Optimal approximation of piecewise smooth functions using deep ReLU neural networks
We study the necessary and sufficient complexity of ReLU neural networks – in terms of depth and number of weights – which is required for approximating classifier functions in an Lp-sense. As a model class, we consider the set Eβ(Rd) of possibly discontinuous piecewise Cβ functions f:[−12,12]d→R, w...
Saved in:
Published in | Neural networks Vol. 108; pp. 296 - 330 |
---|---|
Main Authors | , |
Format | Journal Article |
Language | English |
Published |
United States
Elsevier Ltd
01.12.2018
|
Subjects | |
Online Access | Get full text |
ISSN | 0893-6080 1879-2782 1879-2782 |
DOI | 10.1016/j.neunet.2018.08.019 |
Cover
Abstract | We study the necessary and sufficient complexity of ReLU neural networks – in terms of depth and number of weights – which is required for approximating classifier functions in an Lp-sense.
As a model class, we consider the set Eβ(Rd) of possibly discontinuous piecewise Cβ functions f:[−12,12]d→R, where the different “smooth regions” of f are separated by Cβ hypersurfaces. For given dimension d≥2, regularity β>0, and accuracy ε>0, we construct artificial neural networks with ReLU activation function that approximate functions from Eβ(Rd) up to an L2 error of ε. The constructed networks have a fixed number of layers, depending only on d and β, and they have O(ε−2(d−1)∕β) many nonzero weights, which we prove to be optimal. For the proof of optimality, we establish a lower bound on the description complexity of the class Eβ(Rd). By showing that a family of approximating neural networks gives rise to an encoder for Eβ(Rd), we then prove that one cannot approximate a general function f∈Eβ(Rd) using neural networks that are less complex than those produced by our construction.
In addition to the optimality in terms of the number of weights, we show that in order to achieve this optimal approximation rate, one needs ReLU networks of a certain minimal depth. Precisely, for piecewise Cβ(Rd) functions, this minimal depth is given – up to a multiplicative constant – by β∕d. Up to a log factor, our constructed networks match this bound. This partly explains the benefits of depth for ReLU networks by showing that deep networks are necessary to achieve efficient approximation of (piecewise) smooth functions.
Finally, we analyze approximation in high-dimensional spaces where the function f to be approximated can be factorized into a smooth dimension reducing feature map τ and classifier function g – defined on a low-dimensional feature space – as f=g∘τ. We show that in this case the approximation rate depends only on the dimension of the feature space and not the input dimension. |
---|---|
AbstractList | We study the necessary and sufficient complexity of ReLU neural networks - in terms of depth and number of weights - which is required for approximating classifier functions in an Lp-sense. As a model class, we consider the set Eβ(Rd) of possibly discontinuous piecewise Cβ functions f:[-12,12]d→R, where the different "smooth regions" of f are separated by Cβ hypersurfaces. For given dimension d≥2, regularity β>0, and accuracy ε>0, we construct artificial neural networks with ReLU activation function that approximate functions from Eβ(Rd) up to an L2 error of ε. The constructed networks have a fixed number of layers, depending only on d and β, and they have O(ε-2(d-1)∕β) many nonzero weights, which we prove to be optimal. For the proof of optimality, we establish a lower bound on the description complexity of the class Eβ(Rd). By showing that a family of approximating neural networks gives rise to an encoder for Eβ(Rd), we then prove that one cannot approximate a general function f∈Eβ(Rd) using neural networks that are less complex than those produced by our construction. In addition to the optimality in terms of the number of weights, we show that in order to achieve this optimal approximation rate, one needs ReLU networks of a certain minimal depth. Precisely, for piecewise Cβ(Rd) functions, this minimal depth is given - up to a multiplicative constant - by β∕d. Up to a log factor, our constructed networks match this bound. This partly explains the benefits of depth for ReLU networks by showing that deep networks are necessary to achieve efficient approximation of (piecewise) smooth functions. Finally, we analyze approximation in high-dimensional spaces where the function f to be approximated can be factorized into a smooth dimension reducing feature map τ and classifier function g - defined on a low-dimensional feature space - as f=g∘τ. We show that in this case the approximation rate depends only on the dimension of the feature space and not the input dimension.We study the necessary and sufficient complexity of ReLU neural networks - in terms of depth and number of weights - which is required for approximating classifier functions in an Lp-sense. As a model class, we consider the set Eβ(Rd) of possibly discontinuous piecewise Cβ functions f:[-12,12]d→R, where the different "smooth regions" of f are separated by Cβ hypersurfaces. For given dimension d≥2, regularity β>0, and accuracy ε>0, we construct artificial neural networks with ReLU activation function that approximate functions from Eβ(Rd) up to an L2 error of ε. The constructed networks have a fixed number of layers, depending only on d and β, and they have O(ε-2(d-1)∕β) many nonzero weights, which we prove to be optimal. For the proof of optimality, we establish a lower bound on the description complexity of the class Eβ(Rd). By showing that a family of approximating neural networks gives rise to an encoder for Eβ(Rd), we then prove that one cannot approximate a general function f∈Eβ(Rd) using neural networks that are less complex than those produced by our construction. In addition to the optimality in terms of the number of weights, we show that in order to achieve this optimal approximation rate, one needs ReLU networks of a certain minimal depth. Precisely, for piecewise Cβ(Rd) functions, this minimal depth is given - up to a multiplicative constant - by β∕d. Up to a log factor, our constructed networks match this bound. This partly explains the benefits of depth for ReLU networks by showing that deep networks are necessary to achieve efficient approximation of (piecewise) smooth functions. Finally, we analyze approximation in high-dimensional spaces where the function f to be approximated can be factorized into a smooth dimension reducing feature map τ and classifier function g - defined on a low-dimensional feature space - as f=g∘τ. We show that in this case the approximation rate depends only on the dimension of the feature space and not the input dimension. We study the necessary and sufficient complexity of ReLU neural networks - in terms of depth and number of weights - which is required for approximating classifier functions in an L -sense. As a model class, we consider the set E (R ) of possibly discontinuous piecewise C functions f:[-12,12] →R, where the different "smooth regions" of f are separated by C hypersurfaces. For given dimension d≥2, regularity β>0, and accuracy ε>0, we construct artificial neural networks with ReLU activation function that approximate functions from E (R ) up to an L error of ε. The constructed networks have a fixed number of layers, depending only on d and β, and they have O(ε ) many nonzero weights, which we prove to be optimal. For the proof of optimality, we establish a lower bound on the description complexity of the class E (R ). By showing that a family of approximating neural networks gives rise to an encoder for E (R ), we then prove that one cannot approximate a general function f∈E (R ) using neural networks that are less complex than those produced by our construction. In addition to the optimality in terms of the number of weights, we show that in order to achieve this optimal approximation rate, one needs ReLU networks of a certain minimal depth. Precisely, for piecewise C (R ) functions, this minimal depth is given - up to a multiplicative constant - by β∕d. Up to a log factor, our constructed networks match this bound. This partly explains the benefits of depth for ReLU networks by showing that deep networks are necessary to achieve efficient approximation of (piecewise) smooth functions. Finally, we analyze approximation in high-dimensional spaces where the function f to be approximated can be factorized into a smooth dimension reducing feature map τ and classifier function g - defined on a low-dimensional feature space - as f=g∘τ. We show that in this case the approximation rate depends only on the dimension of the feature space and not the input dimension. We study the necessary and sufficient complexity of ReLU neural networks – in terms of depth and number of weights – which is required for approximating classifier functions in an Lp-sense. As a model class, we consider the set Eβ(Rd) of possibly discontinuous piecewise Cβ functions f:[−12,12]d→R, where the different “smooth regions” of f are separated by Cβ hypersurfaces. For given dimension d≥2, regularity β>0, and accuracy ε>0, we construct artificial neural networks with ReLU activation function that approximate functions from Eβ(Rd) up to an L2 error of ε. The constructed networks have a fixed number of layers, depending only on d and β, and they have O(ε−2(d−1)∕β) many nonzero weights, which we prove to be optimal. For the proof of optimality, we establish a lower bound on the description complexity of the class Eβ(Rd). By showing that a family of approximating neural networks gives rise to an encoder for Eβ(Rd), we then prove that one cannot approximate a general function f∈Eβ(Rd) using neural networks that are less complex than those produced by our construction. In addition to the optimality in terms of the number of weights, we show that in order to achieve this optimal approximation rate, one needs ReLU networks of a certain minimal depth. Precisely, for piecewise Cβ(Rd) functions, this minimal depth is given – up to a multiplicative constant – by β∕d. Up to a log factor, our constructed networks match this bound. This partly explains the benefits of depth for ReLU networks by showing that deep networks are necessary to achieve efficient approximation of (piecewise) smooth functions. Finally, we analyze approximation in high-dimensional spaces where the function f to be approximated can be factorized into a smooth dimension reducing feature map τ and classifier function g – defined on a low-dimensional feature space – as f=g∘τ. We show that in this case the approximation rate depends only on the dimension of the feature space and not the input dimension. |
Author | Petersen, Philipp Voigtlaender, Felix |
Author_xml | – sequence: 1 givenname: Philipp orcidid: 0000-0003-3566-1020 surname: Petersen fullname: Petersen, Philipp email: pc.petersen.pp@gmail.com – sequence: 2 givenname: Felix surname: Voigtlaender fullname: Voigtlaender, Felix email: felix@voigtlaender.xyz |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/30245431$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkEuLFDEUhYOMOD2j_0AkSzfV3jw6qbgQZPAFDQPqrEM6dUvTVidlknL035u2ZzYuFC7cCznncPJdkLOYIhLylMGaAVMv9uuIS8S65sD6NbRh5gFZsV6bjuuen5EV9EZ0Cno4Jxel7AFA9VI8IucCuNxIwVbk0_Vcw8FN1M1zTj_bWUOKNI10DujxNhSk5ZBS_UrHJfrjY6FLCfELHRBn-hG3N7QVyS2ilblN-Vt5TB6Obir45G5fkpu3bz5fve-21-8-XL3edl7yvnZaCKVgJ_yw8QpRaeVwo6QThjPFHYdRSmfciNp5rRQb-M57bQC06Y0bhLgkz0-5rfn3BUu1h1A8TpOLmJZiOWNMS6W1bNJnd9Jld8DBzrn9NP-y9yCa4OVJ4HMqJeNofah_WNTswmQZ2CN1u7cn6vZI3UIbZppZ_mW-z_-P7dXJhg3Sj4DZFh8wehxCRl_tkMK_A34Dz2qerw |
CitedBy_id | crossref_primary_10_1016_j_matpur_2021_07_009 crossref_primary_10_1088_1361_6420_ace9d4 crossref_primary_10_1162_neco_a_01457 crossref_primary_10_1371_journal_pone_0286125 crossref_primary_10_1016_j_neunet_2022_06_013 crossref_primary_10_1016_j_cnsns_2023_107399 crossref_primary_10_3389_fams_2019_00046 crossref_primary_10_1137_18M118709X crossref_primary_10_1002_gamm_202100006 crossref_primary_10_1142_S0219530522500014 crossref_primary_10_1142_S0219530519410136 crossref_primary_10_1016_j_chemphys_2021_111296 crossref_primary_10_1007_s11227_021_04038_2 crossref_primary_10_1002_mma_10719 crossref_primary_10_1063_5_0070890 crossref_primary_10_3390_app13169282 crossref_primary_10_1080_01621459_2021_1895175 crossref_primary_10_1007_s42967_020_00087_1 crossref_primary_10_1007_s10444_022_09970_2 crossref_primary_10_1007_s42985_021_00102_x crossref_primary_10_1109_TNNLS_2024_3371025 crossref_primary_10_1016_j_aim_2020_107485 crossref_primary_10_1089_cmb_2023_0002 crossref_primary_10_1214_19_AOS1911 crossref_primary_10_1002_rnc_7315 crossref_primary_10_1137_21M1465718 crossref_primary_10_1007_s10444_024_10106_x crossref_primary_10_1142_S0219530522500129 crossref_primary_10_1007_s00366_020_01272_9 crossref_primary_10_1137_21M144431X crossref_primary_10_1007_s12204_023_2658_z crossref_primary_10_1137_20M1353010 crossref_primary_10_1016_j_neunet_2023_12_027 crossref_primary_10_1007_s00780_021_00462_7 crossref_primary_10_1016_j_cam_2023_115551 crossref_primary_10_1088_1572_9494_aba243 crossref_primary_10_1016_j_cmpb_2022_107087 crossref_primary_10_1007_s13369_022_06769_7 crossref_primary_10_1109_TNNLS_2021_3134675 crossref_primary_10_1007_s00500_023_09199_1 crossref_primary_10_1007_s00365_021_09551_4 crossref_primary_10_1142_S0219530522400097 crossref_primary_10_1016_j_dcmed_2021_06_003 crossref_primary_10_1115_1_4067739 crossref_primary_10_1016_j_neunet_2020_11_010 crossref_primary_10_1093_bib_bbaa299 crossref_primary_10_1108_JM2_12_2019_0284 crossref_primary_10_1016_j_neunet_2021_04_011 crossref_primary_10_1051_m2an_2024074 crossref_primary_10_1142_S0219530519410021 crossref_primary_10_1007_s10208_022_09556_w crossref_primary_10_1109_TNNLS_2021_3049719 crossref_primary_10_1016_j_cam_2024_116150 crossref_primary_10_1137_20M134695X crossref_primary_10_1016_j_neunet_2024_106761 crossref_primary_10_1109_TNNLS_2019_2951788 crossref_primary_10_1137_19M125649X crossref_primary_10_1016_j_cam_2021_114044 crossref_primary_10_1142_S0219530524500234 crossref_primary_10_1007_s10444_020_09834_7 crossref_primary_10_1007_s00365_024_09694_0 crossref_primary_10_1007_s40304_023_00392_0 crossref_primary_10_1137_23M1606769 crossref_primary_10_1137_20M1373876 crossref_primary_10_1007_s00170_020_06289_4 crossref_primary_10_1061__ASCE_ST_1943_541X_0002802 crossref_primary_10_1007_s10543_025_01058_9 crossref_primary_10_1051_0004_6361_202038787 crossref_primary_10_1007_s43670_022_00040_8 crossref_primary_10_1007_s11042_022_14066_6 crossref_primary_10_1016_j_neunet_2020_07_029 crossref_primary_10_1016_j_neunet_2021_07_027 crossref_primary_10_1214_22_AAP1884 crossref_primary_10_1007_s11042_019_08355_w crossref_primary_10_1109_TIT_2021_3062161 crossref_primary_10_1109_TSC_2020_3026138 crossref_primary_10_1177_00187208231204570 crossref_primary_10_1142_S021902572150020X crossref_primary_10_1109_ACCESS_2019_2936597 crossref_primary_10_1137_22M1524278 crossref_primary_10_3390_e21070627 crossref_primary_10_1016_j_acha_2023_03_004 crossref_primary_10_1016_j_neunet_2022_06_040 crossref_primary_10_1093_imaiai_iaac029 crossref_primary_10_1016_j_eswa_2022_118736 crossref_primary_10_1214_23_EJS2187 crossref_primary_10_1016_j_jcp_2022_111377 crossref_primary_10_1016_j_neunet_2023_07_012 crossref_primary_10_1016_j_neunet_2024_106223 crossref_primary_10_1073_pnas_1907369117 crossref_primary_10_1088_1361_6501_ac4a18 crossref_primary_10_1137_23M1568107 crossref_primary_10_1016_j_neunet_2020_01_018 crossref_primary_10_1016_j_camwa_2024_06_008 crossref_primary_10_1109_ACCESS_2020_3048956 crossref_primary_10_1007_s00780_024_00538_0 crossref_primary_10_1051_0004_6361_201937039 crossref_primary_10_3390_math10213959 crossref_primary_10_1016_j_acha_2022_12_002 crossref_primary_10_1109_ACCESS_2020_2992480 crossref_primary_10_2139_ssrn_4169695 crossref_primary_10_1016_j_neunet_2023_06_008 crossref_primary_10_3390_e20120982 crossref_primary_10_1088_1361_6420_ac9c25 crossref_primary_10_1090_mcom_3781 crossref_primary_10_1137_22M1488132 crossref_primary_10_1109_ACCESS_2021_3049841 crossref_primary_10_1016_j_na_2022_113161 crossref_primary_10_1109_TIT_2025_3531048 crossref_primary_10_1007_s10915_021_01532_w crossref_primary_10_1016_j_jcp_2021_110444 crossref_primary_10_1137_20M1360657 crossref_primary_10_1137_20M1344986 crossref_primary_10_1016_j_acha_2024_101652 crossref_primary_10_1137_22M1522504 crossref_primary_10_1109_TIT_2025_3537594 crossref_primary_10_1021_acs_chemrev_3c00708 crossref_primary_10_1111_sjos_12660 crossref_primary_10_1007_s00009_021_01717_5 crossref_primary_10_1016_j_bspc_2021_102772 crossref_primary_10_2320_jinstmet_J2022022 crossref_primary_10_1137_21M1462738 crossref_primary_10_1007_s00365_021_09544_3 crossref_primary_10_1016_j_acha_2019_06_004 crossref_primary_10_1007_s00025_024_02253_w crossref_primary_10_1142_S0219530520500116 crossref_primary_10_4213_sm9791 crossref_primary_10_1137_21M1393078 crossref_primary_10_1007_s00477_024_02774_4 crossref_primary_10_1007_s00041_023_10027_1 crossref_primary_10_1007_s10208_020_09461_0 crossref_primary_10_1016_j_amc_2023_127907 crossref_primary_10_1016_j_neunet_2021_02_012 crossref_primary_10_1016_j_ifacsc_2024_100290 crossref_primary_10_1016_j_neunet_2021_10_012 crossref_primary_10_1007_s00365_024_09699_9 crossref_primary_10_1145_3588954 crossref_primary_10_1016_j_neunet_2020_05_033 crossref_primary_10_1007_s00365_021_09543_4 crossref_primary_10_1007_s11095_024_03800_4 crossref_primary_10_1002_tee_23243 crossref_primary_10_1002_pamm_202200174 crossref_primary_10_1002_nme_7406 crossref_primary_10_1016_j_neunet_2019_04_024 crossref_primary_10_1137_20M131309X crossref_primary_10_1007_s10208_021_09546_4 crossref_primary_10_1016_j_neunet_2021_06_004 crossref_primary_10_1137_23M1549870 crossref_primary_10_1016_j_neunet_2021_02_024 crossref_primary_10_12677_CSA_2020_103059 crossref_primary_10_1080_07038992_2022_2056435 crossref_primary_10_1016_j_neunet_2024_106922 crossref_primary_10_1016_j_neunet_2021_10_001 crossref_primary_10_4213_sm9791e crossref_primary_10_32604_cmes_2023_022566 crossref_primary_10_1016_j_neunet_2021_09_027 crossref_primary_10_1016_j_neunet_2024_106362 crossref_primary_10_1109_LSP_2020_3005051 crossref_primary_10_1007_s10479_024_05872_2 crossref_primary_10_1007_s11766_023_4309_4 crossref_primary_10_1016_j_neunet_2019_12_014 crossref_primary_10_1016_j_neunet_2019_12_013 crossref_primary_10_1016_j_patcog_2024_111309 crossref_primary_10_1109_TNNLS_2020_2979228 crossref_primary_10_3233_JIFS_211417 crossref_primary_10_1016_j_jco_2023_101746 crossref_primary_10_1109_TNNLS_2020_3027613 crossref_primary_10_1016_j_acha_2022_08_002 crossref_primary_10_1007_s10915_021_01718_2 crossref_primary_10_3390_molecules28196782 crossref_primary_10_1007_s00365_021_09542_5 crossref_primary_10_1007_s40324_022_00299_w crossref_primary_10_1017_S0962492921000052 crossref_primary_10_1007_s00500_021_06447_0 crossref_primary_10_1016_j_cam_2022_114678 crossref_primary_10_1162_neco_a_01364 crossref_primary_10_2139_ssrn_3782722 crossref_primary_10_3390_w12061549 crossref_primary_10_1137_21M1429540 crossref_primary_10_1088_1361_6420_abaf64 crossref_primary_10_1016_j_acha_2023_101605 crossref_primary_10_1007_s10208_023_09607_w crossref_primary_10_1109_JIOT_2020_3000771 crossref_primary_10_3390_hemato5020011 crossref_primary_10_1016_j_ins_2024_120573 crossref_primary_10_1109_TPAMI_2020_3032422 crossref_primary_10_1214_23_EJS2104 crossref_primary_10_1016_j_cam_2022_114426 crossref_primary_10_1142_S0219530522400103 crossref_primary_10_3389_fphy_2021_650108 crossref_primary_10_1007_s10444_022_09981_z crossref_primary_10_1137_22M1493318 crossref_primary_10_1109_TIT_2023_3240360 crossref_primary_10_1007_s10208_022_09565_9 crossref_primary_10_1093_imanum_drae011 crossref_primary_10_1007_s00365_021_09541_6 crossref_primary_10_1016_j_neunet_2019_07_011 crossref_primary_10_1090_memo_1410 crossref_primary_10_1016_j_cma_2024_116784 crossref_primary_10_1137_18M1189336 crossref_primary_10_1109_TRO_2024_3411850 crossref_primary_10_1016_j_jco_2023_101779 crossref_primary_10_1016_j_cej_2022_140526 crossref_primary_10_1109_MSP_2024_3401621 crossref_primary_10_1016_j_jco_2023_101784 crossref_primary_10_1016_j_jco_2023_101783 crossref_primary_10_1186_s13634_020_00684_5 crossref_primary_10_1360_SSI_2022_0401 |
Cites_doi | 10.1016/j.jat.2011.06.005 10.1006/acha.1993.1008 10.1007/BF02478259 10.1109/TIP.2005.843753 10.1007/BF00993164 10.1109/TIT.2017.2776228 10.1002/ssu.2980100111 10.1038/nature14539 10.1090/S0002-9904-1943-07859-7 10.1137/060649781 10.1109/18.256500 10.1038/nature16961 10.1162/neco.1990.2.4.480 10.1109/TIT.2008.2008153 10.1002/cpa.21413 10.1016/S0925-2312(98)00111-8 10.1016/j.neunet.2017.07.002 10.1109/72.165597 10.1162/neco.1991.3.2.258 10.1109/MSP.2012.2205597 10.1162/neco.1996.8.1.164 10.1007/s11633-017-1054-2 10.1007/s003650010032 10.4064/fm-22-1-77-108 10.2140/pjm.1963.13.1085 10.1016/0893-6080(89)90020-8 10.1109/5326.897072 10.1002/cpa.10116 10.1007/BF02551274 10.1016/S0893-6080(05)80131-5 10.1017/S0962492900002919 10.1142/S021800149100020X |
ContentType | Journal Article |
Copyright | 2018 Elsevier Ltd Copyright © 2018 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2018 Elsevier Ltd – notice: Copyright © 2018 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 |
DOI | 10.1016/j.neunet.2018.08.019 |
DatabaseName | CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic MEDLINE |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Computer Science |
EISSN | 1879-2782 |
EndPage | 330 |
ExternalDocumentID | 30245431 10_1016_j_neunet_2018_08_019 S0893608018302454 |
Genre | Journal Article |
GroupedDBID | --- --K --M -~X .DC .~1 0R~ 123 186 1B1 1RT 1~. 1~5 29N 4.4 457 4G. 53G 5RE 5VS 6TJ 7-5 71M 8P~ 9JM 9JN AABNK AACTN AADPK AAEDT AAEDW AAIAV AAIKJ AAKOC AALRI AAOAW AAQFI AAQXK AAXLA AAXUO AAYFN ABAOU ABBOA ABCQJ ABEFU ABFNM ABFRF ABHFT ABIVO ABJNI ABLJU ABMAC ABXDB ABYKQ ACAZW ACDAQ ACGFO ACGFS ACIUM ACNNM ACRLP ACZNC ADBBV ADEZE ADGUI ADJOM ADMUD ADRHT AEBSH AECPX AEFWE AEKER AENEX AFKWA AFTJW AFXIZ AGHFR AGUBO AGWIK AGYEJ AHHHB AHJVU AHZHX AIALX AIEXJ AIKHN AITUG AJBFU AJOXV ALMA_UNASSIGNED_HOLDINGS AMFUW AMRAJ AOUOD ARUGR ASPBG AVWKF AXJTR AZFZN BJAXD BKOJK BLXMC CS3 DU5 EBS EFJIC EFLBG EJD EO8 EO9 EP2 EP3 F0J F5P FDB FEDTE FGOYB FIRID FNPLU FYGXN G-2 G-Q G8K GBLVA GBOLZ HLZ HMQ HVGLF HZ~ IHE J1W JJJVA K-O KOM KZ1 LG9 LMP M2V M41 MHUIS MO0 MOBAO MVM N9A O-L O9- OAUVE OZT P-8 P-9 P2P PC. Q38 R2- RIG ROL RPZ SBC SCC SDF SDG SDP SES SEW SNS SPC SPCBC SSN SST SSV SSW SSZ T5K TAE UAP UNMZH VOH WUQ XPP ZMT ~G- AATTM AAXKI AAYWO AAYXX ABDPE ABWVN ACRPL ACVFH ADCNI ADNMO AEIPS AEUPX AFJKZ AFPUW AGCQF AGQPQ AGRNS AIGII AIIUN AKBMS AKRWK AKYEP ANKPU APXCP BNPGV CITATION SSH CGR CUY CVF ECM EIF NPM PKN 7X8 EFKBS |
ID | FETCH-LOGICAL-c428t-733660b3cd5c6ee676ae564a392162a20f44a9afe7ac7661d2bcc79007989ad33 |
IEDL.DBID | AIKHN |
ISSN | 0893-6080 1879-2782 |
IngestDate | Thu Sep 04 18:17:03 EDT 2025 Wed Feb 19 02:34:15 EST 2025 Tue Jul 01 01:24:32 EDT 2025 Thu Apr 24 22:56:20 EDT 2025 Fri Feb 23 02:46:10 EST 2024 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Deep neural networks Function approximation Curse of dimension Metric entropy Piecewise smooth functions Sparse connectivity |
Language | English |
License | Copyright © 2018 Elsevier Ltd. All rights reserved. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-733660b3cd5c6ee676ae564a392162a20f44a9afe7ac7661d2bcc79007989ad33 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-3566-1020 |
PMID | 30245431 |
PQID | 2111746774 |
PQPubID | 23479 |
PageCount | 35 |
ParticipantIDs | proquest_miscellaneous_2111746774 pubmed_primary_30245431 crossref_citationtrail_10_1016_j_neunet_2018_08_019 crossref_primary_10_1016_j_neunet_2018_08_019 elsevier_sciencedirect_doi_10_1016_j_neunet_2018_08_019 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | December 2018 2018-12-00 2018-Dec 20181201 |
PublicationDateYYYYMMDD | 2018-12-01 |
PublicationDate_xml | – month: 12 year: 2018 text: December 2018 |
PublicationDecade | 2010 |
PublicationPlace | United States |
PublicationPlace_xml | – name: United States |
PublicationTitle | Neural networks |
PublicationTitleAlternate | Neural Netw |
PublicationYear | 2018 |
Publisher | Elsevier Ltd |
Publisher_xml | – name: Elsevier Ltd |
References | Mallat (b39) 2012; 65 Rumelhart, Hinton, Williams (b52) 1986 Grohs (b22) 2015 shearlets. arXiv preprint Kutyniok, Labate (b30) 2012 Hinton, Deng, Yu, Dahl, Mohamed, Jaitly (b25) 2012; 29 Voigtlaender, F., & Pein, A. (2017). Analysis sparsity versus synthesis sparsity for Martin, Pittman (b40) 1991; 3 Mhaskar, H., Liao, Q., & Poggio, T. (2016). Learning functions: when is deep better than shallow. arXiv preprint Barron (b3) 1993; 39 Evans, Gariepy (b19) 1992 Candès, Donoho (b10) 2004; 57 LeCun, Bengio, Hinton (b33) 2015; 521 Hornik, Stinchcombe, White (b26) 1989; 2 Lee (b35) 2013; vol. 218 Rosenblatt (b49) 1962 Safran, Shamir (b54) 2017; vol. 70 Telgarsky, M. (2017). Neural networks and rational functions. arXiv preprint Yarotsky (b62) 2017; 94 Delalleau, Bengio (b15) 2011 Anthony, Bartlett (b2) 2009 Dudley (b18) 2002; vol. 74 . Safran, I., & Shamir, O. (2016). Depth-width tradeoffs in approximating natural functions with neural networks. arXiv preprint Folland (b20) 1999 Kirszbraun (b27) 1934; 22 Zhang (b63) 2000; 30 Pinkus (b47) 1999; 8 Bölcskei, Grohs, Kutyniok, Petersen (b6) 2017 Lang (b32) 1993; vol. 142 Burke (b8) 1994; 10 Clements (b13) 1963; 13 Rudin (b51) 1991 Megginson (b43) 1998; vol. 183 Telgarsky, M. (2015). Representation benefits of deep feedforward networks. arXiv preprint Leshno, Lin, Pinkus, Schocken (b37) 1993; 6 McCulloch, Pitts (b42) 1943; 5 Valentine (b59) 1943; 49 Krizhevsky, Sutskever, Hinton (b29) 2012 Kutyniok, Lim (b31) 2011; 163 Wiatowski, Bölcskei (b61) 2018; 64 Adams (b1) 1975 LeCun, Boser, Denker, Henderson, Howard, Hubbard (b34) 1990 Guo, Labate (b23) 2007; 39 Poggio, Mhaskar, Rosasco, Miranda, Liao (b48) 2017 Donoho (b16) 1993; 1 Guyon (b24) 1991; 05 Goodfellow, Bengio, Courville (b21) 2016 Rudin (b50) 1976 Montúfar, Pascanu, Cho, Bengio (b46) 2014 Cybenko (b14) 1989; 2 Barron (b4) 1994; 14 Chandrasekaran, Wakin, Baron, Baraniuk (b12) 2009; 55 Chandrasekaran, V., Wakin, M., Baron, D., & Baraniuk, R. G. (2004). Compressing piecewise smooth multidimensional functions using surflets: Rate-distortion analysis. Rice University ECE Technical Report. Le Pennec, Mallat (b36) 2005; 14 Bölcskei, H., Grohs, P., Kutyniok, G., & Petersen, P. (2017b). Optimal approximation with sparsely connected deep neural networks. arXiv preprint Silver, Huang, Maddison, Guez, Sifre, van den Driessche (b55) 2016; 529 Telgarsky (b57) 2016; vol. 49 Baxt (b5) 1990; 2 Knerr, Personnaz, Dreyfus (b28) 1992; 3 Maiorov, Pinkus (b38) 1999; 25 Candès, Donoho (b9) 2000 Donoho (b17) 2001; 17 Mattila (b41) 1999 Mhaskar (b44) 1996; 8 Megginson (10.1016/j.neunet.2018.08.019_b43) 1998; vol. 183 Lee (10.1016/j.neunet.2018.08.019_b35) 2013; vol. 218 Wiatowski (10.1016/j.neunet.2018.08.019_b61) 2018; 64 Kutyniok (10.1016/j.neunet.2018.08.019_b30) 2012 Dudley (10.1016/j.neunet.2018.08.019_b18) 2002; vol. 74 Rosenblatt (10.1016/j.neunet.2018.08.019_b49) 1962 Mallat (10.1016/j.neunet.2018.08.019_b39) 2012; 65 Martin (10.1016/j.neunet.2018.08.019_b40) 1991; 3 Delalleau (10.1016/j.neunet.2018.08.019_b15) 2011 10.1016/j.neunet.2018.08.019_b45 Montúfar (10.1016/j.neunet.2018.08.019_b46) 2014 Rumelhart (10.1016/j.neunet.2018.08.019_b52) 1986 Barron (10.1016/j.neunet.2018.08.019_b4) 1994; 14 Le Pennec (10.1016/j.neunet.2018.08.019_b36) 2005; 14 Kutyniok (10.1016/j.neunet.2018.08.019_b31) 2011; 163 Valentine (10.1016/j.neunet.2018.08.019_b59) 1943; 49 Folland (10.1016/j.neunet.2018.08.019_b20) 1999 Barron (10.1016/j.neunet.2018.08.019_b3) 1993; 39 Mhaskar (10.1016/j.neunet.2018.08.019_b44) 1996; 8 Guo (10.1016/j.neunet.2018.08.019_b23) 2007; 39 Mattila (10.1016/j.neunet.2018.08.019_b41) 1999 Cybenko (10.1016/j.neunet.2018.08.019_b14) 1989; 2 Maiorov (10.1016/j.neunet.2018.08.019_b38) 1999; 25 Adams (10.1016/j.neunet.2018.08.019_b1) 1975 Pinkus (10.1016/j.neunet.2018.08.019_b47) 1999; 8 Anthony (10.1016/j.neunet.2018.08.019_b2) 2009 LeCun (10.1016/j.neunet.2018.08.019_b33) 2015; 521 10.1016/j.neunet.2018.08.019_b7 Kirszbraun (10.1016/j.neunet.2018.08.019_b27) 1934; 22 10.1016/j.neunet.2018.08.019_b60 Chandrasekaran (10.1016/j.neunet.2018.08.019_b12) 2009; 55 LeCun (10.1016/j.neunet.2018.08.019_b34) 1990 Leshno (10.1016/j.neunet.2018.08.019_b37) 1993; 6 McCulloch (10.1016/j.neunet.2018.08.019_b42) 1943; 5 Clements (10.1016/j.neunet.2018.08.019_b13) 1963; 13 Evans (10.1016/j.neunet.2018.08.019_b19) 1992 Rudin (10.1016/j.neunet.2018.08.019_b50) 1976 Hinton (10.1016/j.neunet.2018.08.019_b25) 2012; 29 Guyon (10.1016/j.neunet.2018.08.019_b24) 1991; 05 Poggio (10.1016/j.neunet.2018.08.019_b48) 2017 Rudin (10.1016/j.neunet.2018.08.019_b51) 1991 Silver (10.1016/j.neunet.2018.08.019_b55) 2016; 529 Donoho (10.1016/j.neunet.2018.08.019_b16) 1993; 1 Knerr (10.1016/j.neunet.2018.08.019_b28) 1992; 3 Safran (10.1016/j.neunet.2018.08.019_b54) 2017; vol. 70 Hornik (10.1016/j.neunet.2018.08.019_b26) 1989; 2 Goodfellow (10.1016/j.neunet.2018.08.019_b21) 2016 Telgarsky (10.1016/j.neunet.2018.08.019_b57) 2016; vol. 49 Donoho (10.1016/j.neunet.2018.08.019_b17) 2001; 17 Baxt (10.1016/j.neunet.2018.08.019_b5) 1990; 2 10.1016/j.neunet.2018.08.019_b11 Candès (10.1016/j.neunet.2018.08.019_b10) 2004; 57 10.1016/j.neunet.2018.08.019_b53 Candès (10.1016/j.neunet.2018.08.019_b9) 2000 Burke (10.1016/j.neunet.2018.08.019_b8) 1994; 10 Yarotsky (10.1016/j.neunet.2018.08.019_b62) 2017; 94 Zhang (10.1016/j.neunet.2018.08.019_b63) 2000; 30 Bölcskei (10.1016/j.neunet.2018.08.019_b6) 2017 Lang (10.1016/j.neunet.2018.08.019_b32) 1993; vol. 142 10.1016/j.neunet.2018.08.019_b58 10.1016/j.neunet.2018.08.019_b56 Krizhevsky (10.1016/j.neunet.2018.08.019_b29) 2012 Grohs (10.1016/j.neunet.2018.08.019_b22) 2015 |
References_xml | – year: 2017 ident: b6 article-title: Memory-optimal neural network approximation publication-title: Proc. of SPIE (wavelets and sparsity XVII) – volume: 521 start-page: 436 year: 2015 end-page: 444 ident: b33 article-title: Deep learning publication-title: Nature – volume: 10 start-page: 73 year: 1994 end-page: 79 ident: b8 article-title: Artificial neural networks for cancer research: outcome prediction publication-title: Seminars in Surgical Oncology – reference: Voigtlaender, F., & Pein, A. (2017). Analysis sparsity versus synthesis sparsity for – volume: 14 start-page: 115 year: 1994 end-page: 133 ident: b4 article-title: Approximation and estimation bounds for artificial neural networks publication-title: Machine Learning – volume: vol. 70 start-page: 2979 year: 2017 end-page: 2987 ident: b54 article-title: Depth-width tradeoffs in approximating natural functions with neural networks publication-title: Proceedings of the 34th international conference on machine learning – year: 2017 ident: b48 article-title: Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review publication-title: International Journal of Automation and Computing – reference: -shearlets. arXiv preprint – volume: vol. 142 start-page: xiv+580 year: 1993 ident: b32 publication-title: Real and functional analysis – volume: 39 start-page: 298 year: 2007 end-page: 318 ident: b23 article-title: Optimally sparse multidimensional representation using shearlets publication-title: SIAM Journal on Mathematical Analysis – volume: 30 start-page: 451 year: 2000 end-page: 462 ident: b63 article-title: Neural networks for classification: A survey publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part C – year: 2009 ident: b2 article-title: Neural network learning: Theoretical foundations – volume: 163 start-page: 1564 year: 2011 end-page: 1589 ident: b31 article-title: Compactly supported shearlets are optimally sparse publication-title: Journal of Approximation Theory – volume: 49 start-page: 100 year: 1943 end-page: 108 ident: b59 article-title: On the extension of a vector function so as to preserve a Lipschitz condition publication-title: American Mathematical Society. Bulletin – volume: 22 start-page: 77 year: 1934 end-page: 108 ident: b27 article-title: Über die zusammenziehende und Lipschitzsche Transformationen publication-title: Fundamental Mathematics – volume: 8 start-page: 164 year: 1996 end-page: 177 ident: b44 article-title: Neural networks for optimal approximation of smooth and analytic functions publication-title: Neural Computation – reference: Chandrasekaran, V., Wakin, M., Baron, D., & Baraniuk, R. G. (2004). Compressing piecewise smooth multidimensional functions using surflets: Rate-distortion analysis. Rice University ECE Technical Report. – start-page: 318 year: 1986 end-page: 362 ident: b52 article-title: Learning internal representations by error propagation publication-title: Parallel distributed processing: Explorations in the microstructure of cognition – reference: Safran, I., & Shamir, O. (2016). Depth-width tradeoffs in approximating natural functions with neural networks. arXiv preprint – volume: 2 start-page: 480 year: 1990 end-page: 489 ident: b5 article-title: Use of an artificial neural network for data analysis in clinical decision-making: The diagnosis of acute coronary occlusion publication-title: Neural Computation – volume: 1 start-page: 100 year: 1993 end-page: 115 ident: b16 article-title: Unconditional bases are optimal bases for data compression and for statistical estimation publication-title: Applied and Computational Harmonic Analysis – start-page: xviii+424 year: 1991 ident: b51 article-title: Functional analysis publication-title: International series in pure and applied mathematics – year: 1962 ident: b49 article-title: Principles of neurodynamics: Perceptrons and the theory of brain mechanisms – volume: 55 start-page: 374 year: 2009 end-page: 400 ident: b12 article-title: Representation and compression of multidimensional piecewise functions using surflets publication-title: IEEE Transaction on Information Theory – volume: vol. 218 start-page: xvi+708 year: 2013 ident: b35 publication-title: Introduction to smooth manifolds – volume: 5 start-page: 115 year: 1943 end-page: 133 ident: b42 article-title: A logical calculus of ideas immanent in nervous activity publication-title: Bulletin of Mathematical Biophysics – volume: 2 start-page: 303 year: 1989 end-page: 314 ident: b14 article-title: Approximation by superpositions of a sigmoidal function publication-title: Mathematics of Control, Signals – year: 1992 ident: b19 article-title: Measure theory and fine properties of functions – volume: vol. 183 start-page: xx+596 year: 1998 ident: b43 publication-title: An introduction to banach space theory – start-page: 199 year: 2015 end-page: 248 ident: b22 article-title: Optimally sparse data representations publication-title: Harmonic and applied analysis – volume: 2 start-page: 359 year: 1989 end-page: 366 ident: b26 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks – start-page: 666 year: 2011 end-page: 674 ident: b15 article-title: Shallow vs. deep sum-product networks publication-title: Advances in neural information processing systems, Vol. 24 – start-page: 105 year: 2000 end-page: 120 ident: b9 article-title: Curvelets: a surprisingly effective nonadaptive representation of objects with edges publication-title: Curve and surface fitting – volume: 05 start-page: 353 year: 1991 end-page: 382 ident: b24 article-title: Applications of neural networks to character recognition publication-title: International Journal of Pattern Recognition – volume: 14 start-page: 423 year: 2005 end-page: 438 ident: b36 article-title: Sparse geometric image representations with bandelets publication-title: IEEE Transactions on Image Processing – volume: 529 start-page: 484 year: 2016 end-page: 489 ident: b55 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature – start-page: 1097 year: 2012 end-page: 1105 ident: b29 article-title: Imagenet classification with deep convolutional neural networks publication-title: Advances in neural information processing systems, Vol. 25 – volume: 29 start-page: 82 year: 2012 end-page: 97 ident: b25 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Processing Magazine – volume: 3 start-page: 258 year: 1991 end-page: 267 ident: b40 article-title: Recognizing hand-printed letters and digits using backpropagation learning publication-title: Neural Computation – volume: 8 start-page: 143 year: 1999 end-page: 195 ident: b47 article-title: Approximation theory of the MLP model in neural networks publication-title: Acta Numerica – volume: vol. 74 start-page: x+555 year: 2002 ident: b18 publication-title: Real analysis and probability – reference: Telgarsky, M. (2015). Representation benefits of deep feedforward networks. arXiv preprint – volume: vol. 49 start-page: 1517 year: 2016 end-page: 1539 ident: b57 article-title: Benefits of depth in neural networks publication-title: 29th annual conference on learning theory – volume: 57 start-page: 219 year: 2004 end-page: 266 ident: b10 article-title: New tight frames of curvelets and optimal representations of objects with piecewise publication-title: Communications on Pure and Applied Mathematics – volume: 13 start-page: 1085 year: 1963 end-page: 1095 ident: b13 article-title: Entropies of several sets of real valued functions publication-title: Pacific Journal of Mathematics – start-page: 2924 year: 2014 end-page: 2932 ident: b46 article-title: On the number of linear regions of deep neural networks publication-title: Proceedings of the 27th international conference on neural information processing systems – reference: Telgarsky, M. (2017). Neural networks and rational functions. arXiv preprint – year: 1999 ident: b41 article-title: Geometry of sets and measures in euclidean spaces: Fractals and rectifiability, Vol. 44 – start-page: x+342 year: 1976 ident: b50 article-title: Principles of mathematical analysis – volume: 39 start-page: 930 year: 1993 end-page: 945 ident: b3 article-title: Universal approximation bounds for superpositions of a sigmoidal function publication-title: IEEE Transaction on Information Theory – volume: 94 start-page: 103 year: 2017 end-page: 114 ident: b62 article-title: Error bounds for approximations with deep ReLU networks publication-title: Neural Networks – volume: 25 start-page: 81 year: 1999 end-page: 91 ident: b38 article-title: Lower bounds for approximation by MLP neural networks publication-title: Neurocomputing – start-page: 1 year: 2012 end-page: 38 ident: b30 article-title: Introduction to shearlets publication-title: Shearlets – volume: 17 start-page: 353 year: 2001 end-page: 382 ident: b17 article-title: Sparse components of images and optimal atomic decompositions publication-title: Constructive Approximation – reference: . – volume: 65 start-page: 1331 year: 2012 end-page: 1398 ident: b39 article-title: Group invariant scattering publication-title: Communications on Pure and Applied Mathematics – volume: 6 start-page: 861 year: 1993 end-page: 867 ident: b37 article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function publication-title: Neural Networks – volume: 64 start-page: 1845 year: 2018 end-page: 1866 ident: b61 article-title: A mathematical theory of deep convolutional neural networks for feature extraction publication-title: IEEE Transaction on Information Theory – reference: Bölcskei, H., Grohs, P., Kutyniok, G., & Petersen, P. (2017b). Optimal approximation with sparsely connected deep neural networks. arXiv preprint – start-page: xviii+268 year: 1975 ident: b1 article-title: Sobolev spaces – volume: 3 start-page: 962 year: 1992 end-page: 968 ident: b28 article-title: Handwritten digit recognition by neural networks with single-layer training publication-title: IEEE Transactions on Neural Networks – reference: Mhaskar, H., Liao, Q., & Poggio, T. (2016). Learning functions: when is deep better than shallow. arXiv preprint – year: 1999 ident: b20 publication-title: Real analysis: Modern techniques and their applications – start-page: 396 year: 1990 end-page: 404 ident: b34 article-title: Handwritten digit recognition with a back-propagation network publication-title: Advances in neural information processing systems, Vol. 2 – year: 2016 ident: b21 article-title: Deep learning – volume: 163 start-page: 1564 issue: 11 year: 2011 ident: 10.1016/j.neunet.2018.08.019_b31 article-title: Compactly supported shearlets are optimally sparse publication-title: Journal of Approximation Theory doi: 10.1016/j.jat.2011.06.005 – volume: 1 start-page: 100 issue: 1 year: 1993 ident: 10.1016/j.neunet.2018.08.019_b16 article-title: Unconditional bases are optimal bases for data compression and for statistical estimation publication-title: Applied and Computational Harmonic Analysis doi: 10.1006/acha.1993.1008 – volume: 5 start-page: 115 year: 1943 ident: 10.1016/j.neunet.2018.08.019_b42 article-title: A logical calculus of ideas immanent in nervous activity publication-title: Bulletin of Mathematical Biophysics doi: 10.1007/BF02478259 – year: 1999 ident: 10.1016/j.neunet.2018.08.019_b41 – volume: vol. 183 start-page: xx+596 year: 1998 ident: 10.1016/j.neunet.2018.08.019_b43 – ident: 10.1016/j.neunet.2018.08.019_b60 – year: 2009 ident: 10.1016/j.neunet.2018.08.019_b2 – volume: 14 start-page: 423 year: 2005 ident: 10.1016/j.neunet.2018.08.019_b36 article-title: Sparse geometric image representations with bandelets publication-title: IEEE Transactions on Image Processing doi: 10.1109/TIP.2005.843753 – volume: 14 start-page: 115 issue: 1 year: 1994 ident: 10.1016/j.neunet.2018.08.019_b4 article-title: Approximation and estimation bounds for artificial neural networks publication-title: Machine Learning doi: 10.1007/BF00993164 – year: 1999 ident: 10.1016/j.neunet.2018.08.019_b20 – ident: 10.1016/j.neunet.2018.08.019_b11 – volume: 64 start-page: 1845 issue: 3 year: 2018 ident: 10.1016/j.neunet.2018.08.019_b61 article-title: A mathematical theory of deep convolutional neural networks for feature extraction publication-title: IEEE Transaction on Information Theory doi: 10.1109/TIT.2017.2776228 – volume: 10 start-page: 73 year: 1994 ident: 10.1016/j.neunet.2018.08.019_b8 article-title: Artificial neural networks for cancer research: outcome prediction publication-title: Seminars in Surgical Oncology doi: 10.1002/ssu.2980100111 – start-page: 199 year: 2015 ident: 10.1016/j.neunet.2018.08.019_b22 article-title: Optimally sparse data representations – volume: 521 start-page: 436 issue: 7553 year: 2015 ident: 10.1016/j.neunet.2018.08.019_b33 article-title: Deep learning publication-title: Nature doi: 10.1038/nature14539 – start-page: xviii+268 year: 1975 ident: 10.1016/j.neunet.2018.08.019_b1 – volume: 49 start-page: 100 issue: 2 year: 1943 ident: 10.1016/j.neunet.2018.08.019_b59 article-title: On the extension of a vector function so as to preserve a Lipschitz condition publication-title: American Mathematical Society. Bulletin doi: 10.1090/S0002-9904-1943-07859-7 – start-page: 318 year: 1986 ident: 10.1016/j.neunet.2018.08.019_b52 article-title: Learning internal representations by error propagation – volume: vol. 74 start-page: x+555 year: 2002 ident: 10.1016/j.neunet.2018.08.019_b18 – year: 2016 ident: 10.1016/j.neunet.2018.08.019_b21 – volume: 39 start-page: 298 issue: 1 year: 2007 ident: 10.1016/j.neunet.2018.08.019_b23 article-title: Optimally sparse multidimensional representation using shearlets publication-title: SIAM Journal on Mathematical Analysis doi: 10.1137/060649781 – volume: 39 start-page: 930 issue: 3 year: 1993 ident: 10.1016/j.neunet.2018.08.019_b3 article-title: Universal approximation bounds for superpositions of a sigmoidal function publication-title: IEEE Transaction on Information Theory doi: 10.1109/18.256500 – volume: 529 start-page: 484 issue: 7587 year: 2016 ident: 10.1016/j.neunet.2018.08.019_b55 article-title: Mastering the game of Go with deep neural networks and tree search publication-title: Nature doi: 10.1038/nature16961 – volume: 2 start-page: 480 issue: 4 year: 1990 ident: 10.1016/j.neunet.2018.08.019_b5 article-title: Use of an artificial neural network for data analysis in clinical decision-making: The diagnosis of acute coronary occlusion publication-title: Neural Computation doi: 10.1162/neco.1990.2.4.480 – volume: 55 start-page: 374 issue: 1 year: 2009 ident: 10.1016/j.neunet.2018.08.019_b12 article-title: Representation and compression of multidimensional piecewise functions using surflets publication-title: IEEE Transaction on Information Theory doi: 10.1109/TIT.2008.2008153 – volume: 65 start-page: 1331 issue: 10 year: 2012 ident: 10.1016/j.neunet.2018.08.019_b39 article-title: Group invariant scattering publication-title: Communications on Pure and Applied Mathematics doi: 10.1002/cpa.21413 – start-page: 2924 year: 2014 ident: 10.1016/j.neunet.2018.08.019_b46 article-title: On the number of linear regions of deep neural networks – volume: 25 start-page: 81 issue: 1–3 year: 1999 ident: 10.1016/j.neunet.2018.08.019_b38 article-title: Lower bounds for approximation by MLP neural networks publication-title: Neurocomputing doi: 10.1016/S0925-2312(98)00111-8 – volume: 94 start-page: 103 year: 2017 ident: 10.1016/j.neunet.2018.08.019_b62 article-title: Error bounds for approximations with deep ReLU networks publication-title: Neural Networks doi: 10.1016/j.neunet.2017.07.002 – volume: 3 start-page: 962 issue: 6 year: 1992 ident: 10.1016/j.neunet.2018.08.019_b28 article-title: Handwritten digit recognition by neural networks with single-layer training publication-title: IEEE Transactions on Neural Networks doi: 10.1109/72.165597 – ident: 10.1016/j.neunet.2018.08.019_b58 – ident: 10.1016/j.neunet.2018.08.019_b7 – volume: 3 start-page: 258 issue: 2 year: 1991 ident: 10.1016/j.neunet.2018.08.019_b40 article-title: Recognizing hand-printed letters and digits using backpropagation learning publication-title: Neural Computation doi: 10.1162/neco.1991.3.2.258 – year: 1962 ident: 10.1016/j.neunet.2018.08.019_b49 – volume: 29 start-page: 82 issue: 6 year: 2012 ident: 10.1016/j.neunet.2018.08.019_b25 article-title: Deep neural networks for acoustic modeling in speech recognition: The shared views of four research groups publication-title: IEEE Signal Processing Magazine doi: 10.1109/MSP.2012.2205597 – start-page: 1097 year: 2012 ident: 10.1016/j.neunet.2018.08.019_b29 article-title: Imagenet classification with deep convolutional neural networks – volume: 8 start-page: 164 issue: 1 year: 1996 ident: 10.1016/j.neunet.2018.08.019_b44 article-title: Neural networks for optimal approximation of smooth and analytic functions publication-title: Neural Computation doi: 10.1162/neco.1996.8.1.164 – year: 2017 ident: 10.1016/j.neunet.2018.08.019_b48 article-title: Why and when can deep-but not shallow-networks avoid the curse of dimensionality: A review publication-title: International Journal of Automation and Computing doi: 10.1007/s11633-017-1054-2 – ident: 10.1016/j.neunet.2018.08.019_b56 – start-page: xviii+424 year: 1991 ident: 10.1016/j.neunet.2018.08.019_b51 article-title: Functional analysis – volume: vol. 70 start-page: 2979 year: 2017 ident: 10.1016/j.neunet.2018.08.019_b54 article-title: Depth-width tradeoffs in approximating natural functions with neural networks – volume: 17 start-page: 353 issue: 3 year: 2001 ident: 10.1016/j.neunet.2018.08.019_b17 article-title: Sparse components of images and optimal atomic decompositions publication-title: Constructive Approximation doi: 10.1007/s003650010032 – volume: vol. 49 start-page: 1517 year: 2016 ident: 10.1016/j.neunet.2018.08.019_b57 article-title: Benefits of depth in neural networks – volume: 22 start-page: 77 year: 1934 ident: 10.1016/j.neunet.2018.08.019_b27 article-title: Über die zusammenziehende und Lipschitzsche Transformationen publication-title: Fundamental Mathematics doi: 10.4064/fm-22-1-77-108 – volume: 13 start-page: 1085 year: 1963 ident: 10.1016/j.neunet.2018.08.019_b13 article-title: Entropies of several sets of real valued functions publication-title: Pacific Journal of Mathematics doi: 10.2140/pjm.1963.13.1085 – start-page: 1 year: 2012 ident: 10.1016/j.neunet.2018.08.019_b30 article-title: Introduction to shearlets – volume: 2 start-page: 359 issue: 5 year: 1989 ident: 10.1016/j.neunet.2018.08.019_b26 article-title: Multilayer feedforward networks are universal approximators publication-title: Neural Networks doi: 10.1016/0893-6080(89)90020-8 – volume: 30 start-page: 451 issue: 4 year: 2000 ident: 10.1016/j.neunet.2018.08.019_b63 article-title: Neural networks for classification: A survey publication-title: IEEE Transactions on Systems, Man, and Cybernetics Part C doi: 10.1109/5326.897072 – volume: 57 start-page: 219 issue: 2 year: 2004 ident: 10.1016/j.neunet.2018.08.019_b10 article-title: New tight frames of curvelets and optimal representations of objects with piecewise C2 singularities publication-title: Communications on Pure and Applied Mathematics doi: 10.1002/cpa.10116 – volume: 2 start-page: 303 issue: 4 year: 1989 ident: 10.1016/j.neunet.2018.08.019_b14 article-title: Approximation by superpositions of a sigmoidal function publication-title: Mathematics of Control, Signals doi: 10.1007/BF02551274 – ident: 10.1016/j.neunet.2018.08.019_b53 – start-page: 666 year: 2011 ident: 10.1016/j.neunet.2018.08.019_b15 article-title: Shallow vs. deep sum-product networks – volume: vol. 218 start-page: xvi+708 year: 2013 ident: 10.1016/j.neunet.2018.08.019_b35 – volume: 6 start-page: 861 issue: 6 year: 1993 ident: 10.1016/j.neunet.2018.08.019_b37 article-title: Multilayer feedforward networks with a nonpolynomial activation function can approximate any function publication-title: Neural Networks doi: 10.1016/S0893-6080(05)80131-5 – volume: vol. 142 start-page: xiv+580 year: 1993 ident: 10.1016/j.neunet.2018.08.019_b32 – ident: 10.1016/j.neunet.2018.08.019_b45 – volume: 8 start-page: 143 year: 1999 ident: 10.1016/j.neunet.2018.08.019_b47 article-title: Approximation theory of the MLP model in neural networks publication-title: Acta Numerica doi: 10.1017/S0962492900002919 – start-page: x+342 year: 1976 ident: 10.1016/j.neunet.2018.08.019_b50 – year: 2017 ident: 10.1016/j.neunet.2018.08.019_b6 article-title: Memory-optimal neural network approximation – start-page: 396 year: 1990 ident: 10.1016/j.neunet.2018.08.019_b34 article-title: Handwritten digit recognition with a back-propagation network – year: 1992 ident: 10.1016/j.neunet.2018.08.019_b19 – volume: 05 start-page: 353 issue: 01n02 year: 1991 ident: 10.1016/j.neunet.2018.08.019_b24 article-title: Applications of neural networks to character recognition publication-title: International Journal of Pattern Recognition doi: 10.1142/S021800149100020X – start-page: 105 year: 2000 ident: 10.1016/j.neunet.2018.08.019_b9 article-title: Curvelets: a surprisingly effective nonadaptive representation of objects with edges |
SSID | ssj0006843 |
Score | 2.6589606 |
Snippet | We study the necessary and sufficient complexity of ReLU neural networks – in terms of depth and number of weights – which is required for approximating... We study the necessary and sufficient complexity of ReLU neural networks - in terms of depth and number of weights - which is required for approximating... |
SourceID | proquest pubmed crossref elsevier |
SourceType | Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 296 |
SubjectTerms | Curse of dimension Deep neural networks Function approximation Metric entropy Neural Networks (Computer) Piecewise smooth functions Sparse connectivity |
Title | Optimal approximation of piecewise smooth functions using deep ReLU neural networks |
URI | https://dx.doi.org/10.1016/j.neunet.2018.08.019 https://www.ncbi.nlm.nih.gov/pubmed/30245431 https://www.proquest.com/docview/2111746774 |
Volume | 108 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1La9wwEB6SzaWXPtJHtmmDCr2qa1mybB1DaNi2aQpNF3ITsjRbHBLv0t2lOeW3R2PZC4WWQI82km1mRvPA33wD8F6EqhZeCV57LLhyheG1KGoesuArica5rlH467meztTny-JyB06GXhiCVfa-P_n0zlv3dya9NCfLpplcZDHU6pjwCKKwUoXahb1cGl2MYO_405fp-dYh6yqB5-J6ThuGDroO5tXipkUCVYqq4_Ikyp2_R6h_ZaBdJDp9Co_7FJIdp698BjvY7sOTYTwD60_rc7j4Ft3BTVzZ8YbfNqlJkS3mbNmgx9_NCtnqZhFVxSi6dQbICAf_kwXEJfuOZzNGfJfxEW1Ci69ewOz044-TKe9nKHAfC4s1J7ZDndXSh8JrRF1qh4VWLqZFQucuz-ZKOePmWDpfxlgd8tr70sTMwVTGBSlfwqhdtHgAjNi6ZEzJgqIaSgQ3l7G8kiXmJnN1lY1BDnKzvicYpzkX13ZAkl3ZJG1L0rY0_lKYMfDtrmUi2HhgfTmoxP5hKDbGgAd2vhs0aOMZoh8jrsXFZmVjESxo7EqpxvAqqXb7Lcm2pHj93-89hEd0lTAwb2C0_rXBtzGTWddHsPvhThz19noP1RXy_w |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1Lb9QwEB6VcoAL5c2Wl5G4mo3XjpMcUUW1wLZItCv1Zjn2bBVEsyt2V3Dqb-9MnBQhgSpxTcZJNDOeh_L5G4C3Kpa1CkbJOmAujc8rWau8ljGLodRYed8dFD46ttO5-XSWn-3AwXAWhmGVfexPMb2L1v2Vca_N8appxicZpVpLBY9iCiuTm1tw2-S6YFzfu8vfOA9bJugcSUsWH87PdSCvFrctMqRSlR2TJxPu_D0__av-7PLQ4X241xeQ4n36xgewg-1D2BuGM4h-rz6Cky8UDC5IsmMN_9WkI4piuRCrBgP-bNYo1hdLMpTg3Na5n2AU_LmIiCvxFWdzwWyX9Ig2YcXXj2F--OH0YCr7CQoyUFuxkcx1aLNah5gHi2gL6zG3xlNRpOzET7KFMb7yCyx8KChTx0kdQlFR3VCVlY9aP4HddtniMxDM1aWpIIuGOygV_UJTc6ULnFSZr8tsBHrQmws9vThPufjuBhzZN5e07VjbjodfqmoE8nrVKtFr3CBfDCZxf7iJowxww8o3gwUd7SD-LeJbXG7XjlpgxUNXCjOCp8m019-SPEur_f9-72u4Mz09mrnZx-PPz-Eu30lomBewu_mxxZdU02zqV53PXgHiQPPK |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Optimal+approximation+of+piecewise+smooth+functions+using+deep+ReLU+neural+networks&rft.jtitle=Neural+networks&rft.au=Petersen%2C+Philipp&rft.au=Voigtlaender%2C+Felix&rft.date=2018-12-01&rft.eissn=1879-2782&rft.volume=108&rft.spage=296&rft_id=info:doi/10.1016%2Fj.neunet.2018.08.019&rft_id=info%3Apmid%2F30245431&rft.externalDocID=30245431 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0893-6080&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0893-6080&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0893-6080&client=summon |