Predicting aerodynamic pressure on a square cylinder from wake velocity field by masked gated recurrent unit model
A masked gated recurrent unit (GRU) model is proposed to establish the mapping relationship between surface pressures on a square cylinder and wake velocities, which can be used to predict statistical and instantaneous aerodynamic pressure fields on a square cylinder from its wakefield. A novel mask...
Saved in:
Published in | Physics of fluids (1994) Vol. 34; no. 11 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Melville
American Institute of Physics
01.11.2022
|
Subjects | |
Online Access | Get full text |
ISSN | 1070-6631 1089-7666 |
DOI | 10.1063/5.0110491 |
Cover
Abstract | A masked gated recurrent unit (GRU) model is proposed to establish the mapping relationship between surface pressures on a square cylinder and wake velocities, which can be used to predict statistical and instantaneous aerodynamic pressure fields on a square cylinder from its wakefield. A novel mask net is proposed to figure out one or two wake points where the velocities contribute dominantly to the surface pressure field. A three-dimensional unsteady large-eddy simulation of flow around a square cylinder is performed at Re = 22 000 to generate data for training and validating the proposed models. Results show that local mean pressure coefficients can be well predicted from velocities at even one wake point, but the accuracies of predicting fluctuating pressure coefficients and time-series of local pressure coefficients depend on both the model and the surface pressure location, with more satisfactory predictions achieved in the cross-flow direction. High correlation coefficients of pressure coefficient distributions around a square cylinder between predicted and real distributions are achieved except for the masked GRU model with one wake point. Meanwhile, in terms of the temporal correlation coefficient, all models exhibit good prediction of time-series of pressure coefficients on the side and back surfaces where they are strongly affected by vortex shedding and lower accuracy on the front surface where the pressure coefficients deviate somewhat randomly around the mean value. Large prediction error occurs at the corners of the square cylinder. This study has potential application to risk analysis of structures subject to flow-induced loads. |
---|---|
AbstractList | A masked gated recurrent unit (GRU) model is proposed to establish the mapping relationship between surface pressures on a square cylinder and wake velocities, which can be used to predict statistical and instantaneous aerodynamic pressure fields on a square cylinder from its wakefield. A novel mask net is proposed to figure out one or two wake points where the velocities contribute dominantly to the surface pressure field. A three-dimensional unsteady large-eddy simulation of flow around a square cylinder is performed at Re = 22 000 to generate data for training and validating the proposed models. Results show that local mean pressure coefficients can be well predicted from velocities at even one wake point, but the accuracies of predicting fluctuating pressure coefficients and time-series of local pressure coefficients depend on both the model and the surface pressure location, with more satisfactory predictions achieved in the cross-flow direction. High correlation coefficients of pressure coefficient distributions around a square cylinder between predicted and real distributions are achieved except for the masked GRU model with one wake point. Meanwhile, in terms of the temporal correlation coefficient, all models exhibit good prediction of time-series of pressure coefficients on the side and back surfaces where they are strongly affected by vortex shedding and lower accuracy on the front surface where the pressure coefficients deviate somewhat randomly around the mean value. Large prediction error occurs at the corners of the square cylinder. This study has potential application to risk analysis of structures subject to flow-induced loads. |
Author | Zhang, Zhiming Cao, Shuyang Gao, Shangce Yan, Mengtao |
Author_xml | – sequence: 1 givenname: Mengtao surname: Yan fullname: Yan, Mengtao organization: College of Civil Engineering, Tongji University – sequence: 2 givenname: Zhiming surname: Zhang fullname: Zhang, Zhiming organization: Faculty of Engineering, University of Toyama – sequence: 3 givenname: Shangce surname: Gao fullname: Gao, Shangce organization: Faculty of Engineering, University of Toyama – sequence: 4 givenname: Shuyang surname: Cao fullname: Cao, Shuyang organization: 3State Key Lab of Disaster Reduction in Civil Engineering, Tongji University, Shanghai 200092, China |
BookMark | eNp9kM1q3TAQhUVJoUmaRd9A0FULTkbW9dhaltCfQKBZJGujK42DElu6Gckpfvs63LSFtHQzcxbfOcOcI3EQUyQh3ik4VYD6rDkFpWBj1CtxqKAzVYuIB0-6hQpRqzfiKOc7ANCmxkPBV0w-uBLirbTEyS_RTsHJHVPOM5NMUVqZH2a7areMIXpiOXCa5A97T_KRxuRCWeQQaPRyu8jJ5nvy8taWdTK5mZlikXMMRU7J0_hWvB7smOnkeR-Lmy-fr8-_VZffv16cf7qs3KbuStXqDqFBMygyqjGDB7Rb21q1bUwLgyYN6J3DunWq0QY1wlY5XF93tUfT6WPxfp-74_QwUy79XZo5rif7utXQYbtpYKU-7CnHKWemod9xmCwvvYL-qdK-6Z8rXdmzF-z6ui0hxcI2jP90fNw78i_yd_xj4j9gv_PD_-C_k38CXXSWVg |
CODEN | PHFLE6 |
CitedBy_id | crossref_primary_10_1063_5_0197178 crossref_primary_10_1063_5_0191568 crossref_primary_10_1007_s10973_024_13561_2 crossref_primary_10_1063_5_0250248 crossref_primary_10_1016_j_jrmge_2024_11_002 crossref_primary_10_1063_5_0216945 crossref_primary_10_1016_j_cja_2023_12_008 crossref_primary_10_1108_HFF_04_2024_0282 |
Cites_doi | 10.1063/5.0088868 10.1016/j.jweia.2009.11.003 10.1007/s00348-005-0052-2 10.1063/1.5094943 10.3130/aijs.65.37_3 10.1007/978-3-319-24574-4_28 10.1016/j.jcp.2018.10.045 10.1063/1.5024595 10.1155/2018/6747098 10.1063/5.0078526 10.1115/OMAE2019-95870 10.1017/S0022112006003223 10.1017/S0022112069000735 10.1016/S0167-6105(97)00147-5 10.1063/1.870318 10.1017/jfm.2021.265 10.1017/S0022112082001360 10.1063/5.0039845 10.1016/j.jweia.2012.03.018 10.1017/S0022112095004435 10.3115/v1/D14-1179 10.1371/journal.pone.0254841 10.1016/j.jweia.2019.104026 10.1016/j.jweia.2021.104860 10.1063/5.0075664 10.1016/j.jweia.2020.104099 10.1063/1.869879 10.1016/j.compfluid.2016.07.013 10.1016/j.compfluid.2015.09.013 10.1109/72.279181 10.1117/1.JMI.6.1.014006 10.1063/1.4996945 10.1017/S0022112094003332 10.1016/j.compfluid.2019.104320 10.1016/j.jweia.2009.08.006 10.1146/annurev.fl.28.010196.002401 10.1017/jfm.2019.238 10.1063/5.0082640 10.1016/j.jfluidstructs.2010.03.003 10.1063/5.0101749 10.1016/j.jweia.2020.104247 10.1063/5.0077768 10.1007/s11071-021-07167-8 |
ContentType | Journal Article |
Copyright | Author(s) 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
Copyright_xml | – notice: Author(s) – notice: 2022 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
DBID | AJDQP AAYXX CITATION 8FD H8D L7M |
DOI | 10.1063/5.0110491 |
DatabaseName | AIP Open Access Journals CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitle | CrossRef Technology Research Database Aerospace Database Advanced Technologies Database with Aerospace |
DatabaseTitleList | CrossRef Technology Research Database |
Database_xml | – sequence: 1 dbid: AJDQP name: AIP Open Access Journals url: https://publishing.aip.org/librarians/open-access-policy sourceTypes: Enrichment Source Publisher |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Applied Sciences Physics |
EISSN | 1089-7666 |
ExternalDocumentID | 10_1063_5_0110491 |
GrantInformation_xml | – fundername: Japan Science and Technology Agency grantid: JPMJSP2145 funderid: 10.13039/501100002241 – fundername: Japan Society for the Promotion of Science grantid: JP22H03643 funderid: 10.13039/501100001691 – fundername: National Natural Science Foundation of China grantid: 52078382 funderid: 10.13039/501100001809 – fundername: State Key Laboratory of Disaster Reduction in Civil Engineering grantid: SLDRCE19-A-01 – fundername: AIP Network Laboratory grantid: JPMJFS2115 funderid: 10.13039/501100020952 |
GroupedDBID | -~X 0ZJ 1UP 2-P 29O 2WC 4.4 5VS 6TJ AAAAW AABDS AAEUA AAPUP AAYIH ABJNI ACBRY ACGFS ACLYJ ACNCT ACZLF ADCTM AEJMO AENEX AFATG AFFNX AFHCQ AGKCL AGLKD AGMXG AGTJO AHSDT AIDUJ AJDQP AJJCW AJQPL ALEPV ALMA_UNASSIGNED_HOLDINGS ATXIE AWQPM BPZLN CS3 DU5 EBS EJD ESX F5P FDOHQ FFFMQ HAM H~9 M6X M71 M73 NEUPN NPSNA O-B P2P RDFOP RIP RNS ROL RQS SC5 TN5 UCJ UQL WH7 XJT ~02 AAGWI AAYXX ABJGX ADMLS BDMKI CITATION 8FD H8D L7M |
ID | FETCH-LOGICAL-c428t-73860569f1e9159fd06aba7a1b5970f3e306dcc627c15396360b1c6491c2d6983 |
IEDL.DBID | AJDQP |
ISSN | 1070-6631 |
IngestDate | Sun Jun 29 15:29:49 EDT 2025 Sun Jul 06 05:07:23 EDT 2025 Thu Apr 24 23:00:44 EDT 2025 Fri Jun 21 00:13:19 EDT 2024 Tue Jul 04 19:18:19 EDT 2023 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-73860569f1e9159fd06aba7a1b5970f3e306dcc627c15396360b1c6491c2d6983 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 |
ORCID | 0000-0001-7583-0277 0000-0001-8415-4856 0000-0003-2039-4097 0000-0001-5042-3261 |
OpenAccessLink | http://dx.doi.org/10.1063/5.0110491 |
PQID | 2730867450 |
PQPubID | 2050667 |
PageCount | 17 |
ParticipantIDs | scitation_primary_10_1063_5_0110491 crossref_citationtrail_10_1063_5_0110491 proquest_journals_2730867450 crossref_primary_10_1063_5_0110491 |
PublicationCentury | 2000 |
PublicationDate | 20221100 2022-11-01 20221101 |
PublicationDateYYYYMMDD | 2022-11-01 |
PublicationDate_xml | – month: 11 year: 2022 text: 20221100 |
PublicationDecade | 2020 |
PublicationPlace | Melville |
PublicationPlace_xml | – name: Melville |
PublicationTitle | Physics of fluids (1994) |
PublicationYear | 2022 |
Publisher | American Institute of Physics |
Publisher_xml | – name: American Institute of Physics |
References | Sekar, Khoo (c15) 2019 Nakamura, Fukami, Hasegawa, Nabae, Fukagata (c29) 2021 Rodi (c44) 1997 Bearman, Obasaju (c41) 1982 Norberg (c42) 1994 Butler, Cao, Kareem, Tamura, Ozono (c5) 2010 Li, Chen, Tse, Weerasuriya, Zhang, Fu, Lin (c8) 2021 Wang, Wang, Wang, Li, Shen, Cui (c25) 2022 Lin, Ding, Hu, Li, Xiao, Tse, Kwok, Kareem (c13) 2022 Yousif, Lim (c19) 2022 Bruno, Coste, Fransos (c50) 2012 Nishimura, Taniike (c40) 2000 Chen, Wang, Wang, Huang, Tse, Li, Lin (c10) 2022 Oka, Ishihara (c48) 2009 Bearman (c37) 1969 Kravchenko, Moin (c2) 2000 Williamson (c1) 1996 Hu, Kwok (c11) 2020 Bengio, Simard, Frasconi (c23) 1994 Lim, Castro, Hoxey (c4) 2007 Lyn, Einav, Rodi, Park (c43) 1995 Lamberti, Amerio, Pomaranzi, Zasso, Gorlé (c6) 2020 Trias, Gorobets, Oliva (c47) 2015 Alom, Hasan, Yakopcic, Taha, Asari (c30) Iwana, Uchida (c35) 2021 Li, Chen, Tse, Weerasuriya, Zhang, Fu, Lin (c9) 2022 Bai, Alam (c38) 2018 Hu, Zhou, Dalton (c49) 2006 Cao, Tamura, Kawai (c34) 2020 Essel, Tachie, Balachandar (c7) 2021 Cao, Ozono, Tamura, Ge, Kikugawa (c32) 2010 Raissi, Perdikaris, Karniadakis (c16) 2019 Jin, Cheng, Chen, Li (c20) 2018 Li, Chen, Tse, Weerasuriya, Zhang, Fu, Lin (c46) 2022 Cao, Tamura (c45) 2016 Chen, Zhao, Wan (c3) 2022 Fukami, Fukagata, Taira (c17) 2019 Tian, Gurley, Diaz, Fernández-Cabán, Masters, Fang (c12) 2020 Alom, Yakopcic, Hasan, Taha, Asari (c28) 2019 Sohankar, Norberg, Davidson (c39) 1999 (2023081009031963300_c16) 2019; 378 (2023081009031963300_c32) 2010; 26 (2023081009031963300_c50) 2012; 104–106 (2023081009031963300_c11) 2020; 198 (2023081009031963300_c13) 2022; 220 (2023081009031963300_c40) 2000; 65 (2023081009031963300_c43) 1995; 304 (2023081009031963300_c4) 2007; 571 (2023081009031963300_c39) 1999; 11 (2023081009031963300_c45) 2016; 137 2023081009031963300_c36 (2023081009031963300_c20) 2018; 17 (2023081009031963300_c8) 2021; 33 (2023081009031963300_c19) 2022; 34 (2023081009031963300_c23) 1994; 5 (2023081009031963300_c12) 2020; 196 (2023081009031963300_c31) 2021 (2023081009031963300_c47) 2015; 123 (2023081009031963300_c5) 2010; 98 (2023081009031963300_c33) 1994 (2023081009031963300_c10) 2022; 34 (2023081009031963300_c30); 2018 (2023081009031963300_c44) 1997; 69–71 (2023081009031963300_c46) 2022; 107 (2023081009031963300_c42) 1994; 258 2023081009031963300_c21 (2023081009031963300_c3) 2022; 34 (2023081009031963300_c37) 1969; 37 2023081009031963300_c18 (2023081009031963300_c48) 2009; 97 (2023081009031963300_c24) 2020 (2023081009031963300_c25) 2022; 34 (2023081009031963300_c38) 2018; 30 (2023081009031963300_c35) 2021; 16 (2023081009031963300_c6) 2020; 204 (2023081009031963300_c29) 2021; 33 (2023081009031963300_c41) 1982; 119 (2023081009031963300_c15) 2019; 31 (2023081009031963300_c7) 2021; 917 (2023081009031963300_c9) 2022; 34 (2023081009031963300_c14) 2016 (2023081009031963300_c1) 1996; 28 2023081009031963300_c27 2023081009031963300_c26 (2023081009031963300_c17) 2019; 870 2023081009031963300_c22 (2023081009031963300_c2) 2000; 12 (2023081009031963300_c28) 2019; 6 (2023081009031963300_c34) 2020; 196 (2023081009031963300_c49) 2006; 40 |
References_xml | – start-page: 55 year: 1997 ident: c44 article-title: Comparison of LES and RANS calculations of the flow around bluff bodies publication-title: J. Wind Eng. Ind. Aerodyn. – start-page: 104860 year: 2022 ident: c13 article-title: Machine learning-enabled estimation of crosswind load effect on tall buildings publication-title: J. Wind Eng. Ind. Aerodyn. – start-page: 104247 year: 2020 ident: c6 article-title: Comparison of high-resolution pressure measurements on a high-rise building in a closed and open-section wind tunnel publication-title: J. Wind Eng. Ind. Aerodyn. – start-page: 015115 year: 2022 ident: c3 article-title: Turbulent structures and characteristics of flows past a vertical surface-piercing finite circular cylinder publication-title: Phys. Fluids – start-page: 015102 year: 2018 ident: c38 article-title: Dependence of square cylinder wake on Reynolds number publication-title: Phys. Fluids – start-page: 299 year: 2010 ident: c5 article-title: Surface pressure and wind load characteristics on prisms immersed in a simulated transient gust front flow field publication-title: J. Wind Eng. Ind. Aerodyn. – start-page: 97 year: 2007 ident: c4 article-title: Bluff bodies in deep turbulent boundary layers: Reynolds-number issues publication-title: J. Fluid Mech. – start-page: 157 year: 1994 ident: c23 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Networks – start-page: 025116 year: 2021 ident: c29 article-title: Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow publication-title: Phys. Fluids – start-page: 104320 year: 2020 ident: c34 article-title: Spanwise resolution requirements for the simulation of high-Reynolds-number flows past a square cylinder publication-title: Comput. Fluids – start-page: 035102 year: 2022 ident: c9 article-title: A parametric and feasibility study for data sampling of the dynamic mode decomposition: Spectral insights and further explorations publication-title: Phys. Fluids – start-page: 3683 year: 2022 ident: c46 article-title: A parametric and feasibility study for data sampling of the dynamic mode decomposition: Range, resolution, and universal convergence states publication-title: Nonlinear Dyn. – start-page: 104026 year: 2020 ident: c12 article-title: Low-rise gable roof buildings pressure prediction using deep neural networks publication-title: J. Wind Eng. Ind. Aerodyn. – start-page: 297 year: 1982 ident: c41 article-title: An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders publication-title: J. Fluid Mech. – start-page: 577 year: 1969 ident: c37 article-title: On vortex shedding from a circular cylinder in the critical Reynolds number régime publication-title: J. Fluid Mech. – start-page: 057103 year: 2019 ident: c15 article-title: Fast flow field prediction over airfoils using deep learning approach publication-title: Phys. Fluids – start-page: 045122 year: 2022 ident: c25 article-title: Predicting and optimizing multirow film cooling with trenches using gated recurrent unit neural network publication-title: Phys. Fluids – start-page: 288 year: 1999 ident: c39 article-title: Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers publication-title: Phys. Fluids – start-page: 87 year: 2015 ident: c47 article-title: Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study publication-title: Comput. Fluids – start-page: 014006 year: 2019 ident: c28 article-title: Recurrent residual U-Net for medical image segmentation publication-title: J. Med. Imaging – start-page: 203 year: 2012 ident: c50 article-title: Simulated flow around a rectangular 5:1 cylinder: Spanwise discretisation effects and emerging flow features publication-title: J. Wind Eng. Ind. Aerodyn. – start-page: 121707 year: 2021 ident: c8 article-title: Establishing direct phenomenological connections between fluid and structure by the Koopman-Linearly Time-Invariant analysis publication-title: Phys. Fluids – start-page: 685 year: 2010 ident: c32 article-title: Numerical simulation of Reynolds number effects on velocity shear flow around a circular cylinder publication-title: J. Fluids Struct. – start-page: 287 year: 1994 ident: c42 article-title: An experimental investigation of the flow around a circular cylinder: Influence of aspect ratio publication-title: J. Fluid Mech. – start-page: 285 year: 1995 ident: c43 article-title: A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder publication-title: J. Fluid Mech. – start-page: 686 year: 2019 ident: c16 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. – start-page: 015116 year: 2022 ident: c19 article-title: Reduced-order modeling for turbulent wake of a finite wall-mounted square cylinder based on artificial neural network publication-title: Phys. Fluids – start-page: 095103 year: 2022 ident: c10 publication-title: Phys. Fluids – start-page: 106 year: 2019 ident: c17 article-title: Super-resolution reconstruction of turbulent flows with machine learning publication-title: J. Fluid Mech. – start-page: 548 year: 2009 ident: c48 article-title: Numerical study of aerodynamic characteristics of a square prism in a uniform flow publication-title: J. Wind Eng. Ind. Aerodyn. – start-page: 403 year: 2000 ident: c2 article-title: Numerical studies of flow over a circular cylinder at Re = 3900 publication-title: Phys. Fluids – start-page: 106 year: 2006 ident: c49 article-title: Effects of the corner radius on the near wake of a square prism publication-title: Exp. Fluids – start-page: 047105 year: 2018 ident: c20 publication-title: Phys Fluids – start-page: 36 year: 2016 ident: c45 article-title: Large-eddy simulations of flow past a square cylinder using structured and unstructured grids publication-title: Comput. Fluids – start-page: 6747098 ident: c30 article-title: Handwritten Bangla character recognition using the state-of-the-art deep convolutional neural networks publication-title: Comput. Intell. Neurosci. – start-page: 477 year: 1996 ident: c1 article-title: Vortex dynamics in the cylinder wake publication-title: Annu. Rev. Fluid Mech. – start-page: 104099 year: 2020 ident: c11 article-title: Predicting wind pressures around circular cylinders using machine learning techniques publication-title: J. Wind Eng. Ind. Aerodyn. – start-page: 37 year: 2000 ident: c40 article-title: Fluctuating pressures on a two-dimensional square prism publication-title: J. Struct. Constr. Eng. Trans. AIJ – start-page: A8 year: 2021 ident: c7 article-title: Time-resolved wake dynamics of finite wall-mounted circular cylinders submerged in a turbulent boundary layer publication-title: J. Fluid Mech. – start-page: e0254841 year: 2021 ident: c35 article-title: An empirical survey of data augmentation for time series classification with neural networks publication-title: PLoS One – volume: 34 start-page: 045122 year: 2022 ident: 2023081009031963300_c25 article-title: Predicting and optimizing multirow film cooling with trenches using gated recurrent unit neural network publication-title: Phys. Fluids doi: 10.1063/5.0088868 – volume-title: Numerical Methods for Computational Fluid Dynamics year: 1994 ident: 2023081009031963300_c33 – volume: 98 start-page: 299 year: 2010 ident: 2023081009031963300_c5 article-title: Surface pressure and wind load characteristics on prisms immersed in a simulated transient gust front flow field publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2009.11.003 – volume: 40 start-page: 106 year: 2006 ident: 2023081009031963300_c49 article-title: Effects of the corner radius on the near wake of a square prism publication-title: Exp. Fluids doi: 10.1007/s00348-005-0052-2 – volume: 31 start-page: 057103 year: 2019 ident: 2023081009031963300_c15 article-title: Fast flow field prediction over airfoils using deep learning approach publication-title: Phys. Fluids doi: 10.1063/1.5094943 – volume: 65 start-page: 37 year: 2000 ident: 2023081009031963300_c40 article-title: Fluctuating pressures on a two-dimensional square prism publication-title: J. Struct. Constr. Eng. Trans. AIJ doi: 10.3130/aijs.65.37_3 – ident: 2023081009031963300_c22 doi: 10.1007/978-3-319-24574-4_28 – volume: 378 start-page: 686 year: 2019 ident: 2023081009031963300_c16 article-title: Physics-informed neural networks: A deep learning framework for solving forward and inverse problems involving nonlinear partial differential equations publication-title: J. Comput. Phys. doi: 10.1016/j.jcp.2018.10.045 – volume: 17 start-page: 047105 year: 2018 ident: 2023081009031963300_c20 publication-title: Phys Fluids doi: 10.1063/1.5024595 – volume: 2018 start-page: 6747098 ident: 2023081009031963300_c30 article-title: Handwritten Bangla character recognition using the state-of-the-art deep convolutional neural networks publication-title: Comput. Intell. Neurosci. doi: 10.1155/2018/6747098 – volume: 34 start-page: 015115 year: 2022 ident: 2023081009031963300_c3 article-title: Turbulent structures and characteristics of flows past a vertical surface-piercing finite circular cylinder publication-title: Phys. Fluids doi: 10.1063/5.0078526 – ident: 2023081009031963300_c18 doi: 10.1115/OMAE2019-95870 – volume: 571 start-page: 97 year: 2007 ident: 2023081009031963300_c4 article-title: Bluff bodies in deep turbulent boundary layers: Reynolds-number issues publication-title: J. Fluid Mech. doi: 10.1017/S0022112006003223 – volume: 37 start-page: 577 year: 1969 ident: 2023081009031963300_c37 article-title: On vortex shedding from a circular cylinder in the critical Reynolds number régime publication-title: J. Fluid Mech. doi: 10.1017/S0022112069000735 – volume: 69–71 start-page: 55 year: 1997 ident: 2023081009031963300_c44 article-title: Comparison of LES and RANS calculations of the flow around bluff bodies publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/S0167-6105(97)00147-5 – volume: 12 start-page: 403 year: 2000 ident: 2023081009031963300_c2 article-title: Numerical studies of flow over a circular cylinder at ReD = 3900 publication-title: Phys. Fluids doi: 10.1063/1.870318 – volume: 917 start-page: A8 year: 2021 ident: 2023081009031963300_c7 article-title: Time-resolved wake dynamics of finite wall-mounted circular cylinders submerged in a turbulent boundary layer publication-title: J. Fluid Mech. doi: 10.1017/jfm.2021.265 – volume: 119 start-page: 297 year: 1982 ident: 2023081009031963300_c41 article-title: An experimental study of pressure fluctuations on fixed and oscillating square-section cylinders publication-title: J. Fluid Mech. doi: 10.1017/S0022112082001360 – volume: 33 start-page: 025116 year: 2021 ident: 2023081009031963300_c29 article-title: Convolutional neural network and long short-term memory based reduced order surrogate for minimal turbulent channel flow publication-title: Phys. Fluids doi: 10.1063/5.0039845 – volume: 104–106 start-page: 203 year: 2012 ident: 2023081009031963300_c50 article-title: Simulated flow around a rectangular 5:1 cylinder: Spanwise discretisation effects and emerging flow features publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2012.03.018 – volume: 304 start-page: 285 year: 1995 ident: 2023081009031963300_c43 article-title: A laser-Doppler velocimetry study of ensemble-averaged characteristics of the turbulent near wake of a square cylinder publication-title: J. Fluid Mech. doi: 10.1017/S0022112095004435 – ident: 2023081009031963300_c21 doi: 10.3115/v1/D14-1179 – volume: 16 start-page: e0254841 year: 2021 ident: 2023081009031963300_c35 article-title: An empirical survey of data augmentation for time series classification with neural networks publication-title: PLoS One doi: 10.1371/journal.pone.0254841 – ident: 2023081009031963300_c27 – volume: 196 start-page: 104026 year: 2020 ident: 2023081009031963300_c12 article-title: Low-rise gable roof buildings pressure prediction using deep neural networks publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2019.104026 – volume: 220 start-page: 104860 year: 2022 ident: 2023081009031963300_c13 article-title: Machine learning-enabled estimation of crosswind load effect on tall buildings publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2021.104860 – volume-title: OpenFOAM v9 User Guide year: 2021 ident: 2023081009031963300_c31 – volume: 33 start-page: 121707 year: 2021 ident: 2023081009031963300_c8 article-title: Establishing direct phenomenological connections between fluid and structure by the Koopman-Linearly Time-Invariant analysis publication-title: Phys. Fluids doi: 10.1063/5.0075664 – volume: 198 start-page: 104099 year: 2020 ident: 2023081009031963300_c11 article-title: Predicting wind pressures around circular cylinders using machine learning techniques publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2020.104099 – ident: 2023081009031963300_c36 – volume: 11 start-page: 288 year: 1999 ident: 2023081009031963300_c39 article-title: Simulation of three-dimensional flow around a square cylinder at moderate Reynolds numbers publication-title: Phys. Fluids doi: 10.1063/1.869879 – volume: 137 start-page: 36 year: 2016 ident: 2023081009031963300_c45 article-title: Large-eddy simulations of flow past a square cylinder using structured and unstructured grids publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2016.07.013 – ident: 2023081009031963300_c26 – volume: 123 start-page: 87 year: 2015 ident: 2023081009031963300_c47 article-title: Turbulent flow around a square cylinder at Reynolds number 22,000: A DNS study publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2015.09.013 – volume: 5 start-page: 157 year: 1994 ident: 2023081009031963300_c23 article-title: Learning long-term dependencies with gradient descent is difficult publication-title: IEEE Trans. Neural Networks doi: 10.1109/72.279181 – volume: 6 start-page: 014006 year: 2019 ident: 2023081009031963300_c28 article-title: Recurrent residual U-Net for medical image segmentation publication-title: J. Med. Imaging doi: 10.1117/1.JMI.6.1.014006 – volume: 30 start-page: 015102 year: 2018 ident: 2023081009031963300_c38 article-title: Dependence of square cylinder wake on Reynolds number publication-title: Phys. Fluids doi: 10.1063/1.4996945 – volume: 258 start-page: 287 year: 1994 ident: 2023081009031963300_c42 article-title: An experimental investigation of the flow around a circular cylinder: Influence of aspect ratio publication-title: J. Fluid Mech. doi: 10.1017/S0022112094003332 – volume: 196 start-page: 104320 year: 2020 ident: 2023081009031963300_c34 article-title: Spanwise resolution requirements for the simulation of high-Reynolds-number flows past a square cylinder publication-title: Comput. Fluids doi: 10.1016/j.compfluid.2019.104320 – volume: 97 start-page: 548 year: 2009 ident: 2023081009031963300_c48 article-title: Numerical study of aerodynamic characteristics of a square prism in a uniform flow publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2009.08.006 – volume: 28 start-page: 477 year: 1996 ident: 2023081009031963300_c1 article-title: Vortex dynamics in the cylinder wake publication-title: Annu. Rev. Fluid Mech. doi: 10.1146/annurev.fl.28.010196.002401 – volume: 870 start-page: 106 year: 2019 ident: 2023081009031963300_c17 article-title: Super-resolution reconstruction of turbulent flows with machine learning publication-title: J. Fluid Mech. doi: 10.1017/jfm.2019.238 – volume: 34 start-page: 035102 year: 2022 ident: 2023081009031963300_c9 article-title: A parametric and feasibility study for data sampling of the dynamic mode decomposition: Spectral insights and further explorations publication-title: Phys. Fluids doi: 10.1063/5.0082640 – volume: 26 start-page: 685 year: 2010 ident: 2023081009031963300_c32 article-title: Numerical simulation of Reynolds number effects on velocity shear flow around a circular cylinder publication-title: J. Fluids Struct. doi: 10.1016/j.jfluidstructs.2010.03.003 – volume: 34 start-page: 095103 year: 2022 ident: 2023081009031963300_c10 publication-title: Phys. Fluids doi: 10.1063/5.0101749 – start-page: 98 year: 2020 ident: 2023081009031963300_c24 – volume: 204 start-page: 104247 year: 2020 ident: 2023081009031963300_c6 article-title: Comparison of high-resolution pressure measurements on a high-rise building in a closed and open-section wind tunnel publication-title: J. Wind Eng. Ind. Aerodyn. doi: 10.1016/j.jweia.2020.104247 – start-page: 481 year: 2016 ident: 2023081009031963300_c14 – volume: 34 start-page: 015116 year: 2022 ident: 2023081009031963300_c19 article-title: Reduced-order modeling for turbulent wake of a finite wall-mounted square cylinder based on artificial neural network publication-title: Phys. Fluids doi: 10.1063/5.0077768 – volume: 107 start-page: 3683 year: 2022 ident: 2023081009031963300_c46 article-title: A parametric and feasibility study for data sampling of the dynamic mode decomposition: Range, resolution, and universal convergence states publication-title: Nonlinear Dyn. doi: 10.1007/s11071-021-07167-8 |
SSID | ssj0003926 |
Score | 2.436497 |
Snippet | A masked gated recurrent unit (GRU) model is proposed to establish the mapping relationship between surface pressures on a square cylinder and wake velocities,... |
SourceID | proquest crossref scitation |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
SubjectTerms | Accuracy Correlation coefficients Cross flow Cylinders Large eddy simulation Mathematical models Pressure Risk analysis Time series Velocity distribution Vortex shedding |
Title | Predicting aerodynamic pressure on a square cylinder from wake velocity field by masked gated recurrent unit model |
URI | http://dx.doi.org/10.1063/5.0110491 https://www.proquest.com/docview/2730867450 |
Volume | 34 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LT8MwDLamTQguvBGDgSzGgUvF-ki6HicGmiZAQzBptypJ0wtjG-0G2r_HabsHEiDu7kNxHH-O7c8Alx4jEOsGwhLMdy1DSG4JKQNLMl9x1yMfr7Jqi0fe6XvdARuUoP5LBp-714ZWk2IG06FecQgcO2WotLrtp97ywCUXz_PSQoqEuGsvCITWH_7udlZYcpMcTZ7zXnMrd7uwXeBBbOUK3IOSHu3DToENsbC8dB82slJNlR5A0ktMcsWUK6PQdP7lM-Uxq2idJRrHIxSYvpPuNar50PAhJmjaSPBTvGo0RUL0N3PMitdQzvFNpK_0MXOhFmFiLuANZRPOyNoxm5RzCP2725ebjlVMTrAUhRNTy0zyJGQTxLYOCK_EUYMLKXxhS4ofGrGrKVCIlOKOr-jECwxnmLQVp3VSTsSDpnsE5dF4pI8BnZg3IxZ7vMm0FzMhlM0bSktJtk7YQlbharGw4WIpzXSLYZilt7kbsrDQQRUulqKTnEvjJ6HaQjthYU5pSBiLQi_fY40q1Jca--slP0h9jJOVRDiJ4pN_vesUthzT8pD1H9agPE1m-oyAyFSe00ZsP9w_nxcb8gti-diS |
linkProvider | American Institute of Physics |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Predicting+aerodynamic+pressure+on+a+square+cylinder+from+wake+velocity+field+by+masked+gated+recurrent+unit+model&rft.jtitle=Physics+of+fluids+%281994%29&rft.au=Yan+Mengtao&rft.au=Zhang%2C+Zhiming&rft.au=Gao+Shangce&rft.date=2022-11-01&rft.pub=American+Institute+of+Physics&rft.issn=1070-6631&rft.eissn=1089-7666&rft.volume=34&rft.issue=11&rft_id=info:doi/10.1063%2F5.0110491&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1070-6631&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1070-6631&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1070-6631&client=summon |