Differential expression of MDGA1 in major depressive disorder

The identification of gene expression-based biomarkers for major depressive disorder (MDD) continues to be an important challenge. In order to identify candidate biomarkers and mechanisms, we apply statistical and machine learning feature selection to an RNA-Seq gene expression dataset of 78 unmedic...

Full description

Saved in:
Bibliographic Details
Published inBrain, behavior, & immunity. Health Vol. 26; p. 100534
Main Authors Li, Yijie (Jamie), Kresock, Elizabeth, Kuplicki, Rayus, Savitz, Jonathan, McKinney, Brett A.
Format Journal Article
LanguageEnglish
Published Elsevier Inc 01.12.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The identification of gene expression-based biomarkers for major depressive disorder (MDD) continues to be an important challenge. In order to identify candidate biomarkers and mechanisms, we apply statistical and machine learning feature selection to an RNA-Seq gene expression dataset of 78 unmedicated individuals with MDD and 79 healthy controls. We identify 49 genes by LASSO penalized logistic regression and 45 genes at the false discovery rate threshold 0.188. The MDGA1 gene has the lowest P-value (4.9e-5) and is expressed in the developing brain, involved in axon guidance, and associated with related mood disorders in previous studies of bipolar disorder (BD) and schizophrenia (SCZ). The expression of MDGA1 is associated with age and sex, but its association with MDD remains significant when adjusted for covariates. MDGA1 is in a co-expression cluster with another top gene, ATXN7L2 (ataxin 7 like 2), which was associated with MDD in a recent GWAS. The LASSO classification model of MDD includes MDGA1, and the model has a cross-validation accuracy of 79%. Another noteworthy top gene, IRF2BPL, is in a close co-expression cluster with MDGA1 and may be related to microglial inflammatory states in MDD. Future exploration of MDGA1 and its gene interactions may provide insights into mechanisms and heterogeneity of MDD. •We use penalized regression to select differentially expressed genes and characterize their relationships through clustering.•We identify MDGA1 as the most differentially expressed gene between MDD and healthy controls using RNA-Seq.•Previous studies have implicated MDGA1 in psychiatric disorders, such as schizophrenia and bipolar disorder, but not in MDD.•Different psychiatric disorders have some genetic associations in common due to shared neural pathways between disorders.•A top gene, IRF2BPL, in a close co-expression cluster with MDGA1 may be related to microglial inflammatory states in MDD.•Future investigation of interactions of MDGA1 and IRF2BPL may provide insights into mechanisms and heterogeneity of MDD.
AbstractList The identification of gene expression-based biomarkers for major depressive disorder (MDD) continues to be an important challenge. In order to identify candidate biomarkers and mechanisms, we apply statistical and machine learning feature selection to an RNA-Seq gene expression dataset of 78 unmedicated individuals with MDD and 79 healthy controls. We identify 49 genes by LASSO penalized logistic regression and 45 genes at the false discovery rate threshold 0.188. The MDGA1 gene has the lowest P-value (4.9e-5) and is expressed in the developing brain, involved in axon guidance, and associated with related mood disorders in previous studies of bipolar disorder (BD) and schizophrenia (SCZ). The expression of MDGA1 is associated with age and sex, but its association with MDD remains significant when adjusted for covariates. MDGA1 is in a co-expression cluster with another top gene, ATXN7L2 (ataxin 7 like 2), which was associated with MDD in a recent GWAS. The LASSO classification model of MDD includes MDGA1, and the model has a cross-validation accuracy of 79%. Another noteworthy top gene, IRF2BPL, is in a close co-expression cluster with MDGA1 and may be related to microglial inflammatory states in MDD. Future exploration of MDGA1 and its gene interactions may provide insights into mechanisms and heterogeneity of MDD. •We use penalized regression to select differentially expressed genes and characterize their relationships through clustering.•We identify MDGA1 as the most differentially expressed gene between MDD and healthy controls using RNA-Seq.•Previous studies have implicated MDGA1 in psychiatric disorders, such as schizophrenia and bipolar disorder, but not in MDD.•Different psychiatric disorders have some genetic associations in common due to shared neural pathways between disorders.•A top gene, IRF2BPL, in a close co-expression cluster with MDGA1 may be related to microglial inflammatory states in MDD.•Future investigation of interactions of MDGA1 and IRF2BPL may provide insights into mechanisms and heterogeneity of MDD.
The identification of gene expression-based biomarkers for major depressive disorder (MDD) continues to be an important challenge. In order to identify candidate biomarkers and mechanisms, we apply statistical and machine learning feature selection to an RNA-Seq gene expression dataset of 78 unmedicated individuals with MDD and 79 healthy controls. We identify 49 genes by LASSO penalized logistic regression and 45 genes at the false discovery rate threshold 0.188. The MDGA1 gene has the lowest P-value (4.9e-5) and is expressed in the developing brain, involved in axon guidance, and associated with related mood disorders in previous studies of bipolar disorder (BD) and schizophrenia (SCZ). The expression of MDGA1 is associated with age and sex, but its association with MDD remains significant when adjusted for covariates. MDGA1 is in a co-expression cluster with another top gene, ATXN7L2 (ataxin 7 like 2), which was associated with MDD in a recent GWAS. The LASSO classification model of MDD includes MDGA1, and the model has a cross-validation accuracy of 79%. Another noteworthy top gene, IRF2BPL, is in a close co-expression cluster with MDGA1 and may be related to microglial inflammatory states in MDD. Future exploration of MDGA1 and its gene interactions may provide insights into mechanisms and heterogeneity of MDD.
The identification of gene expression-based biomarkers for major depressive disorder (MDD) continues to be an important challenge. In order to identify candidate biomarkers and mechanisms, we apply statistical and machine learning feature selection to an RNA-Seq gene expression dataset of 78 unmedicated individuals with MDD and 79 healthy controls. We identify 49 genes by LASSO penalized logistic regression and 45 genes at the false discovery rate threshold 0.188. The MDGA1 gene has the lowest P-value (4.9e-5) and is expressed in the developing brain, involved in axon guidance, and associated with related mood disorders in previous studies of bipolar disorder (BD) and schizophrenia (SCZ). The expression of MDGA1 is associated with age and sex, but its association with MDD remains significant when adjusted for covariates. MDGA1 is in a co-expression cluster with another top gene, ATXN7L2 (ataxin 7 like 2), which was associated with MDD in a recent GWAS. The LASSO classification model of MDD includes MDGA1, and the model has a cross-validation accuracy of 79%. Another noteworthy top gene, IRF2BPL, is in a close co-expression cluster with MDGA1 and may be related to microglial inflammatory states in MDD. Future exploration of MDGA1 and its gene interactions may provide insights into mechanisms and heterogeneity of MDD. • We use penalized regression to select differentially expressed genes and characterize their relationships through clustering. • We identify MDGA1 as the most differentially expressed gene between MDD and healthy controls using RNA-Seq. • Previous studies have implicated MDGA1 in psychiatric disorders, such as schizophrenia and bipolar disorder, but not in MDD. • Different psychiatric disorders have some genetic associations in common due to shared neural pathways between disorders. • A top gene, IRF2BPL, in a close co-expression cluster with MDGA1 may be related to microglial inflammatory states in MDD. • Future investigation of interactions of MDGA1 and IRF2BPL may provide insights into mechanisms and heterogeneity of MDD.
ArticleNumber 100534
Author Li, Yijie (Jamie)
Savitz, Jonathan
McKinney, Brett A.
Kuplicki, Rayus
Kresock, Elizabeth
Author_xml – sequence: 1
  givenname: Yijie (Jamie)
  surname: Li
  fullname: Li, Yijie (Jamie)
– sequence: 2
  givenname: Elizabeth
  surname: Kresock
  fullname: Kresock, Elizabeth
– sequence: 3
  givenname: Rayus
  surname: Kuplicki
  fullname: Kuplicki, Rayus
– sequence: 4
  givenname: Jonathan
  surname: Savitz
  fullname: Savitz, Jonathan
– sequence: 5
  givenname: Brett A.
  orcidid: 0000-0002-9494-8833
  surname: McKinney
  fullname: McKinney, Brett A.
  email: brett-mckinney@utulsa.edu
BookMark eNp9kUFv1DAQhS3UipbSP8ApRy67eMaOk0iAVLWlVGrFBc6WY49bR9l4sbMr-Pf1kgrRCyfbb-Z91sx7w46mOBFj74CvgYP6MKz7PjyukSMWgddCvmKnqJRaiVqqo3_uJ-w854FzjgJEI5vX7EQolE0r1Cn7dBW8p0TTHMxY0a9topxDnKroq_urmwuowlRtzBBT5Wgp7qlyIcfkKL1lx96Mmc6fzzP248v198uvq7tvN7eXF3crK7GdVx20phVITnaNFN5yqNFBRyihU14YVRvqW9U3kozH8gRvydeIjhCKJM7Y7cJ10Qx6m8LGpN86mqD_CDE9aJPmYEfSRJ0QwF3fkpUF0klLAMoo14BBwML6vLC2u35DzpbRkxlfQF9WpvCoH-Jed7USCmQBvH8GpPhzR3nWm5AtjaOZKO6yxgZrKcuKobTi0mpTzDmR__sNcH2IUQ_6EKM-xKiXGIvp42KistF9oKSzDTRZciGRncvI4X_2J8Z6pdQ
CitedBy_id crossref_primary_10_1007_s40618_024_02345_y
Cites_doi 10.1093/cercor/bhl064
10.1016/j.cell.2019.11.020
10.1002/ajmg.b.30726
10.1038/s41398-021-01506-4
10.1038/mp.2009.124
10.1002/wrna.1461
10.1016/j.schres.2010.11.002
10.1007/s11920-019-0997-0
10.1038/s41398-018-0234-3
10.1038/ng.3623
10.1093/bioinformatics/btaa024
10.1016/S0014-2999(00)00568-9
10.1038/mp.2013.161
10.1016/j.ajhg.2018.08.010
ContentType Journal Article
Copyright 2022 The Authors
2022 The Authors 2022
Copyright_xml – notice: 2022 The Authors
– notice: 2022 The Authors 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.bbih.2022.100534
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList


Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
Discipline Anatomy & Physiology
EISSN 2666-3546
EndPage 100534
ExternalDocumentID oai_doaj_org_article_ee93310db8ec4ef594ce116a6d71a212
10_1016_j_bbih_2022_100534
S2666354622001247
GroupedDBID .1-
0SF
1P~
6I.
AAEDW
AAFTH
AALRI
AAXUO
ACLIJ
AFCTW
AFRHN
AITUG
AJUYK
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
EBS
FDB
GROUPED_DOAJ
M41
M~E
NCXOZ
ROL
RPM
AAYXX
ADVLN
AFJKZ
CITATION
7X8
5PM
ID FETCH-LOGICAL-c428t-918a832ed49743fc0152d19e24196f3a65aeb86b74eaf2a651fcef522de21eaf3
IEDL.DBID RPM
ISSN 2666-3546
IngestDate Tue Oct 22 15:15:25 EDT 2024
Tue Sep 17 21:31:00 EDT 2024
Fri Oct 25 09:27:29 EDT 2024
Thu Sep 26 21:42:14 EDT 2024
Fri Feb 23 02:36:35 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-918a832ed49743fc0152d19e24196f3a65aeb86b74eaf2a651fcef522de21eaf3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0002-9494-8833
OpenAccessLink https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9563614/
PMID 36247836
PQID 2725443621
PQPubID 23479
PageCount 1
ParticipantIDs doaj_primary_oai_doaj_org_article_ee93310db8ec4ef594ce116a6d71a212
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9563614
proquest_miscellaneous_2725443621
crossref_primary_10_1016_j_bbih_2022_100534
elsevier_sciencedirect_doi_10_1016_j_bbih_2022_100534
PublicationCentury 2000
PublicationDate 2022-12-01
PublicationDateYYYYMMDD 2022-12-01
PublicationDate_xml – month: 12
  year: 2022
  text: 2022-12-01
  day: 01
PublicationDecade 2020
PublicationTitle Brain, behavior, & immunity. Health
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Li, Liu, Feng, Li, Zhao, Li, Hu, Zheng, Zeng, He (bib8) 2011; 125
Kahler, Djurovic, Kulle, Jonsson, Agartz, Hall, Opjordsmoen, Jakobsen, Hansen, Melle (bib4) 2008; 147B
Vawter (bib14) 2000; 405
Mostafavi, Battle, Zhu, Potash, Weissman, Shi, Beckman, Haudenschild, McCormick, Mei (bib10) 2014; 19
Hyde, Nagle, Tian, Chen, Paciga, Wendland, Tung, Hinds, Perlis, Winslow (bib3) 2016; 48
Cole, McColl, Shaw, Lynall, Cowen, de Boer, Drevets, Harrison, Pariante, Pointon (bib1) 2021; 11
Wanowska, Kubiak, Rosikiewicz, Makalowska, Szczesniak (bib15) 2018; 9
(bib2) 2019; 179
Takeuchi, Hamasaki, Litwack, O'Leary (bib13) 2007; 17
Le, Dawkins, McKinney (bib6) 2020; 36
Marcogliese, Shashi, Spillmann, Stong, Rosenfeld, Koenig, Martinez-Agosto, Herzog, Chen, Dickson (bib9) 2018; 103
Shi, Potash, Knowles, Weissman, Coryell, Scheftner, Lawson, DePaulo, Gejman, Sanders (bib12) 2011; 16
Le, Savitz, Suzuki, Misaki, Teague, White, Marino, Wiley, Gaffney, Drevets (bib5) 2018; 8
Rehm, Shield (bib11) 2019; 21
Vawter (10.1016/j.bbih.2022.100534_bib14) 2000; 405
Marcogliese (10.1016/j.bbih.2022.100534_bib9) 2018; 103
Takeuchi (10.1016/j.bbih.2022.100534_bib13) 2007; 17
Hyde (10.1016/j.bbih.2022.100534_bib3) 2016; 48
Kahler (10.1016/j.bbih.2022.100534_bib4) 2008; 147B
Mostafavi (10.1016/j.bbih.2022.100534_bib10) 2014; 19
Shi (10.1016/j.bbih.2022.100534_bib12) 2011; 16
Cole (10.1016/j.bbih.2022.100534_bib1) 2021; 11
Wanowska (10.1016/j.bbih.2022.100534_bib15) 2018; 9
Le (10.1016/j.bbih.2022.100534_bib5) 2018; 8
Li (10.1016/j.bbih.2022.100534_bib8) 2011; 125
Rehm (10.1016/j.bbih.2022.100534_bib11) 2019; 21
(10.1016/j.bbih.2022.100534_bib2) 2019; 179
Le (10.1016/j.bbih.2022.100534_bib6) 2020; 36
References_xml – volume: 21
  start-page: 10
  year: 2019
  ident: bib11
  article-title: Global burden of disease and the impact of mental and addictive disorders
  publication-title: Curr. Psychiatr. Rep.
  contributor:
    fullname: Shield
– volume: 103
  start-page: 456
  year: 2018
  ident: bib9
  article-title: IRF2BPL is associated with neurological phenotypes
  publication-title: Am. J. Hum. Genet.
  contributor:
    fullname: Dickson
– volume: 17
  start-page: 1531
  year: 2007
  end-page: 1541
  ident: bib13
  article-title: Novel IgCAM, MDGA1, expressed in unique cortical area- and layer-specific patterns and transiently by distinct forebrain populations of Cajal-Retzius neurons
  publication-title: Cerebr. Cortex
  contributor:
    fullname: O'Leary
– volume: 8
  start-page: 180
  year: 2018
  ident: bib5
  article-title: Identification and replication of RNA-Seq gene network modules associated with depression severity
  publication-title: Transl. Psychiatry
  contributor:
    fullname: Drevets
– volume: 147B
  start-page: 1089
  year: 2008
  end-page: 1100
  ident: bib4
  article-title: Association analysis of schizophrenia on 18 genes involved in neuronal migration: MDGA1 as a new susceptibility gene
  publication-title: Am J Med Genet B Neuropsychiatr Genet
  contributor:
    fullname: Melle
– volume: 19
  start-page: 1267
  year: 2014
  end-page: 1274
  ident: bib10
  article-title: Type I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencing
  publication-title: Mol. Psychiatr.
  contributor:
    fullname: Mei
– volume: 405
  start-page: 385
  year: 2000
  end-page: 395
  ident: bib14
  article-title: Dysregulation of the neural cell adhesion molecule and neuropsychiatric disorders
  publication-title: Eur. J. Pharmacol.
  contributor:
    fullname: Vawter
– volume: 125
  start-page: 194
  year: 2011
  end-page: 200
  ident: bib8
  article-title: The MDGA1 gene confers risk to schizophrenia and bipolar disorder
  publication-title: Schizophr. Res.
  contributor:
    fullname: He
– volume: 48
  start-page: 1031
  year: 2016
  end-page: 1036
  ident: bib3
  article-title: Identification of 15 genetic loci associated with risk of major depression in individuals of European descent
  publication-title: Nat. Genet.
  contributor:
    fullname: Winslow
– volume: 11
  start-page: 404
  year: 2021
  ident: bib1
  article-title: No evidence for differential gene expression in major depressive disorder PBMCs, but robust evidence of elevated biological ageing
  publication-title: Transl. Psychiatry
  contributor:
    fullname: Pointon
– volume: 179
  start-page: 1469
  year: 2019
  end-page: 1482
  ident: bib2
  article-title: Electronic address pmhe, cross-disorder Group of the psychiatric Genomics C:
  publication-title: Cell
– volume: 9
  year: 2018
  ident: bib15
  article-title: Natural antisense transcripts in diseases: from modes of action to targeted therapies
  publication-title: Wiley Interdiscip Rev RNA
  contributor:
    fullname: Szczesniak
– volume: 36
  start-page: 2770
  year: 2020
  end-page: 2777
  ident: bib6
  article-title: Nearest-neighbor Projected-Distance Regression (NPDR) for detecting network interactions with adjustments for multiple tests and confounding
  publication-title: Bioinformatics
  contributor:
    fullname: McKinney
– volume: 16
  start-page: 193
  year: 2011
  end-page: 201
  ident: bib12
  article-title: Genome-wide association study of recurrent early-onset major depressive disorder
  publication-title: Mol. Psychiatr.
  contributor:
    fullname: Sanders
– volume: 17
  start-page: 1531
  issue: 7
  year: 2007
  ident: 10.1016/j.bbih.2022.100534_bib13
  article-title: Novel IgCAM, MDGA1, expressed in unique cortical area- and layer-specific patterns and transiently by distinct forebrain populations of Cajal-Retzius neurons
  publication-title: Cerebr. Cortex
  doi: 10.1093/cercor/bhl064
  contributor:
    fullname: Takeuchi
– volume: 179
  start-page: 1469
  issue: 7
  year: 2019
  ident: 10.1016/j.bbih.2022.100534_bib2
  article-title: Electronic address pmhe, cross-disorder Group of the psychiatric Genomics C: genomic relationships, novel loci, and pleiotropic mechanisms across eight psychiatric disorders
  publication-title: Cell
  doi: 10.1016/j.cell.2019.11.020
– volume: 147B
  start-page: 1089
  issue: 7
  year: 2008
  ident: 10.1016/j.bbih.2022.100534_bib4
  article-title: Association analysis of schizophrenia on 18 genes involved in neuronal migration: MDGA1 as a new susceptibility gene
  publication-title: Am J Med Genet B Neuropsychiatr Genet
  doi: 10.1002/ajmg.b.30726
  contributor:
    fullname: Kahler
– volume: 11
  start-page: 404
  issue: 1
  year: 2021
  ident: 10.1016/j.bbih.2022.100534_bib1
  article-title: No evidence for differential gene expression in major depressive disorder PBMCs, but robust evidence of elevated biological ageing
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-021-01506-4
  contributor:
    fullname: Cole
– volume: 16
  start-page: 193
  issue: 2
  year: 2011
  ident: 10.1016/j.bbih.2022.100534_bib12
  article-title: Genome-wide association study of recurrent early-onset major depressive disorder
  publication-title: Mol. Psychiatr.
  doi: 10.1038/mp.2009.124
  contributor:
    fullname: Shi
– volume: 9
  issue: 2
  year: 2018
  ident: 10.1016/j.bbih.2022.100534_bib15
  article-title: Natural antisense transcripts in diseases: from modes of action to targeted therapies
  publication-title: Wiley Interdiscip Rev RNA
  doi: 10.1002/wrna.1461
  contributor:
    fullname: Wanowska
– volume: 125
  start-page: 194
  issue: 2–3
  year: 2011
  ident: 10.1016/j.bbih.2022.100534_bib8
  article-title: The MDGA1 gene confers risk to schizophrenia and bipolar disorder
  publication-title: Schizophr. Res.
  doi: 10.1016/j.schres.2010.11.002
  contributor:
    fullname: Li
– volume: 21
  start-page: 10
  issue: 2
  year: 2019
  ident: 10.1016/j.bbih.2022.100534_bib11
  article-title: Global burden of disease and the impact of mental and addictive disorders
  publication-title: Curr. Psychiatr. Rep.
  doi: 10.1007/s11920-019-0997-0
  contributor:
    fullname: Rehm
– volume: 8
  start-page: 180
  issue: 1
  year: 2018
  ident: 10.1016/j.bbih.2022.100534_bib5
  article-title: Identification and replication of RNA-Seq gene network modules associated with depression severity
  publication-title: Transl. Psychiatry
  doi: 10.1038/s41398-018-0234-3
  contributor:
    fullname: Le
– volume: 48
  start-page: 1031
  issue: 9
  year: 2016
  ident: 10.1016/j.bbih.2022.100534_bib3
  article-title: Identification of 15 genetic loci associated with risk of major depression in individuals of European descent
  publication-title: Nat. Genet.
  doi: 10.1038/ng.3623
  contributor:
    fullname: Hyde
– volume: 36
  start-page: 2770
  issue: 9
  year: 2020
  ident: 10.1016/j.bbih.2022.100534_bib6
  article-title: Nearest-neighbor Projected-Distance Regression (NPDR) for detecting network interactions with adjustments for multiple tests and confounding
  publication-title: Bioinformatics
  doi: 10.1093/bioinformatics/btaa024
  contributor:
    fullname: Le
– volume: 405
  start-page: 385
  issue: 1–3
  year: 2000
  ident: 10.1016/j.bbih.2022.100534_bib14
  article-title: Dysregulation of the neural cell adhesion molecule and neuropsychiatric disorders
  publication-title: Eur. J. Pharmacol.
  doi: 10.1016/S0014-2999(00)00568-9
  contributor:
    fullname: Vawter
– volume: 19
  start-page: 1267
  issue: 12
  year: 2014
  ident: 10.1016/j.bbih.2022.100534_bib10
  article-title: Type I interferon signaling genes in recurrent major depression: increased expression detected by whole-blood RNA sequencing
  publication-title: Mol. Psychiatr.
  doi: 10.1038/mp.2013.161
  contributor:
    fullname: Mostafavi
– volume: 103
  start-page: 456
  issue: 3
  year: 2018
  ident: 10.1016/j.bbih.2022.100534_bib9
  article-title: IRF2BPL is associated with neurological phenotypes
  publication-title: Am. J. Hum. Genet.
  doi: 10.1016/j.ajhg.2018.08.010
  contributor:
    fullname: Marcogliese
SSID ssj0002313747
Score 2.276429
Snippet The identification of gene expression-based biomarkers for major depressive disorder (MDD) continues to be an important challenge. In order to identify...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Publisher
StartPage 100534
SubjectTerms Short Communication
SummonAdditionalLinks – databaseName: DOAJ Directory of Open Access Journals
  dbid: DOA
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8QwEA7iyYv4xPVFBPEixc2z7cHD6qqLoCcFbyFpprCLdmVdRf-9k6aV7UUvHpuWNP2m05lpvnwh5DiX4B2XkGQ2l4nUfZdYyCCxToNXIFL0qcC2uNejR3n7pJ4WtvoKnLAoDxyBOwPAkpv1vcugkFCqXBbAmLbap8xyFr--_XyhmJrUIi5MpPXuYhiAdCKU1M2KmUjucm4cZiI4DywBJWQnKtXi_Z3gtJB8dqmTC7Hoeo2sNkkkHcTBr5MlqDbI5qDCAvrli57QmtZZ_y_fJOfDZgsUdOVnCp8N8bWi05LeDW8GjI4r-mIn0xltWbEfQH0jyrlFHq-vHi5HSbNnQlJgITHHb1dm0UnBSywURFlgtOee5YCBOtelsFpZcJl2qQRbcjxkZYGocu6BM2wS22S5mlawQyiXTiHYWVhkJDFRy7LC932RWytKhUV1j5y2mJnXKI1hWs7YxASETUDYRIR75CLA-nNlkLWuG9DYpjG2-cvYPaJao5gmQ4iRH7sa_3rzo9aCBt0nzInYCqbvb4anQaMNozjrkbRj2s5Iu2cq7D0IcWNtKTC92f2PR9sjK2HAkSmzT5bns3c4wHxn7g7rV_sbujT9rQ
  priority: 102
  providerName: Directory of Open Access Journals
Title Differential expression of MDGA1 in major depressive disorder
URI https://dx.doi.org/10.1016/j.bbih.2022.100534
https://search.proquest.com/docview/2725443621
https://pubmed.ncbi.nlm.nih.gov/PMC9563614
https://doaj.org/article/ee93310db8ec4ef594ce116a6d71a212
Volume 26
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB61PXFBQEEspZWREBeUbh07rwOHpaVUSEUcqNSb5ccEsuo61bJF5d8zdhzYXDhwjPMajWc839ifxwCvG4nO5BKzWjcyk-WJyTTWmGlToitQVORTgW3xuby4kp-ui-sdKMa9MJG0b0137G9Wx777HrmVtys7H3li8y-Xp4TpBYWV-S7skoFupejLWL-FC8LIaYPMwOUypgsLD3keSAGFCIfx0MAtq6Ey8994FMv2T8LSFuyckia3otD5I3iY4CNbDGI-hh30T2B_4Sl1Xv1ib1gkdMaZ8n14d5YOPyEnvmF4nyivnvUtuzz7uOCs82yll_2ajXzYn8hcKsf5FK7OP3w9vcjSaQmZpRRiQ6NWrck90UlKEURrKc7njjdIIbopW6HLQqOpS1NJ1G1Ol7y12BL8cphzahLPYM_3Hp8Dy6UppMU6bC-SBNHq2roTZxutRVtQOj2Dt6PO1O1QFEONbLGlCspWQdlqUPYM3ge1_nkyFLSODf36m0rdqhAbQUjTmRqtJLEa-j_npS5dxTWF1xkUY6eohA2GmE-f6v7581djDypynLAaoj32dz9UXoXqbGQGfAbVpGsnkk7vkEXGEtzJAl_895sH8CBIORBjXsLeZn2HhwRvNuYoTgscRaP-DXFW_NQ
link.rule.ids 230,315,730,783,787,867,888,2109,27936,27937,53804,53806
linkProvider National Library of Medicine
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELZKOcClAgpiWyhGQlxQuuvYeR04bFvKAt2KQyv1Zvkxgay6TrXdIvj3jB0HNhcOHOM8PJrxeL6JP48JeVMJsDoVkJSqEonIJzpRUEKidA42A16gT3m2xXk-uxSfr7KrLZL1e2ECad_o5tBdLw9d8z1wK2-WZtzzxMZf58eI6TmGlfE9ch_9dSI2kvRFqODCOKLkuEWmY3Np3filhzT1tICM--N4cOoWRVeb-W9ECoX7B4FpA3gOaZMbcej0EdmJAJJOO0Efky1wT8ju1GHyvPxF39JA6Qz_ynfJ-5N4_Am68TWFn5H06mhb0_nJxymjjaNLtWhXtGfE_gBqY0HOp-Ty9MPF8SyJ5yUkBpOINc5bpUIHBSswSeC1wUifWlYBBukqr7nKMwW6zHUhQNUpXrLaQI0AzELKsIk_I9uudfCc0FToTBgo_QYjgSCtLI2dWFMpxesME-oRedfrTN50ZTFkzxdbSK9s6ZUtO2WPyJFX658nfUnr0NCuvsloWAlQccSaVpdgBIpVYf-M5Sq3BVMYYEck640iIzrooj5-qvln5697C0p0Hb8eohy0d7cyLXx9NhwGbESKgWkHkg7v4JgMRbjjGNz77zdfkQezi_mZPPt0_mWfPPQSdzSZF2R7vbqDlwh21vogDO3f73z_NQ
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwELagSIhLRSmIbaEYCXFB6a5jx0kOHJYuS3m06oFKvVl2PIGsus5qu0Xw7xk7DmwuHDjGedgaz3i-iT_PEPKqFGBNKiApdCkSIScm0VBAoo0EmwHP0aY82-Jcnl6KT1fZ1Vapr0Dar0xz7K6Xx675HriVq2U17nli44uzE8T0HN3KeGXr8V1yD212IrcC9UXI4sI4IuV4TKZjdBnT-O2HNPXUgIz7kjy4fIu8y8_81yuF5P0D57QFPofUyS1fNH9IdiOIpNNusHvkDrhHZH_qMIBe_qKvaaB1hv_l--TtLJZAQVO-pvAzEl8dbWt6NvswZbRxdKkX7Zr2rNgfQG1MyvmYXM7ffz05TWLNhKTCQGKDa1eh0UjBCgwUeF2ht08tKwEddSlrrmWmwRTS5AJ0neIlqyuoEYRZSBk28Sdkx7UOnhKaCpOJCgp_yEggUCuKyk5sVWrN6wyD6hF508tMrbrUGKrnjC2UF7bywladsEfknRfrnyd9WuvQ0K6_qTi5CqDkiDetKaASOKwS-2dMamlzptHJjkjWT4qKCKHz_Pip5p-dv-xnUKH5-D0R7aC9vVFp7nO0oRqwEckHUzsY6fAO6mVIxB318OC_33xB7l_M5urLx_PPh-SBH3DHlHlGdjbrW3iOeGdjjoJm_waY5gBX
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Differential+expression+of+MDGA1+in+major+depressive+disorder&rft.jtitle=Brain%2C+behavior%2C+%26+immunity.+Health&rft.au=Li%2C+Yijie+%28Jamie%29&rft.au=Kresock%2C+Elizabeth&rft.au=Kuplicki%2C+Rayus&rft.au=Savitz%2C+Jonathan&rft.date=2022-12-01&rft.pub=Elsevier&rft.eissn=2666-3546&rft.volume=26&rft_id=info:doi/10.1016%2Fj.bbih.2022.100534&rft_id=info%3Apmid%2F36247836&rft.externalDBID=PMC9563614
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2666-3546&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2666-3546&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2666-3546&client=summon