Vascular restenosis reduction with platelet membrane coated nanoparticle directed M2 macrophage polarization
Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their tar...
Saved in:
Published in | iScience Vol. 25; no. 10; p. 105147 |
---|---|
Main Authors | , , , , , , |
Format | Journal Article |
Language | English |
Published |
Elsevier Inc
21.10.2022
Elsevier |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their targeted delivery efficacy remains to be improved. In this study, IL10 nanoparticles were successfully prepared and then coated by a preactive platelet membrane. The ability to target and regulate macrophage polarization has been demonstrated, thereby regulating smooth muscle cell and endothelial cell functions. In vivo experiments were carried out in a carotid artery injury model and verified the above functions and the effect on inhibiting vascular restenosis. Immune regulation-based platelet membrane coated nanoparticle loaded with IL10 proved to be an excellent candidate for targeting vascular injury and holds promise as an innovative drug delivery system for suppressing vascular restenosis.
[Display omitted]
•Targeted immune regulation can reduce restenosis after vascular injury•IL10-PNP can target and regulate M2 macrophages polarization in vivo•Vascular restenosis reduction mediated by IL10-PNP requires less cell membrane quantity
Drug delivery system; Nanoparticles; Immune response |
---|---|
AbstractList | Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their targeted delivery efficacy remains to be improved. In this study, IL10 nanoparticles were successfully prepared and then coated by a preactive platelet membrane. The ability to target and regulate macrophage polarization has been demonstrated, thereby regulating smooth muscle cell and endothelial cell functions. In vivo experiments were carried out in a carotid artery injury model and verified the above functions and the effect on inhibiting vascular restenosis. Immune regulation-based platelet membrane coated nanoparticle loaded with IL10 proved to be an excellent candidate for targeting vascular injury and holds promise as an innovative drug delivery system for suppressing vascular restenosis.
[Display omitted]
•Targeted immune regulation can reduce restenosis after vascular injury•IL10-PNP can target and regulate M2 macrophages polarization in vivo•Vascular restenosis reduction mediated by IL10-PNP requires less cell membrane quantity
Drug delivery system; Nanoparticles; Immune response Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their targeted delivery efficacy remains to be improved. In this study, IL10 nanoparticles were successfully prepared and then coated by a preactive platelet membrane. The ability to target and regulate macrophage polarization has been demonstrated, thereby regulating smooth muscle cell and endothelial cell functions. In vivo experiments were carried out in a carotid artery injury model and verified the above functions and the effect on inhibiting vascular restenosis. Immune regulation-based platelet membrane coated nanoparticle loaded with IL10 proved to be an excellent candidate for targeting vascular injury and holds promise as an innovative drug delivery system for suppressing vascular restenosis. • Targeted immune regulation can reduce restenosis after vascular injury • IL10-PNP can target and regulate M2 macrophages polarization in vivo • Vascular restenosis reduction mediated by IL10-PNP requires less cell membrane quantity Drug delivery system; Nanoparticles; Immune response Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their targeted delivery efficacy remains to be improved. In this study, IL10 nanoparticles were successfully prepared and then coated by a preactive platelet membrane. The ability to target and regulate macrophage polarization has been demonstrated, thereby regulating smooth muscle cell and endothelial cell functions. In vivo experiments were carried out in a carotid artery injury model and verified the above functions and the effect on inhibiting vascular restenosis. Immune regulation-based platelet membrane coated nanoparticle loaded with IL10 proved to be an excellent candidate for targeting vascular injury and holds promise as an innovative drug delivery system for suppressing vascular restenosis. Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their targeted delivery efficacy remains to be improved. In this study, IL10 nanoparticles were successfully prepared and then coated by a preactive platelet membrane. The ability to target and regulate macrophage polarization has been demonstrated, thereby regulating smooth muscle cell and endothelial cell functions. In vivo experiments were carried out in a carotid artery injury model and verified the above functions and the effect on inhibiting vascular restenosis. Immune regulation-based platelet membrane coated nanoparticle loaded with IL10 proved to be an excellent candidate for targeting vascular injury and holds promise as an innovative drug delivery system for suppressing vascular restenosis.Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their targeted delivery efficacy remains to be improved. In this study, IL10 nanoparticles were successfully prepared and then coated by a preactive platelet membrane. The ability to target and regulate macrophage polarization has been demonstrated, thereby regulating smooth muscle cell and endothelial cell functions. In vivo experiments were carried out in a carotid artery injury model and verified the above functions and the effect on inhibiting vascular restenosis. Immune regulation-based platelet membrane coated nanoparticle loaded with IL10 proved to be an excellent candidate for targeting vascular injury and holds promise as an innovative drug delivery system for suppressing vascular restenosis. |
ArticleNumber | 105147 |
Author | Niu, Shuai Li, Fengshi Rong, Zhihua Liu, Changwei Di, Xiao Ni, Leng Zhang, Rui |
Author_xml | – sequence: 1 givenname: Fengshi surname: Li fullname: Li, Fengshi organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China – sequence: 2 givenname: Zhihua surname: Rong fullname: Rong, Zhihua organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China – sequence: 3 givenname: Rui surname: Zhang fullname: Zhang, Rui organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China – sequence: 4 givenname: Shuai surname: Niu fullname: Niu, Shuai organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China – sequence: 5 givenname: Xiao surname: Di fullname: Di, Xiao organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China – sequence: 6 givenname: Leng surname: Ni fullname: Ni, Leng email: nileng@163.com organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China – sequence: 7 givenname: Changwei surname: Liu fullname: Liu, Changwei email: liucw@vip.sina.com organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China |
BookMark | eNp9kU9r3DAQxU1JoWmaL9CTjr3sVtJKlgylUEL_BBJyaXsVY3m8q0WWXMlOaT995XgLTQ8BgcTMvB-j915WZyEGrKrXjG4ZZfXb49Zl67accl4Kkgn1rDrnUjcbSgU_--f9orrM-Ugp5eWIpj6v_HfIdvaQSMI8YYjZ5fLsZju5GMhPNx3I6GFCjxMZcGgTBCQ2lkpHAoQ4Qpqc9Ug6l9Au1VtOBrApjgfYIxljgbvfsOBeVc978BkvT_dF9e3Tx69XXzY3d5-vrz7cbKzgetoo29Y7YI2kKKzue8E7SRvFVM17pYWGBqzGesdRiVbzDnZKYieF1LTtl8ZFdb1yuwhHMyY3QPplIjjzUIhpb05bGw4ttlRbYS0IqBFa1jAra92IHWWUFtb7lTXO7YCdxTAl8I-gjzvBHcw-3ptGqvIDXQBvToAUf8zFZDOUuND7YmScs-GKayZqzZdRvY4W93JO2BvrpgfnCtl5w6hZAjdHswRulsDNGniR8v-kfzd8UvRuFWEJ495hMmUCg8U1y-KWe0r-B-0MyXg |
CitedBy_id | crossref_primary_10_3389_fphar_2024_1427651 crossref_primary_10_1016_j_heliyon_2024_e27166 crossref_primary_10_3390_bioengineering11121222 crossref_primary_10_2147_IJN_S423186 crossref_primary_10_1021_acs_biomac_4c00845 crossref_primary_10_1021_acsnano_4c16280 crossref_primary_10_1021_acsabm_4c01373 crossref_primary_10_1186_s12951_023_02194_6 |
Cites_doi | 10.1016/j.jacc.2017.10.072 10.1039/D0NR08440A 10.1152/physrev.1995.75.3.487 10.3109/07853899509002465 10.1016/j.nano.2018.08.002 10.7150/thno.46143 10.1021/acs.biochem.0c00343 10.1126/science.aal3535 10.1038/nrcardio.2011.132 10.2147/IJN.S214727 10.1007/BF03085963 10.1124/pr.55.2.4 10.1016/S0735-1097(99)00596-3 10.3390/biom12030430 10.3389/fimmu.2019.01084 10.1038/ncomms6160 10.1155/2020/8104939 10.1016/j.biomaterials.2019.119550 10.1126/scitranslmed.aax0481 10.1111/j.1537-2995.2006.00913.x 10.1038/493S2a 10.1161/ATVBAHA.110.207480 10.1016/j.celrep.2019.06.062 10.1016/j.brainres.2014.12.045 10.1073/pnas.1806908115 10.1111/jth.15035 10.1016/j.apsb.2021.01.020 10.1016/j.jim.2019.112721 10.1002/jcp.26429 10.1016/j.jvssci.2021.04.001 10.1038/nature15373 10.1056/NEJMoa1607991 10.1161/CIRCRESAHA.119.316159 10.1002/adma.201706759 10.4049/jimmunol.1900899 10.1002/sstr.202000018 10.1021/acsnano.6b01114 10.1016/j.biomaterials.2017.02.041 10.1038/s41590-018-0113-3 10.1016/j.jacc.2015.03.549 10.1016/j.prp.2014.04.004 10.1039/D0NR08492A 10.1038/ncomms15559 10.1161/CIRCULATIONAHA.105.571315 10.1080/09537100020031207 10.1161/CIRCULATIONAHA.118.036323 10.1160/TH13-08-0653 10.1016/j.apsb.2015.03.001 10.1016/j.cca.2019.10.034 10.1016/j.biomaterials.2022.121440 10.1016/j.cardiores.2007.05.019 10.1126/scitranslmed.aaa1065 10.1155/2022/9763377 |
ContentType | Journal Article |
Copyright | 2022 The Author(s) 2022 The Author(s). 2022 The Author(s) 2022 |
Copyright_xml | – notice: 2022 The Author(s) – notice: 2022 The Author(s). – notice: 2022 The Author(s) 2022 |
DBID | 6I. AAFTH AAYXX CITATION 7X8 5PM DOA |
DOI | 10.1016/j.isci.2022.105147 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef MEDLINE - Academic PubMed Central (Full Participant titles) DOAJ Directory of Open Access Journals |
DatabaseTitle | CrossRef MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: DOA name: DOAJ Directory of Open Access Journals url: https://www.doaj.org/ sourceTypes: Open Website |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 2589-0042 |
ExternalDocumentID | oai_doaj_org_article_2abeb08c4cca4a6eab191c5689430100 PMC9579508 10_1016_j_isci_2022_105147 S2589004222014195 |
GroupedDBID | 0R~ 0SF 53G 6I. AACTN AAEDW AAFTH AALRI AAXUO ABMAC ADBBV ADVLN AEXQZ AFTJW AITUG ALMA_UNASSIGNED_HOLDINGS AMRAJ AOIJS BCNDV EBS FDB GROUPED_DOAJ HYE M41 NCXOZ OK1 ROL RPM SSZ AAMRU AAYWO AAYXX ACVFH ADCNI AEUPX AFPUW AIGII AKBMS AKYEP APXCP CITATION EJD 7X8 5PM |
ID | FETCH-LOGICAL-c428t-7cb63a1950e4c8ff42d50971762f7848a9ac8e632e74b82da375ed54580bf8e63 |
IEDL.DBID | DOA |
ISSN | 2589-0042 |
IngestDate | Wed Aug 27 01:30:04 EDT 2025 Thu Aug 21 18:39:50 EDT 2025 Fri Jul 11 06:21:37 EDT 2025 Tue Jul 01 01:03:52 EDT 2025 Thu Apr 24 23:09:47 EDT 2025 Sat Aug 31 16:02:05 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 10 |
Keywords | immune response Drug delivery system nanoparticles |
Language | English |
License | This is an open access article under the CC BY-NC-ND license. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-7cb63a1950e4c8ff42d50971762f7848a9ac8e632e74b82da375ed54580bf8e63 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 These authors contributed equally Lead contact |
OpenAccessLink | https://doaj.org/article/2abeb08c4cca4a6eab191c5689430100 |
PQID | 2728146828 |
PQPubID | 23479 |
ParticipantIDs | doaj_primary_oai_doaj_org_article_2abeb08c4cca4a6eab191c5689430100 pubmedcentral_primary_oai_pubmedcentral_nih_gov_9579508 proquest_miscellaneous_2728146828 crossref_citationtrail_10_1016_j_isci_2022_105147 crossref_primary_10_1016_j_isci_2022_105147 elsevier_sciencedirect_doi_10_1016_j_isci_2022_105147 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2022-10-21 |
PublicationDateYYYYMMDD | 2022-10-21 |
PublicationDate_xml | – month: 10 year: 2022 text: 2022-10-21 day: 21 |
PublicationDecade | 2020 |
PublicationTitle | iScience |
PublicationYear | 2022 |
Publisher | Elsevier Inc Elsevier |
Publisher_xml | – name: Elsevier Inc – name: Elsevier |
References | Jukema, Verschuren, Ahmed, Quax (bib26) 2011; 9 Willecke, Tiwari, Rupprecht, Wolf, Hergeth, Hoppe, Dufner, Schulte, Anto Michel, Bukosza (bib46) 2014; 112 Owens (bib36) 1995; 75 Fang, Jiang, Fang, Zhang (bib15) 2017; 128 Hu, Fang, Wang, Luk, Thamphiwatana, Dehaini, Nguyen, Angsantikul, Wen, Kroll (bib22) 2015; 526 Li, Kim, Jeong, Chiu, Xiong, Petukhov, Dai, Li, Andrews, Du (bib32) 2019; 139 Hou, Jin, Duan, Liu, Chen, Huang, Gao, Jin (bib21) 2022; 283 Zeng, Ma, Shi, Chen, Wu, Zhang, Chen, Chen (bib50) 2019; 14 Jalvy, Renault, Leen, Belloc, Bonnet, Gadeau, Desgranges (bib25) 2007; 75 Kamaly, Fredman, Fojas, Subramanian, Choi, Zepeda, Vilos, Yu, Gadde, Wu (bib27) 2016; 10 Badlou, Wu, Smid, Akkerman (bib3) 2006; 46 Raimondo, Mooney (bib38) 2018; 115 Fang, Kroll, Gao, Zhang (bib16) 2018; 30 Gensel, Zhang (bib19) 2015; 1619 Hermann, Rauch, Braun, Schrör, Weber (bib20) 2001; 12 Wang, Gao, Shi, Erhardt, Pavlovsky, A Soloviev, Bledzka, Ustinov, Zhu, Qin (bib44) 2017; 8 Koelwyn, Corr, Erbay, Moore (bib30) 2018; 19 Cannon (bib7) 2013; 493 Le, Lee, Lee, Shim, Oh (bib31) 2021; 11 Xing, Pan, Zhu, Cui, Tang, Liu, Liu (bib47) 2022; 2022 Fredman, Kamaly, Spolitu, Milton, Ghorpade, Chiasson, Kuriakose, Perretti, Farokzhad, Tabas (bib17) 2015; 7 Kim, Sahu, Hwang, Kim, Nam, Kim, Chan Kwon, Tae (bib29) 2020; 226 Quach, Li (bib37) 2020; 18 de Vries (bib14) 1995; 27 Yang, Yuan, Hao, Ren, Qu, Liu, Wei, Tang, Zhang, Jiang (bib49) 2020; 501 Baxter, Graham, Re, Carr, Robinson, Mackie, Morgan (bib5) 2020; 478 Totani, Evangelista (bib42) 2010; 30 Margraf, Zarbock (bib33) 2019; 203 Orecchioni, Ghosheh, Pramod, Ley (bib35) 2019; 10 Wang, Duan, Zhang, Komarla, Gong, Gao, Zhang (bib43) 2020; 1 Barrett, Schlegel, Zhou, Gorenchtein, Bolstorff, Moore, Fisher, Berger (bib4) 2019; 11 Zhang, Zhu, Chen, Zhang, Zhang, Jiang, Gao, Tian, Wang, Zhang (bib53) 2014; 5 Bønaa, Mannsverk, Wiseth, Aaberge, Myreng, Nygård, Nilsen, Kløw, Uchto, Trovik (bib6) 2016; 375 Ip, Hoshi, Shouval, Snapper, Medzhitov (bib24) 2017; 356 Asadullah, Sterry, Volk (bib2) 2003; 55 Kang, Gao, Huang, Jin, Wang (bib28) 2015; 5 Chen, Song, Lian, Yang, Lin, Xiao (bib11) 2021; 13 McDonald, Halliday, Miller, Diver, Dakin, Montgomery, McBride, Kennedy, McClure, Robertson (bib34) 2015; 65 Chandrasekar, Tanguay (bib10) 2000; 35 Furmanik, Chatrou, van Gorp, Akbulut, Willems, Schmidt, van Eys, Bochaton-Piallat, Proudfoot, Biessen (bib18) 2020; 127 Zhang, Cresswell, Tavora, Mont, Zhao, Burke (bib52) 2014; 210 Zhang, Chen (bib51) 2020; 2020 Shapouri-Moghaddam, Mohammadian, Vazini, Taghadosi, Esmaeili, Mardani, Seifi, Mohammadi, Afshari, Sahebkar (bib40) 2018; 233 Song, Huang, Liu, Pang, Chen, Yang, Zhang, Cao, Liu, Cao (bib41) 2019; 15 Clare, Ganly, Bursill, Sumer, Kingshott, de Haan (bib12) 2022; 12 Rensen, Doevendans, van Eys (bib39) 2007; 15 Wang, Sakuma, Chen, Ustinov, Shi, Croce, Zago, Lopez, Andre, Plow, Simon (bib45) 2005; 112 Carestia, Mena, Olexen, Ortiz Wilczyñski, Negrotto, Errasti, Gómez, Jenne, Carrera Silva, Schattner (bib8) 2019; 28 Huang, Ding, Jiang, Wang (bib23) 2021; 13 Dann, Hadi, Montenont, Boytard, Alebrahim, Feinstein, Allen, Simon, Barone, Uryu (bib13) 2018; 71 Yan, Li, Yin, Hou, Qu, Wang, Durkan, Dong, Qiu, Gregersen, Wang (bib48) 2020; 10 Ai, Wang, Duan, Zhang, Chen, Gao, Zhang (bib1) 2021; 60 Chakraborty, Chatterjee, Dave, Ostriker, Greif, Rzucidlo, Martin (bib9) 2021; 2 Zhang (10.1016/j.isci.2022.105147_bib52) 2014; 210 Hu (10.1016/j.isci.2022.105147_bib22) 2015; 526 Kang (10.1016/j.isci.2022.105147_bib28) 2015; 5 Raimondo (10.1016/j.isci.2022.105147_bib38) 2018; 115 Wang (10.1016/j.isci.2022.105147_bib44) 2017; 8 Furmanik (10.1016/j.isci.2022.105147_bib18) 2020; 127 Wang (10.1016/j.isci.2022.105147_bib43) 2020; 1 Xing (10.1016/j.isci.2022.105147_bib47) 2022; 2022 Dann (10.1016/j.isci.2022.105147_bib13) 2018; 71 Song (10.1016/j.isci.2022.105147_bib41) 2019; 15 Owens (10.1016/j.isci.2022.105147_bib36) 1995; 75 Shapouri-Moghaddam (10.1016/j.isci.2022.105147_bib40) 2018; 233 Carestia (10.1016/j.isci.2022.105147_bib8) 2019; 28 Chakraborty (10.1016/j.isci.2022.105147_bib9) 2021; 2 Ip (10.1016/j.isci.2022.105147_bib24) 2017; 356 Rensen (10.1016/j.isci.2022.105147_bib39) 2007; 15 Huang (10.1016/j.isci.2022.105147_bib23) 2021; 13 Kim (10.1016/j.isci.2022.105147_bib29) 2020; 226 de Vries (10.1016/j.isci.2022.105147_bib14) 1995; 27 Yang (10.1016/j.isci.2022.105147_bib49) 2020; 501 Wang (10.1016/j.isci.2022.105147_bib45) 2005; 112 Orecchioni (10.1016/j.isci.2022.105147_bib35) 2019; 10 Zeng (10.1016/j.isci.2022.105147_bib50) 2019; 14 Asadullah (10.1016/j.isci.2022.105147_bib2) 2003; 55 Barrett (10.1016/j.isci.2022.105147_bib4) 2019; 11 Li (10.1016/j.isci.2022.105147_bib32) 2019; 139 Hou (10.1016/j.isci.2022.105147_bib21) 2022; 283 Zhang (10.1016/j.isci.2022.105147_bib51) 2020; 2020 Totani (10.1016/j.isci.2022.105147_bib42) 2010; 30 Badlou (10.1016/j.isci.2022.105147_bib3) 2006; 46 Hermann (10.1016/j.isci.2022.105147_bib20) 2001; 12 Kamaly (10.1016/j.isci.2022.105147_bib27) 2016; 10 Zhang (10.1016/j.isci.2022.105147_bib53) 2014; 5 McDonald (10.1016/j.isci.2022.105147_bib34) 2015; 65 Ai (10.1016/j.isci.2022.105147_bib1) 2021; 60 Chandrasekar (10.1016/j.isci.2022.105147_bib10) 2000; 35 Gensel (10.1016/j.isci.2022.105147_bib19) 2015; 1619 Baxter (10.1016/j.isci.2022.105147_bib5) 2020; 478 Fang (10.1016/j.isci.2022.105147_bib16) 2018; 30 Clare (10.1016/j.isci.2022.105147_bib12) 2022; 12 Cannon (10.1016/j.isci.2022.105147_bib7) 2013; 493 Chen (10.1016/j.isci.2022.105147_bib11) 2021; 13 Jukema (10.1016/j.isci.2022.105147_bib26) 2011; 9 Koelwyn (10.1016/j.isci.2022.105147_bib30) 2018; 19 Willecke (10.1016/j.isci.2022.105147_bib46) 2014; 112 Le (10.1016/j.isci.2022.105147_bib31) 2021; 11 Yan (10.1016/j.isci.2022.105147_bib48) 2020; 10 Bønaa (10.1016/j.isci.2022.105147_bib6) 2016; 375 Jalvy (10.1016/j.isci.2022.105147_bib25) 2007; 75 Fredman (10.1016/j.isci.2022.105147_bib17) 2015; 7 Margraf (10.1016/j.isci.2022.105147_bib33) 2019; 203 Quach (10.1016/j.isci.2022.105147_bib37) 2020; 18 Fang (10.1016/j.isci.2022.105147_bib15) 2017; 128 |
References_xml | – volume: 30 start-page: 2357 year: 2010 end-page: 2361 ident: bib42 article-title: Platelet-leukocyte interactions in cardiovascular disease and beyond publication-title: Arterioscler. Thromb. Vasc. Biol. – volume: 10 start-page: 10712 year: 2020 end-page: 10728 ident: bib48 article-title: M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation publication-title: Theranostics – volume: 75 start-page: 487 year: 1995 end-page: 517 ident: bib36 article-title: Regulation of differentiation of vascular smooth muscle cells publication-title: Physiol. Rev. – volume: 112 start-page: 2993 year: 2005 end-page: 3000 ident: bib45 article-title: Leukocyte engagement of platelet glycoprotein Ibalpha via the integrin Mac-1 is critical for the biological response to vascular injury publication-title: Circulation – volume: 71 start-page: 53 year: 2018 end-page: 65 ident: bib13 article-title: Platelet-derived MRP-14 induces monocyte activation in patients with symptomatic peripheral artery disease publication-title: J. Am. Coll. Cardiol. – volume: 127 start-page: 911 year: 2020 end-page: 927 ident: bib18 article-title: Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification publication-title: Circ. Res. – volume: 30 start-page: e1706759 year: 2018 ident: bib16 article-title: Cell membrane coating nanotechnology publication-title: Adv. Mater. – volume: 2020 start-page: 8104939 year: 2020 ident: bib51 article-title: In-Stent restenosis and a drug-coated balloon: insights from a clinical therapeutic strategy on coronary artery diseases publication-title: Cardiol. Res. Pract. – volume: 12 start-page: 74 year: 2001 end-page: 82 ident: bib20 article-title: Platelet CD40 ligand (CD40L)--subcellular localization, regulation of expression, and inhibition by clopidogrel publication-title: Platelets – volume: 115 start-page: 10648 year: 2018 end-page: 10653 ident: bib38 article-title: Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice publication-title: Proc. Natl. Acad. Sci. USA – volume: 60 start-page: 941 year: 2021 end-page: 955 ident: bib1 article-title: Emerging approaches to functionalizing cell membrane-coated nanoparticles publication-title: Biochemistry – volume: 12 start-page: 430 year: 2022 ident: bib12 article-title: The mechanisms of restenosis and relevance to next generation stent design publication-title: Biomolecules – volume: 55 start-page: 241 year: 2003 end-page: 269 ident: bib2 article-title: Interleukin-10 therapy--review of a new approach publication-title: Pharmacol. Rev. – volume: 28 start-page: 896 year: 2019 end-page: 908.e5 ident: bib8 article-title: Platelets promote macrophage polarization toward pro-inflammatory phenotype and increase survival of septic mice publication-title: Cell Rep. – volume: 14 start-page: 6357 year: 2019 end-page: 6369 ident: bib50 article-title: Poly(lactic-co-glycolic acid) nanoparticle-mediated interleukin-12 delivery for the treatment of diabetic retinopathy publication-title: Int. J. Nanomedicine – volume: 128 start-page: 69 year: 2017 end-page: 83 ident: bib15 article-title: Cell membrane-derived nanomaterials for biomedical applications publication-title: Biomaterials – volume: 501 start-page: 142 year: 2020 end-page: 146 ident: bib49 article-title: Macrophage polarization in atherosclerosis publication-title: Clin. Chim. Acta – volume: 478 start-page: 112721 year: 2020 ident: bib5 article-title: Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes publication-title: J. Immunol. Methods – volume: 2 start-page: 79 year: 2021 end-page: 94 ident: bib9 article-title: Targeting smooth muscle cell phenotypic switching in vascular disease publication-title: JVS. Vasc. Sci. – volume: 15 start-page: 13 year: 2019 end-page: 24 ident: bib41 article-title: Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE-/-) mice publication-title: Nanomedicine. – volume: 75 start-page: 738 year: 2007 end-page: 747 ident: bib25 article-title: Autocrine expression of osteopontin contributes to PDGF-mediated arterial smooth muscle cell migration publication-title: Cardiovasc. Res. – volume: 8 start-page: 15559 year: 2017 ident: bib44 article-title: Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα publication-title: Nat. Commun. – volume: 493 start-page: S2 year: 2013 end-page: S3 ident: bib7 article-title: Cardiovascular disease: biochemistry to behaviour publication-title: Nature – volume: 226 start-page: 119550 year: 2020 ident: bib29 article-title: Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E-/- mice publication-title: Biomaterials – volume: 283 start-page: 121440 year: 2022 ident: bib21 article-title: Targeted therapeutic effects of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon cancer publication-title: Biomaterials – volume: 11 start-page: 2096 year: 2021 end-page: 2113 ident: bib31 article-title: Cell membrane-derived vesicles for delivery of therapeutic agents publication-title: Acta Pharm. Sin. B – volume: 5 start-page: 5160 year: 2014 ident: bib53 article-title: Interferon regulatory factor 9 is critical for neointima formation following vascular injury publication-title: Nat. Commun. – volume: 233 start-page: 6425 year: 2018 end-page: 6440 ident: bib40 article-title: Macrophage plasticity, polarization, and function in health and disease publication-title: J. Cell. Physiol. – volume: 5 start-page: 169 year: 2015 end-page: 175 ident: bib28 article-title: Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment publication-title: Acta Pharm. Sin. B – volume: 10 start-page: 1084 year: 2019 ident: bib35 article-title: Macrophage polarization: different gene signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively activated macrophages publication-title: Front. Immunol. – volume: 526 start-page: 118 year: 2015 end-page: 121 ident: bib22 article-title: Nanoparticle biointerfacing by platelet membrane cloaking publication-title: Nature – volume: 10 start-page: 5280 year: 2016 end-page: 5292 ident: bib27 article-title: Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis publication-title: ACS Nano – volume: 139 start-page: 1300 year: 2019 end-page: 1319 ident: bib32 article-title: Platelet protein disulfide isomerase promotes glycoprotein ibα-mediated platelet-neutrophil interactions under thromboinflammatory conditions publication-title: Circulation – volume: 19 start-page: 526 year: 2018 end-page: 537 ident: bib30 article-title: Regulation of macrophage immunometabolism in atherosclerosis publication-title: Nat. Immunol. – volume: 203 start-page: 2357 year: 2019 end-page: 2367 ident: bib33 article-title: Platelets in inflammation and resolution publication-title: J. Immunol. – volume: 15 start-page: 100 year: 2007 end-page: 108 ident: bib39 article-title: Regulation and characteristics of vascular smooth muscle cell phenotypic diversity publication-title: Neth. Heart J. – volume: 356 start-page: 513 year: 2017 end-page: 519 ident: bib24 article-title: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages publication-title: Science – volume: 9 start-page: 53 year: 2011 end-page: 62 ident: bib26 article-title: Restenosis after PCI. Part 1: pathophysiology and risk factors publication-title: Nat. Rev. Cardiol. – volume: 11 start-page: eaax0481 year: 2019 ident: bib4 article-title: Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis publication-title: Sci. Transl. Med. – volume: 65 start-page: 2314 year: 2015 end-page: 2327 ident: bib34 article-title: Reducing in-stent restenosis: therapeutic manipulation of miRNA in vascular remodeling and inflammation publication-title: J. Am. Coll. Cardiol. – volume: 1619 start-page: 1 year: 2015 end-page: 11 ident: bib19 article-title: Macrophage activation and its role in repair and pathology after spinal cord injury publication-title: Brain Res. – volume: 375 start-page: 1242 year: 2016 end-page: 1252 ident: bib6 article-title: Drug-eluting or bare-metal stents for coronary artery disease publication-title: N. Engl. J. Med. – volume: 210 start-page: 1026 year: 2014 end-page: 1030 ident: bib52 article-title: In-stent restenosis is associated with neointimal angiogenesis and macrophage infiltrates publication-title: Pathol. Res. Pract. – volume: 2022 start-page: 9763377 year: 2022 ident: bib47 article-title: Advanced glycation end products induce atherosclerosis via RAGE/TLR4 signaling mediated-M1 macrophage polarization-dependent vascular smooth muscle cell phenotypic conversion publication-title: Oxid. Med. Cell. Longev. – volume: 13 start-page: 2914 year: 2021 end-page: 2922 ident: bib11 article-title: Single-particle fibrinogen detection using platelet membrane-coated fluorescent polystyrene nanoparticles publication-title: Nanoscale – volume: 18 start-page: 3131 year: 2020 end-page: 3141 ident: bib37 article-title: Structure-function of platelet glycoprotein Ib-IX publication-title: J. Thromb. Haemost. – volume: 27 start-page: 537 year: 1995 end-page: 541 ident: bib14 article-title: Immunosuppressive and anti-inflammatory properties of interleukin 10 publication-title: Ann. Med. – volume: 7 start-page: 275ra20 year: 2015 ident: bib17 article-title: Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice publication-title: Sci. Transl. Med. – volume: 35 start-page: 555 year: 2000 end-page: 562 ident: bib10 article-title: Platelets and restenosis publication-title: J. Am. Coll. Cardiol. – volume: 46 start-page: 1432 year: 2006 end-page: 1443 ident: bib3 article-title: Platelet binding and phagocytosis by macrophages publication-title: Transfusion – volume: 1 start-page: 2000018 year: 2020 ident: bib43 article-title: Drug targeting via platelet membrane-coated nanoparticles publication-title: Small Struct. – volume: 112 start-page: 379 year: 2014 end-page: 389 ident: bib46 article-title: Interruption of classic CD40L-CD40 signalling but not of the novel CD40L-Mac-1 interaction limits arterial neointima formation in mice publication-title: Thromb. Haemost. – volume: 13 start-page: 4512 year: 2021 end-page: 4518 ident: bib23 article-title: Glutathione-depleting nanoplatelets for enhanced sonodynamic cancer therapy publication-title: Nanoscale – volume: 71 start-page: 53 year: 2018 ident: 10.1016/j.isci.2022.105147_bib13 article-title: Platelet-derived MRP-14 induces monocyte activation in patients with symptomatic peripheral artery disease publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2017.10.072 – volume: 13 start-page: 4512 year: 2021 ident: 10.1016/j.isci.2022.105147_bib23 article-title: Glutathione-depleting nanoplatelets for enhanced sonodynamic cancer therapy publication-title: Nanoscale doi: 10.1039/D0NR08440A – volume: 75 start-page: 487 year: 1995 ident: 10.1016/j.isci.2022.105147_bib36 article-title: Regulation of differentiation of vascular smooth muscle cells publication-title: Physiol. Rev. doi: 10.1152/physrev.1995.75.3.487 – volume: 27 start-page: 537 year: 1995 ident: 10.1016/j.isci.2022.105147_bib14 article-title: Immunosuppressive and anti-inflammatory properties of interleukin 10 publication-title: Ann. Med. doi: 10.3109/07853899509002465 – volume: 15 start-page: 13 year: 2019 ident: 10.1016/j.isci.2022.105147_bib41 article-title: Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE-/-) mice publication-title: Nanomedicine. doi: 10.1016/j.nano.2018.08.002 – volume: 10 start-page: 10712 year: 2020 ident: 10.1016/j.isci.2022.105147_bib48 article-title: M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation publication-title: Theranostics doi: 10.7150/thno.46143 – volume: 60 start-page: 941 year: 2021 ident: 10.1016/j.isci.2022.105147_bib1 article-title: Emerging approaches to functionalizing cell membrane-coated nanoparticles publication-title: Biochemistry doi: 10.1021/acs.biochem.0c00343 – volume: 356 start-page: 513 year: 2017 ident: 10.1016/j.isci.2022.105147_bib24 article-title: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages publication-title: Science doi: 10.1126/science.aal3535 – volume: 9 start-page: 53 year: 2011 ident: 10.1016/j.isci.2022.105147_bib26 article-title: Restenosis after PCI. Part 1: pathophysiology and risk factors publication-title: Nat. Rev. Cardiol. doi: 10.1038/nrcardio.2011.132 – volume: 14 start-page: 6357 year: 2019 ident: 10.1016/j.isci.2022.105147_bib50 article-title: Poly(lactic-co-glycolic acid) nanoparticle-mediated interleukin-12 delivery for the treatment of diabetic retinopathy publication-title: Int. J. Nanomedicine doi: 10.2147/IJN.S214727 – volume: 15 start-page: 100 year: 2007 ident: 10.1016/j.isci.2022.105147_bib39 article-title: Regulation and characteristics of vascular smooth muscle cell phenotypic diversity publication-title: Neth. Heart J. doi: 10.1007/BF03085963 – volume: 55 start-page: 241 year: 2003 ident: 10.1016/j.isci.2022.105147_bib2 article-title: Interleukin-10 therapy--review of a new approach publication-title: Pharmacol. Rev. doi: 10.1124/pr.55.2.4 – volume: 35 start-page: 555 year: 2000 ident: 10.1016/j.isci.2022.105147_bib10 article-title: Platelets and restenosis publication-title: J. Am. Coll. Cardiol. doi: 10.1016/S0735-1097(99)00596-3 – volume: 12 start-page: 430 year: 2022 ident: 10.1016/j.isci.2022.105147_bib12 article-title: The mechanisms of restenosis and relevance to next generation stent design publication-title: Biomolecules doi: 10.3390/biom12030430 – volume: 10 start-page: 1084 year: 2019 ident: 10.1016/j.isci.2022.105147_bib35 article-title: Macrophage polarization: different gene signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively activated macrophages publication-title: Front. Immunol. doi: 10.3389/fimmu.2019.01084 – volume: 5 start-page: 5160 year: 2014 ident: 10.1016/j.isci.2022.105147_bib53 article-title: Interferon regulatory factor 9 is critical for neointima formation following vascular injury publication-title: Nat. Commun. doi: 10.1038/ncomms6160 – volume: 2020 start-page: 8104939 year: 2020 ident: 10.1016/j.isci.2022.105147_bib51 article-title: In-Stent restenosis and a drug-coated balloon: insights from a clinical therapeutic strategy on coronary artery diseases publication-title: Cardiol. Res. Pract. doi: 10.1155/2020/8104939 – volume: 226 start-page: 119550 year: 2020 ident: 10.1016/j.isci.2022.105147_bib29 article-title: Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E-/- mice publication-title: Biomaterials doi: 10.1016/j.biomaterials.2019.119550 – volume: 11 start-page: eaax0481 year: 2019 ident: 10.1016/j.isci.2022.105147_bib4 article-title: Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aax0481 – volume: 46 start-page: 1432 year: 2006 ident: 10.1016/j.isci.2022.105147_bib3 article-title: Platelet binding and phagocytosis by macrophages publication-title: Transfusion doi: 10.1111/j.1537-2995.2006.00913.x – volume: 493 start-page: S2 year: 2013 ident: 10.1016/j.isci.2022.105147_bib7 article-title: Cardiovascular disease: biochemistry to behaviour publication-title: Nature doi: 10.1038/493S2a – volume: 30 start-page: 2357 year: 2010 ident: 10.1016/j.isci.2022.105147_bib42 article-title: Platelet-leukocyte interactions in cardiovascular disease and beyond publication-title: Arterioscler. Thromb. Vasc. Biol. doi: 10.1161/ATVBAHA.110.207480 – volume: 28 start-page: 896 year: 2019 ident: 10.1016/j.isci.2022.105147_bib8 article-title: Platelets promote macrophage polarization toward pro-inflammatory phenotype and increase survival of septic mice publication-title: Cell Rep. doi: 10.1016/j.celrep.2019.06.062 – volume: 1619 start-page: 1 year: 2015 ident: 10.1016/j.isci.2022.105147_bib19 article-title: Macrophage activation and its role in repair and pathology after spinal cord injury publication-title: Brain Res. doi: 10.1016/j.brainres.2014.12.045 – volume: 115 start-page: 10648 year: 2018 ident: 10.1016/j.isci.2022.105147_bib38 article-title: Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice publication-title: Proc. Natl. Acad. Sci. USA doi: 10.1073/pnas.1806908115 – volume: 18 start-page: 3131 year: 2020 ident: 10.1016/j.isci.2022.105147_bib37 article-title: Structure-function of platelet glycoprotein Ib-IX publication-title: J. Thromb. Haemost. doi: 10.1111/jth.15035 – volume: 11 start-page: 2096 year: 2021 ident: 10.1016/j.isci.2022.105147_bib31 article-title: Cell membrane-derived vesicles for delivery of therapeutic agents publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2021.01.020 – volume: 478 start-page: 112721 year: 2020 ident: 10.1016/j.isci.2022.105147_bib5 article-title: Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes publication-title: J. Immunol. Methods doi: 10.1016/j.jim.2019.112721 – volume: 233 start-page: 6425 year: 2018 ident: 10.1016/j.isci.2022.105147_bib40 article-title: Macrophage plasticity, polarization, and function in health and disease publication-title: J. Cell. Physiol. doi: 10.1002/jcp.26429 – volume: 2 start-page: 79 year: 2021 ident: 10.1016/j.isci.2022.105147_bib9 article-title: Targeting smooth muscle cell phenotypic switching in vascular disease publication-title: JVS. Vasc. Sci. doi: 10.1016/j.jvssci.2021.04.001 – volume: 526 start-page: 118 year: 2015 ident: 10.1016/j.isci.2022.105147_bib22 article-title: Nanoparticle biointerfacing by platelet membrane cloaking publication-title: Nature doi: 10.1038/nature15373 – volume: 375 start-page: 1242 year: 2016 ident: 10.1016/j.isci.2022.105147_bib6 article-title: Drug-eluting or bare-metal stents for coronary artery disease publication-title: N. Engl. J. Med. doi: 10.1056/NEJMoa1607991 – volume: 127 start-page: 911 year: 2020 ident: 10.1016/j.isci.2022.105147_bib18 article-title: Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification publication-title: Circ. Res. doi: 10.1161/CIRCRESAHA.119.316159 – volume: 30 start-page: e1706759 year: 2018 ident: 10.1016/j.isci.2022.105147_bib16 article-title: Cell membrane coating nanotechnology publication-title: Adv. Mater. doi: 10.1002/adma.201706759 – volume: 203 start-page: 2357 year: 2019 ident: 10.1016/j.isci.2022.105147_bib33 article-title: Platelets in inflammation and resolution publication-title: J. Immunol. doi: 10.4049/jimmunol.1900899 – volume: 1 start-page: 2000018 year: 2020 ident: 10.1016/j.isci.2022.105147_bib43 article-title: Drug targeting via platelet membrane-coated nanoparticles publication-title: Small Struct. doi: 10.1002/sstr.202000018 – volume: 10 start-page: 5280 year: 2016 ident: 10.1016/j.isci.2022.105147_bib27 article-title: Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis publication-title: ACS Nano doi: 10.1021/acsnano.6b01114 – volume: 128 start-page: 69 year: 2017 ident: 10.1016/j.isci.2022.105147_bib15 article-title: Cell membrane-derived nanomaterials for biomedical applications publication-title: Biomaterials doi: 10.1016/j.biomaterials.2017.02.041 – volume: 19 start-page: 526 year: 2018 ident: 10.1016/j.isci.2022.105147_bib30 article-title: Regulation of macrophage immunometabolism in atherosclerosis publication-title: Nat. Immunol. doi: 10.1038/s41590-018-0113-3 – volume: 65 start-page: 2314 year: 2015 ident: 10.1016/j.isci.2022.105147_bib34 article-title: Reducing in-stent restenosis: therapeutic manipulation of miRNA in vascular remodeling and inflammation publication-title: J. Am. Coll. Cardiol. doi: 10.1016/j.jacc.2015.03.549 – volume: 210 start-page: 1026 year: 2014 ident: 10.1016/j.isci.2022.105147_bib52 article-title: In-stent restenosis is associated with neointimal angiogenesis and macrophage infiltrates publication-title: Pathol. Res. Pract. doi: 10.1016/j.prp.2014.04.004 – volume: 13 start-page: 2914 year: 2021 ident: 10.1016/j.isci.2022.105147_bib11 article-title: Single-particle fibrinogen detection using platelet membrane-coated fluorescent polystyrene nanoparticles publication-title: Nanoscale doi: 10.1039/D0NR08492A – volume: 8 start-page: 15559 year: 2017 ident: 10.1016/j.isci.2022.105147_bib44 article-title: Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα publication-title: Nat. Commun. doi: 10.1038/ncomms15559 – volume: 112 start-page: 2993 year: 2005 ident: 10.1016/j.isci.2022.105147_bib45 article-title: Leukocyte engagement of platelet glycoprotein Ibalpha via the integrin Mac-1 is critical for the biological response to vascular injury publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.105.571315 – volume: 12 start-page: 74 year: 2001 ident: 10.1016/j.isci.2022.105147_bib20 article-title: Platelet CD40 ligand (CD40L)--subcellular localization, regulation of expression, and inhibition by clopidogrel publication-title: Platelets doi: 10.1080/09537100020031207 – volume: 139 start-page: 1300 year: 2019 ident: 10.1016/j.isci.2022.105147_bib32 article-title: Platelet protein disulfide isomerase promotes glycoprotein ibα-mediated platelet-neutrophil interactions under thromboinflammatory conditions publication-title: Circulation doi: 10.1161/CIRCULATIONAHA.118.036323 – volume: 112 start-page: 379 year: 2014 ident: 10.1016/j.isci.2022.105147_bib46 article-title: Interruption of classic CD40L-CD40 signalling but not of the novel CD40L-Mac-1 interaction limits arterial neointima formation in mice publication-title: Thromb. Haemost. doi: 10.1160/TH13-08-0653 – volume: 5 start-page: 169 year: 2015 ident: 10.1016/j.isci.2022.105147_bib28 article-title: Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment publication-title: Acta Pharm. Sin. B doi: 10.1016/j.apsb.2015.03.001 – volume: 501 start-page: 142 year: 2020 ident: 10.1016/j.isci.2022.105147_bib49 article-title: Macrophage polarization in atherosclerosis publication-title: Clin. Chim. Acta doi: 10.1016/j.cca.2019.10.034 – volume: 283 start-page: 121440 year: 2022 ident: 10.1016/j.isci.2022.105147_bib21 article-title: Targeted therapeutic effects of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon cancer publication-title: Biomaterials doi: 10.1016/j.biomaterials.2022.121440 – volume: 75 start-page: 738 year: 2007 ident: 10.1016/j.isci.2022.105147_bib25 article-title: Autocrine expression of osteopontin contributes to PDGF-mediated arterial smooth muscle cell migration publication-title: Cardiovasc. Res. doi: 10.1016/j.cardiores.2007.05.019 – volume: 7 start-page: 275ra20 year: 2015 ident: 10.1016/j.isci.2022.105147_bib17 article-title: Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice publication-title: Sci. Transl. Med. doi: 10.1126/scitranslmed.aaa1065 – volume: 2022 start-page: 9763377 year: 2022 ident: 10.1016/j.isci.2022.105147_bib47 article-title: Advanced glycation end products induce atherosclerosis via RAGE/TLR4 signaling mediated-M1 macrophage polarization-dependent vascular smooth muscle cell phenotypic conversion publication-title: Oxid. Med. Cell. Longev. doi: 10.1155/2022/9763377 |
SSID | ssj0002002496 |
Score | 2.2826633 |
Snippet | Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression... |
SourceID | doaj pubmedcentral proquest crossref elsevier |
SourceType | Open Website Open Access Repository Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 105147 |
SubjectTerms | Drug delivery system immune response nanoparticles |
Title | Vascular restenosis reduction with platelet membrane coated nanoparticle directed M2 macrophage polarization |
URI | https://dx.doi.org/10.1016/j.isci.2022.105147 https://www.proquest.com/docview/2728146828 https://pubmed.ncbi.nlm.nih.gov/PMC9579508 https://doaj.org/article/2abeb08c4cca4a6eab191c5689430100 |
Volume | 25 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtswDBWGnHYZNrRDs66FCvRWGI1pWZKP27AgGNCe2qE3QZJlJEHiBE36_yUlp7Av6aU3Q7ZsmaRMPoviY-wahPJlXUHWyEISQJFZ1RQ-064u8eMonbMEFO_u5exR_Hsqn3pUX5QTlsoDJ8HdgnXBTbQX-ChhZbAOEYYvZawbnk8iWkef1wNTy7i8RqXwIrNcSTlBaJrdjpmU3EU7XhEcAhDPbU7cKj2vFIv3D5xTL_gcpk72fNH0K_vSBZH8Vxr8N_YptCds9b9LKuWRbqPd7BY7PKxTeVhOP1z5doWhJWqKr8MaYXIbuN9gS81b2yJ6Tvfjyc1h6x3wtSWOrzl-dfiWUHC3bfOUPU7_PvyZZR2XQuYRYOwz5Z0sLHG-BuF10whAXVSI5SQ0SgttK-t1kAUEJZyG2haqDDWtqk1cQye-s1G7acMZ49I2kNvcYd9aBKd03oADrxD7aKhKO2b5QZbGd4XGie9iZQ4ZZUtD8jckf5PkP2Y3b322qczG0at_k4rerqQS2bEBDcd0sjLvGc6YlQcFmy7aSOLFWy2OPvzqYA0GpyKtr6C6Ni87Awrohypi2DFTAzMZjHR4pl3MY1FvWi7FYPnHR7zaOftMAyYXC_lPNto_v4QLjJ327jJOk1cMjRhz |
linkProvider | Directory of Open Access Journals |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vascular+restenosis+reduction+with+platelet+membrane+coated+nanoparticle+directed+M2+macrophage+polarization&rft.jtitle=iScience&rft.au=Li%2C+Fengshi&rft.au=Rong%2C+Zhihua&rft.au=Zhang%2C+Rui&rft.au=Niu%2C+Shuai&rft.date=2022-10-21&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=25&rft.issue=10&rft.spage=105147&rft_id=info:doi/10.1016%2Fj.isci.2022.105147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2022_105147 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon |