A pore-scale assessment of the dynamic response of forced convection in porous media to inlet flow modulations
•Low-pass filters can approximate the dynamics of heat convection in porous media.•The forced response remains linear at low reynolds numbers.•Increases in reynolds number increase the nonlinearity in a non-monotonic way.•Changes in porosity can alter linearity of the forced convection response. An...
Saved in:
Published in | International journal of heat and mass transfer Vol. 153; p. 119657 |
---|---|
Main Authors | , , , , |
Format | Journal Article |
Language | English |
Published |
Oxford
Elsevier Ltd
01.06.2020
Elsevier BV |
Subjects | |
Online Access | Get full text |
ISSN | 0017-9310 1879-2189 |
DOI | 10.1016/j.ijheatmasstransfer.2020.119657 |
Cover
Loading…
Abstract | •Low-pass filters can approximate the dynamics of heat convection in porous media.•The forced response remains linear at low reynolds numbers.•Increases in reynolds number increase the nonlinearity in a non-monotonic way.•Changes in porosity can alter linearity of the forced convection response.
An increasing number of technologies require prediction of unsteady forced convection in porous media when the inlet flow is unsteady. To gain further insight into this problem, the unsteady equations of continuity, Navier Stokes and energy are solved within the pores formed by several cylindrical flow obstacles. The system is modulated by sine waves superimposed on the inlet flow velocity, and the spatio-temporal responses of the flow and temperature fields are calculated. The results are then utilised to assess the linearity of the thermal response represented by the Nusselt number on the obstacles. It is shown that for linear cases, a transfer function can be devised for predicting the dynamic response of the Nusselt number. It is further argued that such a transfer function can be approximated by a classic low-pass filter which resembles the average response of the individual obstacles. This indicates that there exists a frequency threshold above which the thermal system is essentially insensitive to flow modulations. The results also show that changes in Reynolds number and porosity of the medium can push the dynamic response of the system towards non-linearity. Yet, there appears to be no monotonic change in the linearity of the response with respect to the Reynolds number and porosity. In general, it is found that for low Reynolds numbers, the dynamics of heat convection can be predicted decently by taking a transfer function approach. The findings of this study can enable further understanding of unsteady forced convection in porous media subject to time-varying inlet flows. |
---|---|
AbstractList | •Low-pass filters can approximate the dynamics of heat convection in porous media.•The forced response remains linear at low reynolds numbers.•Increases in reynolds number increase the nonlinearity in a non-monotonic way.•Changes in porosity can alter linearity of the forced convection response.
An increasing number of technologies require prediction of unsteady forced convection in porous media when the inlet flow is unsteady. To gain further insight into this problem, the unsteady equations of continuity, Navier Stokes and energy are solved within the pores formed by several cylindrical flow obstacles. The system is modulated by sine waves superimposed on the inlet flow velocity, and the spatio-temporal responses of the flow and temperature fields are calculated. The results are then utilised to assess the linearity of the thermal response represented by the Nusselt number on the obstacles. It is shown that for linear cases, a transfer function can be devised for predicting the dynamic response of the Nusselt number. It is further argued that such a transfer function can be approximated by a classic low-pass filter which resembles the average response of the individual obstacles. This indicates that there exists a frequency threshold above which the thermal system is essentially insensitive to flow modulations. The results also show that changes in Reynolds number and porosity of the medium can push the dynamic response of the system towards non-linearity. Yet, there appears to be no monotonic change in the linearity of the response with respect to the Reynolds number and porosity. In general, it is found that for low Reynolds numbers, the dynamics of heat convection can be predicted decently by taking a transfer function approach. The findings of this study can enable further understanding of unsteady forced convection in porous media subject to time-varying inlet flows. An increasing number of technologies require prediction of unsteady forced convection in porous media when the inlet flow is unsteady. To gain further insight into this problem, the unsteady equations of continuity, Navier Stokes and energy are solved within the pores formed by several cylindrical flow obstacles. The system is modulated by sine waves superimposed on the inlet flow velocity, and the spatio-temporal responses of the flow and temperature fields are calculated. The results are then utilised to assess the linearity of the thermal response represented by the Nusselt number on the obstacles. It is shown that for linear cases, a transfer function can be devised for predicting the dynamic response of the Nusselt number. It is further argued that such a transfer function can be approximated by a classic low-pass filter which resembles the average response of the individual obstacles. This indicates that there exists a frequency threshold above which the thermal system is essentially insensitive to flow modulations. The results also show that changes in Reynolds number and porosity of the medium can push the dynamic response of the system towards non-linearity. Yet, there appears to be no monotonic change in the linearity of the response with respect to the Reynolds number and porosity. In general, it is found that for low Reynolds numbers, the dynamics of heat convection can be predicted decently by taking a transfer function approach. The findings of this study can enable further understanding of unsteady forced convection in porous media subject to time-varying inlet flows. |
ArticleNumber | 119657 |
Author | Habib, Rabeeah Li, Larry K.B. Doranehgard, Mohammad Hossein Yadollahi, Bijan Karimi, Nader |
Author_xml | – sequence: 1 givenname: Rabeeah surname: Habib fullname: Habib, Rabeeah organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom – sequence: 2 givenname: Nader surname: Karimi fullname: Karimi, Nader email: nader.karimi@glasgow.ac.uk organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom – sequence: 3 givenname: Bijan surname: Yadollahi fullname: Yadollahi, Bijan organization: James Watt School of Engineering, University of Glasgow, Glasgow G12 8QQ, United Kingdom – sequence: 4 givenname: Mohammad Hossein surname: Doranehgard fullname: Doranehgard, Mohammad Hossein organization: Department of Civil and Environmental Engineering, School of Mining and Petroleum Engineering, University of Alberta, Edmonton, Alberta, T6G 1H9, Canada – sequence: 5 givenname: Larry K.B. surname: Li fullname: Li, Larry K.B. organization: Department of Mechanical and Aerospace Engineering, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong |
BookMark | eNqVkE1v1DAQhi1UpG4__oMlLlyy2E5iJzeqigJVJS70bDn2WHWU2IvHW9R_j8Nyggs9jWbm1TOj54KcxRSBkPec7Tnj8sO8D_MTmLIaxJJNRA95L5ioaz7KXr0hOz6osRF8GM_IjjGumrHl7JxcIM5byzq5I_GGHlKGBq1ZgFYWIK4QC02elieg7iWaNViaAQ8pImxzn7IFR22Kz2BLSJGGuFHSEekKLhhaUh0tUKhf0k-6JndczBbEK_LWmwXh-k-9JI93n77ffmkevn3-envz0NhODKVRvepMP7Xce9X7aXTQQie60bcSmJeTs0Yo6RSzUsEEcuLGKhgHK7xxrjftJXl34h5y-nEELHpOxxzrSS26dlCCd6OsqbtTyuaEmMFrG8rvR6vRsGjO9OZaz_pf13pzrU-uK-jjX6BDDqvJL69B3J8QULU8h7pFGyBW0SFXy9ql8P-wX6L8r_4 |
CitedBy_id | crossref_primary_10_1016_j_est_2022_105105 crossref_primary_10_1016_j_est_2021_103684 crossref_primary_10_1016_j_est_2022_104134 crossref_primary_10_1016_j_est_2022_104255 crossref_primary_10_1016_j_est_2021_103685 crossref_primary_10_1016_j_seta_2022_101992 crossref_primary_10_1115_1_4048227 crossref_primary_10_1016_j_est_2022_105061 crossref_primary_10_1016_j_jobe_2022_105180 crossref_primary_10_1016_j_enganabound_2023_01_010 crossref_primary_10_1016_j_jpowsour_2022_231540 crossref_primary_10_1108_HFF_07_2021_0495 crossref_primary_10_1016_j_jobe_2022_104887 crossref_primary_10_1016_j_est_2021_103601 crossref_primary_10_1007_s10973_020_09679_8 crossref_primary_10_1016_j_ijheatmasstransfer_2023_124006 crossref_primary_10_1016_j_est_2022_104786 crossref_primary_10_1016_j_est_2021_103553 crossref_primary_10_1016_j_est_2022_104383 crossref_primary_10_1016_j_est_2021_103670 crossref_primary_10_1016_j_seta_2021_101882 crossref_primary_10_1016_j_jtice_2021_05_014 crossref_primary_10_1016_j_est_2021_103714 crossref_primary_10_1016_j_est_2022_104429 crossref_primary_10_1016_j_jobe_2022_104931 crossref_primary_10_1016_j_est_2022_104545 crossref_primary_10_1016_j_est_2022_106449 crossref_primary_10_1016_j_est_2022_104873 crossref_primary_10_1016_j_est_2022_105041 crossref_primary_10_1007_s10973_020_09813_6 crossref_primary_10_1080_15567036_2020_1825566 crossref_primary_10_1016_j_jobe_2021_103974 crossref_primary_10_1016_j_seta_2021_101843 crossref_primary_10_1016_j_est_2021_103826 crossref_primary_10_1016_j_applthermaleng_2025_126158 crossref_primary_10_1080_00986445_2021_2001459 crossref_primary_10_1016_j_est_2022_104758 crossref_primary_10_1016_j_est_2022_104759 crossref_primary_10_1016_j_combustflame_2023_113020 crossref_primary_10_1016_j_jpowsour_2022_231606 crossref_primary_10_1016_j_est_2022_104117 crossref_primary_10_1016_j_enganabound_2022_05_005 crossref_primary_10_1016_j_enganabound_2022_05_006 crossref_primary_10_1016_j_ijheatmasstransfer_2022_123072 crossref_primary_10_1016_j_est_2022_104808 crossref_primary_10_1016_j_est_2022_103959 crossref_primary_10_1016_j_ijthermalsci_2024_109622 crossref_primary_10_1016_j_est_2022_104925 crossref_primary_10_3390_cryst10080679 crossref_primary_10_1007_s10973_020_09761_1 crossref_primary_10_1016_j_jpowsour_2022_231715 crossref_primary_10_1007_s10973_020_09667_y crossref_primary_10_1016_j_applthermaleng_2020_116099 crossref_primary_10_1016_j_jobe_2022_104173 crossref_primary_10_1016_j_est_2022_104693 crossref_primary_10_1007_s42241_021_0072_2 crossref_primary_10_1016_j_est_2022_104692 crossref_primary_10_1080_00986445_2021_1980397 crossref_primary_10_1007_s10973_020_09987_z crossref_primary_10_1016_j_est_2022_104457 crossref_primary_10_1016_j_pecs_2021_100966 crossref_primary_10_1016_j_jobe_2022_104328 crossref_primary_10_1016_j_jtice_2021_06_027 crossref_primary_10_1080_00986445_2021_1990888 crossref_primary_10_1115_1_4047968 crossref_primary_10_1115_1_4047969 crossref_primary_10_1016_j_est_2022_104181 crossref_primary_10_1016_j_enganabound_2024_105916 crossref_primary_10_1002_mma_7238 crossref_primary_10_1016_j_enganabound_2022_02_007 crossref_primary_10_1108_HFF_06_2020_0328 crossref_primary_10_1016_j_est_2022_104906 crossref_primary_10_1080_00986445_2021_1992398 crossref_primary_10_1016_j_jobe_2022_104697 crossref_primary_10_1016_j_jobe_2022_104215 crossref_primary_10_1016_j_jobe_2022_104732 crossref_primary_10_1016_j_est_2022_104794 crossref_primary_10_1016_j_jtice_2021_05_008 crossref_primary_10_1016_j_ijheatmasstransfer_2020_120471 crossref_primary_10_1016_j_rinp_2025_108155 crossref_primary_10_1016_j_est_2022_104392 crossref_primary_10_1016_j_est_2022_104391 crossref_primary_10_1016_j_jobe_2022_104505 crossref_primary_10_1016_j_cej_2022_136015 crossref_primary_10_1016_j_jpowsour_2022_231522 crossref_primary_10_1016_j_jobe_2022_104981 crossref_primary_10_1016_j_seta_2021_101928 crossref_primary_10_1016_j_jobe_2022_104227 crossref_primary_10_1016_j_est_2022_104686 crossref_primary_10_1016_j_rinp_2024_107434 crossref_primary_10_1016_j_proci_2024_105364 crossref_primary_10_1016_j_jobe_2022_104881 crossref_primary_10_1016_j_jtice_2021_04_050 crossref_primary_10_1007_s10973_020_09880_9 crossref_primary_10_1007_s10973_023_12043_1 crossref_primary_10_1063_5_0232694 crossref_primary_10_1021_acsomega_3c06390 crossref_primary_10_1080_00986445_2021_1980398 crossref_primary_10_1016_j_jobe_2022_104079 crossref_primary_10_1016_j_ijheatmasstransfer_2021_121755 crossref_primary_10_1016_j_est_2021_103730 crossref_primary_10_1080_00986445_2021_1983548 crossref_primary_10_1016_j_est_2022_103998 crossref_primary_10_1016_j_est_2022_104204 crossref_primary_10_1016_j_est_2022_103997 crossref_primary_10_1016_j_est_2022_104326 |
Cites_doi | 10.1016/j.ijheatmasstransfer.2010.11.037 10.1115/1.4028764 10.1016/j.cep.2012.10.015 10.1016/S0017-9310(00)00166-6 10.1016/j.ijheatmasstransfer.2017.11.118 10.1016/j.applthermaleng.2017.12.059 10.1016/j.ijggc.2018.08.007 10.1016/j.ijheatmasstransfer.2016.03.127 10.1115/1.3089541 10.1002/aic.14897 10.1016/j.ijheatfluidflow.2012.08.007 10.1115/1.2175150 10.1063/1.5092199 10.1002/2017WR021257 10.1016/j.ces.2015.06.028 10.1007/s11242-017-0995-9 10.1016/0360-1285(93)90020-F 10.1017/S0022112007006647 10.1016/j.ijheatmasstransfer.2013.06.060 10.1108/HFF-12-2017-0495 10.1016/0360-1285(96)00001-9 10.1115/1.3250730 10.1016/j.ijheatmasstransfer.2014.11.079 10.1016/j.jhydrol.2018.08.020 10.1016/j.ijthermalsci.2010.11.002 10.1016/j.ijheatmasstransfer.2007.04.038 10.1016/j.advwatres.2017.10.029 10.1016/j.ijheatmasstransfer.2013.09.020 10.1016/j.pecs.2008.04.003 10.1016/j.ces.2019.04.027 10.1016/j.jpowsour.2017.09.046 10.1016/j.ijheatmasstransfer.2012.12.022 10.1007/s11242-013-0210-6 10.1016/j.applthermaleng.2016.04.095 10.1016/j.energy.2014.10.036 10.1016/j.ijheatmasstransfer.2009.11.001 10.1017/jfm.2019.799 10.1016/j.ijheatmasstransfer.2013.11.048 10.1016/S1540-7489(02)80007-4 10.1016/j.pecs.2018.12.001 10.1007/s00231-015-1547-x 10.1016/j.applthermaleng.2018.06.043 10.1016/j.ijheatmasstransfer.2019.02.081 10.1016/j.ijheatmasstransfer.2018.11.172 10.1016/j.ijheatmasstransfer.2019.02.015 10.1016/j.ijheatmasstransfer.2013.11.028 |
ContentType | Journal Article |
Copyright | 2020 Copyright Elsevier BV Jun 2020 |
Copyright_xml | – notice: 2020 – notice: Copyright Elsevier BV Jun 2020 |
DBID | 6I. AAFTH AAYXX CITATION 7TB 8FD FR3 H8D KR7 L7M |
DOI | 10.1016/j.ijheatmasstransfer.2020.119657 |
DatabaseName | ScienceDirect Open Access Titles Elsevier:ScienceDirect:Open Access CrossRef Mechanical & Transportation Engineering Abstracts Technology Research Database Engineering Research Database Aerospace Database Civil Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Aerospace Database Civil Engineering Abstracts Engineering Research Database Technology Research Database Mechanical & Transportation Engineering Abstracts Advanced Technologies Database with Aerospace |
DatabaseTitleList | Aerospace Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Physics |
EISSN | 1879-2189 |
ExternalDocumentID | 10_1016_j_ijheatmasstransfer_2020_119657 S001793101936716X |
GroupedDBID | --K --M -~X .DC .~1 0R~ 1B1 1~. 1~5 29J 4.4 457 4G. 5GY 5VS 6I. 6TJ 7-5 71M 8P~ 9JN AABNK AACTN AAEDT AAEDW AAFTH AAHCO AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AARJD AAXUO ABDMP ABFNM ABMAC ABNUV ABTAH ABXDB ACDAQ ACGFS ACIWK ACKIV ACNNM ACRLP ADBBV ADEWK ADEZE ADMUD ADTZH AEBSH AECPX AEKER AENEX AFKWA AFTJW AGHFR AGUBO AGYEJ AHHHB AHIDL AHJVU AHPOS AIEXJ AIKHN AITUG AJOXV AKRWK AKURH ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ ASPBG AVWKF AXJTR AZFZN BELTK BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EJD ENUVR EO8 EO9 EP2 EP3 F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA HVGLF HZ~ IHE J1W JARJE JJJVA K-O KOM LY6 LY7 M41 MO0 N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG RNS ROL RPZ SAC SDF SDG SDP SES SET SEW SPC SPCBC SSG SSR SST SSZ T5K T9H TN5 VOH WUQ XPP ZMT ZY4 ~02 ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABJNI ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AFXIZ AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKYEP ANKPU APXCP BNPGV CITATION SSH 7TB 8FD EFKBS FR3 H8D KR7 L7M |
ID | FETCH-LOGICAL-c428t-7574a5b31ff75fb9de3e4249f36e0f6bdca276d70c67ebe6b1ac7e98c2fadd5a3 |
IEDL.DBID | .~1 |
ISSN | 0017-9310 |
IngestDate | Fri Jul 25 04:34:03 EDT 2025 Thu Apr 24 23:05:04 EDT 2025 Tue Jul 01 04:24:00 EDT 2025 Tue Jul 16 04:30:27 EDT 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Porous media Dynamic response Nonlinear response Unsteady forced convection Transfer function Pore-scale analysis |
Language | English |
License | This is an open access article under the CC BY license. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-7574a5b31ff75fb9de3e4249f36e0f6bdca276d70c67ebe6b1ac7e98c2fadd5a3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
OpenAccessLink | https://www.sciencedirect.com/science/article/pii/S001793101936716X |
PQID | 2438721496 |
PQPubID | 2045464 |
ParticipantIDs | proquest_journals_2438721496 crossref_citationtrail_10_1016_j_ijheatmasstransfer_2020_119657 crossref_primary_10_1016_j_ijheatmasstransfer_2020_119657 elsevier_sciencedirect_doi_10_1016_j_ijheatmasstransfer_2020_119657 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | June 2020 2020-06-00 20200601 |
PublicationDateYYYYMMDD | 2020-06-01 |
PublicationDate_xml | – month: 06 year: 2020 text: June 2020 |
PublicationDecade | 2020 |
PublicationPlace | Oxford |
PublicationPlace_xml | – name: Oxford |
PublicationTitle | International journal of heat and mass transfer |
PublicationYear | 2020 |
Publisher | Elsevier Ltd Elsevier BV |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier BV |
References | Jouybari, Maerefat, Nimvari (bib0033) 2016; 52 Dejam (bib0003) 2019; 136 Kolb (bib0011) 2013; 65 Hunt, Karimi, Yadollahi, Torabi (bib0010) 2019; 134 Lieuwen (bib0053) 2012 Hunt, Karimi, Torabi (bib0024) 2018; 119 Gopal, Nagrath (bib0049) 2009 Ellzey, Belmont, Smith (bib0008) 2019; 72 Karimi (bib0048) 2014; 78 Wu, Caliot, Flamant, Wang (bib0034) 2011; 54 Howell, Hall, Ellzey (bib0039) 1996; 22 Banerjee (bib0050) 2018 Moase, Brear, Manzie (bib0055) 2007; 585 Yang, Weigand, Terzis, Weishaupt, Helmig (bib0025) 2018; 122 Teruel, Díaz (bib0032) 2013; 60 Pathak, Ghiaasiaan (bib0037) 2011; 50 Dejam, Hassanzadeh, Chen (bib0005) 2015; 137 Mahmoudi, Karimi (bib0015) 2014; 68 Saito, de Lemos (bib0041) 2006; 128 Luhmann (bib0046) 2013 Chen, Wung (bib0042) 1989; 111 Dejam, Hassanzadeh (bib0028) 2018; 111 McManus, Poinsot, Candel (bib0047) 1993; 19 Kou, Dejam (bib0001) 2019; 31 Dejam (bib0002) 2019; 204 Alshare, Strykowski, Simon (bib0036) 2010; 53 Mahmoudi, Hooman, Vafai (bib0009) 2019 Ogata, Yang (bib0044) 2010; Volume 17 Dejam, Hassanzadeh, Chen (bib0026) 2018; 565 Lopez Penha, Stolz, Kuerten, Nordlund, Kuczaj, Geurts (bib0022) 2012; 38 Kuwahara, Shirota, Nakayama (bib0031) 2001; 44 Dejam, Hassanzadeh (bib0027) 2018; 78 Ogata (bib0045) 1998; Volume 3 Candel (bib0052) 2002; 29 Christodoulou, Karimi, Cammarano, Paul, Navarro-Martinez (bib0043) 2020; 882 Strogatz (bib0054) 2015 Dickson, Torabi, Karimi (bib0018) 2016; 103 Chen, Yan, Song, Xu (bib0040) 2018; 131 Deng, Feng, E, Zhu, Chen, Wen, Yin (bib0006) 2018; 142 Ozgumus, Mobedi (bib0021) 2014; 137 Wood, Harris (bib0012) 2008; 34 Gamrat, Favre-Marinet, Le Person (bib0023) 2008; 51 Izadian (bib0051) 2019 Dejam, Hassanzadeh, Chen (bib0004) 2015; 61 Chu, Yang, Pandey, Weigand (bib0019) 2019; 133 Rong, Zhang, Shi, Guo (bib0016) 2014; 70 Dejam, Hassanzadeh, Chen (bib0029) 2017; 53 He, Ma (bib0013) 2015; 83 Torabi, Peterson, Torabi, Karimi (bib0020) 2016; 99 Kim, Ghiaasiaan (bib0035) 2009; 131 Xia, Cao, Bi (bib0007) 2017; 367 Pathak, Mulcahey, Ghiaasiaan (bib0038) 2013; 66 Dejam, Hassanzadeh, Chen (bib0030) 2013; 100 Saberinejad, Keshavarz, Payandehdoost, Azmoodeh, Batooei (bib0014) 2018; 28 Mahmoudi, Karimi, Mazaheri (bib0017) 2014; 70 Kim (10.1016/j.ijheatmasstransfer.2020.119657_bib0035) 2009; 131 Wood (10.1016/j.ijheatmasstransfer.2020.119657_bib0012) 2008; 34 Chu (10.1016/j.ijheatmasstransfer.2020.119657_bib0019) 2019; 133 Wu (10.1016/j.ijheatmasstransfer.2020.119657_bib0034) 2011; 54 Saito (10.1016/j.ijheatmasstransfer.2020.119657_bib0041) 2006; 128 Christodoulou (10.1016/j.ijheatmasstransfer.2020.119657_bib0043) 2020; 882 Luhmann (10.1016/j.ijheatmasstransfer.2020.119657_bib0046) 2013 Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0004) 2015; 61 Karimi (10.1016/j.ijheatmasstransfer.2020.119657_bib0048) 2014; 78 Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0005) 2015; 137 Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0002) 2019; 204 Moase (10.1016/j.ijheatmasstransfer.2020.119657_bib0055) 2007; 585 Gamrat (10.1016/j.ijheatmasstransfer.2020.119657_bib0023) 2008; 51 Gopal (10.1016/j.ijheatmasstransfer.2020.119657_bib0049) 2009 Lopez Penha (10.1016/j.ijheatmasstransfer.2020.119657_bib0022) 2012; 38 Howell (10.1016/j.ijheatmasstransfer.2020.119657_bib0039) 1996; 22 Rong (10.1016/j.ijheatmasstransfer.2020.119657_bib0016) 2014; 70 Torabi (10.1016/j.ijheatmasstransfer.2020.119657_bib0020) 2016; 99 Ozgumus (10.1016/j.ijheatmasstransfer.2020.119657_bib0021) 2014; 137 Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0028) 2018; 111 Mahmoudi (10.1016/j.ijheatmasstransfer.2020.119657_bib0015) 2014; 68 Strogatz (10.1016/j.ijheatmasstransfer.2020.119657_bib0054) 2015 Teruel (10.1016/j.ijheatmasstransfer.2020.119657_bib0032) 2013; 60 Alshare (10.1016/j.ijheatmasstransfer.2020.119657_bib0036) 2010; 53 Chen (10.1016/j.ijheatmasstransfer.2020.119657_bib0040) 2018; 131 Banerjee (10.1016/j.ijheatmasstransfer.2020.119657_bib0050) 2018 Mahmoudi (10.1016/j.ijheatmasstransfer.2020.119657_bib0017) 2014; 70 Kou (10.1016/j.ijheatmasstransfer.2020.119657_bib0001) 2019; 31 He (10.1016/j.ijheatmasstransfer.2020.119657_bib0013) 2015; 83 Hunt (10.1016/j.ijheatmasstransfer.2020.119657_bib0024) 2018; 119 Candel (10.1016/j.ijheatmasstransfer.2020.119657_bib0052) 2002; 29 Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0030) 2013; 100 Lieuwen (10.1016/j.ijheatmasstransfer.2020.119657_bib0053) 2012 Pathak (10.1016/j.ijheatmasstransfer.2020.119657_bib0037) 2011; 50 Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0003) 2019; 136 Chen (10.1016/j.ijheatmasstransfer.2020.119657_bib0042) 1989; 111 Hunt (10.1016/j.ijheatmasstransfer.2020.119657_bib0010) 2019; 134 Izadian (10.1016/j.ijheatmasstransfer.2020.119657_bib0051) 2019 Pathak (10.1016/j.ijheatmasstransfer.2020.119657_bib0038) 2013; 66 Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0026) 2018; 565 Kuwahara (10.1016/j.ijheatmasstransfer.2020.119657_bib0031) 2001; 44 McManus (10.1016/j.ijheatmasstransfer.2020.119657_bib0047) 1993; 19 Xia (10.1016/j.ijheatmasstransfer.2020.119657_bib0007) 2017; 367 Ellzey (10.1016/j.ijheatmasstransfer.2020.119657_bib0008) 2019; 72 Saberinejad (10.1016/j.ijheatmasstransfer.2020.119657_bib0014) 2018; 28 Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0029) 2017; 53 Mahmoudi (10.1016/j.ijheatmasstransfer.2020.119657_bib0009) 2019 Ogata (10.1016/j.ijheatmasstransfer.2020.119657_bib0045) 1998; Volume 3 Yang (10.1016/j.ijheatmasstransfer.2020.119657_bib0025) 2018; 122 Dejam (10.1016/j.ijheatmasstransfer.2020.119657_bib0027) 2018; 78 Dickson (10.1016/j.ijheatmasstransfer.2020.119657_bib0018) 2016; 103 Kolb (10.1016/j.ijheatmasstransfer.2020.119657_bib0011) 2013; 65 Jouybari (10.1016/j.ijheatmasstransfer.2020.119657_bib0033) 2016; 52 Ogata (10.1016/j.ijheatmasstransfer.2020.119657_bib0044) 2010; Volume 17 Deng (10.1016/j.ijheatmasstransfer.2020.119657_bib0006) 2018; 142 |
References_xml | – volume: Volume 17 year: 2010 ident: bib0044 publication-title: Modern Control Engineering – volume: 51 start-page: 853 year: 2008 end-page: 864 ident: bib0023 article-title: Numerical study of heat transfer over banks of rods in small reynolds number cross-flow publication-title: Int. J. Heat Mass Transf. – year: 2012 ident: bib0053 article-title: Unsteady Combustor Physics – volume: 111 start-page: 36 year: 2018 end-page: 57 ident: bib0028 article-title: “Diffusive leakage of brine from aquifers during CO2 geological storage publication-title: Adv. Water Resour. – volume: 28 start-page: 1845 year: 2018 end-page: 1865 ident: bib0014 article-title: Numerical study of heat transfer performance in a pipe partially filled with non-uniform porous media under ltne condition publication-title: Int. J. Numer. Methods Heat Fluid Flow – volume: 29 start-page: 1 year: 2002 end-page: 28 ident: bib0052 article-title: Combustion dynamics and control: progress and challenges publication-title: Proc. Combust. Inst. – volume: 119 start-page: 372 year: 2018 end-page: 391 ident: bib0024 article-title: “Two-dimensional analytical investigation of coupled heat and mass transfer and entropy generation in a porous, catalytic microreactor,” publication-title: Int. J. Heat Mass Transf. – volume: 133 start-page: 11 year: 2019 end-page: 20 ident: bib0019 article-title: “Direct numerical simulation of convective heat transfer in porous media publication-title: Int. J. Heat Mass Transf. – volume: 44 start-page: 1153 year: 2001 end-page: 1159 ident: bib0031 article-title: A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media publication-title: Int. J. Heat Mass Transf. – volume: 131 year: 2009 ident: bib0035 article-title: Numerical modeling of laminar pulsating flow in porous media publication-title: J. Fluids Eng. – volume: 52 start-page: 269 year: 2016 end-page: 280 ident: bib0033 article-title: A pore scale study on turbulent combustion in porous media publication-title: Heat Mass Transf. und Stoffuebertragung – year: 2019 ident: bib0051 article-title: Fundamentals of Modern Electric Circuit Analysis and Filter Synthesis – volume: 66 start-page: 23 year: 2013 end-page: 30 ident: bib0038 article-title: Conjugate heat transfer during oscillatory laminar flow in porous media publication-title: Int. J. Heat Mass Transf. – volume: 70 start-page: 875 year: 2014 end-page: 891 ident: bib0017 article-title: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition: effects of different thermal boundary conditions at the porous-fluid interface publication-title: Int. J. Heat Mass Transf. – volume: 137 year: 2014 ident: bib0021 article-title: “Effect of pore to throat size ratio on interfacial heat transfer coefficient of porous media publication-title: J. Heat Transfer – year: 2019 ident: bib0009 article-title: Convective Heat Transfer in Porous Media – volume: 99 start-page: 303 year: 2016 end-page: 316 ident: bib0020 article-title: A thermodynamic analysis of forced convection through porous media using pore scale modeling publication-title: Int. J. Heat Mass Transf. – year: 2013 ident: bib0046 publication-title: Introduction to Systems Theory – volume: 204 start-page: 298 year: 2019 end-page: 309 ident: bib0002 article-title: Derivation of dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a porous-walled microchannel publication-title: Chem. Eng. Sci. – volume: 53 start-page: 2294 year: 2010 end-page: 2310 ident: bib0036 article-title: Modeling of unsteady and steady fluid flow, heat transfer and dispersion in porous media using unit cell scale publication-title: Int. J. Heat Mass Transf. – volume: 131 start-page: 750 year: 2018 end-page: 765 ident: bib0040 article-title: Effect of heat and mass transfer on the combustion stability in catalytic micro-combustors publication-title: Appl. Therm. Eng. – volume: 65 start-page: 1 year: 2013 end-page: 44 ident: bib0011 article-title: Review: microstructured reactors for distributed and renewable production of fuels and electrical energy publication-title: Chem. Eng. Process. Process Intensif. – volume: 38 start-page: 94 year: 2012 end-page: 106 ident: bib0022 article-title: “Fully-developed conjugate heat transfer in porous media with uniform heating publication-title: Int. J. Heat Fluid Flow – volume: 60 start-page: 406 year: 2013 end-page: 412 ident: bib0032 article-title: “Calculation of the interfacial heat transfer coefficient in porous media employing numerical simulations publication-title: Int. J. Heat Mass Transf. – volume: 565 start-page: 289 year: 2018 end-page: 301 ident: bib0026 article-title: Semi-analytical solution for pressure transient analysis of a hydraulically fractured vertical well in a bounded dual-porosity reservoir publication-title: J. Hydrol. – volume: 142 start-page: 10 year: 2018 end-page: 29 ident: bib0006 article-title: Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: a review publication-title: Appl. Therm. Eng. – volume: 78 start-page: 490 year: 2014 end-page: 500 ident: bib0048 article-title: Response of a conical, laminar premixed flame to low amplitude acoustic forcing - A comparison between experiment and kinematic theories publication-title: Energy – volume: 61 start-page: 3981 year: 2015 end-page: 3995 ident: bib0004 article-title: Shear dispersion in combined pressure-driven and electro-osmotic flows in a capillary tube with a porous wall publication-title: AIChE J – volume: 367 start-page: 90 year: 2017 end-page: 105 ident: bib0007 article-title: A review on battery thermal management in electric vehicle application publication-title: J. Power Sources – volume: 111 start-page: 641 year: 1989 end-page: 648 ident: bib0042 article-title: Finite analytic solution of convective heat transfer for tube arrays in crossflow: part II—Heat transfer analysis publication-title: J. Heat Transfer – volume: 19 start-page: 1 year: 1993 end-page: 29 ident: bib0047 article-title: A review of active control of combustion instabilities publication-title: Prog. Energy Combust. Sci. – volume: 22 start-page: 121 year: 1996 end-page: 145 ident: bib0039 article-title: Combustion of hydrocarbon fuels within porous inert media publication-title: Prog. Energy Combust. Sci. – volume: 70 start-page: 1040 year: 2014 end-page: 1049 ident: bib0016 article-title: “Numerical study of heat transfer enhancement in a pipe filled with porous media by axisymmetric tlb model based on gpu publication-title: Int. J. Heat Mass Transf. – volume: 100 start-page: 159 year: 2013 end-page: 192 ident: bib0030 article-title: Semi-Analytical solutions for a partially penetrated well with wellbore storage and skin effects in a double-porosity system with a gas cap publication-title: Transp. Porous Media – volume: 128 start-page: 444 year: 2006 ident: bib0041 article-title: A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods publication-title: J. Heat Transfer – year: 2015 ident: bib0054 article-title: Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry, and Engineering, Second Edition – volume: 83 start-page: 164 year: 2015 end-page: 172 ident: bib0013 article-title: Thermal management of batteries employing active temperature control and reciprocating cooling flow publication-title: Int. J. Heat Mass Transf. – volume: 54 start-page: 1527 year: 2011 end-page: 1537 ident: bib0034 article-title: Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances publication-title: Int. J. Heat Mass Transf. – volume: 31 year: 2019 ident: bib0001 article-title: Dispersion due to combined pressure-driven and electro-osmotic flows in a channel surrounded by a permeable porous medium publication-title: Phys. Fluids – volume: 68 start-page: 161 year: 2014 end-page: 173 ident: bib0015 article-title: “Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition publication-title: Int. J. Heat Mass Transf. – volume: Volume 3 year: 1998 ident: bib0045 publication-title: System Dynamics – volume: 136 start-page: 87 year: 2019 end-page: 98 ident: bib0003 article-title: Hydrodynamic dispersion due to a variety of flow velocity profiles in a porous-walled microfluidic channel publication-title: Int. J. Heat Mass Transf. – volume: 134 start-page: 1227 year: 2019 end-page: 1249 ident: bib0010 article-title: The effects of exothermic catalytic reactions upon combined transport of heat and mass in porous microreactors publication-title: Int. J. Heat Mass Transf. – volume: 137 start-page: 205 year: 2015 end-page: 215 ident: bib0005 article-title: Shear dispersion in combined pressure-driven and electro-osmotic flows in a channel with porous walls publication-title: Chem. Eng. Sci. – volume: 122 start-page: 145 year: 2018 end-page: 167 ident: bib0025 article-title: “Numerical simulation of turbulent flow and heat transfer in a three-dimensional channel coupled with flow through porous structures publication-title: Transp. Porous Media – volume: 34 start-page: 667 year: 2008 end-page: 684 ident: bib0012 article-title: Porous burners for lean-burn applications publication-title: Prog. Energy Combust. Sci. – volume: 78 start-page: 177 year: 2018 end-page: 197 ident: bib0027 article-title: “The role of natural fractures of finite double-porosity aquifers on diffusive leakage of brine during geological storage of CO2 publication-title: Int. J. Greenh. Gas Control – volume: 72 start-page: 32 year: 2019 end-page: 58 ident: bib0008 article-title: Heat recirculating reactors: fundamental research and applications publication-title: Prog. Energy Combust. Sci. – volume: 53 start-page: 8187 year: 2017 end-page: 8210 ident: bib0029 article-title: Pre-Darcy flow in porous media publication-title: Water Resour. Res. – year: 2018 ident: bib0050 article-title: Automated Electronic Filter Design – volume: 50 start-page: 440 year: 2011 end-page: 448 ident: bib0037 article-title: “Convective heat transfer and thermal dispersion during laminar pulsating flow in porous media publication-title: Int. J. Therm. Sci. – volume: 585 start-page: 281 year: 2007 end-page: 304 ident: bib0055 article-title: The forced response of choked nozzles and supersonic diffusers publication-title: J. Fluid Mech. – volume: 103 start-page: 459 year: 2016 end-page: 480 ident: bib0018 article-title: “First and second law analyses of nanofluid forced convection in a partially-filled porous channel – The effects of local thermal non-equilibrium and internal heat sources publication-title: Appl. Therm. Eng. – year: 2009 ident: bib0049 article-title: Control Systems Engineering – volume: 882 start-page: A8 year: 2020 ident: bib0043 article-title: State prediction of an entropy wave advecting through a turbulent channel flow publication-title: J. Fluid Mech. – volume: 54 start-page: 1527 issue: 7–8 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0034 article-title: Numerical simulation of convective heat transfer between air flow and ceramic foams to optimise volumetric solar air receiver performances publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2010.11.037 – volume: 137 issue: 1 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0021 article-title: “Effect of pore to throat size ratio on interfacial heat transfer coefficient of porous media publication-title: J. Heat Transfer doi: 10.1115/1.4028764 – volume: 65 start-page: 1 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0011 article-title: Review: microstructured reactors for distributed and renewable production of fuels and electrical energy publication-title: Chem. Eng. Process. Process Intensif. doi: 10.1016/j.cep.2012.10.015 – volume: 44 start-page: 1153 issue: 6 year: 2001 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0031 article-title: A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media publication-title: Int. J. Heat Mass Transf. doi: 10.1016/S0017-9310(00)00166-6 – volume: 119 start-page: 372 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0024 article-title: “Two-dimensional analytical investigation of coupled heat and mass transfer and entropy generation in a porous, catalytic microreactor,” publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2017.11.118 – volume: Volume 3 year: 1998 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0045 – year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0051 – volume: 131 start-page: 750 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0040 article-title: Effect of heat and mass transfer on the combustion stability in catalytic micro-combustors publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2017.12.059 – volume: 78 start-page: 177 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0027 article-title: “The role of natural fractures of finite double-porosity aquifers on diffusive leakage of brine during geological storage of CO2 publication-title: Int. J. Greenh. Gas Control doi: 10.1016/j.ijggc.2018.08.007 – volume: 99 start-page: 303 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0020 article-title: A thermodynamic analysis of forced convection through porous media using pore scale modeling publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2016.03.127 – volume: 131 issue: 4 year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0035 article-title: Numerical modeling of laminar pulsating flow in porous media publication-title: J. Fluids Eng. doi: 10.1115/1.3089541 – volume: 61 start-page: 3981 issue: 11 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0004 article-title: Shear dispersion in combined pressure-driven and electro-osmotic flows in a capillary tube with a porous wall publication-title: AIChE J doi: 10.1002/aic.14897 – volume: 38 start-page: 94 year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0022 article-title: “Fully-developed conjugate heat transfer in porous media with uniform heating publication-title: Int. J. Heat Fluid Flow doi: 10.1016/j.ijheatfluidflow.2012.08.007 – volume: 128 start-page: 444 issue: 5 year: 2006 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0041 article-title: A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods publication-title: J. Heat Transfer doi: 10.1115/1.2175150 – volume: 31 issue: 5 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0001 article-title: Dispersion due to combined pressure-driven and electro-osmotic flows in a channel surrounded by a permeable porous medium publication-title: Phys. Fluids doi: 10.1063/1.5092199 – volume: 53 start-page: 8187 issue: 10 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0029 article-title: Pre-Darcy flow in porous media publication-title: Water Resour. Res. doi: 10.1002/2017WR021257 – volume: 137 start-page: 205 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0005 article-title: Shear dispersion in combined pressure-driven and electro-osmotic flows in a channel with porous walls publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2015.06.028 – volume: 122 start-page: 145 issue: 1 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0025 article-title: “Numerical simulation of turbulent flow and heat transfer in a three-dimensional channel coupled with flow through porous structures publication-title: Transp. Porous Media doi: 10.1007/s11242-017-0995-9 – year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0050 – volume: Volume 17 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0044 – volume: 19 start-page: 1 issue: 1 year: 1993 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0047 article-title: A review of active control of combustion instabilities publication-title: Prog. Energy Combust. Sci. doi: 10.1016/0360-1285(93)90020-F – volume: 585 start-page: 281 year: 2007 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0055 article-title: The forced response of choked nozzles and supersonic diffusers publication-title: J. Fluid Mech. doi: 10.1017/S0022112007006647 – year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0054 – volume: 66 start-page: 23 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0038 article-title: Conjugate heat transfer during oscillatory laminar flow in porous media publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.06.060 – volume: 28 start-page: 1845 issue: 8 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0014 article-title: Numerical study of heat transfer performance in a pipe partially filled with non-uniform porous media under ltne condition publication-title: Int. J. Numer. Methods Heat Fluid Flow doi: 10.1108/HFF-12-2017-0495 – volume: 22 start-page: 121 issue: 2 year: 1996 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0039 article-title: Combustion of hydrocarbon fuels within porous inert media publication-title: Prog. Energy Combust. Sci. doi: 10.1016/0360-1285(96)00001-9 – volume: 111 start-page: 641 issue: 3 year: 1989 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0042 article-title: Finite analytic solution of convective heat transfer for tube arrays in crossflow: part II—Heat transfer analysis publication-title: J. Heat Transfer doi: 10.1115/1.3250730 – volume: 83 start-page: 164 year: 2015 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0013 article-title: Thermal management of batteries employing active temperature control and reciprocating cooling flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2014.11.079 – year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0046 – volume: 565 start-page: 289 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0026 article-title: Semi-analytical solution for pressure transient analysis of a hydraulically fractured vertical well in a bounded dual-porosity reservoir publication-title: J. Hydrol. doi: 10.1016/j.jhydrol.2018.08.020 – volume: 50 start-page: 440 issue: 4 year: 2011 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0037 article-title: “Convective heat transfer and thermal dispersion during laminar pulsating flow in porous media publication-title: Int. J. Therm. Sci. doi: 10.1016/j.ijthermalsci.2010.11.002 – year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0009 – volume: 51 start-page: 853 issue: 3–4 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0023 article-title: Numerical study of heat transfer over banks of rods in small reynolds number cross-flow publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2007.04.038 – volume: 111 start-page: 36 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0028 article-title: “Diffusive leakage of brine from aquifers during CO2 geological storage publication-title: Adv. Water Resour. doi: 10.1016/j.advwatres.2017.10.029 – volume: 68 start-page: 161 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0015 article-title: “Numerical investigation of heat transfer enhancement in a pipe partially filled with a porous material under local thermal non-equilibrium condition publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.09.020 – volume: 34 start-page: 667 issue: 5 year: 2008 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0012 article-title: Porous burners for lean-burn applications publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2008.04.003 – volume: 204 start-page: 298 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0002 article-title: Derivation of dispersion coefficient in an electro-osmotic flow of a viscoelastic fluid through a porous-walled microchannel publication-title: Chem. Eng. Sci. doi: 10.1016/j.ces.2019.04.027 – volume: 367 start-page: 90 year: 2017 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0007 article-title: A review on battery thermal management in electric vehicle application publication-title: J. Power Sources doi: 10.1016/j.jpowsour.2017.09.046 – volume: 60 start-page: 406 issue: 1 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0032 article-title: “Calculation of the interfacial heat transfer coefficient in porous media employing numerical simulations publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2012.12.022 – volume: 100 start-page: 159 issue: 2 year: 2013 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0030 article-title: Semi-Analytical solutions for a partially penetrated well with wellbore storage and skin effects in a double-porosity system with a gas cap publication-title: Transp. Porous Media doi: 10.1007/s11242-013-0210-6 – volume: 103 start-page: 459 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0018 article-title: “First and second law analyses of nanofluid forced convection in a partially-filled porous channel – The effects of local thermal non-equilibrium and internal heat sources publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2016.04.095 – volume: 78 start-page: 490 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0048 article-title: Response of a conical, laminar premixed flame to low amplitude acoustic forcing - A comparison between experiment and kinematic theories publication-title: Energy doi: 10.1016/j.energy.2014.10.036 – year: 2009 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0049 – volume: 53 start-page: 2294 issue: 9–10 year: 2010 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0036 article-title: Modeling of unsteady and steady fluid flow, heat transfer and dispersion in porous media using unit cell scale publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2009.11.001 – volume: 882 start-page: A8 year: 2020 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0043 article-title: State prediction of an entropy wave advecting through a turbulent channel flow publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.799 – year: 2012 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0053 – volume: 70 start-page: 875 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0017 article-title: Analytical investigation of heat transfer enhancement in a channel partially filled with a porous material under local thermal non-equilibrium condition: effects of different thermal boundary conditions at the porous-fluid interface publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.11.048 – volume: 29 start-page: 1 issue: 1 year: 2002 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0052 article-title: Combustion dynamics and control: progress and challenges publication-title: Proc. Combust. Inst. doi: 10.1016/S1540-7489(02)80007-4 – volume: 72 start-page: 32 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0008 article-title: Heat recirculating reactors: fundamental research and applications publication-title: Prog. Energy Combust. Sci. doi: 10.1016/j.pecs.2018.12.001 – volume: 52 start-page: 269 issue: 2 year: 2016 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0033 article-title: A pore scale study on turbulent combustion in porous media publication-title: Heat Mass Transf. und Stoffuebertragung doi: 10.1007/s00231-015-1547-x – volume: 142 start-page: 10 year: 2018 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0006 article-title: Effects of different coolants and cooling strategies on the cooling performance of the power lithium ion battery system: a review publication-title: Appl. Therm. Eng. doi: 10.1016/j.applthermaleng.2018.06.043 – volume: 136 start-page: 87 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0003 article-title: Hydrodynamic dispersion due to a variety of flow velocity profiles in a porous-walled microfluidic channel publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.02.081 – volume: 133 start-page: 11 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0019 article-title: “Direct numerical simulation of convective heat transfer in porous media publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2018.11.172 – volume: 134 start-page: 1227 year: 2019 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0010 article-title: The effects of exothermic catalytic reactions upon combined transport of heat and mass in porous microreactors publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2019.02.015 – volume: 70 start-page: 1040 year: 2014 ident: 10.1016/j.ijheatmasstransfer.2020.119657_bib0016 article-title: “Numerical study of heat transfer enhancement in a pipe filled with porous media by axisymmetric tlb model based on gpu publication-title: Int. J. Heat Mass Transf. doi: 10.1016/j.ijheatmasstransfer.2013.11.028 |
SSID | ssj0017046 |
Score | 2.597873 |
Snippet | •Low-pass filters can approximate the dynamics of heat convection in porous media.•The forced response remains linear at low reynolds numbers.•Increases in... An increasing number of technologies require prediction of unsteady forced convection in porous media when the inlet flow is unsteady. To gain further insight... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 119657 |
SubjectTerms | Barriers Dynamic response Flow velocity Fluid dynamics Fluid flow Forced convection Inlet flow Linearity Low pass filters Nonlinear response Nusselt number Pore-scale analysis Porosity Porous media Reynolds number Sine waves Thermal response Transfer function Transfer functions Unsteady forced convection |
Title | A pore-scale assessment of the dynamic response of forced convection in porous media to inlet flow modulations |
URI | https://dx.doi.org/10.1016/j.ijheatmasstransfer.2020.119657 https://www.proquest.com/docview/2438721496 |
Volume | 153 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV1LS8NAEF6KongRn1hf7MGDl9h0s9k1JynFUi32IBZ7WzbJLrS0SWki3vztzuRR8XEpeApZkt0wM5n5BuabIeQKYgJSSLTDtOGYoISOtiZyBLeA7rVkMUdy8tNQ9Ef8ceyPG6Rbc2GwrLLy_aVPL7x1tdKqpNlaTCbI8UXjApMKPAGof4wMdi7Rym8-VmUebemWZB30xvj0Nrn-qvGaTNHjzQGm5gVMNNghlKEfCQQGrL9D1Q-nXUSi3h7ZrSAk7ZRfuU8aJjkgW0UpZ5QdkqRDAVMbJwPpG6pXnTdpaimgPRqXM-jpsqyONbgOyBUkQYsS9ILoQCcJ7pK-ZbTgltA8hSXQMbWz9J3O07ga-5UdkVHv_qXbd6qpCk4EqUbuSF9y7Yde21rp2zCIjWc4JGHWE8a1IowjzaSIpRsJCRoWYVtH0gS3EbPgC33tHZONJE3MCaHcj7V0mQ18yG1djwXa-IZZOIaHxrq8Se5qAaqoajmOky9mqq4tm6rfKlCoAlWqoEmC1Q6Lsv3GGu92a52pbyalIFqssct5rW5V_d6ZYty7hdSZB-L0Xw45Izt4V5agnZONfPlmLgDs5OFlYc2XZLPzMOgP8Tp4fh18AmsQCDs |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwrV07T-QwEB7BIjgadLx0cHDngoImIjh-kAqtVqDltRVI21lOYkuLIEEkiL_PTOLsCY4GidaR7cjf5JtvlJkxwAH6BCohsRG3TlCAkkXWuzxSwqO6t5oXgoqTbyZqfCcup3K6AKO-FobSKgP3d5zesnUYOQqnefQ0m1GNLxkXmlSaKFT900VYou5UcgBLw4ur8WT-M0HHXb0OETJNWIHDf2les3sivUdUqk2rFB01CeVEJakin_W5t_rA260zOv8Ja0FFsmH3ouuw4MoNWG6zOfN6E8ohQ1ntohoBcMzOm2-yyjMUfKzorqFnz12CrKNxFK94GKzNQm9rHdispFWql5q15SWsqXAIYWb-oXplj1URbv6qt-Du_Ox2NI7CxQpRjtFGE2mphZVZcuy9lj5LC5c4gXGYT5SLvcqK3HKtCh3nSiPIKju2uXbpSc490qG0yTYMyqp0v4AJWVgdc59KDG_jhKfWScc9biMy52OxA6f9AZo8dB2nyy8eTJ9edm_-h8AQBKaDYAfS-QpPXQeOL8wd9ZiZd1Zl0GF8YZW9Hm4TvvDacJGcYPQsUrX7LZv8hR_j25trc30xufoNq_Sky0jbg0Hz_OL2Ufs02Z9g228XeAlJ |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+pore-scale+assessment+of+the+dynamic+response+of+forced+convection+in+porous+media+to+inlet+flow+modulations&rft.jtitle=International+journal+of+heat+and+mass+transfer&rft.au=Habib%2C+Rabeeah&rft.au=Karimi%2C+Nader&rft.au=Yadollahi%2C+Bijan&rft.au=Doranehgard%2C+Mohammad+Hossein&rft.date=2020-06-01&rft.pub=Elsevier+BV&rft.issn=0017-9310&rft.eissn=1879-2189&rft.volume=152&rft.spage=1&rft_id=info:doi/10.1016%2Fj.ijheatmasstransfer.2020.119657&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0017-9310&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0017-9310&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0017-9310&client=summon |