Self-assembly of protein superstructures by physical interactions under cytoplasm-like conditions
The structure-driven assembly of multimeric protein complexes and the formation of intracellular phase-like protein condensates have been the subject of intense research. However, the assembly of larger superstructures comprising cellular components, such as protein nanoparticles driven by general p...
Saved in:
Published in | Biophysical journal Vol. 120; no. 13; pp. 2701 - 2709 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
06.07.2021
The Biophysical Society |
Online Access | Get full text |
ISSN | 0006-3495 1542-0086 1542-0086 |
DOI | 10.1016/j.bpj.2021.05.007 |
Cover
Loading…
Abstract | The structure-driven assembly of multimeric protein complexes and the formation of intracellular phase-like protein condensates have been the subject of intense research. However, the assembly of larger superstructures comprising cellular components, such as protein nanoparticles driven by general physical rather than specific biochemical interactions, remains relatively uncharacterized. Here, we use gas vesicles (GVs)—genetically encoded protein nanoparticles that form ordered intracellular clusters—as a model system to study the forces driving multiparticle assembly under cytoplasm-like conditions. Our calculations and experimental results show that the ordered assembly of GVs can be achieved by screening their mutual electrostatic repulsion with electrolytes and creating a crowding force with dissolved macromolecules. The precise balance of these forces results in different packing configurations. Biomacromolecules such as polylysine and DNA are capable of driving GV clustering. These results provide basic insights into how physically driven interactions affect the formation of protein superstructures, offer guidance for manipulating nanoparticle assembly in cellular environments through synthetic biology methods, and inform research on the biotechnology applications of GVs. |
---|---|
AbstractList | The structure-driven assembly of multimeric protein complexes and the formation of intracellular phase-like protein condensates have been the subject of intense research. However, the assembly of larger superstructures comprising cellular components, such as protein nanoparticles driven by general physical rather than specific biochemical interactions, remains relatively uncharacterized. Here, we use gas vesicles (GVs)-genetically encoded protein nanoparticles that form ordered intracellular clusters-as a model system to study the forces driving multiparticle assembly under cytoplasm-like conditions. Our calculations and experimental results show that the ordered assembly of GVs can be achieved by screening their mutual electrostatic repulsion with electrolytes and creating a crowding force with dissolved macromolecules. The precise balance of these forces results in different packing configurations. Biomacromolecules such as polylysine and DNA are capable of driving GV clustering. These results provide basic insights into how physically driven interactions affect the formation of protein superstructures, offer guidance for manipulating nanoparticle assembly in cellular environments through synthetic biology methods, and inform research on the biotechnology applications of GVs.The structure-driven assembly of multimeric protein complexes and the formation of intracellular phase-like protein condensates have been the subject of intense research. However, the assembly of larger superstructures comprising cellular components, such as protein nanoparticles driven by general physical rather than specific biochemical interactions, remains relatively uncharacterized. Here, we use gas vesicles (GVs)-genetically encoded protein nanoparticles that form ordered intracellular clusters-as a model system to study the forces driving multiparticle assembly under cytoplasm-like conditions. Our calculations and experimental results show that the ordered assembly of GVs can be achieved by screening their mutual electrostatic repulsion with electrolytes and creating a crowding force with dissolved macromolecules. The precise balance of these forces results in different packing configurations. Biomacromolecules such as polylysine and DNA are capable of driving GV clustering. These results provide basic insights into how physically driven interactions affect the formation of protein superstructures, offer guidance for manipulating nanoparticle assembly in cellular environments through synthetic biology methods, and inform research on the biotechnology applications of GVs. The structure-driven assembly of multimeric protein complexes and the formation of intracellular phase-like protein condensates have been the subject of intense research. However, the assembly of larger superstructures comprising cellular components, such as protein nanoparticles driven by general physical rather than specific biochemical interactions, remains relatively uncharacterized. Here, we use gas vesicles (GVs)—genetically encoded protein nanoparticles that form ordered intracellular clusters—as a model system to study the forces driving multiparticle assembly under cytoplasm-like conditions. Our calculations and experimental results show that the ordered assembly of GVs can be achieved by screening their mutual electrostatic repulsion with electrolytes and creating a crowding force with dissolved macromolecules. The precise balance of these forces results in different packing configurations. Biomacromolecules such as polylysine and DNA are capable of driving GV clustering. These results provide basic insights into how physically driven interactions affect the formation of protein superstructures, offer guidance for manipulating nanoparticle assembly in cellular environments through synthetic biology methods, and inform research on the biotechnology applications of GVs. |
Author | Malounda, Dina Ling, Bill Yao, Yuxing Shapiro, Mikhail G. Jin, Zhiyang |
Author_xml | – sequence: 1 givenname: Yuxing orcidid: 0000-0003-0337-6372 surname: Yao fullname: Yao, Yuxing organization: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California – sequence: 2 givenname: Zhiyang surname: Jin fullname: Jin, Zhiyang organization: Division of Engineering and Applied Science, California Institute of Technology, Pasadena, California – sequence: 3 givenname: Bill orcidid: 0000-0002-1276-7204 surname: Ling fullname: Ling, Bill organization: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California – sequence: 4 givenname: Dina surname: Malounda fullname: Malounda, Dina organization: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California – sequence: 5 givenname: Mikhail G. orcidid: 0000-0002-0291-4215 surname: Shapiro fullname: Shapiro, Mikhail G. email: mikhailshapiro@gmail.com organization: Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California |
BookMark | eNp9kc1u1TAQhS1URG8LD8AuSzYJYztxEiEhoYo_qRILYG05kwn1xbGD7VTK25PLLQtYdDWLM9_RzDlX7MIHT4y95FBx4Or1sRqWYyVA8AqaCqB9wg68qUUJ0KkLdgAAVcq6by7ZVUpHAC4a4M_YpaxBCCHlgZmv5KbSpETz4LYiTMUSQybri7QuFFOOK-Y1UiqGrVjutmTRuML6TNFgtsGnYvUjxQK3HBZn0lw6-5MKDH60f_Tn7OlkXKIXD_Oaff_w_tvNp_L2y8fPN-9uS6xFl8tOIe9Uj8PEDXRkelRcSQF8mgas2wbNpJQc6s4M0APBKJt2xLFXNUkJdSuv2duz77IOM41IPkfj9BLtbOKmg7H6X8XbO_0j3OtO9ntcsBu8ejCI4ddKKevZJiTnjKewJi0ayYXo6qbfV9vzKsaQUqRJo83m9O7ubJ3moE8F6aPeC9KngjQ0ei9oJ_l_5N8DH2PenBna47u3FHVCSx5ptJEw6zHYR-jfRn2s7A |
CitedBy_id | crossref_primary_10_1021_acsnano_4c01498 crossref_primary_10_1038_s41564_024_01648_3 crossref_primary_10_1002_adfm_202420369 crossref_primary_10_1021_acs_nanolett_3c02780 |
Cites_doi | 10.1038/nrm.2017.7 10.1073/pnas.0406076101 10.1063/1.481637 10.1038/nchem.1934 10.1021/acsnano.6b03364 10.1126/science.aax4804 10.1038/s41563-018-0023-7 10.1016/S0006-3495(03)74714-6 10.1074/jbc.M113.456327 10.1038/nsmb.1473 10.1063/1.2202853 10.1038/nmat2442 10.1002/bbpc.19961000620 10.1021/acsnano.0c05083 10.1038/nnano.2014.32 10.1038/nphys3532 10.1039/C6SM00527F 10.1016/j.nantod.2014.12.005 10.1021/acsnano.9b08432 10.1016/j.bpj.2013.01.031 10.1016/S0006-3495(99)77424-2 10.1038/s41589-020-0579-9 10.1016/j.algal.2019.101548 10.1128/mr.58.1.94-144.1994 10.1016/S0006-3495(01)76095-X 10.1002/pol.1955.120178605 10.1039/C9SM01207A 10.1007/s12551-020-00680-x 10.1039/C5NR06983A 10.1038/nature25021 10.1039/C7NR06663E 10.1038/nmat4118 10.1021/acs.nanolett.0c03159 10.1021/jp0516846 10.1016/S0006-3495(98)77795-1 10.1038/nrn2631 10.1016/j.cocis.2011.01.003 10.1021/acs.jpcb.5b01553 10.1103/PhysRevE.69.051702 10.1038/s41589-020-0576-z 10.1146/annurev.biophys.37.032807.125817 10.1073/pnas.051634398 10.1016/j.cell.2018.10.057 10.1016/j.cell.2016.06.051 10.1038/nprot.2017.081 10.1073/pnas.1921617117 10.1016/j.cell.2018.05.042 10.1038/s41477-020-00811-y 10.1038/nmat1949 10.1083/jcb.200609066 10.1063/1.1961229 10.1088/0953-8984/13/9/101 10.1073/pnas.1904997116 10.1039/C6SM00222F 10.1128/JB.181.1.197-203.1999 10.1016/S0959-440X(00)00172-X |
ContentType | Journal Article |
Copyright | 2021 Biophysical Society Copyright © 2021 Biophysical Society. Published by Elsevier Inc. All rights reserved. 2021 Biophysical Society. 2021 Biophysical Society |
Copyright_xml | – notice: 2021 Biophysical Society – notice: Copyright © 2021 Biophysical Society. Published by Elsevier Inc. All rights reserved. – notice: 2021 Biophysical Society. 2021 Biophysical Society |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM |
DOI | 10.1016/j.bpj.2021.05.007 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Biology |
EISSN | 1542-0086 |
EndPage | 2709 |
ExternalDocumentID | PMC8390860 10_1016_j_bpj_2021_05_007 S0006349521004215 |
GroupedDBID | --- -DZ -~X .55 0R~ 23N 2WC 4.4 457 5GY 5RE 62- 6I. 6J9 AACTN AAEDW AAFTH AAIAV AAKRW AALRI AAUCE AAVLU AAXUO ABJNI ABMAC ABMWF ABVKL ACBEA ACGFO ACGFS ACGOD ACIWK ACNCT ACPRK ADBBV ADEZE ADJPV AENEX AEXQZ AFRAH AFTJW AGKMS AHMBA AHPSJ ALKID ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS AYCSE AZFZN BAWUL CS3 D0L DIK DU5 E3Z EBS EJD F5P FCP FDB FRP HYE IH2 IXB JIG KQ8 L7B M41 N9A O-L O9- OK1 P2P RCE RNS ROL RPM RWL SES SSZ TAE TBP TN5 WH7 WOQ WOW WQ6 X7M YNY YWH ZA5 ~02 --K .GJ 3O- 53G 6TJ 7X2 7X7 88E 88I 8AF 8AO 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 AAEDT AAIKJ AAMRU AAQXK AAYWO AAYXX ABDGV ABUWG ABWVN ACRPL ACVFH ADCNI ADMUD ADNMO ADVLN ADXHL AEUPX AEUYN AFKRA AFPUW AGCQF AGHFR AGQPQ AI. AIGII AITUG AKAPO AKBMS AKRWK AKYEP ALIPV APXCP ARAPS ASPBG ATCPS AVWKF AZQEC BBNVY BENPR BGLVJ BHPHI BPHCQ BVXVI CCPQU CITATION DWQXO FEDTE FGOYB FYUFA G-2 GNUQQ GUQSH GX1 H13 HCIFZ HMCUK HVGLF HX~ HZ~ LK8 M0K M1P M2O M2P M2Q M7P MVM OZT P62 PHGZM PHGZT PQQKQ PRG PROAC PSQYO Q2X R2- RIG S0X UKHRP UKR VH1 YYP ZGI ZXP ~KM 7X8 EFKBS 5PM |
ID | FETCH-LOGICAL-c428t-86c1869cbf1a08ea9c6163201ffbc475caf663b48ab090e0d357dcd964e330473 |
IEDL.DBID | IXB |
ISSN | 0006-3495 1542-0086 |
IngestDate | Thu Aug 21 18:28:47 EDT 2025 Sun Aug 24 04:01:04 EDT 2025 Tue Jul 01 00:57:43 EDT 2025 Thu Apr 24 23:11:22 EDT 2025 Fri Feb 23 02:35:34 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 13 |
Language | English |
License | This article is made available under the Elsevier license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-86c1869cbf1a08ea9c6163201ffbc475caf663b48ab090e0d357dcd964e330473 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0002-0291-4215 0000-0002-1276-7204 0000-0003-0337-6372 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S0006349521004215 |
PMID | 34022233 |
PQID | 2531228459 |
PQPubID | 23479 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_8390860 proquest_miscellaneous_2531228459 crossref_citationtrail_10_1016_j_bpj_2021_05_007 crossref_primary_10_1016_j_bpj_2021_05_007 elsevier_sciencedirect_doi_10_1016_j_bpj_2021_05_007 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-07-06 |
PublicationDateYYYYMMDD | 2021-07-06 |
PublicationDate_xml | – month: 07 year: 2021 text: 2021-07-06 day: 06 |
PublicationDecade | 2020 |
PublicationTitle | Biophysical journal |
PublicationYear | 2021 |
Publisher | Elsevier Inc The Biophysical Society |
Publisher_xml | – name: Elsevier Inc – name: The Biophysical Society |
References | Murphy, Sau, Li (bib52) 2005; 109 Pillai, Kowalczyk, Grzybowski (bib57) 2016; 8 Crevenna, Naredi-Rainer, Wedlich-Söldner (bib36) 2013; 288 Zhou, Rivas, Minton (bib40) 2008; 37 Boke, Ruer, Mitchison (bib10) 2016; 166 Yoshizawa, Nozawa, Mori (bib13) 2020; 12 Wu, Baresch, Shapiro (bib24) 2019 Heidenreich, Georgeson, Levy (bib4) 2020; 16 Lu, Farhadi, Shapiro (bib20) 2018; 17 Marenduzzo, Finan, Cook (bib8) 2006; 175 Farhadi, Bedrossian, Nadeau (bib22) 2020; 20 Lund, Jönsson (bib31) 2003; 85 Huber, Schreiber, Schiller (bib6) 2015; 14 Farnum, Zukoski (bib30) 1999; 76 Farhadi, Ho, Shapiro (bib18) 2019; 365 Sutter, Boehringer, Ban (bib2) 2008; 15 Ellis (bib39) 2001; 11 Grelet, Rana (bib47) 2016; 12 Lekkerkerker, Tuinier (bib34) 2011 Bates, Frenkel (bib50) 2000; 112 Thorkelsson, Bai, Xu (bib56) 2015; 10 Shapiro, Goodwill, Conolly (bib17) 2014; 9 Senti, Hellman, Lamberts (bib33) 1955; 17 Jacinavicius, Pacheco, Sant’Anna (bib25) 2019; 41 Needleman, Ojeda-Lopez, Safinya (bib37) 2004; 101 Tadmor (bib29) 2001; 13 Delarue, Brittingham, Holt (bib58) 2018; 174 Bourdeau, Lee-Gosselin, Shapiro (bib16) 2018; 553 Savenko, Dijkstra (bib46) 2006; 124 Elowitz, Surette, Leibler (bib49) 1999; 181 Walsby (bib15) 1994; 58 Sung, Wensink, Grelet (bib45) 2019; 15 Sacanna, Pine (bib60) 2011; 16 Wei, Qian, Xia (bib11) 2020; 16 Conde, Cáceres (bib3) 2009; 10 Dogic, Purdy, Fraden (bib32) 2004; 69 Raspaud, Olvera de la Cruz, Livolant (bib38) 1998; 74 He, Chou, Jonikas (bib1) 2020; 6 Buell, Hung, Knowles (bib35) 2013; 104 Park, Fygenson, Saleh (bib44) 2016; 12 Shin, Chang, Brangwynne (bib5) 2018; 175 Banani, Lee, Rosen (bib7) 2017; 18 Brangwynne, Tompa, Pappu (bib12) 2015; 11 de Vries (bib54) 2001; 80 Shapiro, Ramirez, Bajaj (bib19) 2014; 6 Lakshmanan, Farhadi, Shapiro (bib27) 2016; 10 Israelachvili (bib28) 2011 Nel, Mädler, Thompson (bib9) 2009; 8 Bar-Zion, Nourmahnad, Shapiro (bib23) 2019 Lakshmanan, Lu, Shapiro (bib26) 2017; 12 Fraccia, Jia (bib14) 2020; 14 Xie, Li, Smalyukh (bib51) 2018; 10 Lu, Chou, Shapiro (bib21) 2020; 14 Rivas, Fernández, Minton (bib41) 2001; 98 Hirst, Pynn, Safinya (bib55) 2005; 123 Zosel, Soranno, Schuler (bib43) 2020; 117 Tang, Wong, Janmey (bib53) 1996; 100 Glotzer, Solomon (bib59) 2007; 6 Vancraenenbroeck, Harel, Hofmann (bib42) 2019; 116 Choi, Kim, Cho (bib48) 2015; 119 Boke (10.1016/j.bpj.2021.05.007_bib10) 2016; 166 Bourdeau (10.1016/j.bpj.2021.05.007_bib16) 2018; 553 Rivas (10.1016/j.bpj.2021.05.007_bib41) 2001; 98 Lakshmanan (10.1016/j.bpj.2021.05.007_bib27) 2016; 10 Ellis (10.1016/j.bpj.2021.05.007_bib39) 2001; 11 Sacanna (10.1016/j.bpj.2021.05.007_bib60) 2011; 16 Israelachvili (10.1016/j.bpj.2021.05.007_bib28) 2011 Hirst (10.1016/j.bpj.2021.05.007_bib55) 2005; 123 Senti (10.1016/j.bpj.2021.05.007_bib33) 1955; 17 Lund (10.1016/j.bpj.2021.05.007_bib31) 2003; 85 Vancraenenbroeck (10.1016/j.bpj.2021.05.007_bib42) 2019; 116 Savenko (10.1016/j.bpj.2021.05.007_bib46) 2006; 124 Tadmor (10.1016/j.bpj.2021.05.007_bib29) 2001; 13 Pillai (10.1016/j.bpj.2021.05.007_bib57) 2016; 8 Farhadi (10.1016/j.bpj.2021.05.007_bib18) 2019; 365 Shapiro (10.1016/j.bpj.2021.05.007_bib19) 2014; 6 Lu (10.1016/j.bpj.2021.05.007_bib20) 2018; 17 Tang (10.1016/j.bpj.2021.05.007_bib53) 1996; 100 Jacinavicius (10.1016/j.bpj.2021.05.007_bib25) 2019; 41 Glotzer (10.1016/j.bpj.2021.05.007_bib59) 2007; 6 Murphy (10.1016/j.bpj.2021.05.007_bib52) 2005; 109 Huber (10.1016/j.bpj.2021.05.007_bib6) 2015; 14 Conde (10.1016/j.bpj.2021.05.007_bib3) 2009; 10 Marenduzzo (10.1016/j.bpj.2021.05.007_bib8) 2006; 175 de Vries (10.1016/j.bpj.2021.05.007_bib54) 2001; 80 Wei (10.1016/j.bpj.2021.05.007_bib11) 2020; 16 Farnum (10.1016/j.bpj.2021.05.007_bib30) 1999; 76 Grelet (10.1016/j.bpj.2021.05.007_bib47) 2016; 12 He (10.1016/j.bpj.2021.05.007_bib1) 2020; 6 Farhadi (10.1016/j.bpj.2021.05.007_bib22) 2020; 20 Choi (10.1016/j.bpj.2021.05.007_bib48) 2015; 119 Bates (10.1016/j.bpj.2021.05.007_bib50) 2000; 112 Lakshmanan (10.1016/j.bpj.2021.05.007_bib26) 2017; 12 Sutter (10.1016/j.bpj.2021.05.007_bib2) 2008; 15 Wu (10.1016/j.bpj.2021.05.007_bib24) 2019 Dogic (10.1016/j.bpj.2021.05.007_bib32) 2004; 69 Crevenna (10.1016/j.bpj.2021.05.007_bib36) 2013; 288 Xie (10.1016/j.bpj.2021.05.007_bib51) 2018; 10 Needleman (10.1016/j.bpj.2021.05.007_bib37) 2004; 101 Bar-Zion (10.1016/j.bpj.2021.05.007_bib23) 2019 Elowitz (10.1016/j.bpj.2021.05.007_bib49) 1999; 181 Thorkelsson (10.1016/j.bpj.2021.05.007_bib56) 2015; 10 Buell (10.1016/j.bpj.2021.05.007_bib35) 2013; 104 Nel (10.1016/j.bpj.2021.05.007_bib9) 2009; 8 Lu (10.1016/j.bpj.2021.05.007_bib21) 2020; 14 Zosel (10.1016/j.bpj.2021.05.007_bib43) 2020; 117 Brangwynne (10.1016/j.bpj.2021.05.007_bib12) 2015; 11 Raspaud (10.1016/j.bpj.2021.05.007_bib38) 1998; 74 Sung (10.1016/j.bpj.2021.05.007_bib45) 2019; 15 Fraccia (10.1016/j.bpj.2021.05.007_bib14) 2020; 14 Zhou (10.1016/j.bpj.2021.05.007_bib40) 2008; 37 Park (10.1016/j.bpj.2021.05.007_bib44) 2016; 12 Yoshizawa (10.1016/j.bpj.2021.05.007_bib13) 2020; 12 Walsby (10.1016/j.bpj.2021.05.007_bib15) 1994; 58 Banani (10.1016/j.bpj.2021.05.007_bib7) 2017; 18 Shapiro (10.1016/j.bpj.2021.05.007_bib17) 2014; 9 Shin (10.1016/j.bpj.2021.05.007_bib5) 2018; 175 Heidenreich (10.1016/j.bpj.2021.05.007_bib4) 2020; 16 Lekkerkerker (10.1016/j.bpj.2021.05.007_bib34) 2011 Delarue (10.1016/j.bpj.2021.05.007_bib58) 2018; 174 |
References_xml | – year: 2011 ident: bib34 article-title: Colloids and the Depletion Interaction – volume: 16 start-page: 1143 year: 2020 end-page: 1148 ident: bib11 article-title: Formation and functionalization of membraneless compartments in publication-title: Nat. Chem. Biol – volume: 16 start-page: 96 year: 2011 end-page: 105 ident: bib60 article-title: Shape-anisotropic colloids: building blocks for complex assemblies publication-title: Curr. Opin. Colloid Interface Sci – volume: 166 start-page: 637 year: 2016 end-page: 650 ident: bib10 article-title: Amyloid-like self-assembly of a cellular compartment publication-title: Cell – volume: 14 start-page: 7823 year: 2020 end-page: 7831 ident: bib21 article-title: Genetically encodable contrast agents for optical coherence tomography publication-title: ACS Nano – volume: 6 start-page: 1480 year: 2020 end-page: 1490 ident: bib1 article-title: The structural basis of Rubisco phase separation in the pyrenoid publication-title: Nat. Plants – volume: 58 start-page: 94 year: 1994 end-page: 144 ident: bib15 article-title: Gas vesicles publication-title: Microbiol. Rev – volume: 20 start-page: 8127 year: 2020 end-page: 8134 ident: bib22 article-title: Genetically encoded phase contrast agents for digital holographic microscopy publication-title: Nano Lett – volume: 100 start-page: 796 year: 1996 end-page: 806 ident: bib53 article-title: Counterion induced bundle formation of rodlike polyelectrolytes publication-title: Ber. Bunsenges. Phys. Chem – volume: 10 start-page: 319 year: 2009 end-page: 332 ident: bib3 article-title: Microtubule assembly, organization and dynamics in axons and dendrites publication-title: Nat. Rev. Neurosci – year: 2019 ident: bib23 article-title: Acoustically detonated biomolecules for genetically encodable inertial cavitation publication-title: bioRxiv – volume: 123 start-page: 104902 year: 2005 ident: bib55 article-title: Hierarchical self-assembly of actin bundle networks: gels with surface protein skin layers publication-title: J. Chem. Phys – volume: 37 start-page: 375 year: 2008 end-page: 397 ident: bib40 article-title: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences publication-title: Annu. Rev. Biophys – volume: 6 start-page: 557 year: 2007 end-page: 562 ident: bib59 article-title: Anisotropy of building blocks and their assembly into complex structures publication-title: Nat. Mater – volume: 11 start-page: 899 year: 2015 end-page: 904 ident: bib12 article-title: Polymer physics of intracellular phase transitions publication-title: Nat. Phys – volume: 14 start-page: 15071 year: 2020 end-page: 15082 ident: bib14 article-title: Liquid crystal coacervates composed of short double-stranded DNA and cationic peptides publication-title: ACS Nano – volume: 109 start-page: 13857 year: 2005 end-page: 13870 ident: bib52 article-title: Anisotropic metal nanoparticles: synthesis, assembly, and optical applications publication-title: J. Phys. Chem. B – volume: 80 start-page: 1186 year: 2001 end-page: 1194 ident: bib54 article-title: Flexible polymer-induced condensation and bundle formation of DNA and F-actin filaments publication-title: Biophys. J – volume: 69 start-page: 051702 year: 2004 ident: bib32 article-title: Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer Dextran publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys – volume: 16 start-page: 939 year: 2020 end-page: 945 ident: bib4 article-title: Designer protein assemblies with tunable phase diagrams in living cells publication-title: Nat. Chem. Biol – volume: 6 start-page: 629 year: 2014 end-page: 634 ident: bib19 article-title: Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging publication-title: Nat. Chem – volume: 14 start-page: 125 year: 2015 end-page: 132 ident: bib6 article-title: Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments publication-title: Nat. Mater – volume: 85 start-page: 2940 year: 2003 end-page: 2947 ident: bib31 article-title: A mesoscopic model for protein-protein interactions in solution publication-title: Biophys. J – volume: 18 start-page: 285 year: 2017 end-page: 298 ident: bib7 article-title: Biomolecular condensates: organizers of cellular biochemistry publication-title: Nat. Rev. Mol. Cell Biol – volume: 181 start-page: 197 year: 1999 end-page: 203 ident: bib49 article-title: Protein mobility in the cytoplasm of publication-title: J. Bacteriol – volume: 17 start-page: 527 year: 1955 end-page: 546 ident: bib33 article-title: Viscosity, sedimentation, and light-scattering properties of fraction of an acid-hydrolyzed dextran publication-title: J. Polym. Sci – volume: 8 start-page: 157 year: 2016 end-page: 161 ident: bib57 article-title: Self-assembly of like-charged nanoparticles into microscopic crystals publication-title: Nanoscale – volume: 76 start-page: 2716 year: 1999 end-page: 2726 ident: bib30 article-title: Effect of glycerol on the interactions and solubility of bovine pancreatic trypsin inhibitor publication-title: Biophys. J – volume: 101 start-page: 16099 year: 2004 end-page: 16103 ident: bib37 article-title: Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces publication-title: Proc. Natl. Acad. Sci. U S A – volume: 12 start-page: 519 year: 2020 end-page: 539 ident: bib13 article-title: Biological phase separation: cell biology meets biophysics publication-title: Biophys. Rev – volume: 288 start-page: 12102 year: 2013 end-page: 12113 ident: bib36 article-title: Electrostatics control actin filament nucleation and elongation kinetics publication-title: J. Biol. Chem – volume: 10 start-page: 7314 year: 2016 end-page: 7322 ident: bib27 article-title: Molecular engineering of acoustic protein nanostructures publication-title: ACS Nano – volume: 15 start-page: 939 year: 2008 end-page: 947 ident: bib2 article-title: Structural basis of enzyme encapsulation into a bacterial nanocompartment publication-title: Nat. Struct. Mol. Biol – volume: 9 start-page: 311 year: 2014 end-page: 316 ident: bib17 article-title: Biogenic gas nanostructures as ultrasonic molecular reporters publication-title: Nat. Nanotechnol – year: 2019 ident: bib24 article-title: Genetically encoded nanostructures enable acoustic manipulation of engineered cells publication-title: bioRxiv – volume: 10 start-page: 48 year: 2015 end-page: 66 ident: bib56 article-title: Self-assembly and applications of anisotropic nanomaterials: a review publication-title: Nano Today – volume: 175 start-page: 681 year: 2006 end-page: 686 ident: bib8 article-title: The depletion attraction: an underappreciated force driving cellular organization publication-title: J. Cell Biol – volume: 11 start-page: 114 year: 2001 end-page: 119 ident: bib39 article-title: Macromolecular crowding: an important but neglected aspect of the intracellular environment publication-title: Curr. Opin. Struct. Biol – volume: 13 start-page: L195 year: 2001 end-page: L202 ident: bib29 article-title: The London-van der Waals interaction energy between objects of various geometries publication-title: J. Phys. Condens. Matter – volume: 553 start-page: 86 year: 2018 end-page: 90 ident: bib16 article-title: Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts publication-title: Nature – volume: 74 start-page: 381 year: 1998 end-page: 393 ident: bib38 article-title: Precipitation of DNA by polyamines: a polyelectrolyte behavior publication-title: Biophys. J – volume: 175 start-page: 1481 year: 2018 end-page: 1491.e13 ident: bib5 article-title: Liquid nuclear condensates mechanically sense and restructure the genome publication-title: Cell – volume: 12 start-page: 2050 year: 2017 end-page: 2080 ident: bib26 article-title: Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI publication-title: Nat. Protoc – volume: 116 start-page: 19506 year: 2019 end-page: 19512 ident: bib42 article-title: Polymer effects modulate binding affinities in disordered proteins publication-title: Proc. Natl. Acad. Sci. U S A – volume: 98 start-page: 3150 year: 2001 end-page: 3155 ident: bib41 article-title: Direct observation of the enhancement of noncooperative protein self-assembly by macromolecular crowding: indefinite linear self-association of bacterial cell division protein FtsZ publication-title: Proc. Natl. Acad. Sci. U S A – start-page: 191 year: 2011 end-page: 499 ident: bib28 article-title: Part II. The forces between particles and surfaces publication-title: Intermolecular and Surface Forces – volume: 119 start-page: 10554 year: 2015 end-page: 10565 ident: bib48 article-title: Influence of pH and surface chemistry on poly(L-lysine) adsorption onto solid supports investigated by quartz crystal microbalance with dissipation monitoring publication-title: J. Phys. Chem. B – volume: 174 start-page: 338 year: 2018 end-page: 349.e20 ident: bib58 article-title: mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding publication-title: Cell – volume: 112 start-page: 10034 year: 2000 end-page: 10041 ident: bib50 article-title: Phase behavior of two-dimensional hard rod fluids publication-title: J. Chem. Phys – volume: 15 start-page: 9520 year: 2019 end-page: 9527 ident: bib45 article-title: Depletion-driven morphological transitions in hexagonal crystallites of virus rods publication-title: Soft Matter – volume: 10 start-page: 4218 year: 2018 end-page: 4227 ident: bib51 article-title: Liquid crystal self-assembly of upconversion nanorods enriched by depletion forces for mesostructured material preparation publication-title: Nanoscale – volume: 124 start-page: 234902 year: 2006 ident: bib46 article-title: Phase behavior of a suspension of colloidal hard rods and nonadsorbing polymer publication-title: J. Chem. Phys – volume: 117 start-page: 13480 year: 2020 end-page: 13489 ident: bib43 article-title: Depletion interactions modulate the binding between disordered proteins in crowded environments publication-title: Proc. Natl. Acad. Sci. U S A – volume: 104 start-page: 1116 year: 2013 end-page: 1126 ident: bib35 article-title: Electrostatic effects in filamentous protein aggregation publication-title: Biophys. J – volume: 8 start-page: 543 year: 2009 end-page: 557 ident: bib9 article-title: Understanding biophysicochemical interactions at the nano-bio interface publication-title: Nat. Mater – volume: 12 start-page: 4621 year: 2016 end-page: 4627 ident: bib47 article-title: From soft to hard rod behavior in liquid crystalline suspensions of sterically stabilized colloidal filamentous particles publication-title: Soft Matter – volume: 41 start-page: 101548 year: 2019 ident: bib25 article-title: Different ecophysiological and structural strategies of toxic and non-toxic Microcystis aeruginosa (cyanobacteria) strains assessed under culture conditions publication-title: Algal Res – volume: 365 start-page: 1469 year: 2019 end-page: 1475 ident: bib18 article-title: Ultrasound imaging of gene expression in mammalian cells publication-title: Science – volume: 17 start-page: 456 year: 2018 end-page: 463 ident: bib20 article-title: Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures publication-title: Nat. Mater – volume: 12 start-page: 5089 year: 2016 end-page: 5095 ident: bib44 article-title: Electrostatics and depletion determine competition between 2D nematic and 3D bundled phases of rod-like DNA nanotubes publication-title: Soft Matter – volume: 18 start-page: 285 year: 2017 ident: 10.1016/j.bpj.2021.05.007_bib7 article-title: Biomolecular condensates: organizers of cellular biochemistry publication-title: Nat. Rev. Mol. Cell Biol doi: 10.1038/nrm.2017.7 – volume: 101 start-page: 16099 year: 2004 ident: 10.1016/j.bpj.2021.05.007_bib37 article-title: Higher-order assembly of microtubules by counterions: from hexagonal bundles to living necklaces publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.0406076101 – volume: 112 start-page: 10034 year: 2000 ident: 10.1016/j.bpj.2021.05.007_bib50 article-title: Phase behavior of two-dimensional hard rod fluids publication-title: J. Chem. Phys doi: 10.1063/1.481637 – volume: 6 start-page: 629 year: 2014 ident: 10.1016/j.bpj.2021.05.007_bib19 article-title: Genetically encoded reporters for hyperpolarized xenon magnetic resonance imaging publication-title: Nat. Chem doi: 10.1038/nchem.1934 – volume: 10 start-page: 7314 year: 2016 ident: 10.1016/j.bpj.2021.05.007_bib27 article-title: Molecular engineering of acoustic protein nanostructures publication-title: ACS Nano doi: 10.1021/acsnano.6b03364 – volume: 365 start-page: 1469 year: 2019 ident: 10.1016/j.bpj.2021.05.007_bib18 article-title: Ultrasound imaging of gene expression in mammalian cells publication-title: Science doi: 10.1126/science.aax4804 – volume: 17 start-page: 456 year: 2018 ident: 10.1016/j.bpj.2021.05.007_bib20 article-title: Acoustically modulated magnetic resonance imaging of gas-filled protein nanostructures publication-title: Nat. Mater doi: 10.1038/s41563-018-0023-7 – volume: 85 start-page: 2940 year: 2003 ident: 10.1016/j.bpj.2021.05.007_bib31 article-title: A mesoscopic model for protein-protein interactions in solution publication-title: Biophys. J doi: 10.1016/S0006-3495(03)74714-6 – volume: 288 start-page: 12102 year: 2013 ident: 10.1016/j.bpj.2021.05.007_bib36 article-title: Electrostatics control actin filament nucleation and elongation kinetics publication-title: J. Biol. Chem doi: 10.1074/jbc.M113.456327 – volume: 15 start-page: 939 year: 2008 ident: 10.1016/j.bpj.2021.05.007_bib2 article-title: Structural basis of enzyme encapsulation into a bacterial nanocompartment publication-title: Nat. Struct. Mol. Biol doi: 10.1038/nsmb.1473 – volume: 124 start-page: 234902 year: 2006 ident: 10.1016/j.bpj.2021.05.007_bib46 article-title: Phase behavior of a suspension of colloidal hard rods and nonadsorbing polymer publication-title: J. Chem. Phys doi: 10.1063/1.2202853 – volume: 8 start-page: 543 year: 2009 ident: 10.1016/j.bpj.2021.05.007_bib9 article-title: Understanding biophysicochemical interactions at the nano-bio interface publication-title: Nat. Mater doi: 10.1038/nmat2442 – volume: 100 start-page: 796 year: 1996 ident: 10.1016/j.bpj.2021.05.007_bib53 article-title: Counterion induced bundle formation of rodlike polyelectrolytes publication-title: Ber. Bunsenges. Phys. Chem doi: 10.1002/bbpc.19961000620 – volume: 14 start-page: 15071 year: 2020 ident: 10.1016/j.bpj.2021.05.007_bib14 article-title: Liquid crystal coacervates composed of short double-stranded DNA and cationic peptides publication-title: ACS Nano doi: 10.1021/acsnano.0c05083 – volume: 9 start-page: 311 year: 2014 ident: 10.1016/j.bpj.2021.05.007_bib17 article-title: Biogenic gas nanostructures as ultrasonic molecular reporters publication-title: Nat. Nanotechnol doi: 10.1038/nnano.2014.32 – volume: 11 start-page: 899 year: 2015 ident: 10.1016/j.bpj.2021.05.007_bib12 article-title: Polymer physics of intracellular phase transitions publication-title: Nat. Phys doi: 10.1038/nphys3532 – volume: 12 start-page: 4621 year: 2016 ident: 10.1016/j.bpj.2021.05.007_bib47 article-title: From soft to hard rod behavior in liquid crystalline suspensions of sterically stabilized colloidal filamentous particles publication-title: Soft Matter doi: 10.1039/C6SM00527F – volume: 10 start-page: 48 year: 2015 ident: 10.1016/j.bpj.2021.05.007_bib56 article-title: Self-assembly and applications of anisotropic nanomaterials: a review publication-title: Nano Today doi: 10.1016/j.nantod.2014.12.005 – volume: 14 start-page: 7823 year: 2020 ident: 10.1016/j.bpj.2021.05.007_bib21 article-title: Genetically encodable contrast agents for optical coherence tomography publication-title: ACS Nano doi: 10.1021/acsnano.9b08432 – volume: 104 start-page: 1116 year: 2013 ident: 10.1016/j.bpj.2021.05.007_bib35 article-title: Electrostatic effects in filamentous protein aggregation publication-title: Biophys. J doi: 10.1016/j.bpj.2013.01.031 – volume: 76 start-page: 2716 year: 1999 ident: 10.1016/j.bpj.2021.05.007_bib30 article-title: Effect of glycerol on the interactions and solubility of bovine pancreatic trypsin inhibitor publication-title: Biophys. J doi: 10.1016/S0006-3495(99)77424-2 – volume: 16 start-page: 1143 year: 2020 ident: 10.1016/j.bpj.2021.05.007_bib11 article-title: Formation and functionalization of membraneless compartments in Escherichia coli publication-title: Nat. Chem. Biol doi: 10.1038/s41589-020-0579-9 – volume: 41 start-page: 101548 year: 2019 ident: 10.1016/j.bpj.2021.05.007_bib25 article-title: Different ecophysiological and structural strategies of toxic and non-toxic Microcystis aeruginosa (cyanobacteria) strains assessed under culture conditions publication-title: Algal Res doi: 10.1016/j.algal.2019.101548 – volume: 58 start-page: 94 year: 1994 ident: 10.1016/j.bpj.2021.05.007_bib15 article-title: Gas vesicles publication-title: Microbiol. Rev doi: 10.1128/mr.58.1.94-144.1994 – volume: 80 start-page: 1186 year: 2001 ident: 10.1016/j.bpj.2021.05.007_bib54 article-title: Flexible polymer-induced condensation and bundle formation of DNA and F-actin filaments publication-title: Biophys. J doi: 10.1016/S0006-3495(01)76095-X – year: 2019 ident: 10.1016/j.bpj.2021.05.007_bib24 article-title: Genetically encoded nanostructures enable acoustic manipulation of engineered cells publication-title: bioRxiv – volume: 17 start-page: 527 year: 1955 ident: 10.1016/j.bpj.2021.05.007_bib33 article-title: Viscosity, sedimentation, and light-scattering properties of fraction of an acid-hydrolyzed dextran publication-title: J. Polym. Sci doi: 10.1002/pol.1955.120178605 – volume: 15 start-page: 9520 year: 2019 ident: 10.1016/j.bpj.2021.05.007_bib45 article-title: Depletion-driven morphological transitions in hexagonal crystallites of virus rods publication-title: Soft Matter doi: 10.1039/C9SM01207A – volume: 12 start-page: 519 year: 2020 ident: 10.1016/j.bpj.2021.05.007_bib13 article-title: Biological phase separation: cell biology meets biophysics publication-title: Biophys. Rev doi: 10.1007/s12551-020-00680-x – volume: 8 start-page: 157 year: 2016 ident: 10.1016/j.bpj.2021.05.007_bib57 article-title: Self-assembly of like-charged nanoparticles into microscopic crystals publication-title: Nanoscale doi: 10.1039/C5NR06983A – volume: 553 start-page: 86 year: 2018 ident: 10.1016/j.bpj.2021.05.007_bib16 article-title: Acoustic reporter genes for noninvasive imaging of microorganisms in mammalian hosts publication-title: Nature doi: 10.1038/nature25021 – volume: 10 start-page: 4218 year: 2018 ident: 10.1016/j.bpj.2021.05.007_bib51 article-title: Liquid crystal self-assembly of upconversion nanorods enriched by depletion forces for mesostructured material preparation publication-title: Nanoscale doi: 10.1039/C7NR06663E – volume: 14 start-page: 125 year: 2015 ident: 10.1016/j.bpj.2021.05.007_bib6 article-title: Designer amphiphilic proteins as building blocks for the intracellular formation of organelle-like compartments publication-title: Nat. Mater doi: 10.1038/nmat4118 – volume: 20 start-page: 8127 year: 2020 ident: 10.1016/j.bpj.2021.05.007_bib22 article-title: Genetically encoded phase contrast agents for digital holographic microscopy publication-title: Nano Lett doi: 10.1021/acs.nanolett.0c03159 – year: 2011 ident: 10.1016/j.bpj.2021.05.007_bib34 – volume: 109 start-page: 13857 year: 2005 ident: 10.1016/j.bpj.2021.05.007_bib52 article-title: Anisotropic metal nanoparticles: synthesis, assembly, and optical applications publication-title: J. Phys. Chem. B doi: 10.1021/jp0516846 – volume: 74 start-page: 381 year: 1998 ident: 10.1016/j.bpj.2021.05.007_bib38 article-title: Precipitation of DNA by polyamines: a polyelectrolyte behavior publication-title: Biophys. J doi: 10.1016/S0006-3495(98)77795-1 – volume: 10 start-page: 319 year: 2009 ident: 10.1016/j.bpj.2021.05.007_bib3 article-title: Microtubule assembly, organization and dynamics in axons and dendrites publication-title: Nat. Rev. Neurosci doi: 10.1038/nrn2631 – start-page: 191 year: 2011 ident: 10.1016/j.bpj.2021.05.007_bib28 article-title: Part II. The forces between particles and surfaces – volume: 16 start-page: 96 year: 2011 ident: 10.1016/j.bpj.2021.05.007_bib60 article-title: Shape-anisotropic colloids: building blocks for complex assemblies publication-title: Curr. Opin. Colloid Interface Sci doi: 10.1016/j.cocis.2011.01.003 – volume: 119 start-page: 10554 year: 2015 ident: 10.1016/j.bpj.2021.05.007_bib48 article-title: Influence of pH and surface chemistry on poly(L-lysine) adsorption onto solid supports investigated by quartz crystal microbalance with dissipation monitoring publication-title: J. Phys. Chem. B doi: 10.1021/acs.jpcb.5b01553 – volume: 69 start-page: 051702 year: 2004 ident: 10.1016/j.bpj.2021.05.007_bib32 article-title: Isotropic-nematic phase transition in suspensions of filamentous virus and the neutral polymer Dextran publication-title: Phys. Rev. E Stat. Nonlin. Soft Matter Phys doi: 10.1103/PhysRevE.69.051702 – volume: 16 start-page: 939 year: 2020 ident: 10.1016/j.bpj.2021.05.007_bib4 article-title: Designer protein assemblies with tunable phase diagrams in living cells publication-title: Nat. Chem. Biol doi: 10.1038/s41589-020-0576-z – volume: 37 start-page: 375 year: 2008 ident: 10.1016/j.bpj.2021.05.007_bib40 article-title: Macromolecular crowding and confinement: biochemical, biophysical, and potential physiological consequences publication-title: Annu. Rev. Biophys doi: 10.1146/annurev.biophys.37.032807.125817 – volume: 98 start-page: 3150 year: 2001 ident: 10.1016/j.bpj.2021.05.007_bib41 article-title: Direct observation of the enhancement of noncooperative protein self-assembly by macromolecular crowding: indefinite linear self-association of bacterial cell division protein FtsZ publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.051634398 – volume: 175 start-page: 1481 year: 2018 ident: 10.1016/j.bpj.2021.05.007_bib5 article-title: Liquid nuclear condensates mechanically sense and restructure the genome publication-title: Cell doi: 10.1016/j.cell.2018.10.057 – year: 2019 ident: 10.1016/j.bpj.2021.05.007_bib23 article-title: Acoustically detonated biomolecules for genetically encodable inertial cavitation publication-title: bioRxiv – volume: 166 start-page: 637 year: 2016 ident: 10.1016/j.bpj.2021.05.007_bib10 article-title: Amyloid-like self-assembly of a cellular compartment publication-title: Cell doi: 10.1016/j.cell.2016.06.051 – volume: 12 start-page: 2050 year: 2017 ident: 10.1016/j.bpj.2021.05.007_bib26 article-title: Preparation of biogenic gas vesicle nanostructures for use as contrast agents for ultrasound and MRI publication-title: Nat. Protoc doi: 10.1038/nprot.2017.081 – volume: 117 start-page: 13480 year: 2020 ident: 10.1016/j.bpj.2021.05.007_bib43 article-title: Depletion interactions modulate the binding between disordered proteins in crowded environments publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1921617117 – volume: 174 start-page: 338 year: 2018 ident: 10.1016/j.bpj.2021.05.007_bib58 article-title: mTORC1 controls phase separation and the biophysical properties of the cytoplasm by tuning crowding publication-title: Cell doi: 10.1016/j.cell.2018.05.042 – volume: 6 start-page: 1480 year: 2020 ident: 10.1016/j.bpj.2021.05.007_bib1 article-title: The structural basis of Rubisco phase separation in the pyrenoid publication-title: Nat. Plants doi: 10.1038/s41477-020-00811-y – volume: 6 start-page: 557 year: 2007 ident: 10.1016/j.bpj.2021.05.007_bib59 article-title: Anisotropy of building blocks and their assembly into complex structures publication-title: Nat. Mater doi: 10.1038/nmat1949 – volume: 175 start-page: 681 year: 2006 ident: 10.1016/j.bpj.2021.05.007_bib8 article-title: The depletion attraction: an underappreciated force driving cellular organization publication-title: J. Cell Biol doi: 10.1083/jcb.200609066 – volume: 123 start-page: 104902 year: 2005 ident: 10.1016/j.bpj.2021.05.007_bib55 article-title: Hierarchical self-assembly of actin bundle networks: gels with surface protein skin layers publication-title: J. Chem. Phys doi: 10.1063/1.1961229 – volume: 13 start-page: L195 year: 2001 ident: 10.1016/j.bpj.2021.05.007_bib29 article-title: The London-van der Waals interaction energy between objects of various geometries publication-title: J. Phys. Condens. Matter doi: 10.1088/0953-8984/13/9/101 – volume: 116 start-page: 19506 year: 2019 ident: 10.1016/j.bpj.2021.05.007_bib42 article-title: Polymer effects modulate binding affinities in disordered proteins publication-title: Proc. Natl. Acad. Sci. U S A doi: 10.1073/pnas.1904997116 – volume: 12 start-page: 5089 year: 2016 ident: 10.1016/j.bpj.2021.05.007_bib44 article-title: Electrostatics and depletion determine competition between 2D nematic and 3D bundled phases of rod-like DNA nanotubes publication-title: Soft Matter doi: 10.1039/C6SM00222F – volume: 181 start-page: 197 year: 1999 ident: 10.1016/j.bpj.2021.05.007_bib49 article-title: Protein mobility in the cytoplasm of Escherichia coli publication-title: J. Bacteriol doi: 10.1128/JB.181.1.197-203.1999 – volume: 11 start-page: 114 year: 2001 ident: 10.1016/j.bpj.2021.05.007_bib39 article-title: Macromolecular crowding: an important but neglected aspect of the intracellular environment publication-title: Curr. Opin. Struct. Biol doi: 10.1016/S0959-440X(00)00172-X |
SSID | ssj0012501 |
Score | 2.385352 |
Snippet | The structure-driven assembly of multimeric protein complexes and the formation of intracellular phase-like protein condensates have been the subject of... |
SourceID | pubmedcentral proquest crossref elsevier |
SourceType | Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 2701 |
Title | Self-assembly of protein superstructures by physical interactions under cytoplasm-like conditions |
URI | https://dx.doi.org/10.1016/j.bpj.2021.05.007 https://www.proquest.com/docview/2531228459 https://pubmed.ncbi.nlm.nih.gov/PMC8390860 |
Volume | 120 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La8MwDDalMNhl7Mm6R_Fgp4FpmofTHLey0m1sl63Qm7Edh6Vrk9DHof9-kpOUFkYPuwQSO2AkR_oUS58IuTeaqzjpKYbt4pgfxJwpx8QsCnzrwD1jsDj5_YMPR_7rOBg3SL-uhcG0ysr2lzbdWuvqSaeSZqdIU6zxBfcK-N5F0jPXFpojUwsW8Y2fNicJ4OKrrnmc4ez6ZNPmeKliAiGi27XkndhR9m_ftIU9dzMnt1zR4JgcVRiSPpbLPCENk52Sg7Kr5PqMyE8zTRiAYjNT0zXNE2rJGNKMLlYFoj1kjF1BmE3VmhaVnijyRszLKocFxcqyOdXrZV4Aup6xafpjKETOcZngdU5Gg-ev_pBVnRSYhvBiyXpcY-sprZKudHpGRpoDDgPfnyRK-2GgZQLIQ_k9qZzIMU7sBWGs44j7Bv93hN4FaWZ5Zi4JlUoZGAujEEKxiGO45EqPe1JpuJi4RZxahkJXNOPY7WIq6nyyiQCxCxS7cAIBYm-Rh80rRcmxsW-yXytG7GwUAT5g32t3tRIFfEB4KiIzk68WwgUr5IKTDqIWCXe0u1kMUnDvjmTpt6XiBngJMaFz9b9FXZNDvLPZv_yGNEH_5hYwzlK1Ad2_vLXtVv4FRFT-2A |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LT8MwDI4mEIIL4inGM0ickKKVPtL1CBNog8EFJu0WJWkqOrau2uPQf4_dx7RKaAcuPTSJFNmp_bmxPxNyZzRXYdRWDNvFMdcLOVOWCVngubkDd4zB4uT3D94duK9Db9ggnaoWBtMqS9tf2PTcWpdvWqU0W2kcY40vuFfA9zaSntlYaL4NaIBjXldv-LS6SgAfX7bN4wynV1ebeZKXSkcQI9oPOXsntpT92zmtgc966uSaL3o5IPsliKSPxT4PScMkR2SnaCuZHRP5acYRA1RsJmqc0WlEczaGOKHzZYpwDyljlxBnU5XRtFQUReKIWVHmMKdYWjajOltMU4DXEzaOfwyF0DksMrxOyODl-avTZWUrBaYhvliwNtfYe0qr6EFabSMDzQGIgfOPIqVd39MyAuih3LZUVmAZK3Q8P9RhwF2DPzx855RsJdPEnBEqlTIw5gc-xGIBx3jJlg53pNLwMGGTWJUMhS55xrHdxVhUCWUjAWIXKHZheQLE3iT3qyVpQbKxabJbKUbUTooAJ7Bp2W2lRAFfEF6LyMRMl3NhgxmywUt7QZP4Ne2uNoMc3PWRJP7OubgBX0JQaJ3_b1M3ZLf79d4X_d7H2wXZw5E8FZhfki04C-YKAM9CXecH-hcn1gEV |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Self-assembly+of+protein+superstructures+by+physical+interactions+under+cytoplasm-like+conditions&rft.jtitle=Biophysical+journal&rft.au=Yao%2C+Yuxing&rft.au=Jin%2C+Zhiyang&rft.au=Ling%2C+Bill&rft.au=Malounda%2C+Dina&rft.date=2021-07-06&rft.pub=Elsevier+Inc&rft.issn=0006-3495&rft.eissn=1542-0086&rft.volume=120&rft.issue=13&rft.spage=2701&rft.epage=2709&rft_id=info:doi/10.1016%2Fj.bpj.2021.05.007&rft.externalDocID=S0006349521004215 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0006-3495&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0006-3495&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0006-3495&client=summon |