Vascular restenosis reduction with platelet membrane coated nanoparticle directed M2 macrophage polarization

Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their tar...

Full description

Saved in:
Bibliographic Details
Published iniScience Vol. 25; no. 10; p. 105147
Main Authors Li, Fengshi, Rong, Zhihua, Zhang, Rui, Niu, Shuai, Di, Xiao, Ni, Leng, Liu, Changwei
Format Journal Article
LanguageEnglish
Published Elsevier Inc 21.10.2022
Elsevier
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their targeted delivery efficacy remains to be improved. In this study, IL10 nanoparticles were successfully prepared and then coated by a preactive platelet membrane. The ability to target and regulate macrophage polarization has been demonstrated, thereby regulating smooth muscle cell and endothelial cell functions. In vivo experiments were carried out in a carotid artery injury model and verified the above functions and the effect on inhibiting vascular restenosis. Immune regulation-based platelet membrane coated nanoparticle loaded with IL10 proved to be an excellent candidate for targeting vascular injury and holds promise as an innovative drug delivery system for suppressing vascular restenosis. [Display omitted] •Targeted immune regulation can reduce restenosis after vascular injury•IL10-PNP can target and regulate M2 macrophages polarization in vivo•Vascular restenosis reduction mediated by IL10-PNP requires less cell membrane quantity Drug delivery system; Nanoparticles; Immune response
AbstractList Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their targeted delivery efficacy remains to be improved. In this study, IL10 nanoparticles were successfully prepared and then coated by a preactive platelet membrane. The ability to target and regulate macrophage polarization has been demonstrated, thereby regulating smooth muscle cell and endothelial cell functions. In vivo experiments were carried out in a carotid artery injury model and verified the above functions and the effect on inhibiting vascular restenosis. Immune regulation-based platelet membrane coated nanoparticle loaded with IL10 proved to be an excellent candidate for targeting vascular injury and holds promise as an innovative drug delivery system for suppressing vascular restenosis. [Display omitted] •Targeted immune regulation can reduce restenosis after vascular injury•IL10-PNP can target and regulate M2 macrophages polarization in vivo•Vascular restenosis reduction mediated by IL10-PNP requires less cell membrane quantity Drug delivery system; Nanoparticles; Immune response
Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their targeted delivery efficacy remains to be improved. In this study, IL10 nanoparticles were successfully prepared and then coated by a preactive platelet membrane. The ability to target and regulate macrophage polarization has been demonstrated, thereby regulating smooth muscle cell and endothelial cell functions. In vivo experiments were carried out in a carotid artery injury model and verified the above functions and the effect on inhibiting vascular restenosis. Immune regulation-based platelet membrane coated nanoparticle loaded with IL10 proved to be an excellent candidate for targeting vascular injury and holds promise as an innovative drug delivery system for suppressing vascular restenosis. • Targeted immune regulation can reduce restenosis after vascular injury • IL10-PNP can target and regulate M2 macrophages polarization in vivo • Vascular restenosis reduction mediated by IL10-PNP requires less cell membrane quantity Drug delivery system; Nanoparticles; Immune response
Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their targeted delivery efficacy remains to be improved. In this study, IL10 nanoparticles were successfully prepared and then coated by a preactive platelet membrane. The ability to target and regulate macrophage polarization has been demonstrated, thereby regulating smooth muscle cell and endothelial cell functions. In vivo experiments were carried out in a carotid artery injury model and verified the above functions and the effect on inhibiting vascular restenosis. Immune regulation-based platelet membrane coated nanoparticle loaded with IL10 proved to be an excellent candidate for targeting vascular injury and holds promise as an innovative drug delivery system for suppressing vascular restenosis.
Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their targeted delivery efficacy remains to be improved. In this study, IL10 nanoparticles were successfully prepared and then coated by a preactive platelet membrane. The ability to target and regulate macrophage polarization has been demonstrated, thereby regulating smooth muscle cell and endothelial cell functions. In vivo experiments were carried out in a carotid artery injury model and verified the above functions and the effect on inhibiting vascular restenosis. Immune regulation-based platelet membrane coated nanoparticle loaded with IL10 proved to be an excellent candidate for targeting vascular injury and holds promise as an innovative drug delivery system for suppressing vascular restenosis.Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression of restenosis. Previous research that applies interleukin 10 (IL10) nanoparticles can effectively regulate local inflammation, but their targeted delivery efficacy remains to be improved. In this study, IL10 nanoparticles were successfully prepared and then coated by a preactive platelet membrane. The ability to target and regulate macrophage polarization has been demonstrated, thereby regulating smooth muscle cell and endothelial cell functions. In vivo experiments were carried out in a carotid artery injury model and verified the above functions and the effect on inhibiting vascular restenosis. Immune regulation-based platelet membrane coated nanoparticle loaded with IL10 proved to be an excellent candidate for targeting vascular injury and holds promise as an innovative drug delivery system for suppressing vascular restenosis.
ArticleNumber 105147
Author Niu, Shuai
Li, Fengshi
Rong, Zhihua
Liu, Changwei
Di, Xiao
Ni, Leng
Zhang, Rui
Author_xml – sequence: 1
  givenname: Fengshi
  surname: Li
  fullname: Li, Fengshi
  organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China
– sequence: 2
  givenname: Zhihua
  surname: Rong
  fullname: Rong, Zhihua
  organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China
– sequence: 3
  givenname: Rui
  surname: Zhang
  fullname: Zhang, Rui
  organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China
– sequence: 4
  givenname: Shuai
  surname: Niu
  fullname: Niu, Shuai
  organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China
– sequence: 5
  givenname: Xiao
  surname: Di
  fullname: Di, Xiao
  organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China
– sequence: 6
  givenname: Leng
  surname: Ni
  fullname: Ni, Leng
  email: nileng@163.com
  organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China
– sequence: 7
  givenname: Changwei
  surname: Liu
  fullname: Liu, Changwei
  email: liucw@vip.sina.com
  organization: Department of Vascular Surgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, No. 1, Shuaifuyuan, Dongcheng District, Beijing 100730, People’s Republic of China
BookMark eNp9kU9r3DAQxU1JoWmaL9CTjr3sVtJKlgylUEL_BBJyaXsVY3m8q0WWXMlOaT995XgLTQ8BgcTMvB-j915WZyEGrKrXjG4ZZfXb49Zl67accl4Kkgn1rDrnUjcbSgU_--f9orrM-Ugp5eWIpj6v_HfIdvaQSMI8YYjZ5fLsZju5GMhPNx3I6GFCjxMZcGgTBCQ2lkpHAoQ4Qpqc9Ug6l9Au1VtOBrApjgfYIxljgbvfsOBeVc978BkvT_dF9e3Tx69XXzY3d5-vrz7cbKzgetoo29Y7YI2kKKzue8E7SRvFVM17pYWGBqzGesdRiVbzDnZKYieF1LTtl8ZFdb1yuwhHMyY3QPplIjjzUIhpb05bGw4ttlRbYS0IqBFa1jAra92IHWWUFtb7lTXO7YCdxTAl8I-gjzvBHcw-3ptGqvIDXQBvToAUf8zFZDOUuND7YmScs-GKayZqzZdRvY4W93JO2BvrpgfnCtl5w6hZAjdHswRulsDNGniR8v-kfzd8UvRuFWEJ495hMmUCg8U1y-KWe0r-B-0MyXg
CitedBy_id crossref_primary_10_3389_fphar_2024_1427651
crossref_primary_10_1016_j_heliyon_2024_e27166
crossref_primary_10_3390_bioengineering11121222
crossref_primary_10_2147_IJN_S423186
crossref_primary_10_1021_acs_biomac_4c00845
crossref_primary_10_1021_acsnano_4c16280
crossref_primary_10_1021_acsabm_4c01373
crossref_primary_10_1186_s12951_023_02194_6
Cites_doi 10.1016/j.jacc.2017.10.072
10.1039/D0NR08440A
10.1152/physrev.1995.75.3.487
10.3109/07853899509002465
10.1016/j.nano.2018.08.002
10.7150/thno.46143
10.1021/acs.biochem.0c00343
10.1126/science.aal3535
10.1038/nrcardio.2011.132
10.2147/IJN.S214727
10.1007/BF03085963
10.1124/pr.55.2.4
10.1016/S0735-1097(99)00596-3
10.3390/biom12030430
10.3389/fimmu.2019.01084
10.1038/ncomms6160
10.1155/2020/8104939
10.1016/j.biomaterials.2019.119550
10.1126/scitranslmed.aax0481
10.1111/j.1537-2995.2006.00913.x
10.1038/493S2a
10.1161/ATVBAHA.110.207480
10.1016/j.celrep.2019.06.062
10.1016/j.brainres.2014.12.045
10.1073/pnas.1806908115
10.1111/jth.15035
10.1016/j.apsb.2021.01.020
10.1016/j.jim.2019.112721
10.1002/jcp.26429
10.1016/j.jvssci.2021.04.001
10.1038/nature15373
10.1056/NEJMoa1607991
10.1161/CIRCRESAHA.119.316159
10.1002/adma.201706759
10.4049/jimmunol.1900899
10.1002/sstr.202000018
10.1021/acsnano.6b01114
10.1016/j.biomaterials.2017.02.041
10.1038/s41590-018-0113-3
10.1016/j.jacc.2015.03.549
10.1016/j.prp.2014.04.004
10.1039/D0NR08492A
10.1038/ncomms15559
10.1161/CIRCULATIONAHA.105.571315
10.1080/09537100020031207
10.1161/CIRCULATIONAHA.118.036323
10.1160/TH13-08-0653
10.1016/j.apsb.2015.03.001
10.1016/j.cca.2019.10.034
10.1016/j.biomaterials.2022.121440
10.1016/j.cardiores.2007.05.019
10.1126/scitranslmed.aaa1065
10.1155/2022/9763377
ContentType Journal Article
Copyright 2022 The Author(s)
2022 The Author(s).
2022 The Author(s) 2022
Copyright_xml – notice: 2022 The Author(s)
– notice: 2022 The Author(s).
– notice: 2022 The Author(s) 2022
DBID 6I.
AAFTH
AAYXX
CITATION
7X8
5PM
DOA
DOI 10.1016/j.isci.2022.105147
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
MEDLINE - Academic
PubMed Central (Full Participant titles)
DOAJ Directory of Open Access Journals
DatabaseTitle CrossRef
MEDLINE - Academic
DatabaseTitleList


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: DOA
  name: DOAJ Directory of Open Access Journals
  url: https://www.doaj.org/
  sourceTypes: Open Website
DeliveryMethod fulltext_linktorsrc
EISSN 2589-0042
ExternalDocumentID oai_doaj_org_article_2abeb08c4cca4a6eab191c5689430100
PMC9579508
10_1016_j_isci_2022_105147
S2589004222014195
GroupedDBID 0R~
0SF
53G
6I.
AACTN
AAEDW
AAFTH
AALRI
AAXUO
ABMAC
ADBBV
ADVLN
AEXQZ
AFTJW
AITUG
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
AOIJS
BCNDV
EBS
FDB
GROUPED_DOAJ
HYE
M41
NCXOZ
OK1
ROL
RPM
SSZ
AAMRU
AAYWO
AAYXX
ACVFH
ADCNI
AEUPX
AFPUW
AIGII
AKBMS
AKYEP
APXCP
CITATION
EJD
7X8
5PM
ID FETCH-LOGICAL-c428t-7cb63a1950e4c8ff42d50971762f7848a9ac8e632e74b82da375ed54580bf8e63
IEDL.DBID DOA
ISSN 2589-0042
IngestDate Wed Aug 27 01:30:04 EDT 2025
Thu Aug 21 18:39:50 EDT 2025
Fri Jul 11 06:21:37 EDT 2025
Tue Jul 01 01:03:52 EDT 2025
Thu Apr 24 23:09:47 EDT 2025
Sat Aug 31 16:02:05 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 10
Keywords immune response
Drug delivery system
nanoparticles
Language English
License This is an open access article under the CC BY-NC-ND license.
This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-7cb63a1950e4c8ff42d50971762f7848a9ac8e632e74b82da375ed54580bf8e63
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
These authors contributed equally
Lead contact
OpenAccessLink https://doaj.org/article/2abeb08c4cca4a6eab191c5689430100
PQID 2728146828
PQPubID 23479
ParticipantIDs doaj_primary_oai_doaj_org_article_2abeb08c4cca4a6eab191c5689430100
pubmedcentral_primary_oai_pubmedcentral_nih_gov_9579508
proquest_miscellaneous_2728146828
crossref_citationtrail_10_1016_j_isci_2022_105147
crossref_primary_10_1016_j_isci_2022_105147
elsevier_sciencedirect_doi_10_1016_j_isci_2022_105147
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2022-10-21
PublicationDateYYYYMMDD 2022-10-21
PublicationDate_xml – month: 10
  year: 2022
  text: 2022-10-21
  day: 21
PublicationDecade 2020
PublicationTitle iScience
PublicationYear 2022
Publisher Elsevier Inc
Elsevier
Publisher_xml – name: Elsevier Inc
– name: Elsevier
References Jukema, Verschuren, Ahmed, Quax (bib26) 2011; 9
Willecke, Tiwari, Rupprecht, Wolf, Hergeth, Hoppe, Dufner, Schulte, Anto Michel, Bukosza (bib46) 2014; 112
Owens (bib36) 1995; 75
Fang, Jiang, Fang, Zhang (bib15) 2017; 128
Hu, Fang, Wang, Luk, Thamphiwatana, Dehaini, Nguyen, Angsantikul, Wen, Kroll (bib22) 2015; 526
Li, Kim, Jeong, Chiu, Xiong, Petukhov, Dai, Li, Andrews, Du (bib32) 2019; 139
Hou, Jin, Duan, Liu, Chen, Huang, Gao, Jin (bib21) 2022; 283
Zeng, Ma, Shi, Chen, Wu, Zhang, Chen, Chen (bib50) 2019; 14
Jalvy, Renault, Leen, Belloc, Bonnet, Gadeau, Desgranges (bib25) 2007; 75
Kamaly, Fredman, Fojas, Subramanian, Choi, Zepeda, Vilos, Yu, Gadde, Wu (bib27) 2016; 10
Badlou, Wu, Smid, Akkerman (bib3) 2006; 46
Raimondo, Mooney (bib38) 2018; 115
Fang, Kroll, Gao, Zhang (bib16) 2018; 30
Gensel, Zhang (bib19) 2015; 1619
Hermann, Rauch, Braun, Schrör, Weber (bib20) 2001; 12
Wang, Gao, Shi, Erhardt, Pavlovsky, A Soloviev, Bledzka, Ustinov, Zhu, Qin (bib44) 2017; 8
Koelwyn, Corr, Erbay, Moore (bib30) 2018; 19
Cannon (bib7) 2013; 493
Le, Lee, Lee, Shim, Oh (bib31) 2021; 11
Xing, Pan, Zhu, Cui, Tang, Liu, Liu (bib47) 2022; 2022
Fredman, Kamaly, Spolitu, Milton, Ghorpade, Chiasson, Kuriakose, Perretti, Farokzhad, Tabas (bib17) 2015; 7
Kim, Sahu, Hwang, Kim, Nam, Kim, Chan Kwon, Tae (bib29) 2020; 226
Quach, Li (bib37) 2020; 18
de Vries (bib14) 1995; 27
Yang, Yuan, Hao, Ren, Qu, Liu, Wei, Tang, Zhang, Jiang (bib49) 2020; 501
Baxter, Graham, Re, Carr, Robinson, Mackie, Morgan (bib5) 2020; 478
Totani, Evangelista (bib42) 2010; 30
Margraf, Zarbock (bib33) 2019; 203
Orecchioni, Ghosheh, Pramod, Ley (bib35) 2019; 10
Wang, Duan, Zhang, Komarla, Gong, Gao, Zhang (bib43) 2020; 1
Barrett, Schlegel, Zhou, Gorenchtein, Bolstorff, Moore, Fisher, Berger (bib4) 2019; 11
Zhang, Zhu, Chen, Zhang, Zhang, Jiang, Gao, Tian, Wang, Zhang (bib53) 2014; 5
Bønaa, Mannsverk, Wiseth, Aaberge, Myreng, Nygård, Nilsen, Kløw, Uchto, Trovik (bib6) 2016; 375
Ip, Hoshi, Shouval, Snapper, Medzhitov (bib24) 2017; 356
Asadullah, Sterry, Volk (bib2) 2003; 55
Kang, Gao, Huang, Jin, Wang (bib28) 2015; 5
Chen, Song, Lian, Yang, Lin, Xiao (bib11) 2021; 13
McDonald, Halliday, Miller, Diver, Dakin, Montgomery, McBride, Kennedy, McClure, Robertson (bib34) 2015; 65
Chandrasekar, Tanguay (bib10) 2000; 35
Furmanik, Chatrou, van Gorp, Akbulut, Willems, Schmidt, van Eys, Bochaton-Piallat, Proudfoot, Biessen (bib18) 2020; 127
Zhang, Cresswell, Tavora, Mont, Zhao, Burke (bib52) 2014; 210
Zhang, Chen (bib51) 2020; 2020
Shapouri-Moghaddam, Mohammadian, Vazini, Taghadosi, Esmaeili, Mardani, Seifi, Mohammadi, Afshari, Sahebkar (bib40) 2018; 233
Song, Huang, Liu, Pang, Chen, Yang, Zhang, Cao, Liu, Cao (bib41) 2019; 15
Clare, Ganly, Bursill, Sumer, Kingshott, de Haan (bib12) 2022; 12
Rensen, Doevendans, van Eys (bib39) 2007; 15
Wang, Sakuma, Chen, Ustinov, Shi, Croce, Zago, Lopez, Andre, Plow, Simon (bib45) 2005; 112
Carestia, Mena, Olexen, Ortiz Wilczyñski, Negrotto, Errasti, Gómez, Jenne, Carrera Silva, Schattner (bib8) 2019; 28
Huang, Ding, Jiang, Wang (bib23) 2021; 13
Dann, Hadi, Montenont, Boytard, Alebrahim, Feinstein, Allen, Simon, Barone, Uryu (bib13) 2018; 71
Yan, Li, Yin, Hou, Qu, Wang, Durkan, Dong, Qiu, Gregersen, Wang (bib48) 2020; 10
Ai, Wang, Duan, Zhang, Chen, Gao, Zhang (bib1) 2021; 60
Chakraborty, Chatterjee, Dave, Ostriker, Greif, Rzucidlo, Martin (bib9) 2021; 2
Zhang (10.1016/j.isci.2022.105147_bib52) 2014; 210
Hu (10.1016/j.isci.2022.105147_bib22) 2015; 526
Kang (10.1016/j.isci.2022.105147_bib28) 2015; 5
Raimondo (10.1016/j.isci.2022.105147_bib38) 2018; 115
Wang (10.1016/j.isci.2022.105147_bib44) 2017; 8
Furmanik (10.1016/j.isci.2022.105147_bib18) 2020; 127
Wang (10.1016/j.isci.2022.105147_bib43) 2020; 1
Xing (10.1016/j.isci.2022.105147_bib47) 2022; 2022
Dann (10.1016/j.isci.2022.105147_bib13) 2018; 71
Song (10.1016/j.isci.2022.105147_bib41) 2019; 15
Owens (10.1016/j.isci.2022.105147_bib36) 1995; 75
Shapouri-Moghaddam (10.1016/j.isci.2022.105147_bib40) 2018; 233
Carestia (10.1016/j.isci.2022.105147_bib8) 2019; 28
Chakraborty (10.1016/j.isci.2022.105147_bib9) 2021; 2
Ip (10.1016/j.isci.2022.105147_bib24) 2017; 356
Rensen (10.1016/j.isci.2022.105147_bib39) 2007; 15
Huang (10.1016/j.isci.2022.105147_bib23) 2021; 13
Kim (10.1016/j.isci.2022.105147_bib29) 2020; 226
de Vries (10.1016/j.isci.2022.105147_bib14) 1995; 27
Yang (10.1016/j.isci.2022.105147_bib49) 2020; 501
Wang (10.1016/j.isci.2022.105147_bib45) 2005; 112
Orecchioni (10.1016/j.isci.2022.105147_bib35) 2019; 10
Zeng (10.1016/j.isci.2022.105147_bib50) 2019; 14
Asadullah (10.1016/j.isci.2022.105147_bib2) 2003; 55
Barrett (10.1016/j.isci.2022.105147_bib4) 2019; 11
Li (10.1016/j.isci.2022.105147_bib32) 2019; 139
Hou (10.1016/j.isci.2022.105147_bib21) 2022; 283
Zhang (10.1016/j.isci.2022.105147_bib51) 2020; 2020
Totani (10.1016/j.isci.2022.105147_bib42) 2010; 30
Badlou (10.1016/j.isci.2022.105147_bib3) 2006; 46
Hermann (10.1016/j.isci.2022.105147_bib20) 2001; 12
Kamaly (10.1016/j.isci.2022.105147_bib27) 2016; 10
Zhang (10.1016/j.isci.2022.105147_bib53) 2014; 5
McDonald (10.1016/j.isci.2022.105147_bib34) 2015; 65
Ai (10.1016/j.isci.2022.105147_bib1) 2021; 60
Chandrasekar (10.1016/j.isci.2022.105147_bib10) 2000; 35
Gensel (10.1016/j.isci.2022.105147_bib19) 2015; 1619
Baxter (10.1016/j.isci.2022.105147_bib5) 2020; 478
Fang (10.1016/j.isci.2022.105147_bib16) 2018; 30
Clare (10.1016/j.isci.2022.105147_bib12) 2022; 12
Cannon (10.1016/j.isci.2022.105147_bib7) 2013; 493
Chen (10.1016/j.isci.2022.105147_bib11) 2021; 13
Jukema (10.1016/j.isci.2022.105147_bib26) 2011; 9
Koelwyn (10.1016/j.isci.2022.105147_bib30) 2018; 19
Willecke (10.1016/j.isci.2022.105147_bib46) 2014; 112
Le (10.1016/j.isci.2022.105147_bib31) 2021; 11
Yan (10.1016/j.isci.2022.105147_bib48) 2020; 10
Bønaa (10.1016/j.isci.2022.105147_bib6) 2016; 375
Jalvy (10.1016/j.isci.2022.105147_bib25) 2007; 75
Fredman (10.1016/j.isci.2022.105147_bib17) 2015; 7
Margraf (10.1016/j.isci.2022.105147_bib33) 2019; 203
Quach (10.1016/j.isci.2022.105147_bib37) 2020; 18
Fang (10.1016/j.isci.2022.105147_bib15) 2017; 128
References_xml – volume: 30
  start-page: 2357
  year: 2010
  end-page: 2361
  ident: bib42
  article-title: Platelet-leukocyte interactions in cardiovascular disease and beyond
  publication-title: Arterioscler. Thromb. Vasc. Biol.
– volume: 10
  start-page: 10712
  year: 2020
  end-page: 10728
  ident: bib48
  article-title: M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation
  publication-title: Theranostics
– volume: 75
  start-page: 487
  year: 1995
  end-page: 517
  ident: bib36
  article-title: Regulation of differentiation of vascular smooth muscle cells
  publication-title: Physiol. Rev.
– volume: 112
  start-page: 2993
  year: 2005
  end-page: 3000
  ident: bib45
  article-title: Leukocyte engagement of platelet glycoprotein Ibalpha via the integrin Mac-1 is critical for the biological response to vascular injury
  publication-title: Circulation
– volume: 71
  start-page: 53
  year: 2018
  end-page: 65
  ident: bib13
  article-title: Platelet-derived MRP-14 induces monocyte activation in patients with symptomatic peripheral artery disease
  publication-title: J. Am. Coll. Cardiol.
– volume: 127
  start-page: 911
  year: 2020
  end-page: 927
  ident: bib18
  article-title: Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification
  publication-title: Circ. Res.
– volume: 30
  start-page: e1706759
  year: 2018
  ident: bib16
  article-title: Cell membrane coating nanotechnology
  publication-title: Adv. Mater.
– volume: 2020
  start-page: 8104939
  year: 2020
  ident: bib51
  article-title: In-Stent restenosis and a drug-coated balloon: insights from a clinical therapeutic strategy on coronary artery diseases
  publication-title: Cardiol. Res. Pract.
– volume: 12
  start-page: 74
  year: 2001
  end-page: 82
  ident: bib20
  article-title: Platelet CD40 ligand (CD40L)--subcellular localization, regulation of expression, and inhibition by clopidogrel
  publication-title: Platelets
– volume: 115
  start-page: 10648
  year: 2018
  end-page: 10653
  ident: bib38
  article-title: Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice
  publication-title: Proc. Natl. Acad. Sci. USA
– volume: 60
  start-page: 941
  year: 2021
  end-page: 955
  ident: bib1
  article-title: Emerging approaches to functionalizing cell membrane-coated nanoparticles
  publication-title: Biochemistry
– volume: 12
  start-page: 430
  year: 2022
  ident: bib12
  article-title: The mechanisms of restenosis and relevance to next generation stent design
  publication-title: Biomolecules
– volume: 55
  start-page: 241
  year: 2003
  end-page: 269
  ident: bib2
  article-title: Interleukin-10 therapy--review of a new approach
  publication-title: Pharmacol. Rev.
– volume: 28
  start-page: 896
  year: 2019
  end-page: 908.e5
  ident: bib8
  article-title: Platelets promote macrophage polarization toward pro-inflammatory phenotype and increase survival of septic mice
  publication-title: Cell Rep.
– volume: 14
  start-page: 6357
  year: 2019
  end-page: 6369
  ident: bib50
  article-title: Poly(lactic-co-glycolic acid) nanoparticle-mediated interleukin-12 delivery for the treatment of diabetic retinopathy
  publication-title: Int. J. Nanomedicine
– volume: 128
  start-page: 69
  year: 2017
  end-page: 83
  ident: bib15
  article-title: Cell membrane-derived nanomaterials for biomedical applications
  publication-title: Biomaterials
– volume: 501
  start-page: 142
  year: 2020
  end-page: 146
  ident: bib49
  article-title: Macrophage polarization in atherosclerosis
  publication-title: Clin. Chim. Acta
– volume: 478
  start-page: 112721
  year: 2020
  ident: bib5
  article-title: Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes
  publication-title: J. Immunol. Methods
– volume: 2
  start-page: 79
  year: 2021
  end-page: 94
  ident: bib9
  article-title: Targeting smooth muscle cell phenotypic switching in vascular disease
  publication-title: JVS. Vasc. Sci.
– volume: 15
  start-page: 13
  year: 2019
  end-page: 24
  ident: bib41
  article-title: Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE-/-) mice
  publication-title: Nanomedicine.
– volume: 75
  start-page: 738
  year: 2007
  end-page: 747
  ident: bib25
  article-title: Autocrine expression of osteopontin contributes to PDGF-mediated arterial smooth muscle cell migration
  publication-title: Cardiovasc. Res.
– volume: 8
  start-page: 15559
  year: 2017
  ident: bib44
  article-title: Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα
  publication-title: Nat. Commun.
– volume: 493
  start-page: S2
  year: 2013
  end-page: S3
  ident: bib7
  article-title: Cardiovascular disease: biochemistry to behaviour
  publication-title: Nature
– volume: 226
  start-page: 119550
  year: 2020
  ident: bib29
  article-title: Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E-/- mice
  publication-title: Biomaterials
– volume: 283
  start-page: 121440
  year: 2022
  ident: bib21
  article-title: Targeted therapeutic effects of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon cancer
  publication-title: Biomaterials
– volume: 11
  start-page: 2096
  year: 2021
  end-page: 2113
  ident: bib31
  article-title: Cell membrane-derived vesicles for delivery of therapeutic agents
  publication-title: Acta Pharm. Sin. B
– volume: 5
  start-page: 5160
  year: 2014
  ident: bib53
  article-title: Interferon regulatory factor 9 is critical for neointima formation following vascular injury
  publication-title: Nat. Commun.
– volume: 233
  start-page: 6425
  year: 2018
  end-page: 6440
  ident: bib40
  article-title: Macrophage plasticity, polarization, and function in health and disease
  publication-title: J. Cell. Physiol.
– volume: 5
  start-page: 169
  year: 2015
  end-page: 175
  ident: bib28
  article-title: Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment
  publication-title: Acta Pharm. Sin. B
– volume: 10
  start-page: 1084
  year: 2019
  ident: bib35
  article-title: Macrophage polarization: different gene signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively activated macrophages
  publication-title: Front. Immunol.
– volume: 526
  start-page: 118
  year: 2015
  end-page: 121
  ident: bib22
  article-title: Nanoparticle biointerfacing by platelet membrane cloaking
  publication-title: Nature
– volume: 10
  start-page: 5280
  year: 2016
  end-page: 5292
  ident: bib27
  article-title: Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis
  publication-title: ACS Nano
– volume: 139
  start-page: 1300
  year: 2019
  end-page: 1319
  ident: bib32
  article-title: Platelet protein disulfide isomerase promotes glycoprotein ibα-mediated platelet-neutrophil interactions under thromboinflammatory conditions
  publication-title: Circulation
– volume: 19
  start-page: 526
  year: 2018
  end-page: 537
  ident: bib30
  article-title: Regulation of macrophage immunometabolism in atherosclerosis
  publication-title: Nat. Immunol.
– volume: 203
  start-page: 2357
  year: 2019
  end-page: 2367
  ident: bib33
  article-title: Platelets in inflammation and resolution
  publication-title: J. Immunol.
– volume: 15
  start-page: 100
  year: 2007
  end-page: 108
  ident: bib39
  article-title: Regulation and characteristics of vascular smooth muscle cell phenotypic diversity
  publication-title: Neth. Heart J.
– volume: 356
  start-page: 513
  year: 2017
  end-page: 519
  ident: bib24
  article-title: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages
  publication-title: Science
– volume: 9
  start-page: 53
  year: 2011
  end-page: 62
  ident: bib26
  article-title: Restenosis after PCI. Part 1: pathophysiology and risk factors
  publication-title: Nat. Rev. Cardiol.
– volume: 11
  start-page: eaax0481
  year: 2019
  ident: bib4
  article-title: Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis
  publication-title: Sci. Transl. Med.
– volume: 65
  start-page: 2314
  year: 2015
  end-page: 2327
  ident: bib34
  article-title: Reducing in-stent restenosis: therapeutic manipulation of miRNA in vascular remodeling and inflammation
  publication-title: J. Am. Coll. Cardiol.
– volume: 1619
  start-page: 1
  year: 2015
  end-page: 11
  ident: bib19
  article-title: Macrophage activation and its role in repair and pathology after spinal cord injury
  publication-title: Brain Res.
– volume: 375
  start-page: 1242
  year: 2016
  end-page: 1252
  ident: bib6
  article-title: Drug-eluting or bare-metal stents for coronary artery disease
  publication-title: N. Engl. J. Med.
– volume: 210
  start-page: 1026
  year: 2014
  end-page: 1030
  ident: bib52
  article-title: In-stent restenosis is associated with neointimal angiogenesis and macrophage infiltrates
  publication-title: Pathol. Res. Pract.
– volume: 2022
  start-page: 9763377
  year: 2022
  ident: bib47
  article-title: Advanced glycation end products induce atherosclerosis via RAGE/TLR4 signaling mediated-M1 macrophage polarization-dependent vascular smooth muscle cell phenotypic conversion
  publication-title: Oxid. Med. Cell. Longev.
– volume: 13
  start-page: 2914
  year: 2021
  end-page: 2922
  ident: bib11
  article-title: Single-particle fibrinogen detection using platelet membrane-coated fluorescent polystyrene nanoparticles
  publication-title: Nanoscale
– volume: 18
  start-page: 3131
  year: 2020
  end-page: 3141
  ident: bib37
  article-title: Structure-function of platelet glycoprotein Ib-IX
  publication-title: J. Thromb. Haemost.
– volume: 27
  start-page: 537
  year: 1995
  end-page: 541
  ident: bib14
  article-title: Immunosuppressive and anti-inflammatory properties of interleukin 10
  publication-title: Ann. Med.
– volume: 7
  start-page: 275ra20
  year: 2015
  ident: bib17
  article-title: Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice
  publication-title: Sci. Transl. Med.
– volume: 35
  start-page: 555
  year: 2000
  end-page: 562
  ident: bib10
  article-title: Platelets and restenosis
  publication-title: J. Am. Coll. Cardiol.
– volume: 46
  start-page: 1432
  year: 2006
  end-page: 1443
  ident: bib3
  article-title: Platelet binding and phagocytosis by macrophages
  publication-title: Transfusion
– volume: 1
  start-page: 2000018
  year: 2020
  ident: bib43
  article-title: Drug targeting via platelet membrane-coated nanoparticles
  publication-title: Small Struct.
– volume: 112
  start-page: 379
  year: 2014
  end-page: 389
  ident: bib46
  article-title: Interruption of classic CD40L-CD40 signalling but not of the novel CD40L-Mac-1 interaction limits arterial neointima formation in mice
  publication-title: Thromb. Haemost.
– volume: 13
  start-page: 4512
  year: 2021
  end-page: 4518
  ident: bib23
  article-title: Glutathione-depleting nanoplatelets for enhanced sonodynamic cancer therapy
  publication-title: Nanoscale
– volume: 71
  start-page: 53
  year: 2018
  ident: 10.1016/j.isci.2022.105147_bib13
  article-title: Platelet-derived MRP-14 induces monocyte activation in patients with symptomatic peripheral artery disease
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2017.10.072
– volume: 13
  start-page: 4512
  year: 2021
  ident: 10.1016/j.isci.2022.105147_bib23
  article-title: Glutathione-depleting nanoplatelets for enhanced sonodynamic cancer therapy
  publication-title: Nanoscale
  doi: 10.1039/D0NR08440A
– volume: 75
  start-page: 487
  year: 1995
  ident: 10.1016/j.isci.2022.105147_bib36
  article-title: Regulation of differentiation of vascular smooth muscle cells
  publication-title: Physiol. Rev.
  doi: 10.1152/physrev.1995.75.3.487
– volume: 27
  start-page: 537
  year: 1995
  ident: 10.1016/j.isci.2022.105147_bib14
  article-title: Immunosuppressive and anti-inflammatory properties of interleukin 10
  publication-title: Ann. Med.
  doi: 10.3109/07853899509002465
– volume: 15
  start-page: 13
  year: 2019
  ident: 10.1016/j.isci.2022.105147_bib41
  article-title: Platelet membrane-coated nanoparticle-mediated targeting delivery of Rapamycin blocks atherosclerotic plaque development and stabilizes plaque in apolipoprotein E-deficient (ApoE-/-) mice
  publication-title: Nanomedicine.
  doi: 10.1016/j.nano.2018.08.002
– volume: 10
  start-page: 10712
  year: 2020
  ident: 10.1016/j.isci.2022.105147_bib48
  article-title: M2 macrophage-derived exosomes promote the c-KIT phenotype of vascular smooth muscle cells during vascular tissue repair after intravascular stent implantation
  publication-title: Theranostics
  doi: 10.7150/thno.46143
– volume: 60
  start-page: 941
  year: 2021
  ident: 10.1016/j.isci.2022.105147_bib1
  article-title: Emerging approaches to functionalizing cell membrane-coated nanoparticles
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.0c00343
– volume: 356
  start-page: 513
  year: 2017
  ident: 10.1016/j.isci.2022.105147_bib24
  article-title: Anti-inflammatory effect of IL-10 mediated by metabolic reprogramming of macrophages
  publication-title: Science
  doi: 10.1126/science.aal3535
– volume: 9
  start-page: 53
  year: 2011
  ident: 10.1016/j.isci.2022.105147_bib26
  article-title: Restenosis after PCI. Part 1: pathophysiology and risk factors
  publication-title: Nat. Rev. Cardiol.
  doi: 10.1038/nrcardio.2011.132
– volume: 14
  start-page: 6357
  year: 2019
  ident: 10.1016/j.isci.2022.105147_bib50
  article-title: Poly(lactic-co-glycolic acid) nanoparticle-mediated interleukin-12 delivery for the treatment of diabetic retinopathy
  publication-title: Int. J. Nanomedicine
  doi: 10.2147/IJN.S214727
– volume: 15
  start-page: 100
  year: 2007
  ident: 10.1016/j.isci.2022.105147_bib39
  article-title: Regulation and characteristics of vascular smooth muscle cell phenotypic diversity
  publication-title: Neth. Heart J.
  doi: 10.1007/BF03085963
– volume: 55
  start-page: 241
  year: 2003
  ident: 10.1016/j.isci.2022.105147_bib2
  article-title: Interleukin-10 therapy--review of a new approach
  publication-title: Pharmacol. Rev.
  doi: 10.1124/pr.55.2.4
– volume: 35
  start-page: 555
  year: 2000
  ident: 10.1016/j.isci.2022.105147_bib10
  article-title: Platelets and restenosis
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/S0735-1097(99)00596-3
– volume: 12
  start-page: 430
  year: 2022
  ident: 10.1016/j.isci.2022.105147_bib12
  article-title: The mechanisms of restenosis and relevance to next generation stent design
  publication-title: Biomolecules
  doi: 10.3390/biom12030430
– volume: 10
  start-page: 1084
  year: 2019
  ident: 10.1016/j.isci.2022.105147_bib35
  article-title: Macrophage polarization: different gene signatures in M1(LPS+) vs. Classically and M2(LPS-) vs. Alternatively activated macrophages
  publication-title: Front. Immunol.
  doi: 10.3389/fimmu.2019.01084
– volume: 5
  start-page: 5160
  year: 2014
  ident: 10.1016/j.isci.2022.105147_bib53
  article-title: Interferon regulatory factor 9 is critical for neointima formation following vascular injury
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms6160
– volume: 2020
  start-page: 8104939
  year: 2020
  ident: 10.1016/j.isci.2022.105147_bib51
  article-title: In-Stent restenosis and a drug-coated balloon: insights from a clinical therapeutic strategy on coronary artery diseases
  publication-title: Cardiol. Res. Pract.
  doi: 10.1155/2020/8104939
– volume: 226
  start-page: 119550
  year: 2020
  ident: 10.1016/j.isci.2022.105147_bib29
  article-title: Targeted delivery of anti-inflammatory cytokine by nanocarrier reduces atherosclerosis in Apo E-/- mice
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2019.119550
– volume: 11
  start-page: eaax0481
  year: 2019
  ident: 10.1016/j.isci.2022.105147_bib4
  article-title: Platelet regulation of myeloid suppressor of cytokine signaling 3 accelerates atherosclerosis
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aax0481
– volume: 46
  start-page: 1432
  year: 2006
  ident: 10.1016/j.isci.2022.105147_bib3
  article-title: Platelet binding and phagocytosis by macrophages
  publication-title: Transfusion
  doi: 10.1111/j.1537-2995.2006.00913.x
– volume: 493
  start-page: S2
  year: 2013
  ident: 10.1016/j.isci.2022.105147_bib7
  article-title: Cardiovascular disease: biochemistry to behaviour
  publication-title: Nature
  doi: 10.1038/493S2a
– volume: 30
  start-page: 2357
  year: 2010
  ident: 10.1016/j.isci.2022.105147_bib42
  article-title: Platelet-leukocyte interactions in cardiovascular disease and beyond
  publication-title: Arterioscler. Thromb. Vasc. Biol.
  doi: 10.1161/ATVBAHA.110.207480
– volume: 28
  start-page: 896
  year: 2019
  ident: 10.1016/j.isci.2022.105147_bib8
  article-title: Platelets promote macrophage polarization toward pro-inflammatory phenotype and increase survival of septic mice
  publication-title: Cell Rep.
  doi: 10.1016/j.celrep.2019.06.062
– volume: 1619
  start-page: 1
  year: 2015
  ident: 10.1016/j.isci.2022.105147_bib19
  article-title: Macrophage activation and its role in repair and pathology after spinal cord injury
  publication-title: Brain Res.
  doi: 10.1016/j.brainres.2014.12.045
– volume: 115
  start-page: 10648
  year: 2018
  ident: 10.1016/j.isci.2022.105147_bib38
  article-title: Functional muscle recovery with nanoparticle-directed M2 macrophage polarization in mice
  publication-title: Proc. Natl. Acad. Sci. USA
  doi: 10.1073/pnas.1806908115
– volume: 18
  start-page: 3131
  year: 2020
  ident: 10.1016/j.isci.2022.105147_bib37
  article-title: Structure-function of platelet glycoprotein Ib-IX
  publication-title: J. Thromb. Haemost.
  doi: 10.1111/jth.15035
– volume: 11
  start-page: 2096
  year: 2021
  ident: 10.1016/j.isci.2022.105147_bib31
  article-title: Cell membrane-derived vesicles for delivery of therapeutic agents
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2021.01.020
– volume: 478
  start-page: 112721
  year: 2020
  ident: 10.1016/j.isci.2022.105147_bib5
  article-title: Standardized protocols for differentiation of THP-1 cells to macrophages with distinct M(IFNγ+LPS), M(IL-4) and M(IL-10) phenotypes
  publication-title: J. Immunol. Methods
  doi: 10.1016/j.jim.2019.112721
– volume: 233
  start-page: 6425
  year: 2018
  ident: 10.1016/j.isci.2022.105147_bib40
  article-title: Macrophage plasticity, polarization, and function in health and disease
  publication-title: J. Cell. Physiol.
  doi: 10.1002/jcp.26429
– volume: 2
  start-page: 79
  year: 2021
  ident: 10.1016/j.isci.2022.105147_bib9
  article-title: Targeting smooth muscle cell phenotypic switching in vascular disease
  publication-title: JVS. Vasc. Sci.
  doi: 10.1016/j.jvssci.2021.04.001
– volume: 526
  start-page: 118
  year: 2015
  ident: 10.1016/j.isci.2022.105147_bib22
  article-title: Nanoparticle biointerfacing by platelet membrane cloaking
  publication-title: Nature
  doi: 10.1038/nature15373
– volume: 375
  start-page: 1242
  year: 2016
  ident: 10.1016/j.isci.2022.105147_bib6
  article-title: Drug-eluting or bare-metal stents for coronary artery disease
  publication-title: N. Engl. J. Med.
  doi: 10.1056/NEJMoa1607991
– volume: 127
  start-page: 911
  year: 2020
  ident: 10.1016/j.isci.2022.105147_bib18
  article-title: Reactive oxygen-forming Nox5 links vascular smooth muscle cell phenotypic switching and extracellular vesicle-mediated vascular calcification
  publication-title: Circ. Res.
  doi: 10.1161/CIRCRESAHA.119.316159
– volume: 30
  start-page: e1706759
  year: 2018
  ident: 10.1016/j.isci.2022.105147_bib16
  article-title: Cell membrane coating nanotechnology
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201706759
– volume: 203
  start-page: 2357
  year: 2019
  ident: 10.1016/j.isci.2022.105147_bib33
  article-title: Platelets in inflammation and resolution
  publication-title: J. Immunol.
  doi: 10.4049/jimmunol.1900899
– volume: 1
  start-page: 2000018
  year: 2020
  ident: 10.1016/j.isci.2022.105147_bib43
  article-title: Drug targeting via platelet membrane-coated nanoparticles
  publication-title: Small Struct.
  doi: 10.1002/sstr.202000018
– volume: 10
  start-page: 5280
  year: 2016
  ident: 10.1016/j.isci.2022.105147_bib27
  article-title: Targeted interleukin-10 nanotherapeutics developed with a microfluidic chip enhance resolution of inflammation in advanced atherosclerosis
  publication-title: ACS Nano
  doi: 10.1021/acsnano.6b01114
– volume: 128
  start-page: 69
  year: 2017
  ident: 10.1016/j.isci.2022.105147_bib15
  article-title: Cell membrane-derived nanomaterials for biomedical applications
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2017.02.041
– volume: 19
  start-page: 526
  year: 2018
  ident: 10.1016/j.isci.2022.105147_bib30
  article-title: Regulation of macrophage immunometabolism in atherosclerosis
  publication-title: Nat. Immunol.
  doi: 10.1038/s41590-018-0113-3
– volume: 65
  start-page: 2314
  year: 2015
  ident: 10.1016/j.isci.2022.105147_bib34
  article-title: Reducing in-stent restenosis: therapeutic manipulation of miRNA in vascular remodeling and inflammation
  publication-title: J. Am. Coll. Cardiol.
  doi: 10.1016/j.jacc.2015.03.549
– volume: 210
  start-page: 1026
  year: 2014
  ident: 10.1016/j.isci.2022.105147_bib52
  article-title: In-stent restenosis is associated with neointimal angiogenesis and macrophage infiltrates
  publication-title: Pathol. Res. Pract.
  doi: 10.1016/j.prp.2014.04.004
– volume: 13
  start-page: 2914
  year: 2021
  ident: 10.1016/j.isci.2022.105147_bib11
  article-title: Single-particle fibrinogen detection using platelet membrane-coated fluorescent polystyrene nanoparticles
  publication-title: Nanoscale
  doi: 10.1039/D0NR08492A
– volume: 8
  start-page: 15559
  year: 2017
  ident: 10.1016/j.isci.2022.105147_bib44
  article-title: Leukocyte integrin Mac-1 regulates thrombosis via interaction with platelet GPIbα
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms15559
– volume: 112
  start-page: 2993
  year: 2005
  ident: 10.1016/j.isci.2022.105147_bib45
  article-title: Leukocyte engagement of platelet glycoprotein Ibalpha via the integrin Mac-1 is critical for the biological response to vascular injury
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.105.571315
– volume: 12
  start-page: 74
  year: 2001
  ident: 10.1016/j.isci.2022.105147_bib20
  article-title: Platelet CD40 ligand (CD40L)--subcellular localization, regulation of expression, and inhibition by clopidogrel
  publication-title: Platelets
  doi: 10.1080/09537100020031207
– volume: 139
  start-page: 1300
  year: 2019
  ident: 10.1016/j.isci.2022.105147_bib32
  article-title: Platelet protein disulfide isomerase promotes glycoprotein ibα-mediated platelet-neutrophil interactions under thromboinflammatory conditions
  publication-title: Circulation
  doi: 10.1161/CIRCULATIONAHA.118.036323
– volume: 112
  start-page: 379
  year: 2014
  ident: 10.1016/j.isci.2022.105147_bib46
  article-title: Interruption of classic CD40L-CD40 signalling but not of the novel CD40L-Mac-1 interaction limits arterial neointima formation in mice
  publication-title: Thromb. Haemost.
  doi: 10.1160/TH13-08-0653
– volume: 5
  start-page: 169
  year: 2015
  ident: 10.1016/j.isci.2022.105147_bib28
  article-title: Nanocarrier-mediated co-delivery of chemotherapeutic drugs and gene agents for cancer treatment
  publication-title: Acta Pharm. Sin. B
  doi: 10.1016/j.apsb.2015.03.001
– volume: 501
  start-page: 142
  year: 2020
  ident: 10.1016/j.isci.2022.105147_bib49
  article-title: Macrophage polarization in atherosclerosis
  publication-title: Clin. Chim. Acta
  doi: 10.1016/j.cca.2019.10.034
– volume: 283
  start-page: 121440
  year: 2022
  ident: 10.1016/j.isci.2022.105147_bib21
  article-title: Targeted therapeutic effects of oral inulin-modified double-layered nanoparticles containing chemotherapeutics on orthotopic colon cancer
  publication-title: Biomaterials
  doi: 10.1016/j.biomaterials.2022.121440
– volume: 75
  start-page: 738
  year: 2007
  ident: 10.1016/j.isci.2022.105147_bib25
  article-title: Autocrine expression of osteopontin contributes to PDGF-mediated arterial smooth muscle cell migration
  publication-title: Cardiovasc. Res.
  doi: 10.1016/j.cardiores.2007.05.019
– volume: 7
  start-page: 275ra20
  year: 2015
  ident: 10.1016/j.isci.2022.105147_bib17
  article-title: Targeted nanoparticles containing the proresolving peptide Ac2-26 protect against advanced atherosclerosis in hypercholesterolemic mice
  publication-title: Sci. Transl. Med.
  doi: 10.1126/scitranslmed.aaa1065
– volume: 2022
  start-page: 9763377
  year: 2022
  ident: 10.1016/j.isci.2022.105147_bib47
  article-title: Advanced glycation end products induce atherosclerosis via RAGE/TLR4 signaling mediated-M1 macrophage polarization-dependent vascular smooth muscle cell phenotypic conversion
  publication-title: Oxid. Med. Cell. Longev.
  doi: 10.1155/2022/9763377
SSID ssj0002002496
Score 2.2826633
Snippet Vascular restenosis is the main factor affecting the prognosis of angioplasty in cardiovascular diseases, and inflammation is a central link in the progression...
SourceID doaj
pubmedcentral
proquest
crossref
elsevier
SourceType Open Website
Open Access Repository
Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 105147
SubjectTerms Drug delivery system
immune response
nanoparticles
Title Vascular restenosis reduction with platelet membrane coated nanoparticle directed M2 macrophage polarization
URI https://dx.doi.org/10.1016/j.isci.2022.105147
https://www.proquest.com/docview/2728146828
https://pubmed.ncbi.nlm.nih.gov/PMC9579508
https://doaj.org/article/2abeb08c4cca4a6eab191c5689430100
Volume 25
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV3BbtswDBWGnHYZNrRDs66FCvRWGI1pWZKP27AgGNCe2qE3QZJlJEHiBE36_yUlp7Av6aU3Q7ZsmaRMPoviY-wahPJlXUHWyEISQJFZ1RQ-064u8eMonbMEFO_u5exR_Hsqn3pUX5QTlsoDJ8HdgnXBTbQX-ChhZbAOEYYvZawbnk8iWkef1wNTy7i8RqXwIrNcSTlBaJrdjpmU3EU7XhEcAhDPbU7cKj2vFIv3D5xTL_gcpk72fNH0K_vSBZH8Vxr8N_YptCds9b9LKuWRbqPd7BY7PKxTeVhOP1z5doWhJWqKr8MaYXIbuN9gS81b2yJ6Tvfjyc1h6x3wtSWOrzl-dfiWUHC3bfOUPU7_PvyZZR2XQuYRYOwz5Z0sLHG-BuF10whAXVSI5SQ0SgttK-t1kAUEJZyG2haqDDWtqk1cQye-s1G7acMZ49I2kNvcYd9aBKd03oADrxD7aKhKO2b5QZbGd4XGie9iZQ4ZZUtD8jckf5PkP2Y3b322qczG0at_k4rerqQS2bEBDcd0sjLvGc6YlQcFmy7aSOLFWy2OPvzqYA0GpyKtr6C6Ni87Awrohypi2DFTAzMZjHR4pl3MY1FvWi7FYPnHR7zaOftMAyYXC_lPNto_v4QLjJ327jJOk1cMjRhz
linkProvider Directory of Open Access Journals
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Vascular+restenosis+reduction+with+platelet+membrane+coated+nanoparticle+directed+M2+macrophage+polarization&rft.jtitle=iScience&rft.au=Li%2C+Fengshi&rft.au=Rong%2C+Zhihua&rft.au=Zhang%2C+Rui&rft.au=Niu%2C+Shuai&rft.date=2022-10-21&rft.issn=2589-0042&rft.eissn=2589-0042&rft.volume=25&rft.issue=10&rft.spage=105147&rft_id=info:doi/10.1016%2Fj.isci.2022.105147&rft.externalDBID=n%2Fa&rft.externalDocID=10_1016_j_isci_2022_105147
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2589-0042&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2589-0042&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2589-0042&client=summon