJCUXqE3oVFEL2v2r6-FoG-kR20wUHE9-V9hk0FVhXmb-bKpXCS_5RWFeVJb93xrqLQu00kSXn-BjbUKyvt3lHuyYfB92B03ltn04u7N41C9dNtmmV5VddsbutkjVL5_hsZ8zCuGk5wFWTNl4tlytZ3nJZMkWxYoCiXChP1K0mA0cP2fjCnZ2vTRdRpqRuMtkrtlzoakeWLEsD2ByeTEZDJ262oKj0AVZOanmSL1YTxO8wwRbHwdk7uD9NIQpiH2ua1zjSa7CTHP8dIYubZr5WkdaB1-glRe5-QbMnypXBhHZligipkamMfd830PjhsswiTsQNAQWqkYip4IYT6IJOZsLyxZBbKFWZEsHnM2shUXieGc8b3gn_jpRApXFOzN_NqwWyDl6QZG5KdalID3PkSaR34Gv9gxs9hIQmCJKwMP_XvcEdoeT2xtxczW6_g4fsCe1P3uOoIVcNT_Q_Fllx_XxfgUtxAIS
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=An+overview+of+Sirtuins+as+potential+therapeutic+target%3A+Structure%2C+function+and+modulators&rft.jtitle=European+journal+of+medicinal+chemistry&rft.au=Wang%2C+Yijie&rft.au=He%2C+Jun&rft.au=Liao%2C+Mengya&rft.au=Hu%2C+Mingxing&rft.date=2019-01-01&rft.issn=1768-3254&rft.eissn=1768-3254&rft.volume=161&rft.spage=48&rft_id=info:doi/10.1016%2Fj.ejmech.2018.10.028&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0223-5234&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0223-5234&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0223-5234&client=summon