A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia
Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear an...
Saved in:
Published in | Neural networks Vol. 123; pp. 176 - 190 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.03.2020
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2019.12.006 |
Cover
Loading…
Abstract | Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear and nonstationary, multivariate representation of the underlying neural circuitry interactions. In this paper, a novel multi-modal Machine Learning (ML) based approach is proposed to integrate EEG engineered features for automatic classification of brain states. EEGs are acquired from neurological patients with Mild Cognitive Impairment (MCI) or Alzheimer’s disease (AD) and the aim is to discriminate Healthy Control (HC) subjects from patients. Specifically, in order to effectively cope with nonstationarities, 19-channels EEG signals are projected into the time–frequency (TF) domain by means of the Continuous Wavelet Transform (CWT) and a set of appropriate features (denoted as CWT features) are extracted from δ, θ, α1, α2, β EEG sub-bands. Furthermore, to exploit nonlinear phase-coupling information of EEG signals, higher order statistics (HOS) are extracted from the bispectrum (BiS) representation. BiS generates a second set of features (denoted as BiS features) which are also evaluated in the five EEG sub-bands. The CWT and BiS features are fed into a number of ML classifiers to perform both 2-way (AD vs. HC, AD vs. MCI, MCI vs. HC) and 3-way (AD vs. MCI vs. HC) classifications. As an experimental benchmark, a balanced EEG dataset that includes 63 AD, 63 MCI and 63 HC is analyzed. Comparative results show that when the concatenation of CWT and BiS features (denoted as multi-modal (CWT+BiS) features) is used as input, the Multi-Layer Perceptron (MLP) classifier outperforms all other models, specifically, the Autoencoder (AE), Logistic Regression (LR) and Support Vector Machine (SVM). Consequently, our proposed multi-modal ML scheme can be considered a viable alternative to state-of-the-art computationally intensive deep learning approaches. |
---|---|
AbstractList | Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear and nonstationary, multivariate representation of the underlying neural circuitry interactions. In this paper, a novel multi-modal Machine Learning (ML) based approach is proposed to integrate EEG engineered features for automatic classification of brain states. EEGs are acquired from neurological patients with Mild Cognitive Impairment (MCI) or Alzheimer's disease (AD) and the aim is to discriminate Healthy Control (HC) subjects from patients. Specifically, in order to effectively cope with nonstationarities, 19-channels EEG signals are projected into the time-frequency (TF) domain by means of the Continuous Wavelet Transform (CWT) and a set of appropriate features (denoted as CWT features) are extracted from δ, θ, α
, α
, β EEG sub-bands. Furthermore, to exploit nonlinear phase-coupling information of EEG signals, higher order statistics (HOS) are extracted from the bispectrum (BiS) representation. BiS generates a second set of features (denoted as BiS features) which are also evaluated in the five EEG sub-bands. The CWT and BiS features are fed into a number of ML classifiers to perform both 2-way (AD vs. HC, AD vs. MCI, MCI vs. HC) and 3-way (AD vs. MCI vs. HC) classifications. As an experimental benchmark, a balanced EEG dataset that includes 63 AD, 63 MCI and 63 HC is analyzed. Comparative results show that when the concatenation of CWT and BiS features (denoted as multi-modal (CWT+BiS) features) is used as input, the Multi-Layer Perceptron (MLP) classifier outperforms all other models, specifically, the Autoencoder (AE), Logistic Regression (LR) and Support Vector Machine (SVM). Consequently, our proposed multi-modal ML scheme can be considered a viable alternative to state-of-the-art computationally intensive deep learning approaches. Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear and nonstationary, multivariate representation of the underlying neural circuitry interactions. In this paper, a novel multi-modal Machine Learning (ML) based approach is proposed to integrate EEG engineered features for automatic classification of brain states. EEGs are acquired from neurological patients with Mild Cognitive Impairment (MCI) or Alzheimer's disease (AD) and the aim is to discriminate Healthy Control (HC) subjects from patients. Specifically, in order to effectively cope with nonstationarities, 19-channels EEG signals are projected into the time-frequency (TF) domain by means of the Continuous Wavelet Transform (CWT) and a set of appropriate features (denoted as CWT features) are extracted from δ, θ, α1, α2, β EEG sub-bands. Furthermore, to exploit nonlinear phase-coupling information of EEG signals, higher order statistics (HOS) are extracted from the bispectrum (BiS) representation. BiS generates a second set of features (denoted as BiS features) which are also evaluated in the five EEG sub-bands. The CWT and BiS features are fed into a number of ML classifiers to perform both 2-way (AD vs. HC, AD vs. MCI, MCI vs. HC) and 3-way (AD vs. MCI vs. HC) classifications. As an experimental benchmark, a balanced EEG dataset that includes 63 AD, 63 MCI and 63 HC is analyzed. Comparative results show that when the concatenation of CWT and BiS features (denoted as multi-modal (CWT+BiS) features) is used as input, the Multi-Layer Perceptron (MLP) classifier outperforms all other models, specifically, the Autoencoder (AE), Logistic Regression (LR) and Support Vector Machine (SVM). Consequently, our proposed multi-modal ML scheme can be considered a viable alternative to state-of-the-art computationally intensive deep learning approaches.Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear and nonstationary, multivariate representation of the underlying neural circuitry interactions. In this paper, a novel multi-modal Machine Learning (ML) based approach is proposed to integrate EEG engineered features for automatic classification of brain states. EEGs are acquired from neurological patients with Mild Cognitive Impairment (MCI) or Alzheimer's disease (AD) and the aim is to discriminate Healthy Control (HC) subjects from patients. Specifically, in order to effectively cope with nonstationarities, 19-channels EEG signals are projected into the time-frequency (TF) domain by means of the Continuous Wavelet Transform (CWT) and a set of appropriate features (denoted as CWT features) are extracted from δ, θ, α1, α2, β EEG sub-bands. Furthermore, to exploit nonlinear phase-coupling information of EEG signals, higher order statistics (HOS) are extracted from the bispectrum (BiS) representation. BiS generates a second set of features (denoted as BiS features) which are also evaluated in the five EEG sub-bands. The CWT and BiS features are fed into a number of ML classifiers to perform both 2-way (AD vs. HC, AD vs. MCI, MCI vs. HC) and 3-way (AD vs. MCI vs. HC) classifications. As an experimental benchmark, a balanced EEG dataset that includes 63 AD, 63 MCI and 63 HC is analyzed. Comparative results show that when the concatenation of CWT and BiS features (denoted as multi-modal (CWT+BiS) features) is used as input, the Multi-Layer Perceptron (MLP) classifier outperforms all other models, specifically, the Autoencoder (AE), Logistic Regression (LR) and Support Vector Machine (SVM). Consequently, our proposed multi-modal ML scheme can be considered a viable alternative to state-of-the-art computationally intensive deep learning approaches. Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear and nonstationary, multivariate representation of the underlying neural circuitry interactions. In this paper, a novel multi-modal Machine Learning (ML) based approach is proposed to integrate EEG engineered features for automatic classification of brain states. EEGs are acquired from neurological patients with Mild Cognitive Impairment (MCI) or Alzheimer’s disease (AD) and the aim is to discriminate Healthy Control (HC) subjects from patients. Specifically, in order to effectively cope with nonstationarities, 19-channels EEG signals are projected into the time–frequency (TF) domain by means of the Continuous Wavelet Transform (CWT) and a set of appropriate features (denoted as CWT features) are extracted from δ, θ, α1, α2, β EEG sub-bands. Furthermore, to exploit nonlinear phase-coupling information of EEG signals, higher order statistics (HOS) are extracted from the bispectrum (BiS) representation. BiS generates a second set of features (denoted as BiS features) which are also evaluated in the five EEG sub-bands. The CWT and BiS features are fed into a number of ML classifiers to perform both 2-way (AD vs. HC, AD vs. MCI, MCI vs. HC) and 3-way (AD vs. MCI vs. HC) classifications. As an experimental benchmark, a balanced EEG dataset that includes 63 AD, 63 MCI and 63 HC is analyzed. Comparative results show that when the concatenation of CWT and BiS features (denoted as multi-modal (CWT+BiS) features) is used as input, the Multi-Layer Perceptron (MLP) classifier outperforms all other models, specifically, the Autoencoder (AE), Logistic Regression (LR) and Support Vector Machine (SVM). Consequently, our proposed multi-modal ML scheme can be considered a viable alternative to state-of-the-art computationally intensive deep learning approaches. |
Author | Hussain, Amir Mammone, Nadia Morabito, Francesco C. Ieracitano, Cosimo |
Author_xml | – sequence: 1 givenname: Cosimo orcidid: 0000-0001-7890-2897 surname: Ieracitano fullname: Ieracitano, Cosimo email: cosimo.ieracitano@unirc.it organization: DICEAM, University Mediterranea of Reggio Calabria, Via Graziella, Feo di Vito, 89060 Reggio Calabria, Italy – sequence: 2 givenname: Nadia orcidid: 0000-0003-4962-3500 surname: Mammone fullname: Mammone, Nadia email: nadia.mammone@irccsme.it organization: IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo c/da Casazza, SS. 113 98124, Messina, Italy – sequence: 3 givenname: Amir orcidid: 0000-0002-8080-082X surname: Hussain fullname: Hussain, Amir email: a.hussain@napier.ac.uk organization: School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, Scotland, UK – sequence: 4 givenname: Francesco C. surname: Morabito fullname: Morabito, Francesco C. email: morabito@unirc.it organization: DICEAM, University Mediterranea of Reggio Calabria, Via Graziella, Feo di Vito, 89060 Reggio Calabria, Italy |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/31884180$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkU9vFSEUxYmpsa_Vb2AMSzczcmEeD1yYNM2zbdLEja4JA3eUlxl4AtPEby_1tRsXuuLf-Z1czrkgZzFFJOQtsB4YyA-HPuIasfacge6B94zJF2QDaqc7vlP8jGyY0qKTTLFzclHKgTWFGsQrci5AqQEU25B4RWN6wJku61xDtyRv2966HyEindHmGOJ3OtqCntrjMaf2RKeUqV1rWmwNjrrZlhKm4NopRZomut_f0IwuZd_gQkOkHheMNdjX5OVk54JvntZL8u3z_uv1bXf_5ebu-uq-cwNXtdMgBuk46FED56NQcgtSTiBRbFFv1XYU4ygHO2lrdbu1KMROedAOpXe7SVyS9yffNvHPFUs1SygO59lGTGsxXAgYuB6EatJ3T9J1XNCbYw6Lzb_Mc0ZN8PEkcDmVknEyLtQ_f63ZhtkAM4-FmIM5FWIeCzHATYu7wcNf8LP_f7BPJwxbSA8BsykuYHToQwu2Gp_Cvw1-A-NZp6I |
CitedBy_id | crossref_primary_10_1016_j_neunet_2023_12_009 crossref_primary_10_1016_j_nicl_2025_103760 crossref_primary_10_1038_s41598_024_77876_8 crossref_primary_10_3389_fnagi_2022_943436 crossref_primary_10_1109_TETCI_2022_3186180 crossref_primary_10_1016_j_bspc_2022_103740 crossref_primary_10_1016_j_bspc_2022_104312 crossref_primary_10_1016_j_cmpb_2024_108123 crossref_primary_10_1109_ACCESS_2022_3180725 crossref_primary_10_1109_ACCESS_2024_3351809 crossref_primary_10_1016_j_compbiomed_2023_106752 crossref_primary_10_1155_2021_6342226 crossref_primary_10_1007_s11571_025_10232_2 crossref_primary_10_1109_ACCESS_2020_3016981 crossref_primary_10_3389_frai_2022_1072801 crossref_primary_10_2174_1574893618666230706112826 crossref_primary_10_3390_s24248148 crossref_primary_10_1007_s00371_021_02354_5 crossref_primary_10_1088_2057_1976_acb942 crossref_primary_10_1016_j_cmpb_2022_106841 crossref_primary_10_1109_ACCESS_2022_3231446 crossref_primary_10_2147_NDT_S496307 crossref_primary_10_1109_ACCESS_2021_3083519 crossref_primary_10_1007_s12559_020_09765_x crossref_primary_10_1007_s42235_024_00636_x crossref_primary_10_1016_j_jelectrocard_2025_153899 crossref_primary_10_3233_JAD_201455 crossref_primary_10_1016_j_ijin_2023_03_004 crossref_primary_10_1155_2022_9935192 crossref_primary_10_1016_j_dsp_2024_104399 crossref_primary_10_1016_j_bspc_2022_103623 crossref_primary_10_1109_TNSRE_2020_3014951 crossref_primary_10_2147_NDT_S404528 crossref_primary_10_1016_j_heliyon_2024_e26365 crossref_primary_10_1088_1741_2552_ac05d8 crossref_primary_10_3390_app10165666 crossref_primary_10_1007_s00521_020_05588_x crossref_primary_10_1038_s41514_023_00129_x crossref_primary_10_1109_ACCESS_2021_3090474 crossref_primary_10_3390_s22166230 crossref_primary_10_1109_TCDS_2023_3254209 crossref_primary_10_3390_bios14040183 crossref_primary_10_1016_j_eswa_2024_125064 crossref_primary_10_1016_j_ijengsci_2020_103376 crossref_primary_10_1017_pcm_2022_10 crossref_primary_10_1142_S0129065721300023 crossref_primary_10_1038_s41598_024_55656_8 crossref_primary_10_1002_hsr2_70025 crossref_primary_10_3389_fnins_2021_667614 crossref_primary_10_1007_s12046_022_02015_w crossref_primary_10_1016_j_drudis_2025_104332 crossref_primary_10_1016_j_heliyon_2023_e21626 crossref_primary_10_1145_3543848 crossref_primary_10_1016_j_bspc_2021_103000 crossref_primary_10_1109_TIM_2023_3324669 crossref_primary_10_1016_j_bspc_2020_102223 crossref_primary_10_1109_TTS_2023_3239526 crossref_primary_10_3390_signals5030034 crossref_primary_10_1007_s13755_022_00186_8 crossref_primary_10_1007_s11571_024_10104_1 crossref_primary_10_1371_journal_pone_0277555 crossref_primary_10_3390_eng5030078 crossref_primary_10_1080_0954898X_2024_2406946 crossref_primary_10_1007_s10462_021_09986_y crossref_primary_10_1016_j_teler_2025_100189 crossref_primary_10_1016_j_arr_2023_102072 crossref_primary_10_1186_s13195_022_01115_3 crossref_primary_10_3390_s20247307 crossref_primary_10_1016_j_dajour_2023_100336 crossref_primary_10_1038_s41746_022_00689_4 crossref_primary_10_3390_s20092533 crossref_primary_10_1186_s13195_023_01181_1 crossref_primary_10_1007_s40846_022_00758_9 crossref_primary_10_3390_e22020140 crossref_primary_10_1016_j_jocn_2023_09_029 crossref_primary_10_3233_JAD_215467 crossref_primary_10_3389_fncom_2021_700467 crossref_primary_10_3390_app10196761 crossref_primary_10_1142_S0129065721500064 crossref_primary_10_1016_j_bbr_2024_115070 crossref_primary_10_1007_s13755_021_00139_7 crossref_primary_10_1109_TNSRE_2022_3230250 crossref_primary_10_1016_j_compbiomed_2024_109399 crossref_primary_10_3233_JAD_230525 crossref_primary_10_3390_make3040042 crossref_primary_10_1002_hbm_25994 crossref_primary_10_3389_fnhum_2023_1190203 crossref_primary_10_1002_brb3_3139 crossref_primary_10_1038_s41598_025_86449_2 crossref_primary_10_1016_j_neucom_2022_01_055 crossref_primary_10_3389_fpsyt_2024_1392158 crossref_primary_10_1007_s10548_025_01106_1 crossref_primary_10_1038_s41598_023_32664_8 crossref_primary_10_3390_e22070794 crossref_primary_10_1007_s12293_021_00345_6 crossref_primary_10_1016_j_bspc_2024_106895 crossref_primary_10_1177_15500594211063662 crossref_primary_10_3390_brainsci11040453 crossref_primary_10_1002_brb3_1902 crossref_primary_10_1155_2022_8187009 crossref_primary_10_1016_j_engappai_2025_110141 crossref_primary_10_1186_s40779_023_00502_7 crossref_primary_10_1016_j_procs_2021_05_007 crossref_primary_10_1016_j_compeleceng_2024_109796 crossref_primary_10_1016_j_neucom_2021_02_020 crossref_primary_10_1109_TNSRE_2022_3170943 crossref_primary_10_1109_TNSRE_2023_3265378 crossref_primary_10_1007_s13735_023_00271_y crossref_primary_10_1109_JBHI_2022_3172479 crossref_primary_10_3389_fnins_2024_1352129 crossref_primary_10_3390_brainsci13010021 crossref_primary_10_1016_j_future_2021_12_019 crossref_primary_10_1016_j_apacoust_2021_108078 crossref_primary_10_1007_s12559_020_09789_3 crossref_primary_10_1017_S0263574721000382 crossref_primary_10_1063_5_0082179 crossref_primary_10_1177_09544119241228912 crossref_primary_10_3390_s24206721 crossref_primary_10_1007_s00521_024_10207_0 crossref_primary_10_1007_s11571_024_10198_7 crossref_primary_10_1016_j_bspc_2020_102338 crossref_primary_10_1109_ACCESS_2020_2982852 crossref_primary_10_1002_cpe_7099 crossref_primary_10_1007_s12559_021_09910_0 crossref_primary_10_2147_JMDH_S509747 crossref_primary_10_1016_j_irbm_2020_06_008 crossref_primary_10_1016_j_jneumeth_2021_109353 crossref_primary_10_3389_fpsyt_2021_707581 crossref_primary_10_1080_13682199_2023_2172524 crossref_primary_10_1007_s41870_022_01095_5 crossref_primary_10_1016_j_procir_2020_04_039 crossref_primary_10_1016_j_bspc_2022_104092 crossref_primary_10_1016_j_neuroimage_2023_120054 crossref_primary_10_1016_j_ipm_2022_103113 crossref_primary_10_1016_j_neucom_2022_08_024 crossref_primary_10_1109_ACCESS_2022_3198988 crossref_primary_10_3389_fnbot_2020_00025 crossref_primary_10_1007_s12559_021_09940_8 crossref_primary_10_3390_info14090513 crossref_primary_10_1016_j_bspc_2024_106234 crossref_primary_10_3390_s21020637 crossref_primary_10_1109_TIM_2022_3193407 crossref_primary_10_3390_math9060606 crossref_primary_10_1016_j_compbiomed_2023_106857 crossref_primary_10_2139_ssrn_4158273 crossref_primary_10_1016_j_compbiomed_2023_107701 crossref_primary_10_1021_acsapm_3c01368 crossref_primary_10_1177_15500594241227485 crossref_primary_10_1016_j_clineuro_2020_106446 crossref_primary_10_3389_fninf_2022_924547 crossref_primary_10_1016_j_neunet_2024_106792 crossref_primary_10_1097_YCO_0000000000000768 crossref_primary_10_3390_a16020077 crossref_primary_10_1016_j_engappai_2023_106033 crossref_primary_10_3390_pr8050544 crossref_primary_10_3390_app10217677 crossref_primary_10_1155_2021_1302989 crossref_primary_10_3389_frsip_2022_936790 crossref_primary_10_3390_electronics11162601 crossref_primary_10_1016_j_bspc_2020_102316 crossref_primary_10_1142_S0129065723500211 crossref_primary_10_3934_mbe_2023382 crossref_primary_10_1177_01423312231217767 crossref_primary_10_1007_s00521_020_05624_w crossref_primary_10_1186_s12911_022_01956_w crossref_primary_10_19163_2307_9266_2023_11_5_432_442 crossref_primary_10_1007_s00034_023_02540_x crossref_primary_10_1109_JSEN_2024_3403875 crossref_primary_10_1177_15500594211018545 crossref_primary_10_1186_s40708_024_00225_y crossref_primary_10_3390_app13095744 crossref_primary_10_1002_alz_12645 crossref_primary_10_1016_j_bspc_2022_103725 crossref_primary_10_3390_s20092694 crossref_primary_10_1007_s11042_023_17288_4 crossref_primary_10_1016_j_artmed_2022_102332 crossref_primary_10_1016_j_jcis_2022_02_107 crossref_primary_10_1109_COMST_2023_3256323 crossref_primary_10_1155_2022_4653923 |
Cites_doi | 10.1007/s12559-017-9520-2 10.1016/j.cmpb.2014.01.019 10.1016/j.seizure.2015.01.012 10.1016/j.procs.2016.04.062 10.3389/fnins.2017.00262 10.1109/TII.2018.2868431 10.1177/155005941104200304 10.1016/j.jneumeth.2006.10.023 10.1001/archneur.56.3.303 10.1016/j.neucom.2018.09.071 10.4103/2228-7477.175869 10.1016/j.clinph.2017.06.251 10.1142/S0129065715500057 10.1007/s41870-017-0057-0 10.1007/s12559-017-9533-x 10.3390/e20010035 10.3389/fnagi.2016.00273 10.1109/TNNLS.2018.2790388 10.1016/j.jneumeth.2003.10.009 10.1016/j.neunet.2019.08.019 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 10.1023/A:1018628609742 10.1016/j.neucom.2018.10.061 10.1038/s41598-018-33969-9 10.1109/PROC.1987.13824 10.1016/j.jalz.2011.03.003 10.1016/j.clinph.2004.01.001 10.1080/03772063.2016.1241164 10.1016/j.neurobiolaging.2004.03.008 10.1063/1.4906038 10.1186/s12911-018-0613-y 10.1016/j.neucom.2017.01.126 10.1007/s12559-018-9575-8 |
ContentType | Journal Article |
Copyright | 2019 Elsevier Ltd Copyright © 2019 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2019 Elsevier Ltd – notice: Copyright © 2019 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION NPM 7X8 |
DOI | 10.1016/j.neunet.2019.12.006 |
DatabaseName | CrossRef PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef PubMed MEDLINE - Academic |
DatabaseTitleList | PubMed MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 190 |
ExternalDocumentID | 31884180 10_1016_j_neunet_2019_12_006 S0893608019303983 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH NPM PKN 7X8 |
ID | FETCH-LOGICAL-c428t-91346c219b9122b3865166f16e35e9585b3bb64af9aa916eae3378d19ce6dc7f3 |
IEDL.DBID | .~1 |
ISSN | 0893-6080 1879-2782 |
IngestDate | Fri Jul 11 11:14:19 EDT 2025 Wed Feb 19 02:31:54 EST 2025 Thu Apr 24 23:44:17 EDT 2025 Tue Jul 01 01:24:34 EDT 2025 Fri Feb 23 02:49:25 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Data fusion Alzheimer’s disease Bispectrum Mild cognitive impairment Machine learning Continuous wavelet transform |
Language | English |
License | Copyright © 2019 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-91346c219b9122b3865166f16e35e9585b3bb64af9aa916eae3378d19ce6dc7f3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0001-7890-2897 0000-0003-4962-3500 0000-0002-8080-082X |
PMID | 31884180 |
PQID | 2331429438 |
PQPubID | 23479 |
PageCount | 15 |
ParticipantIDs | proquest_miscellaneous_2331429438 pubmed_primary_31884180 crossref_citationtrail_10_1016_j_neunet_2019_12_006 crossref_primary_10_1016_j_neunet_2019_12_006 elsevier_sciencedirect_doi_10_1016_j_neunet_2019_12_006 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | March 2020 2020-03-00 2020-Mar 20200301 |
PublicationDateYYYYMMDD | 2020-03-01 |
PublicationDate_xml | – month: 03 year: 2020 text: March 2020 |
PublicationDecade | 2020 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2020 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Kulkarni (b21) 2018; 10 Sperling, Aisen, Beckett, Bennett, Craft, Fagan, Iwatsubo, Jack Jr, Kaye, Montine (b41) 2011; 7 Wang, Jiang, Tu, Hussain, Tang (b47) 2019; 329 (b2) 2013 Assi, Gagliano, Rihana, Nguyen, Sawan (b1) 2018; 8 Mammone, Ieracitano, Adeli, Bramanti, Morabito (b28) 2018 Lehmann, Koenig, Jelic, Prichep, John, Wahlund, Dodge, Dierks (b24) 2007; 161 Kalantari, Kamsin, Shamshirband, Gani, Alinejad-Rokny, Chronopoulos (b16) 2018; 276 Morabito, Campolo, Labate, Morabito, Bonanno, Bramanti, De Salvo, Marra, Bramanti (b32) 2015; 25 Morabito, Campolo, Ieracitano, Ebadi, Bonanno, Bramanti, Desalvo, Mammone, Bramanti (b31) 2016 Kashefpoor, Rabbani, Barekatain (b19) 2016; 6 Gomez, Vaquerizo-Villar, Poza, Ruiz, Tola-Arribas, Cano, Hornero (b11) 2017 McBride, Zhao, Munro, Smith, Jicha, Hively, Broster, Schmitt, Kryscio, Jiang (b29) 2014; 114 Trambaiolli, Lorena, Fraga, Kanda, Anghinah, Nitrini (b44) 2011; 42 Li, Zhang, He (b25) 2018; 10 König, Prichep, Dierks, Hubl, Wahlund, John, Jelic (b20) 2005; 26 Nikias, Raghuveer (b34) 1987; 75 Mekyska, Galaz, Kiska, Zvoncak, Mucha, Smekal, Eliasova, Kostalova, Mrackova, Fiedorova (b30) 2018; 10 Ieracitano, Mammone, Bramanti, Hussain, Morabito (b13) 2019; 323 Mahmud, Kaiser, Hussain, Vassanelli (b26) 2018; 29 Ruiz-Gómez, Gómez, Poza, Gutiérrez-Tobal, Tola-Arribas, Cano, Hornero (b39) 2018; 20 Torrence, Compo (b43) 1998; 79 Vialatte, Cichocki, Dreyfus, Musha, Shishkin, Gervais (b46) 2005 Suykens, Vandewalle (b42) 1999; 9 Jeong (b15) 2004; 115 Trambaiolli, Spolaôr, Lorena, Anghinah, Sato (b45) 2017; 128 Hosmer Jr., Lemeshow, Sturdivant (b12) 2013 Neto, Biessmann, Aurlien, Nordby, Eichele (b33) 2016; 8 Powers (b38) 2011 World Health Organization (b49) 2018 Delorme, Makeig (b8) 2004; 134 Kulkarni, Bairagi (b22) 2017; 63 Faust, Acharya, Adeli, Adeli (b9) 2015; 26 Sachnev, Suresh, Sundararajan, Mahanand, Azeem, Saraswathi (b40) 2019 Kasabov (b17) 2018 Wang, Wang, Li, Yu, Deng, Wei (b48) 2015; 25 Capecci, Morabito, Campolo, Mammone, Labate, Kasabov (b5) 2015 Kasabov (b18) 2019; 119 Ieracitano, Mammone, Bramanti, Marino, Hussain, Morabito (b14) 2019 Dauwels, Srinivasan, Ramasubba Reddy, Musha, Vialatte, Latchoumane, Jeong, Cichocki (b7) 2011; 2011 Chella, D’Andrea, Basti, Pizzella, Marzetti (b6) 2017; 11 Badarna, Shimshoni, Luria, Rosenblum (b3) 2018; 10 Fiscon, Weitschek, Cialini, Felici, Bertolazzi, De Salvo, Bramanti, Bramanti, De Cola (b10) 2018; 18 Kumar, Khaund, Hazarika (b23) 2016; 84 Bousquet, Boucheron, Lugosi (b4) 2004 Mammone, De Salvo, Bonanno, Ieracitano, Marino, Marra, Bramanti, Morabito (b27) 2019; 15 Nunez, Srinivasan (b35) 2006 Patterson (b36) 1998 Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (b37) 1999; 56 Gomez (10.1016/j.neunet.2019.12.006_b11) 2017 Bousquet (10.1016/j.neunet.2019.12.006_b4) 2004 Patterson (10.1016/j.neunet.2019.12.006_b36) 1998 Trambaiolli (10.1016/j.neunet.2019.12.006_b45) 2017; 128 Vialatte (10.1016/j.neunet.2019.12.006_b46) 2005 Kashefpoor (10.1016/j.neunet.2019.12.006_b19) 2016; 6 Petersen (10.1016/j.neunet.2019.12.006_b37) 1999; 56 Jeong (10.1016/j.neunet.2019.12.006_b15) 2004; 115 Kulkarni (10.1016/j.neunet.2019.12.006_b21) 2018; 10 Mekyska (10.1016/j.neunet.2019.12.006_b30) 2018; 10 Li (10.1016/j.neunet.2019.12.006_b25) 2018; 10 Faust (10.1016/j.neunet.2019.12.006_b9) 2015; 26 Morabito (10.1016/j.neunet.2019.12.006_b32) 2015; 25 Capecci (10.1016/j.neunet.2019.12.006_b5) 2015 Wang (10.1016/j.neunet.2019.12.006_b47) 2019; 329 Morabito (10.1016/j.neunet.2019.12.006_b31) 2016 Badarna (10.1016/j.neunet.2019.12.006_b3) 2018; 10 World Health Organization (10.1016/j.neunet.2019.12.006_b49) 2018 Nunez (10.1016/j.neunet.2019.12.006_b35) 2006 Neto (10.1016/j.neunet.2019.12.006_b33) 2016; 8 Delorme (10.1016/j.neunet.2019.12.006_b8) 2004; 134 Trambaiolli (10.1016/j.neunet.2019.12.006_b44) 2011; 42 Chella (10.1016/j.neunet.2019.12.006_b6) 2017; 11 Kumar (10.1016/j.neunet.2019.12.006_b23) 2016; 84 Torrence (10.1016/j.neunet.2019.12.006_b43) 1998; 79 Mammone (10.1016/j.neunet.2019.12.006_b28) 2018 Mammone (10.1016/j.neunet.2019.12.006_b27) 2019; 15 Kalantari (10.1016/j.neunet.2019.12.006_b16) 2018; 276 Kasabov (10.1016/j.neunet.2019.12.006_b18) 2019; 119 Hosmer Jr. (10.1016/j.neunet.2019.12.006_b12) 2013 Ruiz-Gómez (10.1016/j.neunet.2019.12.006_b39) 2018; 20 König (10.1016/j.neunet.2019.12.006_b20) 2005; 26 Lehmann (10.1016/j.neunet.2019.12.006_b24) 2007; 161 Ieracitano (10.1016/j.neunet.2019.12.006_b14) 2019 Kasabov (10.1016/j.neunet.2019.12.006_b17) 2018 Mahmud (10.1016/j.neunet.2019.12.006_b26) 2018; 29 Fiscon (10.1016/j.neunet.2019.12.006_b10) 2018; 18 Suykens (10.1016/j.neunet.2019.12.006_b42) 1999; 9 (10.1016/j.neunet.2019.12.006_b2) 2013 Sperling (10.1016/j.neunet.2019.12.006_b41) 2011; 7 Powers (10.1016/j.neunet.2019.12.006_b38) 2011 Wang (10.1016/j.neunet.2019.12.006_b48) 2015; 25 Assi (10.1016/j.neunet.2019.12.006_b1) 2018; 8 Kulkarni (10.1016/j.neunet.2019.12.006_b22) 2017; 63 Sachnev (10.1016/j.neunet.2019.12.006_b40) 2019 Ieracitano (10.1016/j.neunet.2019.12.006_b13) 2019; 323 McBride (10.1016/j.neunet.2019.12.006_b29) 2014; 114 Dauwels (10.1016/j.neunet.2019.12.006_b7) 2011; 2011 Nikias (10.1016/j.neunet.2019.12.006_b34) 1987; 75 |
References_xml | – volume: 8 start-page: 273 year: 2016 ident: b33 article-title: Regularized linear discriminant analysis of EEG features in dementia patients publication-title: Frontiers in Aging Neuroscience – year: 2013 ident: b2 publication-title: Diagnostic and statistical manual of mental disorders – year: 2011 ident: b38 article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation – year: 2006 ident: b35 article-title: Electric fields of the brain: the neurophysics of EEG – volume: 20 start-page: 35 year: 2018 ident: b39 article-title: Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment publication-title: Entropy – start-page: 169 year: 2004 end-page: 207 ident: b4 article-title: Introduction to statistical learning theory publication-title: Advanced lectures on machine learning – volume: 119 start-page: 341 year: 2019 ident: b18 article-title: Spiking neural networks for deep learning and knowledge representation publication-title: Neural Networks: The Official Journal of the International Neural Network Society – volume: 25 start-page: 1550005 year: 2015 ident: b32 article-title: A longitudinal EEG study of Alzheimer’s disease progression based on a complex network approach publication-title: International Journal of Neural Systems – start-page: 422 year: 2017 end-page: 425 ident: b11 article-title: Bispectral analysis of spontaneous EEG activity from patients with moderate dementia due to alzheimer’s disease publication-title: 2017 39th annual international conference of the ieee engineering in medicine and biology society – start-page: 1 year: 2019 end-page: 8 ident: b14 article-title: A time-frequency based machine learning system for brain states classification via eeg signal processing publication-title: 2019 International Joint Conference on Neural Networks (IJCNN) – volume: 79 start-page: 61 year: 1998 end-page: 78 ident: b43 article-title: A practical guide to wavelet analysis publication-title: Bulletin of the American Meteorological Society – volume: 10 start-page: 215 year: 2018 end-page: 227 ident: b3 article-title: The importance of pen motion pattern groups for semi-automatic classification of handwriting into mental workload classes publication-title: Cognitive Computation – volume: 161 start-page: 342 year: 2007 end-page: 350 ident: b24 article-title: Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG) publication-title: Journal of Neuroscience Methods – volume: 9 start-page: 293 year: 1999 end-page: 300 ident: b42 article-title: Least squares support vector machine classifiers publication-title: Neural Processing Letters – volume: 329 start-page: 433 year: 2019 end-page: 446 ident: b47 article-title: Robust pixelwise saliency detection via progressive graph rankings publication-title: Neurocomputing – volume: 42 start-page: 160 year: 2011 end-page: 165 ident: b44 article-title: Improving Alzheimer’s disease diagnosis with machine learning techniques publication-title: Clinical EEG and Neuroscience – start-page: 1 year: 2019 end-page: 15 ident: b40 article-title: Multi-region risk-sensitive cognitive ensembler for accurate detection of attention-deficit/hyperactivity disorder publication-title: Cognitive Computation – volume: 8 start-page: 15491 year: 2018 ident: b1 article-title: Bispectrum features and multilayer perceptron classifier to enhance seizure prediction publication-title: Scientific Reports – volume: 29 start-page: 2063 year: 2018 end-page: 2079 ident: b26 article-title: Applications of deep learning and reinforcement learning to biological data publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 10 start-page: 59 year: 2018 end-page: 64 ident: b21 article-title: Use of complexity based features in diagnosis of mild Alzheimer disease using EEG signals publication-title: International Journal of Information Technology – volume: 26 start-page: 56 year: 2015 end-page: 64 ident: b9 article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis publication-title: Seizure – volume: 6 start-page: 25 year: 2016 ident: b19 article-title: Automatic diagnosis of mild cognitive impairment using electroencephalogram spectral features publication-title: Journal of Medical Signals and Sensors – volume: 276 start-page: 2 year: 2018 end-page: 22 ident: b16 article-title: Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions publication-title: Neurocomputing – start-page: 683 year: 2005 end-page: 692 ident: b46 article-title: Early detection of Alzheimer’s disease by blind source separation, time frequency representation, and bump modeling of EEG signals publication-title: International conference on artificial neural networks – volume: 18 start-page: 35 year: 2018 ident: b10 article-title: Combining EEG signal processing with supervised methods for Alzheimer’s patients classification publication-title: BMC Medical Informatics and Decision Making – volume: 56 start-page: 303 year: 1999 end-page: 308 ident: b37 article-title: Mild cognitive impairment: clinical characterization and outcome publication-title: Archives of Neurology – volume: 15 start-page: 527 year: 2019 end-page: 536 ident: b27 article-title: Brain network analysis of compressive sensed high-density EEG signals in AD and MCI subjects publication-title: IEEE Transactions on Industrial Informatics – year: 2018 ident: b49 article-title: Meeting on the implementation of the global action plan of the public health response on dementia 2017–2025: meeting report: 11–12 december 2017 – volume: 323 start-page: 96 year: 2019 end-page: 107 ident: b13 article-title: A convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of EEG recordings publication-title: Neurocomputing – volume: 10 start-page: 1006 year: 2018 end-page: 1018 ident: b30 article-title: Quantitative analysis of relationship between hypokinetic dysarthria and the freezing of gait in parkinson’s disease publication-title: Cognitive Computation – volume: 63 start-page: 11 year: 2017 end-page: 22 ident: b22 article-title: Extracting salient features for EEG-based diagnosis of Alzheimer’s disease using support vector machine classifier publication-title: IETE Journal of Research – volume: 26 start-page: 165 year: 2005 end-page: 171 ident: b20 article-title: Decreased EEG synchronization in Alzheimers disease and mild cognitive impairment publication-title: Neurobiology of Aging – year: 2013 ident: b12 article-title: Applied logistic regression: Vol. 398 – volume: 11 start-page: 262 year: 2017 ident: b6 article-title: Non-linear analysis of scalp EEG by using bispectra: the effect of the reference choice publication-title: Frontiers in Neuroscience – volume: 115 start-page: 1490 year: 2004 end-page: 1505 ident: b15 article-title: EEG dynamics in patients with Alzheimer’s disease publication-title: Clinical Neurophysiology – volume: 25 start-page: 013110 year: 2015 ident: b48 article-title: Multiple feature extraction and classification of electroencephalograph signal for alzheimers’ with spectrum and bispectrum publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science – volume: 10 start-page: 368 year: 2018 end-page: 380 ident: b25 article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition publication-title: Cognitive Computation – start-page: 1 year: 2016 end-page: 6 ident: b31 article-title: Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings publication-title: Research and technologies for society and industry leveraging a better tomorrow (RTSI), 2016 IEEE 2nd international forum on – start-page: 1 year: 2018 end-page: 14 ident: b28 article-title: Permutation jaccard distance-based hierarchical clustering to estimate EEG network density modifications in MCI subjects publication-title: IEEE Transactions on Neural Networks and Learning Systems – year: 1998 ident: b36 article-title: Artificial neural networks: theory and applications – volume: 128 start-page: 2058 year: 2017 end-page: 2067 ident: b45 article-title: Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease publication-title: Clinical Neurophysiology – volume: 7 start-page: 280 year: 2011 end-page: 292 ident: b41 article-title: Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimer’s & Dementia – volume: 134 start-page: 9 year: 2004 end-page: 21 ident: b8 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: Journal of Neuroscience Methods – year: 2018 ident: b17 article-title: Time-space, spiking neural networks and brain-inspired artificial intelligence, vol. 7 – volume: 114 start-page: 153 year: 2014 end-page: 163 ident: b29 article-title: Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer’s disease publication-title: Computer Methods and Programs in Biomedicine – volume: 2011 year: 2011 ident: b7 article-title: Slowing and loss of complexity in Alzheimer’s EEG: two sides of the same coin? publication-title: International Journal of Alzheimer’s Disease – volume: 84 start-page: 31 year: 2016 end-page: 35 ident: b23 article-title: Bispectral analysis of EEG for emotion recognition publication-title: Procedia Computer Science – volume: 75 start-page: 869 year: 1987 end-page: 891 ident: b34 article-title: Bispectrum estimation: A digital signal processing framework publication-title: Proceedings of the IEEE – start-page: 159 year: 2015 end-page: 172 ident: b5 article-title: A feasibility study of using the neucube spiking neural network architecture for modelling Alzheimer’s disease EEG data publication-title: Advances in neural networks: computational and theoretical issues – start-page: 1 year: 2016 ident: 10.1016/j.neunet.2019.12.006_b31 article-title: Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings – volume: 10 start-page: 215 issue: 2 year: 2018 ident: 10.1016/j.neunet.2019.12.006_b3 article-title: The importance of pen motion pattern groups for semi-automatic classification of handwriting into mental workload classes publication-title: Cognitive Computation doi: 10.1007/s12559-017-9520-2 – volume: 114 start-page: 153 issue: 2 year: 2014 ident: 10.1016/j.neunet.2019.12.006_b29 article-title: Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer’s disease publication-title: Computer Methods and Programs in Biomedicine doi: 10.1016/j.cmpb.2014.01.019 – year: 1998 ident: 10.1016/j.neunet.2019.12.006_b36 – volume: 26 start-page: 56 year: 2015 ident: 10.1016/j.neunet.2019.12.006_b9 article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis publication-title: Seizure doi: 10.1016/j.seizure.2015.01.012 – volume: 84 start-page: 31 year: 2016 ident: 10.1016/j.neunet.2019.12.006_b23 article-title: Bispectral analysis of EEG for emotion recognition publication-title: Procedia Computer Science doi: 10.1016/j.procs.2016.04.062 – volume: 11 start-page: 262 year: 2017 ident: 10.1016/j.neunet.2019.12.006_b6 article-title: Non-linear analysis of scalp EEG by using bispectra: the effect of the reference choice publication-title: Frontiers in Neuroscience doi: 10.3389/fnins.2017.00262 – volume: 15 start-page: 527 issue: 1 year: 2019 ident: 10.1016/j.neunet.2019.12.006_b27 article-title: Brain network analysis of compressive sensed high-density EEG signals in AD and MCI subjects publication-title: IEEE Transactions on Industrial Informatics doi: 10.1109/TII.2018.2868431 – volume: 42 start-page: 160 issue: 3 year: 2011 ident: 10.1016/j.neunet.2019.12.006_b44 article-title: Improving Alzheimer’s disease diagnosis with machine learning techniques publication-title: Clinical EEG and Neuroscience doi: 10.1177/155005941104200304 – volume: 161 start-page: 342 issue: 2 year: 2007 ident: 10.1016/j.neunet.2019.12.006_b24 article-title: Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG) publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2006.10.023 – volume: 56 start-page: 303 issue: 3 year: 1999 ident: 10.1016/j.neunet.2019.12.006_b37 article-title: Mild cognitive impairment: clinical characterization and outcome publication-title: Archives of Neurology doi: 10.1001/archneur.56.3.303 – volume: 323 start-page: 96 year: 2019 ident: 10.1016/j.neunet.2019.12.006_b13 article-title: A convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of EEG recordings publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.09.071 – volume: 6 start-page: 25 issue: 1 year: 2016 ident: 10.1016/j.neunet.2019.12.006_b19 article-title: Automatic diagnosis of mild cognitive impairment using electroencephalogram spectral features publication-title: Journal of Medical Signals and Sensors doi: 10.4103/2228-7477.175869 – start-page: 422 year: 2017 ident: 10.1016/j.neunet.2019.12.006_b11 article-title: Bispectral analysis of spontaneous EEG activity from patients with moderate dementia due to alzheimer’s disease – volume: 128 start-page: 2058 issue: 10 year: 2017 ident: 10.1016/j.neunet.2019.12.006_b45 article-title: Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2017.06.251 – volume: 2011 year: 2011 ident: 10.1016/j.neunet.2019.12.006_b7 article-title: Slowing and loss of complexity in Alzheimer’s EEG: two sides of the same coin? publication-title: International Journal of Alzheimer’s Disease – year: 2011 ident: 10.1016/j.neunet.2019.12.006_b38 – volume: 25 start-page: 1550005 issue: 02 year: 2015 ident: 10.1016/j.neunet.2019.12.006_b32 article-title: A longitudinal EEG study of Alzheimer’s disease progression based on a complex network approach publication-title: International Journal of Neural Systems doi: 10.1142/S0129065715500057 – volume: 10 start-page: 59 issue: 1 year: 2018 ident: 10.1016/j.neunet.2019.12.006_b21 article-title: Use of complexity based features in diagnosis of mild Alzheimer disease using EEG signals publication-title: International Journal of Information Technology doi: 10.1007/s41870-017-0057-0 – volume: 10 start-page: 368 issue: 2 year: 2018 ident: 10.1016/j.neunet.2019.12.006_b25 article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition publication-title: Cognitive Computation doi: 10.1007/s12559-017-9533-x – year: 2006 ident: 10.1016/j.neunet.2019.12.006_b35 – volume: 20 start-page: 35 issue: 1 year: 2018 ident: 10.1016/j.neunet.2019.12.006_b39 article-title: Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment publication-title: Entropy doi: 10.3390/e20010035 – year: 2013 ident: 10.1016/j.neunet.2019.12.006_b12 – volume: 8 start-page: 273 year: 2016 ident: 10.1016/j.neunet.2019.12.006_b33 article-title: Regularized linear discriminant analysis of EEG features in dementia patients publication-title: Frontiers in Aging Neuroscience doi: 10.3389/fnagi.2016.00273 – year: 2013 ident: 10.1016/j.neunet.2019.12.006_b2 – volume: 29 start-page: 2063 issue: 6 year: 2018 ident: 10.1016/j.neunet.2019.12.006_b26 article-title: Applications of deep learning and reinforcement learning to biological data publication-title: IEEE Transactions on Neural Networks and Learning Systems doi: 10.1109/TNNLS.2018.2790388 – start-page: 683 year: 2005 ident: 10.1016/j.neunet.2019.12.006_b46 article-title: Early detection of Alzheimer’s disease by blind source separation, time frequency representation, and bump modeling of EEG signals – volume: 134 start-page: 9 issue: 1 year: 2004 ident: 10.1016/j.neunet.2019.12.006_b8 article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis publication-title: Journal of Neuroscience Methods doi: 10.1016/j.jneumeth.2003.10.009 – volume: 119 start-page: 341 year: 2019 ident: 10.1016/j.neunet.2019.12.006_b18 article-title: Spiking neural networks for deep learning and knowledge representation publication-title: Neural Networks: The Official Journal of the International Neural Network Society doi: 10.1016/j.neunet.2019.08.019 – start-page: 159 year: 2015 ident: 10.1016/j.neunet.2019.12.006_b5 article-title: A feasibility study of using the neucube spiking neural network architecture for modelling Alzheimer’s disease EEG data – year: 2018 ident: 10.1016/j.neunet.2019.12.006_b17 – volume: 79 start-page: 61 issue: 1 year: 1998 ident: 10.1016/j.neunet.2019.12.006_b43 article-title: A practical guide to wavelet analysis publication-title: Bulletin of the American Meteorological Society doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2 – volume: 9 start-page: 293 issue: 3 year: 1999 ident: 10.1016/j.neunet.2019.12.006_b42 article-title: Least squares support vector machine classifiers publication-title: Neural Processing Letters doi: 10.1023/A:1018628609742 – start-page: 1 issue: 99 year: 2018 ident: 10.1016/j.neunet.2019.12.006_b28 article-title: Permutation jaccard distance-based hierarchical clustering to estimate EEG network density modifications in MCI subjects publication-title: IEEE Transactions on Neural Networks and Learning Systems – volume: 329 start-page: 433 year: 2019 ident: 10.1016/j.neunet.2019.12.006_b47 article-title: Robust pixelwise saliency detection via progressive graph rankings publication-title: Neurocomputing doi: 10.1016/j.neucom.2018.10.061 – start-page: 1 year: 2019 ident: 10.1016/j.neunet.2019.12.006_b40 article-title: Multi-region risk-sensitive cognitive ensembler for accurate detection of attention-deficit/hyperactivity disorder publication-title: Cognitive Computation – volume: 8 start-page: 15491 issue: 1 year: 2018 ident: 10.1016/j.neunet.2019.12.006_b1 article-title: Bispectrum features and multilayer perceptron classifier to enhance seizure prediction publication-title: Scientific Reports doi: 10.1038/s41598-018-33969-9 – volume: 75 start-page: 869 issue: 7 year: 1987 ident: 10.1016/j.neunet.2019.12.006_b34 article-title: Bispectrum estimation: A digital signal processing framework publication-title: Proceedings of the IEEE doi: 10.1109/PROC.1987.13824 – volume: 7 start-page: 280 issue: 3 year: 2011 ident: 10.1016/j.neunet.2019.12.006_b41 article-title: Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease publication-title: Alzheimer’s & Dementia doi: 10.1016/j.jalz.2011.03.003 – volume: 115 start-page: 1490 issue: 7 year: 2004 ident: 10.1016/j.neunet.2019.12.006_b15 article-title: EEG dynamics in patients with Alzheimer’s disease publication-title: Clinical Neurophysiology doi: 10.1016/j.clinph.2004.01.001 – year: 2018 ident: 10.1016/j.neunet.2019.12.006_b49 – start-page: 169 year: 2004 ident: 10.1016/j.neunet.2019.12.006_b4 article-title: Introduction to statistical learning theory – volume: 63 start-page: 11 issue: 1 year: 2017 ident: 10.1016/j.neunet.2019.12.006_b22 article-title: Extracting salient features for EEG-based diagnosis of Alzheimer’s disease using support vector machine classifier publication-title: IETE Journal of Research doi: 10.1080/03772063.2016.1241164 – volume: 26 start-page: 165 issue: 2 year: 2005 ident: 10.1016/j.neunet.2019.12.006_b20 article-title: Decreased EEG synchronization in Alzheimers disease and mild cognitive impairment publication-title: Neurobiology of Aging doi: 10.1016/j.neurobiolaging.2004.03.008 – start-page: 1 year: 2019 ident: 10.1016/j.neunet.2019.12.006_b14 article-title: A time-frequency based machine learning system for brain states classification via eeg signal processing – volume: 25 start-page: 013110 issue: 1 year: 2015 ident: 10.1016/j.neunet.2019.12.006_b48 article-title: Multiple feature extraction and classification of electroencephalograph signal for alzheimers’ with spectrum and bispectrum publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science doi: 10.1063/1.4906038 – volume: 18 start-page: 35 issue: 1 year: 2018 ident: 10.1016/j.neunet.2019.12.006_b10 article-title: Combining EEG signal processing with supervised methods for Alzheimer’s patients classification publication-title: BMC Medical Informatics and Decision Making doi: 10.1186/s12911-018-0613-y – volume: 276 start-page: 2 year: 2018 ident: 10.1016/j.neunet.2019.12.006_b16 article-title: Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions publication-title: Neurocomputing doi: 10.1016/j.neucom.2017.01.126 – volume: 10 start-page: 1006 issue: 6 year: 2018 ident: 10.1016/j.neunet.2019.12.006_b30 article-title: Quantitative analysis of relationship between hypokinetic dysarthria and the freezing of gait in parkinson’s disease publication-title: Cognitive Computation doi: 10.1007/s12559-018-9575-8 |
SSID | ssj0006843 |
Score | 2.6419034 |
Snippet | Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 176 |
SubjectTerms | Alzheimer’s disease Bispectrum Continuous wavelet transform Data fusion Machine learning Mild cognitive impairment |
Title | A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia |
URI | https://dx.doi.org/10.1016/j.neunet.2019.12.006 https://www.ncbi.nlm.nih.gov/pubmed/31884180 https://www.proquest.com/docview/2331429438 |
Volume | 123 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fTxQxEG4IvPAioiKnSGrCa7ntj-1tHy_k8NTIC5Dw1rTd1pyBLtE7H_3bnenuYkg0JL5u2rTbmc5Mp1-_IeSkahQHN1izOtWSKVkFZpTwjKdWJNWaui0MfF8u9PJafbqpb7bI2fgWBmGVg-3vbXqx1sOX6bCa0_vVanpZwRgaAh4IQSppGmT8VGqGWn766w_MQzc9cg4aM2w9Pp8rGK8cNzkiopKbkhTEukd_d0__Cj-LGzp_Tp4N8SOd91PcJ1sxvyB7Y20GOmzVlyTPae5-xltaEIPsrmuh111BTkY6lIr4StGHtXTkFacQwFK3WXeFxpUGDKwRSVSER7tEF4sPtM_qYH6drjJtS3Zx5V6R6_PF1dmSDbUVWIADx7pcuOsA5sobLoTHyp9c68R1lHU0cIbw0nutXDLOQQQZXZRy1rTchKjbMEvygGznLsdDQmHLK6Sha5BKXfDUVI674KPwQScVzITIcUltGIjHsf7FrR0RZt9sLwiLgrBcWBDEhLCHXvc98cYT7WejtOwjBbLgG57o-X4UroW9hRcmLsdu88MKKeGPjJLNhLzupf4wF7CFqObVm_8e9y3ZFXh4L4C2I7K9_r6J7yDCWfvjosLHZGf-8fPy4jfyhPpZ |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxshEB6lzqG99P1wn1TqFXl5LF6OVuTUaRJfmki5IWDZylXCRq3d39-BZS1VahWp1xUjWAZmPoaPGYBPVSMZusGa1l0tqBSVp1pyR1nX8k62um5zBr7ztVpdyi9X9dUBHI1vYRKtstj-waZna12-zMpszm43m9nXCvtQCHgQglRCN-IeHKbsVPUEDhcnp6v13iCrZiDPYXuaBMYXdJnmFcMuhkSqZDrHBVPpo797qH8h0OyJjh_DwwIhyWIY5RM4CPEpPBrLM5CyW59BXJDY_wrXJJMG6U3fotRNJk8GUqpFfCPJjbVkTC1OEMMSu9v2OZMr8QlbJzJR1h_pO7JcfiZDYCeF2MkmkjYHGDf2OVweLy-OVrSUV6AezxzbfOeuPFospxnnLhX_ZEp1TAVRB43HCCecU9J22loEkcEGIeZNy7QPqvXzTryASexjeAUEd71MmeialE2ds66pLLPeBe686qTXUxDjlBpfco-nEhjXZiSZfTeDIkxShGHcoCKmQPdSt0PujTvaz0dtmT_WkEH3cIfkx1G5BrdXujOxMfS7n4YLgX-kpWim8HLQ-n4saA7TSq9e_3e_H-D-6uL8zJydrE_fwAOezvKZ3_YWJtsfu_AOAc_WvS8L-jeDk_0K |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+multi-modal+machine+learning+based+approach+for+automatic+classification+of+EEG+recordings+in+dementia&rft.jtitle=Neural+networks&rft.au=Ieracitano%2C+Cosimo&rft.au=Mammone%2C+Nadia&rft.au=Hussain%2C+Amir&rft.au=Morabito%2C+Francesco+C&rft.date=2020-03-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=123&rft.spage=176&rft_id=info:doi/10.1016%2Fj.neunet.2019.12.006&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |