A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia

Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear an...

Full description

Saved in:
Bibliographic Details
Published inNeural networks Vol. 123; pp. 176 - 190
Main Authors Ieracitano, Cosimo, Mammone, Nadia, Hussain, Amir, Morabito, Francesco C.
Format Journal Article
LanguageEnglish
Published United States Elsevier Ltd 01.03.2020
Subjects
Online AccessGet full text
ISSN0893-6080
1879-2782
1879-2782
DOI10.1016/j.neunet.2019.12.006

Cover

Loading…
Abstract Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear and nonstationary, multivariate representation of the underlying neural circuitry interactions. In this paper, a novel multi-modal Machine Learning (ML) based approach is proposed to integrate EEG engineered features for automatic classification of brain states. EEGs are acquired from neurological patients with Mild Cognitive Impairment (MCI) or Alzheimer’s disease (AD) and the aim is to discriminate Healthy Control (HC) subjects from patients. Specifically, in order to effectively cope with nonstationarities, 19-channels EEG signals are projected into the time–frequency (TF) domain by means of the Continuous Wavelet Transform (CWT) and a set of appropriate features (denoted as CWT features) are extracted from δ, θ, α1, α2, β EEG sub-bands. Furthermore, to exploit nonlinear phase-coupling information of EEG signals, higher order statistics (HOS) are extracted from the bispectrum (BiS) representation. BiS generates a second set of features (denoted as BiS features) which are also evaluated in the five EEG sub-bands. The CWT and BiS features are fed into a number of ML classifiers to perform both 2-way (AD vs. HC, AD vs. MCI, MCI vs. HC) and 3-way (AD vs. MCI vs. HC) classifications. As an experimental benchmark, a balanced EEG dataset that includes 63 AD, 63 MCI and 63 HC is analyzed. Comparative results show that when the concatenation of CWT and BiS features (denoted as multi-modal (CWT+BiS) features) is used as input, the Multi-Layer Perceptron (MLP) classifier outperforms all other models, specifically, the Autoencoder (AE), Logistic Regression (LR) and Support Vector Machine (SVM). Consequently, our proposed multi-modal ML scheme can be considered a viable alternative to state-of-the-art computationally intensive deep learning approaches.
AbstractList Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear and nonstationary, multivariate representation of the underlying neural circuitry interactions. In this paper, a novel multi-modal Machine Learning (ML) based approach is proposed to integrate EEG engineered features for automatic classification of brain states. EEGs are acquired from neurological patients with Mild Cognitive Impairment (MCI) or Alzheimer's disease (AD) and the aim is to discriminate Healthy Control (HC) subjects from patients. Specifically, in order to effectively cope with nonstationarities, 19-channels EEG signals are projected into the time-frequency (TF) domain by means of the Continuous Wavelet Transform (CWT) and a set of appropriate features (denoted as CWT features) are extracted from δ, θ, α , α , β EEG sub-bands. Furthermore, to exploit nonlinear phase-coupling information of EEG signals, higher order statistics (HOS) are extracted from the bispectrum (BiS) representation. BiS generates a second set of features (denoted as BiS features) which are also evaluated in the five EEG sub-bands. The CWT and BiS features are fed into a number of ML classifiers to perform both 2-way (AD vs. HC, AD vs. MCI, MCI vs. HC) and 3-way (AD vs. MCI vs. HC) classifications. As an experimental benchmark, a balanced EEG dataset that includes 63 AD, 63 MCI and 63 HC is analyzed. Comparative results show that when the concatenation of CWT and BiS features (denoted as multi-modal (CWT+BiS) features) is used as input, the Multi-Layer Perceptron (MLP) classifier outperforms all other models, specifically, the Autoencoder (AE), Logistic Regression (LR) and Support Vector Machine (SVM). Consequently, our proposed multi-modal ML scheme can be considered a viable alternative to state-of-the-art computationally intensive deep learning approaches.
Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear and nonstationary, multivariate representation of the underlying neural circuitry interactions. In this paper, a novel multi-modal Machine Learning (ML) based approach is proposed to integrate EEG engineered features for automatic classification of brain states. EEGs are acquired from neurological patients with Mild Cognitive Impairment (MCI) or Alzheimer's disease (AD) and the aim is to discriminate Healthy Control (HC) subjects from patients. Specifically, in order to effectively cope with nonstationarities, 19-channels EEG signals are projected into the time-frequency (TF) domain by means of the Continuous Wavelet Transform (CWT) and a set of appropriate features (denoted as CWT features) are extracted from δ, θ, α1, α2, β EEG sub-bands. Furthermore, to exploit nonlinear phase-coupling information of EEG signals, higher order statistics (HOS) are extracted from the bispectrum (BiS) representation. BiS generates a second set of features (denoted as BiS features) which are also evaluated in the five EEG sub-bands. The CWT and BiS features are fed into a number of ML classifiers to perform both 2-way (AD vs. HC, AD vs. MCI, MCI vs. HC) and 3-way (AD vs. MCI vs. HC) classifications. As an experimental benchmark, a balanced EEG dataset that includes 63 AD, 63 MCI and 63 HC is analyzed. Comparative results show that when the concatenation of CWT and BiS features (denoted as multi-modal (CWT+BiS) features) is used as input, the Multi-Layer Perceptron (MLP) classifier outperforms all other models, specifically, the Autoencoder (AE), Logistic Regression (LR) and Support Vector Machine (SVM). Consequently, our proposed multi-modal ML scheme can be considered a viable alternative to state-of-the-art computationally intensive deep learning approaches.Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear and nonstationary, multivariate representation of the underlying neural circuitry interactions. In this paper, a novel multi-modal Machine Learning (ML) based approach is proposed to integrate EEG engineered features for automatic classification of brain states. EEGs are acquired from neurological patients with Mild Cognitive Impairment (MCI) or Alzheimer's disease (AD) and the aim is to discriminate Healthy Control (HC) subjects from patients. Specifically, in order to effectively cope with nonstationarities, 19-channels EEG signals are projected into the time-frequency (TF) domain by means of the Continuous Wavelet Transform (CWT) and a set of appropriate features (denoted as CWT features) are extracted from δ, θ, α1, α2, β EEG sub-bands. Furthermore, to exploit nonlinear phase-coupling information of EEG signals, higher order statistics (HOS) are extracted from the bispectrum (BiS) representation. BiS generates a second set of features (denoted as BiS features) which are also evaluated in the five EEG sub-bands. The CWT and BiS features are fed into a number of ML classifiers to perform both 2-way (AD vs. HC, AD vs. MCI, MCI vs. HC) and 3-way (AD vs. MCI vs. HC) classifications. As an experimental benchmark, a balanced EEG dataset that includes 63 AD, 63 MCI and 63 HC is analyzed. Comparative results show that when the concatenation of CWT and BiS features (denoted as multi-modal (CWT+BiS) features) is used as input, the Multi-Layer Perceptron (MLP) classifier outperforms all other models, specifically, the Autoencoder (AE), Logistic Regression (LR) and Support Vector Machine (SVM). Consequently, our proposed multi-modal ML scheme can be considered a viable alternative to state-of-the-art computationally intensive deep learning approaches.
Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical smart Internet-of-Things (IoT) and Brain-Computer Interface (BCI) applications. From a signal processing perspective, EEGs yield a nonlinear and nonstationary, multivariate representation of the underlying neural circuitry interactions. In this paper, a novel multi-modal Machine Learning (ML) based approach is proposed to integrate EEG engineered features for automatic classification of brain states. EEGs are acquired from neurological patients with Mild Cognitive Impairment (MCI) or Alzheimer’s disease (AD) and the aim is to discriminate Healthy Control (HC) subjects from patients. Specifically, in order to effectively cope with nonstationarities, 19-channels EEG signals are projected into the time–frequency (TF) domain by means of the Continuous Wavelet Transform (CWT) and a set of appropriate features (denoted as CWT features) are extracted from δ, θ, α1, α2, β EEG sub-bands. Furthermore, to exploit nonlinear phase-coupling information of EEG signals, higher order statistics (HOS) are extracted from the bispectrum (BiS) representation. BiS generates a second set of features (denoted as BiS features) which are also evaluated in the five EEG sub-bands. The CWT and BiS features are fed into a number of ML classifiers to perform both 2-way (AD vs. HC, AD vs. MCI, MCI vs. HC) and 3-way (AD vs. MCI vs. HC) classifications. As an experimental benchmark, a balanced EEG dataset that includes 63 AD, 63 MCI and 63 HC is analyzed. Comparative results show that when the concatenation of CWT and BiS features (denoted as multi-modal (CWT+BiS) features) is used as input, the Multi-Layer Perceptron (MLP) classifier outperforms all other models, specifically, the Autoencoder (AE), Logistic Regression (LR) and Support Vector Machine (SVM). Consequently, our proposed multi-modal ML scheme can be considered a viable alternative to state-of-the-art computationally intensive deep learning approaches.
Author Hussain, Amir
Mammone, Nadia
Morabito, Francesco C.
Ieracitano, Cosimo
Author_xml – sequence: 1
  givenname: Cosimo
  orcidid: 0000-0001-7890-2897
  surname: Ieracitano
  fullname: Ieracitano, Cosimo
  email: cosimo.ieracitano@unirc.it
  organization: DICEAM, University Mediterranea of Reggio Calabria, Via Graziella, Feo di Vito, 89060 Reggio Calabria, Italy
– sequence: 2
  givenname: Nadia
  orcidid: 0000-0003-4962-3500
  surname: Mammone
  fullname: Mammone, Nadia
  email: nadia.mammone@irccsme.it
  organization: IRCCS Centro Neurolesi Bonino-Pulejo, Via Palermo c/da Casazza, SS. 113 98124, Messina, Italy
– sequence: 3
  givenname: Amir
  orcidid: 0000-0002-8080-082X
  surname: Hussain
  fullname: Hussain, Amir
  email: a.hussain@napier.ac.uk
  organization: School of Computing, Edinburgh Napier University, Edinburgh EH10 5DT, Scotland, UK
– sequence: 4
  givenname: Francesco C.
  surname: Morabito
  fullname: Morabito, Francesco C.
  email: morabito@unirc.it
  organization: DICEAM, University Mediterranea of Reggio Calabria, Via Graziella, Feo di Vito, 89060 Reggio Calabria, Italy
BackLink https://www.ncbi.nlm.nih.gov/pubmed/31884180$$D View this record in MEDLINE/PubMed
BookMark eNqFkU9vFSEUxYmpsa_Vb2AMSzczcmEeD1yYNM2zbdLEja4JA3eUlxl4AtPEby_1tRsXuuLf-Z1czrkgZzFFJOQtsB4YyA-HPuIasfacge6B94zJF2QDaqc7vlP8jGyY0qKTTLFzclHKgTWFGsQrci5AqQEU25B4RWN6wJku61xDtyRv2966HyEindHmGOJ3OtqCntrjMaf2RKeUqV1rWmwNjrrZlhKm4NopRZomut_f0IwuZd_gQkOkHheMNdjX5OVk54JvntZL8u3z_uv1bXf_5ebu-uq-cwNXtdMgBuk46FED56NQcgtSTiBRbFFv1XYU4ygHO2lrdbu1KMROedAOpXe7SVyS9yffNvHPFUs1SygO59lGTGsxXAgYuB6EatJ3T9J1XNCbYw6Lzb_Mc0ZN8PEkcDmVknEyLtQ_f63ZhtkAM4-FmIM5FWIeCzHATYu7wcNf8LP_f7BPJwxbSA8BsykuYHToQwu2Gp_Cvw1-A-NZp6I
CitedBy_id crossref_primary_10_1016_j_neunet_2023_12_009
crossref_primary_10_1016_j_nicl_2025_103760
crossref_primary_10_1038_s41598_024_77876_8
crossref_primary_10_3389_fnagi_2022_943436
crossref_primary_10_1109_TETCI_2022_3186180
crossref_primary_10_1016_j_bspc_2022_103740
crossref_primary_10_1016_j_bspc_2022_104312
crossref_primary_10_1016_j_cmpb_2024_108123
crossref_primary_10_1109_ACCESS_2022_3180725
crossref_primary_10_1109_ACCESS_2024_3351809
crossref_primary_10_1016_j_compbiomed_2023_106752
crossref_primary_10_1155_2021_6342226
crossref_primary_10_1007_s11571_025_10232_2
crossref_primary_10_1109_ACCESS_2020_3016981
crossref_primary_10_3389_frai_2022_1072801
crossref_primary_10_2174_1574893618666230706112826
crossref_primary_10_3390_s24248148
crossref_primary_10_1007_s00371_021_02354_5
crossref_primary_10_1088_2057_1976_acb942
crossref_primary_10_1016_j_cmpb_2022_106841
crossref_primary_10_1109_ACCESS_2022_3231446
crossref_primary_10_2147_NDT_S496307
crossref_primary_10_1109_ACCESS_2021_3083519
crossref_primary_10_1007_s12559_020_09765_x
crossref_primary_10_1007_s42235_024_00636_x
crossref_primary_10_1016_j_jelectrocard_2025_153899
crossref_primary_10_3233_JAD_201455
crossref_primary_10_1016_j_ijin_2023_03_004
crossref_primary_10_1155_2022_9935192
crossref_primary_10_1016_j_dsp_2024_104399
crossref_primary_10_1016_j_bspc_2022_103623
crossref_primary_10_1109_TNSRE_2020_3014951
crossref_primary_10_2147_NDT_S404528
crossref_primary_10_1016_j_heliyon_2024_e26365
crossref_primary_10_1088_1741_2552_ac05d8
crossref_primary_10_3390_app10165666
crossref_primary_10_1007_s00521_020_05588_x
crossref_primary_10_1038_s41514_023_00129_x
crossref_primary_10_1109_ACCESS_2021_3090474
crossref_primary_10_3390_s22166230
crossref_primary_10_1109_TCDS_2023_3254209
crossref_primary_10_3390_bios14040183
crossref_primary_10_1016_j_eswa_2024_125064
crossref_primary_10_1016_j_ijengsci_2020_103376
crossref_primary_10_1017_pcm_2022_10
crossref_primary_10_1142_S0129065721300023
crossref_primary_10_1038_s41598_024_55656_8
crossref_primary_10_1002_hsr2_70025
crossref_primary_10_3389_fnins_2021_667614
crossref_primary_10_1007_s12046_022_02015_w
crossref_primary_10_1016_j_drudis_2025_104332
crossref_primary_10_1016_j_heliyon_2023_e21626
crossref_primary_10_1145_3543848
crossref_primary_10_1016_j_bspc_2021_103000
crossref_primary_10_1109_TIM_2023_3324669
crossref_primary_10_1016_j_bspc_2020_102223
crossref_primary_10_1109_TTS_2023_3239526
crossref_primary_10_3390_signals5030034
crossref_primary_10_1007_s13755_022_00186_8
crossref_primary_10_1007_s11571_024_10104_1
crossref_primary_10_1371_journal_pone_0277555
crossref_primary_10_3390_eng5030078
crossref_primary_10_1080_0954898X_2024_2406946
crossref_primary_10_1007_s10462_021_09986_y
crossref_primary_10_1016_j_teler_2025_100189
crossref_primary_10_1016_j_arr_2023_102072
crossref_primary_10_1186_s13195_022_01115_3
crossref_primary_10_3390_s20247307
crossref_primary_10_1016_j_dajour_2023_100336
crossref_primary_10_1038_s41746_022_00689_4
crossref_primary_10_3390_s20092533
crossref_primary_10_1186_s13195_023_01181_1
crossref_primary_10_1007_s40846_022_00758_9
crossref_primary_10_3390_e22020140
crossref_primary_10_1016_j_jocn_2023_09_029
crossref_primary_10_3233_JAD_215467
crossref_primary_10_3389_fncom_2021_700467
crossref_primary_10_3390_app10196761
crossref_primary_10_1142_S0129065721500064
crossref_primary_10_1016_j_bbr_2024_115070
crossref_primary_10_1007_s13755_021_00139_7
crossref_primary_10_1109_TNSRE_2022_3230250
crossref_primary_10_1016_j_compbiomed_2024_109399
crossref_primary_10_3233_JAD_230525
crossref_primary_10_3390_make3040042
crossref_primary_10_1002_hbm_25994
crossref_primary_10_3389_fnhum_2023_1190203
crossref_primary_10_1002_brb3_3139
crossref_primary_10_1038_s41598_025_86449_2
crossref_primary_10_1016_j_neucom_2022_01_055
crossref_primary_10_3389_fpsyt_2024_1392158
crossref_primary_10_1007_s10548_025_01106_1
crossref_primary_10_1038_s41598_023_32664_8
crossref_primary_10_3390_e22070794
crossref_primary_10_1007_s12293_021_00345_6
crossref_primary_10_1016_j_bspc_2024_106895
crossref_primary_10_1177_15500594211063662
crossref_primary_10_3390_brainsci11040453
crossref_primary_10_1002_brb3_1902
crossref_primary_10_1155_2022_8187009
crossref_primary_10_1016_j_engappai_2025_110141
crossref_primary_10_1186_s40779_023_00502_7
crossref_primary_10_1016_j_procs_2021_05_007
crossref_primary_10_1016_j_compeleceng_2024_109796
crossref_primary_10_1016_j_neucom_2021_02_020
crossref_primary_10_1109_TNSRE_2022_3170943
crossref_primary_10_1109_TNSRE_2023_3265378
crossref_primary_10_1007_s13735_023_00271_y
crossref_primary_10_1109_JBHI_2022_3172479
crossref_primary_10_3389_fnins_2024_1352129
crossref_primary_10_3390_brainsci13010021
crossref_primary_10_1016_j_future_2021_12_019
crossref_primary_10_1016_j_apacoust_2021_108078
crossref_primary_10_1007_s12559_020_09789_3
crossref_primary_10_1017_S0263574721000382
crossref_primary_10_1063_5_0082179
crossref_primary_10_1177_09544119241228912
crossref_primary_10_3390_s24206721
crossref_primary_10_1007_s00521_024_10207_0
crossref_primary_10_1007_s11571_024_10198_7
crossref_primary_10_1016_j_bspc_2020_102338
crossref_primary_10_1109_ACCESS_2020_2982852
crossref_primary_10_1002_cpe_7099
crossref_primary_10_1007_s12559_021_09910_0
crossref_primary_10_2147_JMDH_S509747
crossref_primary_10_1016_j_irbm_2020_06_008
crossref_primary_10_1016_j_jneumeth_2021_109353
crossref_primary_10_3389_fpsyt_2021_707581
crossref_primary_10_1080_13682199_2023_2172524
crossref_primary_10_1007_s41870_022_01095_5
crossref_primary_10_1016_j_procir_2020_04_039
crossref_primary_10_1016_j_bspc_2022_104092
crossref_primary_10_1016_j_neuroimage_2023_120054
crossref_primary_10_1016_j_ipm_2022_103113
crossref_primary_10_1016_j_neucom_2022_08_024
crossref_primary_10_1109_ACCESS_2022_3198988
crossref_primary_10_3389_fnbot_2020_00025
crossref_primary_10_1007_s12559_021_09940_8
crossref_primary_10_3390_info14090513
crossref_primary_10_1016_j_bspc_2024_106234
crossref_primary_10_3390_s21020637
crossref_primary_10_1109_TIM_2022_3193407
crossref_primary_10_3390_math9060606
crossref_primary_10_1016_j_compbiomed_2023_106857
crossref_primary_10_2139_ssrn_4158273
crossref_primary_10_1016_j_compbiomed_2023_107701
crossref_primary_10_1021_acsapm_3c01368
crossref_primary_10_1177_15500594241227485
crossref_primary_10_1016_j_clineuro_2020_106446
crossref_primary_10_3389_fninf_2022_924547
crossref_primary_10_1016_j_neunet_2024_106792
crossref_primary_10_1097_YCO_0000000000000768
crossref_primary_10_3390_a16020077
crossref_primary_10_1016_j_engappai_2023_106033
crossref_primary_10_3390_pr8050544
crossref_primary_10_3390_app10217677
crossref_primary_10_1155_2021_1302989
crossref_primary_10_3389_frsip_2022_936790
crossref_primary_10_3390_electronics11162601
crossref_primary_10_1016_j_bspc_2020_102316
crossref_primary_10_1142_S0129065723500211
crossref_primary_10_3934_mbe_2023382
crossref_primary_10_1177_01423312231217767
crossref_primary_10_1007_s00521_020_05624_w
crossref_primary_10_1186_s12911_022_01956_w
crossref_primary_10_19163_2307_9266_2023_11_5_432_442
crossref_primary_10_1007_s00034_023_02540_x
crossref_primary_10_1109_JSEN_2024_3403875
crossref_primary_10_1177_15500594211018545
crossref_primary_10_1186_s40708_024_00225_y
crossref_primary_10_3390_app13095744
crossref_primary_10_1002_alz_12645
crossref_primary_10_1016_j_bspc_2022_103725
crossref_primary_10_3390_s20092694
crossref_primary_10_1007_s11042_023_17288_4
crossref_primary_10_1016_j_artmed_2022_102332
crossref_primary_10_1016_j_jcis_2022_02_107
crossref_primary_10_1109_COMST_2023_3256323
crossref_primary_10_1155_2022_4653923
Cites_doi 10.1007/s12559-017-9520-2
10.1016/j.cmpb.2014.01.019
10.1016/j.seizure.2015.01.012
10.1016/j.procs.2016.04.062
10.3389/fnins.2017.00262
10.1109/TII.2018.2868431
10.1177/155005941104200304
10.1016/j.jneumeth.2006.10.023
10.1001/archneur.56.3.303
10.1016/j.neucom.2018.09.071
10.4103/2228-7477.175869
10.1016/j.clinph.2017.06.251
10.1142/S0129065715500057
10.1007/s41870-017-0057-0
10.1007/s12559-017-9533-x
10.3390/e20010035
10.3389/fnagi.2016.00273
10.1109/TNNLS.2018.2790388
10.1016/j.jneumeth.2003.10.009
10.1016/j.neunet.2019.08.019
10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
10.1023/A:1018628609742
10.1016/j.neucom.2018.10.061
10.1038/s41598-018-33969-9
10.1109/PROC.1987.13824
10.1016/j.jalz.2011.03.003
10.1016/j.clinph.2004.01.001
10.1080/03772063.2016.1241164
10.1016/j.neurobiolaging.2004.03.008
10.1063/1.4906038
10.1186/s12911-018-0613-y
10.1016/j.neucom.2017.01.126
10.1007/s12559-018-9575-8
ContentType Journal Article
Copyright 2019 Elsevier Ltd
Copyright © 2019 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2019 Elsevier Ltd
– notice: Copyright © 2019 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
NPM
7X8
DOI 10.1016/j.neunet.2019.12.006
DatabaseName CrossRef
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
PubMed
MEDLINE - Academic
DatabaseTitleList PubMed
MEDLINE - Academic

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Computer Science
EISSN 1879-2782
EndPage 190
ExternalDocumentID 31884180
10_1016_j_neunet_2019_12_006
S0893608019303983
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.DC
.~1
0R~
123
186
1B1
1RT
1~.
1~5
29N
4.4
457
4G.
53G
5RE
5VS
6TJ
7-5
71M
8P~
9JM
9JN
AABNK
AACTN
AADPK
AAEDT
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AAXLA
AAXUO
AAYFN
ABAOU
ABBOA
ABCQJ
ABEFU
ABFNM
ABFRF
ABHFT
ABIVO
ABJNI
ABLJU
ABMAC
ABXDB
ABYKQ
ACAZW
ACDAQ
ACGFO
ACGFS
ACIUM
ACNNM
ACRLP
ACZNC
ADBBV
ADEZE
ADGUI
ADJOM
ADMUD
ADRHT
AEBSH
AECPX
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AHHHB
AHJVU
AHZHX
AIALX
AIEXJ
AIKHN
AITUG
AJBFU
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AOUOD
ARUGR
ASPBG
AVWKF
AXJTR
AZFZN
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EJD
EO8
EO9
EP2
EP3
F0J
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
GBOLZ
HLZ
HMQ
HVGLF
HZ~
IHE
J1W
JJJVA
K-O
KOM
KZ1
LG9
LMP
M2V
M41
MHUIS
MO0
MOBAO
MVM
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
ROL
RPZ
SBC
SCC
SDF
SDG
SDP
SES
SEW
SNS
SPC
SPCBC
SSN
SST
SSV
SSW
SSZ
T5K
TAE
UAP
UNMZH
VOH
WUQ
XPP
ZMT
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
NPM
PKN
7X8
ID FETCH-LOGICAL-c428t-91346c219b9122b3865166f16e35e9585b3bb64af9aa916eae3378d19ce6dc7f3
IEDL.DBID .~1
ISSN 0893-6080
1879-2782
IngestDate Fri Jul 11 11:14:19 EDT 2025
Wed Feb 19 02:31:54 EST 2025
Thu Apr 24 23:44:17 EDT 2025
Tue Jul 01 01:24:34 EDT 2025
Fri Feb 23 02:49:25 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords Data fusion
Alzheimer’s disease
Bispectrum
Mild cognitive impairment
Machine learning
Continuous wavelet transform
Language English
License Copyright © 2019 Elsevier Ltd. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-91346c219b9122b3865166f16e35e9585b3bb64af9aa916eae3378d19ce6dc7f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0001-7890-2897
0000-0003-4962-3500
0000-0002-8080-082X
PMID 31884180
PQID 2331429438
PQPubID 23479
PageCount 15
ParticipantIDs proquest_miscellaneous_2331429438
pubmed_primary_31884180
crossref_citationtrail_10_1016_j_neunet_2019_12_006
crossref_primary_10_1016_j_neunet_2019_12_006
elsevier_sciencedirect_doi_10_1016_j_neunet_2019_12_006
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate March 2020
2020-03-00
2020-Mar
20200301
PublicationDateYYYYMMDD 2020-03-01
PublicationDate_xml – month: 03
  year: 2020
  text: March 2020
PublicationDecade 2020
PublicationPlace United States
PublicationPlace_xml – name: United States
PublicationTitle Neural networks
PublicationTitleAlternate Neural Netw
PublicationYear 2020
Publisher Elsevier Ltd
Publisher_xml – name: Elsevier Ltd
References Kulkarni (b21) 2018; 10
Sperling, Aisen, Beckett, Bennett, Craft, Fagan, Iwatsubo, Jack Jr, Kaye, Montine (b41) 2011; 7
Wang, Jiang, Tu, Hussain, Tang (b47) 2019; 329
(b2) 2013
Assi, Gagliano, Rihana, Nguyen, Sawan (b1) 2018; 8
Mammone, Ieracitano, Adeli, Bramanti, Morabito (b28) 2018
Lehmann, Koenig, Jelic, Prichep, John, Wahlund, Dodge, Dierks (b24) 2007; 161
Kalantari, Kamsin, Shamshirband, Gani, Alinejad-Rokny, Chronopoulos (b16) 2018; 276
Morabito, Campolo, Labate, Morabito, Bonanno, Bramanti, De Salvo, Marra, Bramanti (b32) 2015; 25
Morabito, Campolo, Ieracitano, Ebadi, Bonanno, Bramanti, Desalvo, Mammone, Bramanti (b31) 2016
Kashefpoor, Rabbani, Barekatain (b19) 2016; 6
Gomez, Vaquerizo-Villar, Poza, Ruiz, Tola-Arribas, Cano, Hornero (b11) 2017
McBride, Zhao, Munro, Smith, Jicha, Hively, Broster, Schmitt, Kryscio, Jiang (b29) 2014; 114
Trambaiolli, Lorena, Fraga, Kanda, Anghinah, Nitrini (b44) 2011; 42
Li, Zhang, He (b25) 2018; 10
König, Prichep, Dierks, Hubl, Wahlund, John, Jelic (b20) 2005; 26
Nikias, Raghuveer (b34) 1987; 75
Mekyska, Galaz, Kiska, Zvoncak, Mucha, Smekal, Eliasova, Kostalova, Mrackova, Fiedorova (b30) 2018; 10
Ieracitano, Mammone, Bramanti, Hussain, Morabito (b13) 2019; 323
Mahmud, Kaiser, Hussain, Vassanelli (b26) 2018; 29
Ruiz-Gómez, Gómez, Poza, Gutiérrez-Tobal, Tola-Arribas, Cano, Hornero (b39) 2018; 20
Torrence, Compo (b43) 1998; 79
Vialatte, Cichocki, Dreyfus, Musha, Shishkin, Gervais (b46) 2005
Suykens, Vandewalle (b42) 1999; 9
Jeong (b15) 2004; 115
Trambaiolli, Spolaôr, Lorena, Anghinah, Sato (b45) 2017; 128
Hosmer Jr., Lemeshow, Sturdivant (b12) 2013
Neto, Biessmann, Aurlien, Nordby, Eichele (b33) 2016; 8
Powers (b38) 2011
World Health Organization (b49) 2018
Delorme, Makeig (b8) 2004; 134
Kulkarni, Bairagi (b22) 2017; 63
Faust, Acharya, Adeli, Adeli (b9) 2015; 26
Sachnev, Suresh, Sundararajan, Mahanand, Azeem, Saraswathi (b40) 2019
Kasabov (b17) 2018
Wang, Wang, Li, Yu, Deng, Wei (b48) 2015; 25
Capecci, Morabito, Campolo, Mammone, Labate, Kasabov (b5) 2015
Kasabov (b18) 2019; 119
Ieracitano, Mammone, Bramanti, Marino, Hussain, Morabito (b14) 2019
Dauwels, Srinivasan, Ramasubba Reddy, Musha, Vialatte, Latchoumane, Jeong, Cichocki (b7) 2011; 2011
Chella, D’Andrea, Basti, Pizzella, Marzetti (b6) 2017; 11
Badarna, Shimshoni, Luria, Rosenblum (b3) 2018; 10
Fiscon, Weitschek, Cialini, Felici, Bertolazzi, De Salvo, Bramanti, Bramanti, De Cola (b10) 2018; 18
Kumar, Khaund, Hazarika (b23) 2016; 84
Bousquet, Boucheron, Lugosi (b4) 2004
Mammone, De Salvo, Bonanno, Ieracitano, Marino, Marra, Bramanti, Morabito (b27) 2019; 15
Nunez, Srinivasan (b35) 2006
Patterson (b36) 1998
Petersen, Smith, Waring, Ivnik, Tangalos, Kokmen (b37) 1999; 56
Gomez (10.1016/j.neunet.2019.12.006_b11) 2017
Bousquet (10.1016/j.neunet.2019.12.006_b4) 2004
Patterson (10.1016/j.neunet.2019.12.006_b36) 1998
Trambaiolli (10.1016/j.neunet.2019.12.006_b45) 2017; 128
Vialatte (10.1016/j.neunet.2019.12.006_b46) 2005
Kashefpoor (10.1016/j.neunet.2019.12.006_b19) 2016; 6
Petersen (10.1016/j.neunet.2019.12.006_b37) 1999; 56
Jeong (10.1016/j.neunet.2019.12.006_b15) 2004; 115
Kulkarni (10.1016/j.neunet.2019.12.006_b21) 2018; 10
Mekyska (10.1016/j.neunet.2019.12.006_b30) 2018; 10
Li (10.1016/j.neunet.2019.12.006_b25) 2018; 10
Faust (10.1016/j.neunet.2019.12.006_b9) 2015; 26
Morabito (10.1016/j.neunet.2019.12.006_b32) 2015; 25
Capecci (10.1016/j.neunet.2019.12.006_b5) 2015
Wang (10.1016/j.neunet.2019.12.006_b47) 2019; 329
Morabito (10.1016/j.neunet.2019.12.006_b31) 2016
Badarna (10.1016/j.neunet.2019.12.006_b3) 2018; 10
World Health Organization (10.1016/j.neunet.2019.12.006_b49) 2018
Nunez (10.1016/j.neunet.2019.12.006_b35) 2006
Neto (10.1016/j.neunet.2019.12.006_b33) 2016; 8
Delorme (10.1016/j.neunet.2019.12.006_b8) 2004; 134
Trambaiolli (10.1016/j.neunet.2019.12.006_b44) 2011; 42
Chella (10.1016/j.neunet.2019.12.006_b6) 2017; 11
Kumar (10.1016/j.neunet.2019.12.006_b23) 2016; 84
Torrence (10.1016/j.neunet.2019.12.006_b43) 1998; 79
Mammone (10.1016/j.neunet.2019.12.006_b28) 2018
Mammone (10.1016/j.neunet.2019.12.006_b27) 2019; 15
Kalantari (10.1016/j.neunet.2019.12.006_b16) 2018; 276
Kasabov (10.1016/j.neunet.2019.12.006_b18) 2019; 119
Hosmer Jr. (10.1016/j.neunet.2019.12.006_b12) 2013
Ruiz-Gómez (10.1016/j.neunet.2019.12.006_b39) 2018; 20
König (10.1016/j.neunet.2019.12.006_b20) 2005; 26
Lehmann (10.1016/j.neunet.2019.12.006_b24) 2007; 161
Ieracitano (10.1016/j.neunet.2019.12.006_b14) 2019
Kasabov (10.1016/j.neunet.2019.12.006_b17) 2018
Mahmud (10.1016/j.neunet.2019.12.006_b26) 2018; 29
Fiscon (10.1016/j.neunet.2019.12.006_b10) 2018; 18
Suykens (10.1016/j.neunet.2019.12.006_b42) 1999; 9
(10.1016/j.neunet.2019.12.006_b2) 2013
Sperling (10.1016/j.neunet.2019.12.006_b41) 2011; 7
Powers (10.1016/j.neunet.2019.12.006_b38) 2011
Wang (10.1016/j.neunet.2019.12.006_b48) 2015; 25
Assi (10.1016/j.neunet.2019.12.006_b1) 2018; 8
Kulkarni (10.1016/j.neunet.2019.12.006_b22) 2017; 63
Sachnev (10.1016/j.neunet.2019.12.006_b40) 2019
Ieracitano (10.1016/j.neunet.2019.12.006_b13) 2019; 323
McBride (10.1016/j.neunet.2019.12.006_b29) 2014; 114
Dauwels (10.1016/j.neunet.2019.12.006_b7) 2011; 2011
Nikias (10.1016/j.neunet.2019.12.006_b34) 1987; 75
References_xml – volume: 8
  start-page: 273
  year: 2016
  ident: b33
  article-title: Regularized linear discriminant analysis of EEG features in dementia patients
  publication-title: Frontiers in Aging Neuroscience
– year: 2013
  ident: b2
  publication-title: Diagnostic and statistical manual of mental disorders
– year: 2011
  ident: b38
  article-title: Evaluation: from precision, recall and F-measure to ROC, informedness, markedness and correlation
– year: 2006
  ident: b35
  article-title: Electric fields of the brain: the neurophysics of EEG
– volume: 20
  start-page: 35
  year: 2018
  ident: b39
  article-title: Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment
  publication-title: Entropy
– start-page: 169
  year: 2004
  end-page: 207
  ident: b4
  article-title: Introduction to statistical learning theory
  publication-title: Advanced lectures on machine learning
– volume: 119
  start-page: 341
  year: 2019
  ident: b18
  article-title: Spiking neural networks for deep learning and knowledge representation
  publication-title: Neural Networks: The Official Journal of the International Neural Network Society
– volume: 25
  start-page: 1550005
  year: 2015
  ident: b32
  article-title: A longitudinal EEG study of Alzheimer’s disease progression based on a complex network approach
  publication-title: International Journal of Neural Systems
– start-page: 422
  year: 2017
  end-page: 425
  ident: b11
  article-title: Bispectral analysis of spontaneous EEG activity from patients with moderate dementia due to alzheimer’s disease
  publication-title: 2017 39th annual international conference of the ieee engineering in medicine and biology society
– start-page: 1
  year: 2019
  end-page: 8
  ident: b14
  article-title: A time-frequency based machine learning system for brain states classification via eeg signal processing
  publication-title: 2019 International Joint Conference on Neural Networks (IJCNN)
– volume: 79
  start-page: 61
  year: 1998
  end-page: 78
  ident: b43
  article-title: A practical guide to wavelet analysis
  publication-title: Bulletin of the American Meteorological Society
– volume: 10
  start-page: 215
  year: 2018
  end-page: 227
  ident: b3
  article-title: The importance of pen motion pattern groups for semi-automatic classification of handwriting into mental workload classes
  publication-title: Cognitive Computation
– volume: 161
  start-page: 342
  year: 2007
  end-page: 350
  ident: b24
  article-title: Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG)
  publication-title: Journal of Neuroscience Methods
– volume: 9
  start-page: 293
  year: 1999
  end-page: 300
  ident: b42
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Processing Letters
– volume: 329
  start-page: 433
  year: 2019
  end-page: 446
  ident: b47
  article-title: Robust pixelwise saliency detection via progressive graph rankings
  publication-title: Neurocomputing
– volume: 42
  start-page: 160
  year: 2011
  end-page: 165
  ident: b44
  article-title: Improving Alzheimer’s disease diagnosis with machine learning techniques
  publication-title: Clinical EEG and Neuroscience
– start-page: 1
  year: 2019
  end-page: 15
  ident: b40
  article-title: Multi-region risk-sensitive cognitive ensembler for accurate detection of attention-deficit/hyperactivity disorder
  publication-title: Cognitive Computation
– volume: 8
  start-page: 15491
  year: 2018
  ident: b1
  article-title: Bispectrum features and multilayer perceptron classifier to enhance seizure prediction
  publication-title: Scientific Reports
– volume: 29
  start-page: 2063
  year: 2018
  end-page: 2079
  ident: b26
  article-title: Applications of deep learning and reinforcement learning to biological data
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 10
  start-page: 59
  year: 2018
  end-page: 64
  ident: b21
  article-title: Use of complexity based features in diagnosis of mild Alzheimer disease using EEG signals
  publication-title: International Journal of Information Technology
– volume: 26
  start-page: 56
  year: 2015
  end-page: 64
  ident: b9
  article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis
  publication-title: Seizure
– volume: 6
  start-page: 25
  year: 2016
  ident: b19
  article-title: Automatic diagnosis of mild cognitive impairment using electroencephalogram spectral features
  publication-title: Journal of Medical Signals and Sensors
– volume: 276
  start-page: 2
  year: 2018
  end-page: 22
  ident: b16
  article-title: Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions
  publication-title: Neurocomputing
– start-page: 683
  year: 2005
  end-page: 692
  ident: b46
  article-title: Early detection of Alzheimer’s disease by blind source separation, time frequency representation, and bump modeling of EEG signals
  publication-title: International conference on artificial neural networks
– volume: 18
  start-page: 35
  year: 2018
  ident: b10
  article-title: Combining EEG signal processing with supervised methods for Alzheimer’s patients classification
  publication-title: BMC Medical Informatics and Decision Making
– volume: 56
  start-page: 303
  year: 1999
  end-page: 308
  ident: b37
  article-title: Mild cognitive impairment: clinical characterization and outcome
  publication-title: Archives of Neurology
– volume: 15
  start-page: 527
  year: 2019
  end-page: 536
  ident: b27
  article-title: Brain network analysis of compressive sensed high-density EEG signals in AD and MCI subjects
  publication-title: IEEE Transactions on Industrial Informatics
– year: 2018
  ident: b49
  article-title: Meeting on the implementation of the global action plan of the public health response on dementia 2017–2025: meeting report: 11–12 december 2017
– volume: 323
  start-page: 96
  year: 2019
  end-page: 107
  ident: b13
  article-title: A convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of EEG recordings
  publication-title: Neurocomputing
– volume: 10
  start-page: 1006
  year: 2018
  end-page: 1018
  ident: b30
  article-title: Quantitative analysis of relationship between hypokinetic dysarthria and the freezing of gait in parkinson’s disease
  publication-title: Cognitive Computation
– volume: 63
  start-page: 11
  year: 2017
  end-page: 22
  ident: b22
  article-title: Extracting salient features for EEG-based diagnosis of Alzheimer’s disease using support vector machine classifier
  publication-title: IETE Journal of Research
– volume: 26
  start-page: 165
  year: 2005
  end-page: 171
  ident: b20
  article-title: Decreased EEG synchronization in Alzheimers disease and mild cognitive impairment
  publication-title: Neurobiology of Aging
– year: 2013
  ident: b12
  article-title: Applied logistic regression: Vol. 398
– volume: 11
  start-page: 262
  year: 2017
  ident: b6
  article-title: Non-linear analysis of scalp EEG by using bispectra: the effect of the reference choice
  publication-title: Frontiers in Neuroscience
– volume: 115
  start-page: 1490
  year: 2004
  end-page: 1505
  ident: b15
  article-title: EEG dynamics in patients with Alzheimer’s disease
  publication-title: Clinical Neurophysiology
– volume: 25
  start-page: 013110
  year: 2015
  ident: b48
  article-title: Multiple feature extraction and classification of electroencephalograph signal for alzheimers’ with spectrum and bispectrum
  publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science
– volume: 10
  start-page: 368
  year: 2018
  end-page: 380
  ident: b25
  article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition
  publication-title: Cognitive Computation
– start-page: 1
  year: 2016
  end-page: 6
  ident: b31
  article-title: Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings
  publication-title: Research and technologies for society and industry leveraging a better tomorrow (RTSI), 2016 IEEE 2nd international forum on
– start-page: 1
  year: 2018
  end-page: 14
  ident: b28
  article-title: Permutation jaccard distance-based hierarchical clustering to estimate EEG network density modifications in MCI subjects
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– year: 1998
  ident: b36
  article-title: Artificial neural networks: theory and applications
– volume: 128
  start-page: 2058
  year: 2017
  end-page: 2067
  ident: b45
  article-title: Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease
  publication-title: Clinical Neurophysiology
– volume: 7
  start-page: 280
  year: 2011
  end-page: 292
  ident: b41
  article-title: Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
– volume: 134
  start-page: 9
  year: 2004
  end-page: 21
  ident: b8
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: Journal of Neuroscience Methods
– year: 2018
  ident: b17
  article-title: Time-space, spiking neural networks and brain-inspired artificial intelligence, vol. 7
– volume: 114
  start-page: 153
  year: 2014
  end-page: 163
  ident: b29
  article-title: Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer’s disease
  publication-title: Computer Methods and Programs in Biomedicine
– volume: 2011
  year: 2011
  ident: b7
  article-title: Slowing and loss of complexity in Alzheimer’s EEG: two sides of the same coin?
  publication-title: International Journal of Alzheimer’s Disease
– volume: 84
  start-page: 31
  year: 2016
  end-page: 35
  ident: b23
  article-title: Bispectral analysis of EEG for emotion recognition
  publication-title: Procedia Computer Science
– volume: 75
  start-page: 869
  year: 1987
  end-page: 891
  ident: b34
  article-title: Bispectrum estimation: A digital signal processing framework
  publication-title: Proceedings of the IEEE
– start-page: 159
  year: 2015
  end-page: 172
  ident: b5
  article-title: A feasibility study of using the neucube spiking neural network architecture for modelling Alzheimer’s disease EEG data
  publication-title: Advances in neural networks: computational and theoretical issues
– start-page: 1
  year: 2016
  ident: 10.1016/j.neunet.2019.12.006_b31
  article-title: Deep convolutional neural networks for classification of mild cognitive impaired and Alzheimer’s disease patients from scalp EEG recordings
– volume: 10
  start-page: 215
  issue: 2
  year: 2018
  ident: 10.1016/j.neunet.2019.12.006_b3
  article-title: The importance of pen motion pattern groups for semi-automatic classification of handwriting into mental workload classes
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-017-9520-2
– volume: 114
  start-page: 153
  issue: 2
  year: 2014
  ident: 10.1016/j.neunet.2019.12.006_b29
  article-title: Spectral and complexity analysis of scalp EEG characteristics for mild cognitive impairment and early Alzheimer’s disease
  publication-title: Computer Methods and Programs in Biomedicine
  doi: 10.1016/j.cmpb.2014.01.019
– year: 1998
  ident: 10.1016/j.neunet.2019.12.006_b36
– volume: 26
  start-page: 56
  year: 2015
  ident: 10.1016/j.neunet.2019.12.006_b9
  article-title: Wavelet-based EEG processing for computer-aided seizure detection and epilepsy diagnosis
  publication-title: Seizure
  doi: 10.1016/j.seizure.2015.01.012
– volume: 84
  start-page: 31
  year: 2016
  ident: 10.1016/j.neunet.2019.12.006_b23
  article-title: Bispectral analysis of EEG for emotion recognition
  publication-title: Procedia Computer Science
  doi: 10.1016/j.procs.2016.04.062
– volume: 11
  start-page: 262
  year: 2017
  ident: 10.1016/j.neunet.2019.12.006_b6
  article-title: Non-linear analysis of scalp EEG by using bispectra: the effect of the reference choice
  publication-title: Frontiers in Neuroscience
  doi: 10.3389/fnins.2017.00262
– volume: 15
  start-page: 527
  issue: 1
  year: 2019
  ident: 10.1016/j.neunet.2019.12.006_b27
  article-title: Brain network analysis of compressive sensed high-density EEG signals in AD and MCI subjects
  publication-title: IEEE Transactions on Industrial Informatics
  doi: 10.1109/TII.2018.2868431
– volume: 42
  start-page: 160
  issue: 3
  year: 2011
  ident: 10.1016/j.neunet.2019.12.006_b44
  article-title: Improving Alzheimer’s disease diagnosis with machine learning techniques
  publication-title: Clinical EEG and Neuroscience
  doi: 10.1177/155005941104200304
– volume: 161
  start-page: 342
  issue: 2
  year: 2007
  ident: 10.1016/j.neunet.2019.12.006_b24
  article-title: Application and comparison of classification algorithms for recognition of Alzheimer’s disease in electrical brain activity (EEG)
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2006.10.023
– volume: 56
  start-page: 303
  issue: 3
  year: 1999
  ident: 10.1016/j.neunet.2019.12.006_b37
  article-title: Mild cognitive impairment: clinical characterization and outcome
  publication-title: Archives of Neurology
  doi: 10.1001/archneur.56.3.303
– volume: 323
  start-page: 96
  year: 2019
  ident: 10.1016/j.neunet.2019.12.006_b13
  article-title: A convolutional neural network approach for classification of dementia stages based on 2d-spectral representation of EEG recordings
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.09.071
– volume: 6
  start-page: 25
  issue: 1
  year: 2016
  ident: 10.1016/j.neunet.2019.12.006_b19
  article-title: Automatic diagnosis of mild cognitive impairment using electroencephalogram spectral features
  publication-title: Journal of Medical Signals and Sensors
  doi: 10.4103/2228-7477.175869
– start-page: 422
  year: 2017
  ident: 10.1016/j.neunet.2019.12.006_b11
  article-title: Bispectral analysis of spontaneous EEG activity from patients with moderate dementia due to alzheimer’s disease
– volume: 128
  start-page: 2058
  issue: 10
  year: 2017
  ident: 10.1016/j.neunet.2019.12.006_b45
  article-title: Feature selection before EEG classification supports the diagnosis of Alzheimer’s disease
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2017.06.251
– volume: 2011
  year: 2011
  ident: 10.1016/j.neunet.2019.12.006_b7
  article-title: Slowing and loss of complexity in Alzheimer’s EEG: two sides of the same coin?
  publication-title: International Journal of Alzheimer’s Disease
– year: 2011
  ident: 10.1016/j.neunet.2019.12.006_b38
– volume: 25
  start-page: 1550005
  issue: 02
  year: 2015
  ident: 10.1016/j.neunet.2019.12.006_b32
  article-title: A longitudinal EEG study of Alzheimer’s disease progression based on a complex network approach
  publication-title: International Journal of Neural Systems
  doi: 10.1142/S0129065715500057
– volume: 10
  start-page: 59
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2019.12.006_b21
  article-title: Use of complexity based features in diagnosis of mild Alzheimer disease using EEG signals
  publication-title: International Journal of Information Technology
  doi: 10.1007/s41870-017-0057-0
– volume: 10
  start-page: 368
  issue: 2
  year: 2018
  ident: 10.1016/j.neunet.2019.12.006_b25
  article-title: Hierarchical convolutional neural networks for EEG-based emotion recognition
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-017-9533-x
– year: 2006
  ident: 10.1016/j.neunet.2019.12.006_b35
– volume: 20
  start-page: 35
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2019.12.006_b39
  article-title: Automated multiclass classification of spontaneous EEG activity in Alzheimer’s disease and mild cognitive impairment
  publication-title: Entropy
  doi: 10.3390/e20010035
– year: 2013
  ident: 10.1016/j.neunet.2019.12.006_b12
– volume: 8
  start-page: 273
  year: 2016
  ident: 10.1016/j.neunet.2019.12.006_b33
  article-title: Regularized linear discriminant analysis of EEG features in dementia patients
  publication-title: Frontiers in Aging Neuroscience
  doi: 10.3389/fnagi.2016.00273
– year: 2013
  ident: 10.1016/j.neunet.2019.12.006_b2
– volume: 29
  start-page: 2063
  issue: 6
  year: 2018
  ident: 10.1016/j.neunet.2019.12.006_b26
  article-title: Applications of deep learning and reinforcement learning to biological data
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
  doi: 10.1109/TNNLS.2018.2790388
– start-page: 683
  year: 2005
  ident: 10.1016/j.neunet.2019.12.006_b46
  article-title: Early detection of Alzheimer’s disease by blind source separation, time frequency representation, and bump modeling of EEG signals
– volume: 134
  start-page: 9
  issue: 1
  year: 2004
  ident: 10.1016/j.neunet.2019.12.006_b8
  article-title: EEGLAB: an open source toolbox for analysis of single-trial EEG dynamics including independent component analysis
  publication-title: Journal of Neuroscience Methods
  doi: 10.1016/j.jneumeth.2003.10.009
– volume: 119
  start-page: 341
  year: 2019
  ident: 10.1016/j.neunet.2019.12.006_b18
  article-title: Spiking neural networks for deep learning and knowledge representation
  publication-title: Neural Networks: The Official Journal of the International Neural Network Society
  doi: 10.1016/j.neunet.2019.08.019
– start-page: 159
  year: 2015
  ident: 10.1016/j.neunet.2019.12.006_b5
  article-title: A feasibility study of using the neucube spiking neural network architecture for modelling Alzheimer’s disease EEG data
– year: 2018
  ident: 10.1016/j.neunet.2019.12.006_b17
– volume: 79
  start-page: 61
  issue: 1
  year: 1998
  ident: 10.1016/j.neunet.2019.12.006_b43
  article-title: A practical guide to wavelet analysis
  publication-title: Bulletin of the American Meteorological Society
  doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2
– volume: 9
  start-page: 293
  issue: 3
  year: 1999
  ident: 10.1016/j.neunet.2019.12.006_b42
  article-title: Least squares support vector machine classifiers
  publication-title: Neural Processing Letters
  doi: 10.1023/A:1018628609742
– start-page: 1
  issue: 99
  year: 2018
  ident: 10.1016/j.neunet.2019.12.006_b28
  article-title: Permutation jaccard distance-based hierarchical clustering to estimate EEG network density modifications in MCI subjects
  publication-title: IEEE Transactions on Neural Networks and Learning Systems
– volume: 329
  start-page: 433
  year: 2019
  ident: 10.1016/j.neunet.2019.12.006_b47
  article-title: Robust pixelwise saliency detection via progressive graph rankings
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2018.10.061
– start-page: 1
  year: 2019
  ident: 10.1016/j.neunet.2019.12.006_b40
  article-title: Multi-region risk-sensitive cognitive ensembler for accurate detection of attention-deficit/hyperactivity disorder
  publication-title: Cognitive Computation
– volume: 8
  start-page: 15491
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2019.12.006_b1
  article-title: Bispectrum features and multilayer perceptron classifier to enhance seizure prediction
  publication-title: Scientific Reports
  doi: 10.1038/s41598-018-33969-9
– volume: 75
  start-page: 869
  issue: 7
  year: 1987
  ident: 10.1016/j.neunet.2019.12.006_b34
  article-title: Bispectrum estimation: A digital signal processing framework
  publication-title: Proceedings of the IEEE
  doi: 10.1109/PROC.1987.13824
– volume: 7
  start-page: 280
  issue: 3
  year: 2011
  ident: 10.1016/j.neunet.2019.12.006_b41
  article-title: Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease
  publication-title: Alzheimer’s & Dementia
  doi: 10.1016/j.jalz.2011.03.003
– volume: 115
  start-page: 1490
  issue: 7
  year: 2004
  ident: 10.1016/j.neunet.2019.12.006_b15
  article-title: EEG dynamics in patients with Alzheimer’s disease
  publication-title: Clinical Neurophysiology
  doi: 10.1016/j.clinph.2004.01.001
– year: 2018
  ident: 10.1016/j.neunet.2019.12.006_b49
– start-page: 169
  year: 2004
  ident: 10.1016/j.neunet.2019.12.006_b4
  article-title: Introduction to statistical learning theory
– volume: 63
  start-page: 11
  issue: 1
  year: 2017
  ident: 10.1016/j.neunet.2019.12.006_b22
  article-title: Extracting salient features for EEG-based diagnosis of Alzheimer’s disease using support vector machine classifier
  publication-title: IETE Journal of Research
  doi: 10.1080/03772063.2016.1241164
– volume: 26
  start-page: 165
  issue: 2
  year: 2005
  ident: 10.1016/j.neunet.2019.12.006_b20
  article-title: Decreased EEG synchronization in Alzheimers disease and mild cognitive impairment
  publication-title: Neurobiology of Aging
  doi: 10.1016/j.neurobiolaging.2004.03.008
– start-page: 1
  year: 2019
  ident: 10.1016/j.neunet.2019.12.006_b14
  article-title: A time-frequency based machine learning system for brain states classification via eeg signal processing
– volume: 25
  start-page: 013110
  issue: 1
  year: 2015
  ident: 10.1016/j.neunet.2019.12.006_b48
  article-title: Multiple feature extraction and classification of electroencephalograph signal for alzheimers’ with spectrum and bispectrum
  publication-title: Chaos. An Interdisciplinary Journal of Nonlinear Science
  doi: 10.1063/1.4906038
– volume: 18
  start-page: 35
  issue: 1
  year: 2018
  ident: 10.1016/j.neunet.2019.12.006_b10
  article-title: Combining EEG signal processing with supervised methods for Alzheimer’s patients classification
  publication-title: BMC Medical Informatics and Decision Making
  doi: 10.1186/s12911-018-0613-y
– volume: 276
  start-page: 2
  year: 2018
  ident: 10.1016/j.neunet.2019.12.006_b16
  article-title: Computational intelligence approaches for classification of medical data: State-of-the-art, future challenges and research directions
  publication-title: Neurocomputing
  doi: 10.1016/j.neucom.2017.01.126
– volume: 10
  start-page: 1006
  issue: 6
  year: 2018
  ident: 10.1016/j.neunet.2019.12.006_b30
  article-title: Quantitative analysis of relationship between hypokinetic dysarthria and the freezing of gait in parkinson’s disease
  publication-title: Cognitive Computation
  doi: 10.1007/s12559-018-9575-8
SSID ssj0006843
Score 2.6419034
Snippet Electroencephalographic (EEG) recordings generate an electrical map of the human brain that are useful for clinical inspection of patients and in biomedical...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 176
SubjectTerms Alzheimer’s disease
Bispectrum
Continuous wavelet transform
Data fusion
Machine learning
Mild cognitive impairment
Title A novel multi-modal machine learning based approach for automatic classification of EEG recordings in dementia
URI https://dx.doi.org/10.1016/j.neunet.2019.12.006
https://www.ncbi.nlm.nih.gov/pubmed/31884180
https://www.proquest.com/docview/2331429438
Volume 123
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3fTxQxEG4IvPAioiKnSGrCa7ntj-1tHy_k8NTIC5Dw1rTd1pyBLtE7H_3bnenuYkg0JL5u2rTbmc5Mp1-_IeSkahQHN1izOtWSKVkFZpTwjKdWJNWaui0MfF8u9PJafbqpb7bI2fgWBmGVg-3vbXqx1sOX6bCa0_vVanpZwRgaAh4IQSppGmT8VGqGWn766w_MQzc9cg4aM2w9Pp8rGK8cNzkiopKbkhTEukd_d0__Cj-LGzp_Tp4N8SOd91PcJ1sxvyB7Y20GOmzVlyTPae5-xltaEIPsrmuh111BTkY6lIr4StGHtXTkFacQwFK3WXeFxpUGDKwRSVSER7tEF4sPtM_qYH6drjJtS3Zx5V6R6_PF1dmSDbUVWIADx7pcuOsA5sobLoTHyp9c68R1lHU0cIbw0nutXDLOQQQZXZRy1rTchKjbMEvygGznLsdDQmHLK6Sha5BKXfDUVI674KPwQScVzITIcUltGIjHsf7FrR0RZt9sLwiLgrBcWBDEhLCHXvc98cYT7WejtOwjBbLgG57o-X4UroW9hRcmLsdu88MKKeGPjJLNhLzupf4wF7CFqObVm_8e9y3ZFXh4L4C2I7K9_r6J7yDCWfvjosLHZGf-8fPy4jfyhPpZ
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LbxshEB6lzqG99P1wn1TqFXl5LF6OVuTUaRJfmki5IWDZylXCRq3d39-BZS1VahWp1xUjWAZmPoaPGYBPVSMZusGa1l0tqBSVp1pyR1nX8k62um5zBr7ztVpdyi9X9dUBHI1vYRKtstj-waZna12-zMpszm43m9nXCvtQCHgQglRCN-IeHKbsVPUEDhcnp6v13iCrZiDPYXuaBMYXdJnmFcMuhkSqZDrHBVPpo797qH8h0OyJjh_DwwIhyWIY5RM4CPEpPBrLM5CyW59BXJDY_wrXJJMG6U3fotRNJk8GUqpFfCPJjbVkTC1OEMMSu9v2OZMr8QlbJzJR1h_pO7JcfiZDYCeF2MkmkjYHGDf2OVweLy-OVrSUV6AezxzbfOeuPFospxnnLhX_ZEp1TAVRB43HCCecU9J22loEkcEGIeZNy7QPqvXzTryASexjeAUEd71MmeialE2ds66pLLPeBe686qTXUxDjlBpfco-nEhjXZiSZfTeDIkxShGHcoCKmQPdSt0PujTvaz0dtmT_WkEH3cIfkx1G5BrdXujOxMfS7n4YLgX-kpWim8HLQ-n4saA7TSq9e_3e_H-D-6uL8zJydrE_fwAOezvKZ3_YWJtsfu_AOAc_WvS8L-jeDk_0K
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+novel+multi-modal+machine+learning+based+approach+for+automatic+classification+of+EEG+recordings+in+dementia&rft.jtitle=Neural+networks&rft.au=Ieracitano%2C+Cosimo&rft.au=Mammone%2C+Nadia&rft.au=Hussain%2C+Amir&rft.au=Morabito%2C+Francesco+C&rft.date=2020-03-01&rft.issn=1879-2782&rft.eissn=1879-2782&rft.volume=123&rft.spage=176&rft_id=info:doi/10.1016%2Fj.neunet.2019.12.006&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon