A pore-scale assessment of the dynamic response of forced convection in porous media to inlet flow modulations

•Low-pass filters can approximate the dynamics of heat convection in porous media.•The forced response remains linear at low reynolds numbers.•Increases in reynolds number increase the nonlinearity in a non-monotonic way.•Changes in porosity can alter linearity of the forced convection response. An...

Full description

Saved in:
Bibliographic Details
Published inInternational journal of heat and mass transfer Vol. 153; p. 119657
Main Authors Habib, Rabeeah, Karimi, Nader, Yadollahi, Bijan, Doranehgard, Mohammad Hossein, Li, Larry K.B.
Format Journal Article
LanguageEnglish
Published Oxford Elsevier Ltd 01.06.2020
Elsevier BV
Subjects
Online AccessGet full text
ISSN0017-9310
1879-2189
DOI10.1016/j.ijheatmasstransfer.2020.119657

Cover

Loading…
Abstract •Low-pass filters can approximate the dynamics of heat convection in porous media.•The forced response remains linear at low reynolds numbers.•Increases in reynolds number increase the nonlinearity in a non-monotonic way.•Changes in porosity can alter linearity of the forced convection response. An increasing number of technologies require prediction of unsteady forced convection in porous media when the inlet flow is unsteady. To gain further insight into this problem, the unsteady equations of continuity, Navier Stokes and energy are solved within the pores formed by several cylindrical flow obstacles. The system is modulated by sine waves superimposed on the inlet flow velocity, and the spatio-temporal responses of the flow and temperature fields are calculated. The results are then utilised to assess the linearity of the thermal response represented by the Nusselt number on the obstacles. It is shown that for linear cases, a transfer function can be devised for predicting the dynamic response of the Nusselt number. It is further argued that such a transfer function can be approximated by a classic low-pass filter which resembles the average response of the individual obstacles. This indicates that there exists a frequency threshold above which the thermal system is essentially insensitive to flow modulations. The results also show that changes in Reynolds number and porosity of the medium can push the dynamic response of the system towards non-linearity. Yet, there appears to be no monotonic change in the linearity of the response with respect to the Reynolds number and porosity. In general, it is found that for low Reynolds numbers, the dynamics of heat convection can be predicted decently by taking a transfer function approach. The findings of this study can enable further understanding of unsteady forced convection in porous media subject to time-varying inlet flows.
AbstractList •Low-pass filters can approximate the dynamics of heat convection in porous media.•The forced response remains linear at low reynolds numbers.•Increases in reynolds number increase the nonlinearity in a non-monotonic way.•Changes in porosity can alter linearity of the forced convection response. An increasing number of technologies require prediction of unsteady forced convection in porous media when the inlet flow is unsteady. To gain further insight into this problem, the unsteady equations of continuity, Navier Stokes and energy are solved within the pores formed by several cylindrical flow obstacles. The system is modulated by sine waves superimposed on the inlet flow velocity, and the spatio-temporal responses of the flow and temperature fields are calculated. The results are then utilised to assess the linearity of the thermal response represented by the Nusselt number on the obstacles. It is shown that for linear cases, a transfer function can be devised for predicting the dynamic response of the Nusselt number. It is further argued that such a transfer function can be approximated by a classic low-pass filter which resembles the average response of the individual obstacles. This indicates that there exists a frequency threshold above which the thermal system is essentially insensitive to flow modulations. The results also show that changes in Reynolds number and porosity of the medium can push the dynamic response of the system towards non-linearity. Yet, there appears to be no monotonic change in the linearity of the response with respect to the Reynolds number and porosity. In general, it is found that for low Reynolds numbers, the dynamics of heat convection can be predicted decently by taking a transfer function approach. The findings of this study can enable further understanding of unsteady forced convection in porous media subject to time-varying inlet flows.
An increasing number of technologies require prediction of unsteady forced convection in porous media when the inlet flow is unsteady. To gain further insight into this problem, the unsteady equations of continuity, Navier Stokes and energy are solved within the pores formed by several cylindrical flow obstacles. The system is modulated by sine waves superimposed on the inlet flow velocity, and the spatio-temporal responses of the flow and temperature fields are calculated. The results are then utilised to assess the linearity of the thermal response represented by the Nusselt number on the obstacles. It is shown that for linear cases, a transfer function can be devised for predicting the dynamic response of the Nusselt number. It is further argued that such a transfer function can be approximated by a classic low-pass filter which resembles the average response of the individual obstacles. This indicates that there exists a frequency threshold above which the thermal system is essentially insensitive to flow modulations. The results also show that changes in Reynolds number and porosity of the medium can push the dynamic response of the system towards non-linearity. Yet, there appears to be no monotonic change in the linearity of the response with respect to the Reynolds number and porosity. In general, it is found that for low Reynolds numbers, the dynamics of heat convection can be predicted decently by taking a transfer function approach. The findings of this study can enable further understanding of unsteady forced convection in porous media subject to time-varying inlet flows.
ArticleNumber 119657
Author Habib, Rabeeah
Li, Larry K.B.
Doranehgard, Mohammad Hossein
Yadollahi, Bijan
Karimi, Nader
Author_xml – sequence: 1
  givenname: Rabeeah
  surname: Habib
  fullname: Habib, Rabeeah
  organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
– sequence: 2
  givenname: Nader
  surname: Karimi
  fullname: Karimi, Nader
  email: nader.karimi@glasgow.ac.uk
  organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
– sequence: 3
  givenname: Bijan
  surname: Yadollahi
  fullname: Yadollahi, Bijan
  organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom
– sequence: 4
  givenname: Mohammad Hossein
  surname: Doranehgard
  fullname: Doranehgard, Mohammad Hossein
  organization: Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada
– sequence: 5
  givenname: Larry K.B.
  surname: Li
  fullname: Li, Larry K.B.
  organization: Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong
BookMark eNqVkE1v1DAQhi1UpG4__oMlLlyy2E5iJzeqigJVJS70bDn2WHWU2IvHW9R_j8Nyggs9jWbm1TOj54KcxRSBkPec7Tnj8sO8D_MTmLIaxJJNRA95L5ioaz7KXr0hOz6osRF8GM_IjjGumrHl7JxcIM5byzq5I_GGHlKGBq1ZgFYWIK4QC02elieg7iWaNViaAQ8pImxzn7IFR22Kz2BLSJGGuFHSEekKLhhaUh0tUKhf0k-6JndczBbEK_LWmwXh-k-9JI93n77ffmkevn3-envz0NhODKVRvepMP7Xce9X7aXTQQie60bcSmJeTs0Yo6RSzUsEEcuLGKhgHK7xxrjftJXl34h5y-nEELHpOxxzrSS26dlCCd6OsqbtTyuaEmMFrG8rvR6vRsGjO9OZaz_pf13pzrU-uK-jjX6BDDqvJL69B3J8QULU8h7pFGyBW0SFXy9ql8P-wX6L8r_4
CitedBy_id crossref_primary_10_1016_j_est_2022_105105
crossref_primary_10_1016_j_est_2021_103684
crossref_primary_10_1016_j_est_2022_104134
crossref_primary_10_1016_j_est_2022_104255
crossref_primary_10_1016_j_est_2021_103685
crossref_primary_10_1016_j_seta_2022_101992
crossref_primary_10_1115_1_4048227
crossref_primary_10_1016_j_est_2022_105061
crossref_primary_10_1016_j_jobe_2022_105180
crossref_primary_10_1016_j_enganabound_2023_01_010
crossref_primary_10_1016_j_jpowsour_2022_231540
crossref_primary_10_1108_HFF_07_2021_0495
crossref_primary_10_1016_j_jobe_2022_104887
crossref_primary_10_1016_j_est_2021_103601
crossref_primary_10_1007_s10973_020_09679_8
crossref_primary_10_1016_j_ijheatmasstransfer_2023_124006
crossref_primary_10_1016_j_est_2022_104786
crossref_primary_10_1016_j_est_2021_103553
crossref_primary_10_1016_j_est_2022_104383
crossref_primary_10_1016_j_est_2021_103670
crossref_primary_10_1016_j_seta_2021_101882
crossref_primary_10_1016_j_jtice_2021_05_014
crossref_primary_10_1016_j_est_2021_103714
crossref_primary_10_1016_j_est_2022_104429
crossref_primary_10_1016_j_jobe_2022_104931
crossref_primary_10_1016_j_est_2022_104545
crossref_primary_10_1016_j_est_2022_106449
crossref_primary_10_1016_j_est_2022_104873
crossref_primary_10_1016_j_est_2022_105041
crossref_primary_10_1007_s10973_020_09813_6
crossref_primary_10_1080_15567036_2020_1825566
crossref_primary_10_1016_j_jobe_2021_103974
crossref_primary_10_1016_j_seta_2021_101843
crossref_primary_10_1016_j_est_2021_103826
crossref_primary_10_1016_j_applthermaleng_2025_126158
crossref_primary_10_1080_00986445_2021_2001459
crossref_primary_10_1016_j_est_2022_104758
crossref_primary_10_1016_j_est_2022_104759
crossref_primary_10_1016_j_combustflame_2023_113020
crossref_primary_10_1016_j_jpowsour_2022_231606
crossref_primary_10_1016_j_est_2022_104117
crossref_primary_10_1016_j_enganabound_2022_05_005
crossref_primary_10_1016_j_enganabound_2022_05_006
crossref_primary_10_1016_j_ijheatmasstransfer_2022_123072
crossref_primary_10_1016_j_est_2022_104808
crossref_primary_10_1016_j_est_2022_103959
crossref_primary_10_1016_j_ijthermalsci_2024_109622
crossref_primary_10_1016_j_est_2022_104925
crossref_primary_10_3390_cryst10080679
crossref_primary_10_1007_s10973_020_09761_1
crossref_primary_10_1016_j_jpowsour_2022_231715
crossref_primary_10_1007_s10973_020_09667_y
crossref_primary_10_1016_j_applthermaleng_2020_116099
crossref_primary_10_1016_j_jobe_2022_104173
crossref_primary_10_1016_j_est_2022_104693
crossref_primary_10_1007_s42241_021_0072_2
crossref_primary_10_1016_j_est_2022_104692
crossref_primary_10_1080_00986445_2021_1980397
crossref_primary_10_1007_s10973_020_09987_z
crossref_primary_10_1016_j_est_2022_104457
crossref_primary_10_1016_j_pecs_2021_100966
crossref_primary_10_1016_j_jobe_2022_104328
crossref_primary_10_1016_j_jtice_2021_06_027
crossref_primary_10_1080_00986445_2021_1990888
crossref_primary_10_1115_1_4047968
crossref_primary_10_1115_1_4047969
crossref_primary_10_1016_j_est_2022_104181
crossref_primary_10_1016_j_enganabound_2024_105916
crossref_primary_10_1002_mma_7238
crossref_primary_10_1016_j_enganabound_2022_02_007
crossref_primary_10_1108_HFF_06_2020_0328
crossref_primary_10_1016_j_est_2022_104906
crossref_primary_10_1080_00986445_2021_1992398
crossref_primary_10_1016_j_jobe_2022_104697
crossref_primary_10_1016_j_jobe_2022_104215
crossref_primary_10_1016_j_jobe_2022_104732
crossref_primary_10_1016_j_est_2022_104794
crossref_primary_10_1016_j_jtice_2021_05_008
crossref_primary_10_1016_j_ijheatmasstransfer_2020_120471
crossref_primary_10_1016_j_rinp_2025_108155
crossref_primary_10_1016_j_est_2022_104392
crossref_primary_10_1016_j_est_2022_104391
crossref_primary_10_1016_j_jobe_2022_104505
crossref_primary_10_1016_j_cej_2022_136015
crossref_primary_10_1016_j_jpowsour_2022_231522
crossref_primary_10_1016_j_jobe_2022_104981
crossref_primary_10_1016_j_seta_2021_101928
crossref_primary_10_1016_j_jobe_2022_104227
crossref_primary_10_1016_j_est_2022_104686
crossref_primary_10_1016_j_rinp_2024_107434
crossref_primary_10_1016_j_proci_2024_105364
crossref_primary_10_1016_j_jobe_2022_104881
crossref_primary_10_1016_j_jtice_2021_04_050
crossref_primary_10_1007_s10973_020_09880_9
crossref_primary_10_1007_s10973_023_12043_1
crossref_primary_10_1063_5_0232694
crossref_primary_10_1021_acsomega_3c06390
crossref_primary_10_1080_00986445_2021_1980398
crossref_primary_10_1016_j_jobe_2022_104079
crossref_primary_10_1016_j_ijheatmasstransfer_2021_121755
crossref_primary_10_1016_j_est_2021_103730
crossref_primary_10_1080_00986445_2021_1983548
crossref_primary_10_1016_j_est_2022_103998
crossref_primary_10_1016_j_est_2022_104204
crossref_primary_10_1016_j_est_2022_103997
crossref_primary_10_1016_j_est_2022_104326
Cites_doi 10.1016/j.ijheatmasstransfer.2010.11.037
10.1115/1.4028764
10.1016/j.cep.2012.10.015
10.1016/S0017-9310(00)00166-6
10.1016/j.ijheatmasstransfer.2017.11.118
10.1016/j.applthermaleng.2017.12.059
10.1016/j.ijggc.2018.08.007
10.1016/j.ijheatmasstransfer.2016.03.127
10.1115/1.3089541
10.1002/aic.14897
10.1016/j.ijheatfluidflow.2012.08.007
10.1115/1.2175150
10.1063/1.5092199
10.1002/2017WR021257
10.1016/j.ces.2015.06.028
10.1007/s11242-017-0995-9
10.1016/0360-1285(93)90020-F
10.1017/S0022112007006647
10.1016/j.ijheatmasstransfer.2013.06.060
10.1108/HFF-12-2017-0495
10.1016/0360-1285(96)00001-9
10.1115/1.3250730
10.1016/j.ijheatmasstransfer.2014.11.079
10.1016/j.jhydrol.2018.08.020
10.1016/j.ijthermalsci.2010.11.002
10.1016/j.ijheatmasstransfer.2007.04.038
10.1016/j.advwatres.2017.10.029
10.1016/j.ijheatmasstransfer.2013.09.020
10.1016/j.pecs.2008.04.003
10.1016/j.ces.2019.04.027
10.1016/j.jpowsour.2017.09.046
10.1016/j.ijheatmasstransfer.2012.12.022
10.1007/s11242-013-0210-6
10.1016/j.applthermaleng.2016.04.095
10.1016/j.energy.2014.10.036
10.1016/j.ijheatmasstransfer.2009.11.001
10.1017/jfm.2019.799
10.1016/j.ijheatmasstransfer.2013.11.048
10.1016/S1540-7489(02)80007-4
10.1016/j.pecs.2018.12.001
10.1007/s00231-015-1547-x
10.1016/j.applthermaleng.2018.06.043
10.1016/j.ijheatmasstransfer.2019.02.081
10.1016/j.ijheatmasstransfer.2018.11.172
10.1016/j.ijheatmasstransfer.2019.02.015
10.1016/j.ijheatmasstransfer.2013.11.028
ContentType Journal Article
Copyright 2020
Copyright Elsevier BV Jun 2020
Copyright_xml – notice: 2020
– notice: Copyright Elsevier BV Jun 2020
DBID 6I.
AAFTH
AAYXX
CITATION
7TB
8FD
FR3
H8D
KR7
L7M
DOI 10.1016/j.ijheatmasstransfer.2020.119657
DatabaseName ScienceDirect Open Access Titles
Elsevier:ScienceDirect:Open Access
CrossRef
Mechanical & Transportation Engineering Abstracts
Technology Research Database
Engineering Research Database
Aerospace Database
Civil Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitle CrossRef
Aerospace Database
Civil Engineering Abstracts
Engineering Research Database
Technology Research Database
Mechanical & Transportation Engineering Abstracts
Advanced Technologies Database with Aerospace
DatabaseTitleList
Aerospace Database
DeliveryMethod fulltext_linktorsrc
Discipline Physics
EISSN 1879-2189
ExternalDocumentID 10_1016_j_ijheatmasstransfer_2020_119657
S001793101936716X
GroupedDBID --K
--M
-~X
.DC
.~1
0R~
1B1
1~.
1~5
29J
4.4
457
4G.
5GY
5VS
6I.
6TJ
7-5
71M
8P~
9JN
AABNK
AACTN
AAEDT
AAEDW
AAFTH
AAHCO
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AAQXK
AARJD
AAXUO
ABDMP
ABFNM
ABMAC
ABNUV
ABTAH
ABXDB
ACDAQ
ACGFS
ACIWK
ACKIV
ACNNM
ACRLP
ADBBV
ADEWK
ADEZE
ADMUD
ADTZH
AEBSH
AECPX
AEKER
AENEX
AFKWA
AFTJW
AGHFR
AGUBO
AGYEJ
AHHHB
AHIDL
AHJVU
AHPOS
AIEXJ
AIKHN
AITUG
AJOXV
AKRWK
AKURH
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
ASPBG
AVWKF
AXJTR
AZFZN
BELTK
BJAXD
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EJD
ENUVR
EO8
EO9
EP2
EP3
F5P
FDB
FEDTE
FGOYB
FIRID
FNPLU
FYGXN
G-2
G-Q
G8K
GBLVA
HVGLF
HZ~
IHE
J1W
JARJE
JJJVA
K-O
KOM
LY6
LY7
M41
MO0
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
R2-
RIG
RNS
ROL
RPZ
SAC
SDF
SDG
SDP
SES
SET
SEW
SPC
SPCBC
SSG
SSR
SST
SSZ
T5K
T9H
TN5
VOH
WUQ
XPP
ZMT
ZY4
~02
~G-
AATTM
AAXKI
AAYWO
AAYXX
ABDPE
ABJNI
ABWVN
ACRPL
ACVFH
ADCNI
ADNMO
AEIPS
AEUPX
AFJKZ
AFPUW
AFXIZ
AGCQF
AGQPQ
AGRNS
AIGII
AIIUN
AKBMS
AKYEP
ANKPU
APXCP
BNPGV
CITATION
SSH
7TB
8FD
EFKBS
FR3
H8D
KR7
L7M
ID FETCH-LOGICAL-c428t-7574a5b31ff75fb9de3e4249f36e0f6bdca276d70c67ebe6b1ac7e98c2fadd5a3
IEDL.DBID .~1
ISSN 0017-9310
IngestDate Fri Jul 25 04:34:03 EDT 2025
Thu Apr 24 23:05:04 EDT 2025
Tue Jul 01 04:24:00 EDT 2025
Tue Jul 16 04:30:27 EDT 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords Porous media
Dynamic response
Nonlinear response
Unsteady forced convection
Transfer function
Pore-scale analysis
Language English
License This is an open access article under the CC BY license.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-7574a5b31ff75fb9de3e4249f36e0f6bdca276d70c67ebe6b1ac7e98c2fadd5a3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
OpenAccessLink https://www.sciencedirect.com/science/article/pii/S001793101936716X
PQID 2438721496
PQPubID 2045464
ParticipantIDs proquest_journals_2438721496
crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119657
crossref_primary_10_1016_j_ijheatmasstransfer_2020_119657
elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119657
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate June 2020
2020-06-00
20200601
PublicationDateYYYYMMDD 2020-06-01
PublicationDate_xml – month: 06
  year: 2020
  text: June 2020
PublicationDecade 2020
PublicationPlace Oxford
PublicationPlace_xml – name: Oxford
PublicationTitle International journal of heat and mass transfer
PublicationYear 2020
Publisher Elsevier Ltd
Elsevier BV
Publisher_xml – name: Elsevier Ltd
– name: Elsevier BV
References Jouybari, Maerefat, Nimvari (bib0033) 2016; 52
Dejam (bib0003) 2019; 136
Kolb (bib0011) 2013; 65
Hunt, Karimi, Yadollahi, Torabi (bib0010) 2019; 134
Lieuwen (bib0053) 2012
Hunt, Karimi, Torabi (bib0024) 2018; 119
Gopal, Nagrath (bib0049) 2009
Ellzey, Belmont, Smith (bib0008) 2019; 72
Karimi (bib0048) 2014; 78
Wu, Caliot, Flamant, Wang (bib0034) 2011; 54
Howell, Hall, Ellzey (bib0039) 1996; 22
Banerjee (bib0050) 2018
Moase, Brear, Manzie (bib0055) 2007; 585
Yang, Weigand, Terzis, Weishaupt, Helmig (bib0025) 2018; 122
Teruel, Díaz (bib0032) 2013; 60
Pathak, Ghiaasiaan (bib0037) 2011; 50
Dejam, Hassanzadeh, Chen (bib0005) 2015; 137
Mahmoudi, Karimi (bib0015) 2014; 68
Saito, de Lemos (bib0041) 2006; 128
Luhmann (bib0046) 2013
Chen, Wung (bib0042) 1989; 111
Dejam, Hassanzadeh (bib0028) 2018; 111
McManus, Poinsot, Candel (bib0047) 1993; 19
Kou, Dejam (bib0001) 2019; 31
Dejam (bib0002) 2019; 204
Alshare, Strykowski, Simon (bib0036) 2010; 53
Mahmoudi, Hooman, Vafai (bib0009) 2019
Ogata, Yang (bib0044) 2010; Volume 17
Dejam, Hassanzadeh, Chen (bib0026) 2018; 565
Lopez Penha, Stolz, Kuerten, Nordlund, Kuczaj, Geurts (bib0022) 2012; 38
Kuwahara, Shirota, Nakayama (bib0031) 2001; 44
Dejam, Hassanzadeh (bib0027) 2018; 78
Ogata (bib0045) 1998; Volume 3
Candel (bib0052) 2002; 29
Christodoulou, Karimi, Cammarano, Paul, Navarro-Martinez (bib0043) 2020; 882
Strogatz (bib0054) 2015
Dickson, Torabi, Karimi (bib0018) 2016; 103
Chen, Yan, Song, Xu (bib0040) 2018; 131
Deng, Feng, E, Zhu, Chen, Wen, Yin (bib0006) 2018; 142
Ozgumus, Mobedi (bib0021) 2014; 137
Wood, Harris (bib0012) 2008; 34
Gamrat, Favre-Marinet, Le Person (bib0023) 2008; 51
Izadian (bib0051) 2019
Dejam, Hassanzadeh, Chen (bib0004) 2015; 61
Chu, Yang, Pandey, Weigand (bib0019) 2019; 133
Rong, Zhang, Shi, Guo (bib0016) 2014; 70
Dejam, Hassanzadeh, Chen (bib0029) 2017; 53
He, Ma (bib0013) 2015; 83
Torabi, Peterson, Torabi, Karimi (bib0020) 2016; 99
Kim, Ghiaasiaan (bib0035) 2009; 131
Xia, Cao, Bi (bib0007) 2017; 367
Pathak, Mulcahey, Ghiaasiaan (bib0038) 2013; 66
Dejam, Hassanzadeh, Chen (bib0030) 2013; 100
Saberinejad, Keshavarz, Payandehdoost, Azmoodeh, Batooei (bib0014) 2018; 28
Mahmoudi, Karimi, Mazaheri (bib0017) 2014; 70
Kim (10.1016/j.ijheatmasstransfer.2020.119657_bib0035) 2009; 131
Wood (10.1016/j.ijheatmasstransfer.2020.119657_bib0012) 2008; 34
Chu (10.1016/j.ijheatmasstransfer.2020.119657_bib0019) 2019; 133
Wu (10.1016/j.ijheatmasstransfer.2020.119657_bib0034) 2011; 54
Saito (10.1016/j.ijheatmasstransfer.2020.119657_bib0041) 2006; 128
Christodoulou (10.1016/j.ijheatmasstransfer.2020.119657_bib0043) 2020; 882
Luhmann (10.1016/j.ijheatmasstransfer.2020.119657_bib0046) 2013
Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0004) 2015; 61
Karimi (10.1016/j.ijheatmasstransfer.2020.119657_bib0048) 2014; 78
Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0005) 2015; 137
Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0002) 2019; 204
Moase (10.1016/j.ijheatmasstransfer.2020.119657_bib0055) 2007; 585
Gamrat (10.1016/j.ijheatmasstransfer.2020.119657_bib0023) 2008; 51
Gopal (10.1016/j.ijheatmasstransfer.2020.119657_bib0049) 2009
Lopez Penha (10.1016/j.ijheatmasstransfer.2020.119657_bib0022) 2012; 38
Howell (10.1016/j.ijheatmasstransfer.2020.119657_bib0039) 1996; 22
Rong (10.1016/j.ijheatmasstransfer.2020.119657_bib0016) 2014; 70
Torabi (10.1016/j.ijheatmasstransfer.2020.119657_bib0020) 2016; 99
Ozgumus (10.1016/j.ijheatmasstransfer.2020.119657_bib0021) 2014; 137
Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0028) 2018; 111
Mahmoudi (10.1016/j.ijheatmasstransfer.2020.119657_bib0015) 2014; 68
Strogatz (10.1016/j.ijheatmasstransfer.2020.119657_bib0054) 2015
Teruel (10.1016/j.ijheatmasstransfer.2020.119657_bib0032) 2013; 60
Alshare (10.1016/j.ijheatmasstransfer.2020.119657_bib0036) 2010; 53
Chen (10.1016/j.ijheatmasstransfer.2020.119657_bib0040) 2018; 131
Banerjee (10.1016/j.ijheatmasstransfer.2020.119657_bib0050) 2018
Mahmoudi (10.1016/j.ijheatmasstransfer.2020.119657_bib0017) 2014; 70
Kou (10.1016/j.ijheatmasstransfer.2020.119657_bib0001) 2019; 31
He (10.1016/j.ijheatmasstransfer.2020.119657_bib0013) 2015; 83
Hunt (10.1016/j.ijheatmasstransfer.2020.119657_bib0024) 2018; 119
Candel (10.1016/j.ijheatmasstransfer.2020.119657_bib0052) 2002; 29
Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0030) 2013; 100
Lieuwen (10.1016/j.ijheatmasstransfer.2020.119657_bib0053) 2012
Pathak (10.1016/j.ijheatmasstransfer.2020.119657_bib0037) 2011; 50
Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0003) 2019; 136
Chen (10.1016/j.ijheatmasstransfer.2020.119657_bib0042) 1989; 111
Hunt (10.1016/j.ijheatmasstransfer.2020.119657_bib0010) 2019; 134
Izadian (10.1016/j.ijheatmasstransfer.2020.119657_bib0051) 2019
Pathak (10.1016/j.ijheatmasstransfer.2020.119657_bib0038) 2013; 66
Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0026) 2018; 565
Kuwahara (10.1016/j.ijheatmasstransfer.2020.119657_bib0031) 2001; 44
McManus (10.1016/j.ijheatmasstransfer.2020.119657_bib0047) 1993; 19
Xia (10.1016/j.ijheatmasstransfer.2020.119657_bib0007) 2017; 367
Ellzey (10.1016/j.ijheatmasstransfer.2020.119657_bib0008) 2019; 72
Saberinejad (10.1016/j.ijheatmasstransfer.2020.119657_bib0014) 2018; 28
Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0029) 2017; 53
Mahmoudi (10.1016/j.ijheatmasstransfer.2020.119657_bib0009) 2019
Ogata (10.1016/j.ijheatmasstransfer.2020.119657_bib0045) 1998; Volume 3
Yang (10.1016/j.ijheatmasstransfer.2020.119657_bib0025) 2018; 122
Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0027) 2018; 78
Dickson (10.1016/j.ijheatmasstransfer.2020.119657_bib0018) 2016; 103
Kolb (10.1016/j.ijheatmasstransfer.2020.119657_bib0011) 2013; 65
Jouybari (10.1016/j.ijheatmasstransfer.2020.119657_bib0033) 2016; 52
Ogata (10.1016/j.ijheatmasstransfer.2020.119657_bib0044) 2010; Volume 17
Deng (10.1016/j.ijheatmasstransfer.2020.119657_bib0006) 2018; 142
References_xml – volume: Volume 17
  year: 2010
  ident: bib0044
  publication-title: Modern Control Engineering
– volume: 51
  start-page: 853
  year: 2008
  end-page: 864
  ident: bib0023
  article-title: Numerical study of heat transfer over banks of rods in small reynolds number cross-flow
  publication-title: Int. J. Heat Mass Transf.
– year: 2012
  ident: bib0053
  article-title: Unsteady Combustor Physics
– volume: 111
  start-page: 36
  year: 2018
  end-page: 57
  ident: bib0028
  article-title: “Diffusive leakage of brine from aquifers during CO2 geological storage
  publication-title: Adv. Water Resour.
– volume: 28
  start-page: 1845
  year: 2018
  end-page: 1865
  ident: bib0014
  article-title: Numerical study of heat transfer performance in a pipe partially filled with non-uniform porous media under ltne condition
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
– volume: 29
  start-page: 1
  year: 2002
  end-page: 28
  ident: bib0052
  article-title: Combustion dynamics and control: progress and challenges
  publication-title: Proc. Combust. Inst.
– volume: 119
  start-page: 372
  year: 2018
  end-page: 391
  ident: bib0024
  article-title: “Two-dimensional analytical investigation of coupled heat and mass transfer and entropy generation in a porous, catalytic microreactor,”
  publication-title: Int. J. Heat Mass Transf.
– volume: 133
  start-page: 11
  year: 2019
  end-page: 20
  ident: bib0019
  article-title: “Direct numerical simulation of convective heat transfer in porous media
  publication-title: Int. J. Heat Mass Transf.
– volume: 44
  start-page: 1153
  year: 2001
  end-page: 1159
  ident: bib0031
  article-title: A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media
  publication-title: Int. J. Heat Mass Transf.
– volume: 131
  year: 2009
  ident: bib0035
  article-title: Numerical modeling of laminar pulsating flow in porous media
  publication-title: J. Fluids Eng.
– volume: 52
  start-page: 269
  year: 2016
  end-page: 280
  ident: bib0033
  article-title: A pore scale study on turbulent combustion in porous media
  publication-title: Heat Mass Transf. und Stoffuebertragung
– year: 2019
  ident: bib0051
  article-title: Fundamentals of Modern Electric Circuit Analysis and Filter Synthesis
– volume: 66
  start-page: 23
  year: 2013
  end-page: 30
  ident: bib0038
  article-title: Conjugate heat transfer during oscillatory laminar flow in porous media
  publication-title: Int. J. Heat Mass Transf.
– volume: 70
  start-page: 875
  year: 2014
  end-page: 891
  ident: bib0017
  article-title: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition: effects of different thermal boundary conditions at the porous-fluid interface
  publication-title: Int. J. Heat Mass Transf.
– volume: 137
  year: 2014
  ident: bib0021
  article-title: “Effect of pore to throat size ratio on interfacial heat transfer coefficient of porous media
  publication-title: J. Heat Transfer
– year: 2019
  ident: bib0009
  article-title: Convective Heat Transfer in Porous Media
– volume: 99
  start-page: 303
  year: 2016
  end-page: 316
  ident: bib0020
  article-title: A thermodynamic analysis of forced convection through porous media using pore scale modeling
  publication-title: Int. J. Heat Mass Transf.
– year: 2013
  ident: bib0046
  publication-title: Introduction to Systems Theory
– volume: 204
  start-page: 298
  year: 2019
  end-page: 309
  ident: bib0002
  article-title: Derivation of dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a porous-walled microchannel
  publication-title: Chem. Eng. Sci.
– volume: 53
  start-page: 2294
  year: 2010
  end-page: 2310
  ident: bib0036
  article-title: Modeling of unsteady and steady fluid flow, heat transfer and dispersion in porous media using unit cell scale
  publication-title: Int. J. Heat Mass Transf.
– volume: 131
  start-page: 750
  year: 2018
  end-page: 765
  ident: bib0040
  article-title: Effect of heat and mass transfer on the combustion stability in catalytic micro-combustors
  publication-title: Appl. Therm. Eng.
– volume: 65
  start-page: 1
  year: 2013
  end-page: 44
  ident: bib0011
  article-title: Review: microstructured reactors for distributed and renewable production of fuels and electrical energy
  publication-title: Chem. Eng. Process. Process Intensif.
– volume: 38
  start-page: 94
  year: 2012
  end-page: 106
  ident: bib0022
  article-title: “Fully-developed conjugate heat transfer in porous media with uniform heating
  publication-title: Int. J. Heat Fluid Flow
– volume: 60
  start-page: 406
  year: 2013
  end-page: 412
  ident: bib0032
  article-title: “Calculation of the interfacial heat transfer coefficient in porous media employing numerical simulations
  publication-title: Int. J. Heat Mass Transf.
– volume: 565
  start-page: 289
  year: 2018
  end-page: 301
  ident: bib0026
  article-title: Semi-analytical solution for pressure transient analysis of a hydraulically fractured vertical well in a bounded dual-porosity reservoir
  publication-title: J. Hydrol.
– volume: 142
  start-page: 10
  year: 2018
  end-page: 29
  ident: bib0006
  article-title: Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: a review
  publication-title: Appl. Therm. Eng.
– volume: 78
  start-page: 490
  year: 2014
  end-page: 500
  ident: bib0048
  article-title: Response of a conical, laminar premixed flame to low amplitude acoustic forcing - A comparison between experiment and kinematic theories
  publication-title: Energy
– volume: 61
  start-page: 3981
  year: 2015
  end-page: 3995
  ident: bib0004
  article-title: Shear dispersion in combined pressure-driven and electro-osmotic flows in a capillary tube with a porous wall
  publication-title: AIChE J
– volume: 367
  start-page: 90
  year: 2017
  end-page: 105
  ident: bib0007
  article-title: A review on battery thermal management in electric vehicle application
  publication-title: J. Power Sources
– volume: 111
  start-page: 641
  year: 1989
  end-page: 648
  ident: bib0042
  article-title: Finite analytic solution of convective heat transfer for tube arrays in crossflow: part II—Heat transfer analysis
  publication-title: J. Heat Transfer
– volume: 19
  start-page: 1
  year: 1993
  end-page: 29
  ident: bib0047
  article-title: A review of active control of combustion instabilities
  publication-title: Prog. Energy Combust. Sci.
– volume: 22
  start-page: 121
  year: 1996
  end-page: 145
  ident: bib0039
  article-title: Combustion of hydrocarbon fuels within porous inert media
  publication-title: Prog. Energy Combust. Sci.
– volume: 70
  start-page: 1040
  year: 2014
  end-page: 1049
  ident: bib0016
  article-title: “Numerical study of heat transfer enhancement in a pipe filled with porous media by axisymmetric tlb model based on gpu
  publication-title: Int. J. Heat Mass Transf.
– volume: 100
  start-page: 159
  year: 2013
  end-page: 192
  ident: bib0030
  article-title: Semi-Analytical solutions for a partially penetrated well with wellbore storage and skin effects in a double-porosity system with a gas cap
  publication-title: Transp. Porous Media
– volume: 128
  start-page: 444
  year: 2006
  ident: bib0041
  article-title: A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods
  publication-title: J. Heat Transfer
– year: 2015
  ident: bib0054
  article-title: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second Edition
– volume: 83
  start-page: 164
  year: 2015
  end-page: 172
  ident: bib0013
  article-title: Thermal management of batteries employing active temperature control and reciprocating cooling flow
  publication-title: Int. J. Heat Mass Transf.
– volume: 54
  start-page: 1527
  year: 2011
  end-page: 1537
  ident: bib0034
  article-title: Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances
  publication-title: Int. J. Heat Mass Transf.
– volume: 31
  year: 2019
  ident: bib0001
  article-title: Dispersion due to combined pressure-driven and electro-osmotic flows in a channel surrounded by a permeable porous medium
  publication-title: Phys. Fluids
– volume: 68
  start-page: 161
  year: 2014
  end-page: 173
  ident: bib0015
  article-title: “Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition
  publication-title: Int. J. Heat Mass Transf.
– volume: Volume 3
  year: 1998
  ident: bib0045
  publication-title: System Dynamics
– volume: 136
  start-page: 87
  year: 2019
  end-page: 98
  ident: bib0003
  article-title: Hydrodynamic dispersion due to a variety of flow velocity profiles in a porous-walled microfluidic channel
  publication-title: Int. J. Heat Mass Transf.
– volume: 134
  start-page: 1227
  year: 2019
  end-page: 1249
  ident: bib0010
  article-title: The effects of exothermic catalytic reactions upon combined transport of heat and mass in porous microreactors
  publication-title: Int. J. Heat Mass Transf.
– volume: 137
  start-page: 205
  year: 2015
  end-page: 215
  ident: bib0005
  article-title: Shear dispersion in combined pressure-driven and electro-osmotic flows in a channel with porous walls
  publication-title: Chem. Eng. Sci.
– volume: 122
  start-page: 145
  year: 2018
  end-page: 167
  ident: bib0025
  article-title: “Numerical simulation of turbulent flow and heat transfer in a three-dimensional channel coupled with flow through porous structures
  publication-title: Transp. Porous Media
– volume: 34
  start-page: 667
  year: 2008
  end-page: 684
  ident: bib0012
  article-title: Porous burners for lean-burn applications
  publication-title: Prog. Energy Combust. Sci.
– volume: 78
  start-page: 177
  year: 2018
  end-page: 197
  ident: bib0027
  article-title: “The role of natural fractures of finite double-porosity aquifers on diffusive leakage of brine during geological storage of CO2
  publication-title: Int. J. Greenh. Gas Control
– volume: 72
  start-page: 32
  year: 2019
  end-page: 58
  ident: bib0008
  article-title: Heat recirculating reactors: fundamental research and applications
  publication-title: Prog. Energy Combust. Sci.
– volume: 53
  start-page: 8187
  year: 2017
  end-page: 8210
  ident: bib0029
  article-title: Pre-Darcy flow in porous media
  publication-title: Water Resour. Res.
– year: 2018
  ident: bib0050
  article-title: Automated Electronic Filter Design
– volume: 50
  start-page: 440
  year: 2011
  end-page: 448
  ident: bib0037
  article-title: “Convective heat transfer and thermal dispersion during laminar pulsating flow in porous media
  publication-title: Int. J. Therm. Sci.
– volume: 585
  start-page: 281
  year: 2007
  end-page: 304
  ident: bib0055
  article-title: The forced response of choked nozzles and supersonic diffusers
  publication-title: J. Fluid Mech.
– volume: 103
  start-page: 459
  year: 2016
  end-page: 480
  ident: bib0018
  article-title: “First and second law analyses of nanofluid forced convection in a partially-filled porous channel – The effects of local thermal non-equilibrium and internal heat sources
  publication-title: Appl. Therm. Eng.
– year: 2009
  ident: bib0049
  article-title: Control Systems Engineering
– volume: 882
  start-page: A8
  year: 2020
  ident: bib0043
  article-title: State prediction of an entropy wave advecting through a turbulent channel flow
  publication-title: J. Fluid Mech.
– volume: 54
  start-page: 1527
  issue: 7–8
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0034
  article-title: Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2010.11.037
– volume: 137
  issue: 1
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0021
  article-title: “Effect of pore to throat size ratio on interfacial heat transfer coefficient of porous media
  publication-title: J. Heat Transfer
  doi: 10.1115/1.4028764
– volume: 65
  start-page: 1
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0011
  article-title: Review: microstructured reactors for distributed and renewable production of fuels and electrical energy
  publication-title: Chem. Eng. Process. Process Intensif.
  doi: 10.1016/j.cep.2012.10.015
– volume: 44
  start-page: 1153
  issue: 6
  year: 2001
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0031
  article-title: A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/S0017-9310(00)00166-6
– volume: 119
  start-page: 372
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0024
  article-title: “Two-dimensional analytical investigation of coupled heat and mass transfer and entropy generation in a porous, catalytic microreactor,”
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2017.11.118
– volume: Volume 3
  year: 1998
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0045
– year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0051
– volume: 131
  start-page: 750
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0040
  article-title: Effect of heat and mass transfer on the combustion stability in catalytic micro-combustors
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2017.12.059
– volume: 78
  start-page: 177
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0027
  article-title: “The role of natural fractures of finite double-porosity aquifers on diffusive leakage of brine during geological storage of CO2
  publication-title: Int. J. Greenh. Gas Control
  doi: 10.1016/j.ijggc.2018.08.007
– volume: 99
  start-page: 303
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0020
  article-title: A thermodynamic analysis of forced convection through porous media using pore scale modeling
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2016.03.127
– volume: 131
  issue: 4
  year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0035
  article-title: Numerical modeling of laminar pulsating flow in porous media
  publication-title: J. Fluids Eng.
  doi: 10.1115/1.3089541
– volume: 61
  start-page: 3981
  issue: 11
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0004
  article-title: Shear dispersion in combined pressure-driven and electro-osmotic flows in a capillary tube with a porous wall
  publication-title: AIChE J
  doi: 10.1002/aic.14897
– volume: 38
  start-page: 94
  year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0022
  article-title: “Fully-developed conjugate heat transfer in porous media with uniform heating
  publication-title: Int. J. Heat Fluid Flow
  doi: 10.1016/j.ijheatfluidflow.2012.08.007
– volume: 128
  start-page: 444
  issue: 5
  year: 2006
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0041
  article-title: A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods
  publication-title: J. Heat Transfer
  doi: 10.1115/1.2175150
– volume: 31
  issue: 5
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0001
  article-title: Dispersion due to combined pressure-driven and electro-osmotic flows in a channel surrounded by a permeable porous medium
  publication-title: Phys. Fluids
  doi: 10.1063/1.5092199
– volume: 53
  start-page: 8187
  issue: 10
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0029
  article-title: Pre-Darcy flow in porous media
  publication-title: Water Resour. Res.
  doi: 10.1002/2017WR021257
– volume: 137
  start-page: 205
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0005
  article-title: Shear dispersion in combined pressure-driven and electro-osmotic flows in a channel with porous walls
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2015.06.028
– volume: 122
  start-page: 145
  issue: 1
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0025
  article-title: “Numerical simulation of turbulent flow and heat transfer in a three-dimensional channel coupled with flow through porous structures
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-017-0995-9
– year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0050
– volume: Volume 17
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0044
– volume: 19
  start-page: 1
  issue: 1
  year: 1993
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0047
  article-title: A review of active control of combustion instabilities
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/0360-1285(93)90020-F
– volume: 585
  start-page: 281
  year: 2007
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0055
  article-title: The forced response of choked nozzles and supersonic diffusers
  publication-title: J. Fluid Mech.
  doi: 10.1017/S0022112007006647
– year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0054
– volume: 66
  start-page: 23
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0038
  article-title: Conjugate heat transfer during oscillatory laminar flow in porous media
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.06.060
– volume: 28
  start-page: 1845
  issue: 8
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0014
  article-title: Numerical study of heat transfer performance in a pipe partially filled with non-uniform porous media under ltne condition
  publication-title: Int. J. Numer. Methods Heat Fluid Flow
  doi: 10.1108/HFF-12-2017-0495
– volume: 22
  start-page: 121
  issue: 2
  year: 1996
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0039
  article-title: Combustion of hydrocarbon fuels within porous inert media
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/0360-1285(96)00001-9
– volume: 111
  start-page: 641
  issue: 3
  year: 1989
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0042
  article-title: Finite analytic solution of convective heat transfer for tube arrays in crossflow: part II—Heat transfer analysis
  publication-title: J. Heat Transfer
  doi: 10.1115/1.3250730
– volume: 83
  start-page: 164
  year: 2015
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0013
  article-title: Thermal management of batteries employing active temperature control and reciprocating cooling flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2014.11.079
– year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0046
– volume: 565
  start-page: 289
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0026
  article-title: Semi-analytical solution for pressure transient analysis of a hydraulically fractured vertical well in a bounded dual-porosity reservoir
  publication-title: J. Hydrol.
  doi: 10.1016/j.jhydrol.2018.08.020
– volume: 50
  start-page: 440
  issue: 4
  year: 2011
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0037
  article-title: “Convective heat transfer and thermal dispersion during laminar pulsating flow in porous media
  publication-title: Int. J. Therm. Sci.
  doi: 10.1016/j.ijthermalsci.2010.11.002
– year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0009
– volume: 51
  start-page: 853
  issue: 3–4
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0023
  article-title: Numerical study of heat transfer over banks of rods in small reynolds number cross-flow
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2007.04.038
– volume: 111
  start-page: 36
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0028
  article-title: “Diffusive leakage of brine from aquifers during CO2 geological storage
  publication-title: Adv. Water Resour.
  doi: 10.1016/j.advwatres.2017.10.029
– volume: 68
  start-page: 161
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0015
  article-title: “Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.09.020
– volume: 34
  start-page: 667
  issue: 5
  year: 2008
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0012
  article-title: Porous burners for lean-burn applications
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2008.04.003
– volume: 204
  start-page: 298
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0002
  article-title: Derivation of dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a porous-walled microchannel
  publication-title: Chem. Eng. Sci.
  doi: 10.1016/j.ces.2019.04.027
– volume: 367
  start-page: 90
  year: 2017
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0007
  article-title: A review on battery thermal management in electric vehicle application
  publication-title: J. Power Sources
  doi: 10.1016/j.jpowsour.2017.09.046
– volume: 60
  start-page: 406
  issue: 1
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0032
  article-title: “Calculation of the interfacial heat transfer coefficient in porous media employing numerical simulations
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2012.12.022
– volume: 100
  start-page: 159
  issue: 2
  year: 2013
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0030
  article-title: Semi-Analytical solutions for a partially penetrated well with wellbore storage and skin effects in a double-porosity system with a gas cap
  publication-title: Transp. Porous Media
  doi: 10.1007/s11242-013-0210-6
– volume: 103
  start-page: 459
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0018
  article-title: “First and second law analyses of nanofluid forced convection in a partially-filled porous channel – The effects of local thermal non-equilibrium and internal heat sources
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2016.04.095
– volume: 78
  start-page: 490
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0048
  article-title: Response of a conical, laminar premixed flame to low amplitude acoustic forcing - A comparison between experiment and kinematic theories
  publication-title: Energy
  doi: 10.1016/j.energy.2014.10.036
– year: 2009
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0049
– volume: 53
  start-page: 2294
  issue: 9–10
  year: 2010
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0036
  article-title: Modeling of unsteady and steady fluid flow, heat transfer and dispersion in porous media using unit cell scale
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2009.11.001
– volume: 882
  start-page: A8
  year: 2020
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0043
  article-title: State prediction of an entropy wave advecting through a turbulent channel flow
  publication-title: J. Fluid Mech.
  doi: 10.1017/jfm.2019.799
– year: 2012
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0053
– volume: 70
  start-page: 875
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0017
  article-title: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition: effects of different thermal boundary conditions at the porous-fluid interface
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.11.048
– volume: 29
  start-page: 1
  issue: 1
  year: 2002
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0052
  article-title: Combustion dynamics and control: progress and challenges
  publication-title: Proc. Combust. Inst.
  doi: 10.1016/S1540-7489(02)80007-4
– volume: 72
  start-page: 32
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0008
  article-title: Heat recirculating reactors: fundamental research and applications
  publication-title: Prog. Energy Combust. Sci.
  doi: 10.1016/j.pecs.2018.12.001
– volume: 52
  start-page: 269
  issue: 2
  year: 2016
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0033
  article-title: A pore scale study on turbulent combustion in porous media
  publication-title: Heat Mass Transf. und Stoffuebertragung
  doi: 10.1007/s00231-015-1547-x
– volume: 142
  start-page: 10
  year: 2018
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0006
  article-title: Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: a review
  publication-title: Appl. Therm. Eng.
  doi: 10.1016/j.applthermaleng.2018.06.043
– volume: 136
  start-page: 87
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0003
  article-title: Hydrodynamic dispersion due to a variety of flow velocity profiles in a porous-walled microfluidic channel
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.02.081
– volume: 133
  start-page: 11
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0019
  article-title: “Direct numerical simulation of convective heat transfer in porous media
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2018.11.172
– volume: 134
  start-page: 1227
  year: 2019
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0010
  article-title: The effects of exothermic catalytic reactions upon combined transport of heat and mass in porous microreactors
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2019.02.015
– volume: 70
  start-page: 1040
  year: 2014
  ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0016
  article-title: “Numerical study of heat transfer enhancement in a pipe filled with porous media by axisymmetric tlb model based on gpu
  publication-title: Int. J. Heat Mass Transf.
  doi: 10.1016/j.ijheatmasstransfer.2013.11.028
SSID ssj0017046
Score 2.597873
Snippet •Low-pass filters can approximate the dynamics of heat convection in porous media.•The forced response remains linear at low reynolds numbers.•Increases in...
An increasing number of technologies require prediction of unsteady forced convection in porous media when the inlet flow is unsteady. To gain further insight...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 119657
SubjectTerms Barriers
Dynamic response
Flow velocity
Fluid dynamics
Fluid flow
Forced convection
Inlet flow
Linearity
Low pass filters
Nonlinear response
Nusselt number
Pore-scale analysis
Porosity
Porous media
Reynolds number
Sine waves
Thermal response
Transfer function
Transfer functions
Unsteady forced convection
Title A pore-scale assessment of the dynamic response of forced convection in porous media to inlet flow modulations
URI https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119657
https://www.proquest.com/docview/2438721496
Volume 153
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6KongRn1hf7MGDl9h0s9k1JynFUi32IBZ7WzbJLrS0SWki3vztzuRR8XEpeApZkt0wM5n5BuabIeQKYgJSSLTDtOGYoISOtiZyBLeA7rVkMUdy8tNQ9Ef8ceyPG6Rbc2GwrLLy_aVPL7x1tdKqpNlaTCbI8UXjApMKPAGof4wMdi7Rym8-VmUebemWZB30xvj0Nrn-qvGaTNHjzQGm5gVMNNghlKEfCQQGrL9D1Q-nXUSi3h7ZrSAk7ZRfuU8aJjkgW0UpZ5QdkqRDAVMbJwPpG6pXnTdpaimgPRqXM-jpsqyONbgOyBUkQYsS9ILoQCcJ7pK-ZbTgltA8hSXQMbWz9J3O07ga-5UdkVHv_qXbd6qpCk4EqUbuSF9y7Yde21rp2zCIjWc4JGHWE8a1IowjzaSIpRsJCRoWYVtH0gS3EbPgC33tHZONJE3MCaHcj7V0mQ18yG1djwXa-IZZOIaHxrq8Se5qAaqoajmOky9mqq4tm6rfKlCoAlWqoEmC1Q6Lsv3GGu92a52pbyalIFqssct5rW5V_d6ZYty7hdSZB-L0Xw45Izt4V5agnZONfPlmLgDs5OFlYc2XZLPzMOgP8Tp4fh18AmsQCDs
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwEB7BIjgadLx0cHDngoImIjh-kAqtVqDltRVI21lOYkuLIEEkiL_PTOLsCY4GidaR7cjf5JtvlJkxwAH6BCohsRG3TlCAkkXWuzxSwqO6t5oXgoqTbyZqfCcup3K6AKO-FobSKgP3d5zesnUYOQqnefQ0m1GNLxkXmlSaKFT900VYou5UcgBLw4ur8WT-M0HHXb0OETJNWIHDf2les3sivUdUqk2rFB01CeVEJakin_W5t_rA260zOv8Ja0FFsmH3ouuw4MoNWG6zOfN6E8ohQ1ntohoBcMzOm2-yyjMUfKzorqFnz12CrKNxFK94GKzNQm9rHdispFWql5q15SWsqXAIYWb-oXplj1URbv6qt-Du_Ox2NI7CxQpRjtFGE2mphZVZcuy9lj5LC5c4gXGYT5SLvcqK3HKtCh3nSiPIKju2uXbpSc490qG0yTYMyqp0v4AJWVgdc59KDG_jhKfWScc9biMy52OxA6f9AZo8dB2nyy8eTJ9edm_-h8AQBKaDYAfS-QpPXQeOL8wd9ZiZd1Zl0GF8YZW9Hm4TvvDacJGcYPQsUrX7LZv8hR_j25trc30xufoNq_Sky0jbg0Hz_OL2Ufs02Z9g228XeAlJ
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pore-scale+assessment+of+the+dynamic+response+of+forced+convection+in+porous+media+to+inlet+flow+modulations&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Habib%2C+Rabeeah&rft.au=Karimi%2C+Nader&rft.au=Yadollahi%2C+Bijan&rft.au=Doranehgard%2C+Mohammad+Hossein&rft.date=2020-06-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=152&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119657&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon