Functional assistance for stress distribution in cell culture membrane under periodically stretching

Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the te...

Full description

Saved in:
Bibliographic Details
Published inJournal of biomechanics Vol. 125; p. 110564
Main Authors Dai, Zhi-Xuan, Shih, Po-Jen, Yen, Jia-Yush, Wang, I-Jong
Format Journal Article
LanguageEnglish
Published Kidlington Elsevier Ltd 26.08.2021
Elsevier Limited
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the tensile section, in order to determine the effect of various cyclic strains on cultured human keratinocytes (HK) cells. This device is used to determine the effect of 3% and 5% cyclic strain and shear strain on cell proliferation and arrangement at 1 Hz. The results show that compared with static and 3% strain, a 5% cyclic strain better inhibits the proliferation of HK cells. Compared to the initial cell attachment when there is no specific directionality, the cells are aligned in the vertical stretching direction after cyclic stretching. This equipment increases the efficiency of the experiment and more intuitively maps the cell behavior and shape to the strain field and the response to the shear strain.
AbstractList Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the tensile section, in order to determine the effect of various cyclic strains on cultured human keratinocytes (HK) cells. This device is used to determine the effect of 3% and 5% cyclic strain and shear strain on cell proliferation and arrangement at 1 Hz. The results show that compared with static and 3% strain, a 5% cyclic strain better inhibits the proliferation of HK cells. Compared to the initial cell attachment when there is no specific directionality, the cells are aligned in the vertical stretching direction after cyclic stretching. This equipment increases the efficiency of the experiment and more intuitively maps the cell behavior and shape to the strain field and the response to the shear strain.
Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the tensile section, in order to determine the effect of various cyclic strains on cultured human keratinocytes (HK) cells. This device is used to determine the effect of 3% and 5% cyclic strain and shear strain on cell proliferation and arrangement at 1 Hz. The results show that compared with static and 3% strain, a 5% cyclic strain better inhibits the proliferation of HK cells. Compared to the initial cell attachment when there is no specific directionality, the cells are aligned in the vertical stretching direction after cyclic stretching. This equipment increases the efficiency of the experiment and more intuitively maps the cell behavior and shape to the strain field and the response to the shear strain.Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the tensile section, in order to determine the effect of various cyclic strains on cultured human keratinocytes (HK) cells. This device is used to determine the effect of 3% and 5% cyclic strain and shear strain on cell proliferation and arrangement at 1 Hz. The results show that compared with static and 3% strain, a 5% cyclic strain better inhibits the proliferation of HK cells. Compared to the initial cell attachment when there is no specific directionality, the cells are aligned in the vertical stretching direction after cyclic stretching. This equipment increases the efficiency of the experiment and more intuitively maps the cell behavior and shape to the strain field and the response to the shear strain.
Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the tensile section, in order to determine the effect of various cyclic strains on cultured human keratinocytes (HK) cells. This device is used to determine the effect of 3% and 5% cyclic strain and shear strain on cell proliferation and arrangement at 1 Hz. The results show that compared with static and 3% strain, a 5% cyclic strain better inhibits the proliferation of HK cells. Compared to the initial cell attachment when there is no specific directionality, the cells are aligned in the vertical stretching direction after cyclic stretching. This equipment increases the efficiency of the experiment and more intuitively maps the cell behavior and shape to the strain field and the response to the shear strain.
ArticleNumber 110564
Author Wang, I-Jong
Shih, Po-Jen
Dai, Zhi-Xuan
Yen, Jia-Yush
Author_xml – sequence: 1
  givenname: Zhi-Xuan
  surname: Dai
  fullname: Dai, Zhi-Xuan
  organization: Department of Mechanical Engineering, National Taiwan University, 10617 Taipei, Taiwan
– sequence: 2
  givenname: Po-Jen
  surname: Shih
  fullname: Shih, Po-Jen
  email: pjshih@ntu.edu.tw
  organization: Department of Biomedical Engineering, National Taiwan University, 10617 Taipei, Taiwan
– sequence: 3
  givenname: Jia-Yush
  surname: Yen
  fullname: Yen, Jia-Yush
  organization: Department of Mechanical Engineering, National Taiwan University, 10617 Taipei, Taiwan
– sequence: 4
  givenname: I-Jong
  surname: Wang
  fullname: Wang, I-Jong
  organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan
BookMark eNqNkUFrHCEYhiWkkE3av1CEXnqZjTrOjAultIQkLQR6ac_i6Gfj1NGtOoX993Wy6WUv6Un4fN6Xj-e7ROchBkDoLSVbSmh_PW2n0cUZ9OOWEUa3lJKu52doQ8XQNqwV5BxtSP1pdmxHLtBlzhMhZODDboPM3RJ0cTEoj1XOLhcVNGAbE84lQc7Y1Fly47JC2AWswXusF1-WBHiGeUwqAF6CgYT3kFw0TivvD0_5oh9d-PkavbLKZ3jz_F6hH3e332--NA_f7r_efH5oNGeiNL2BgfR9Nyhr-pGDscSMQOigKGimO2MFs3QUbBw4pyMDIYwSpLUtHahtu_YKvT_27lP8vUAucnZ53bduGJcsWdcR1reUk4q-O0GnuKRq4YkSnPeMi0r1R0qnmHMCK_fJzSodJCVylS8n-U--XOXLo_wa_HAS1K6oVWFJyvmX45-Ocai2_jhIMmsH9TDGJdBFmuhervh4UqG9C-tpfsHhfwr-ArPjvcI
CitedBy_id crossref_primary_10_1111_odi_14469
crossref_primary_10_3390_pr10030605
crossref_primary_10_1177_15353702231198079
crossref_primary_10_1002_admi_202202477
Cites_doi 10.1021/acsnano.9b09941
10.1186/s12938-016-0198-6
10.1155/2014/189516
10.1016/j.jbiotec.2007.08.007
10.1016/j.scr.2015.01.001
10.1007/s11340-014-9965-0
10.1016/0021-9290(94)90057-4
10.1152/ajplung.00097.2014
10.1007/s10856-007-3125-3
10.1016/j.jbiomech.2004.09.030
10.3892/mmr.2014.2984
10.1038/ncomms4938
10.1016/S0090-4295(01)01648-X
10.1089/ten.tea.2012.0135
10.1098/rsif.2014.0685
10.1371/journal.pone.0077328
10.1152/ajplung.00399.2000
10.1016/j.jbiomech.2010.05.002
10.1016/j.jbiomech.2004.08.012
10.1016/j.yexcr.2004.11.001
10.1016/j.jbiomech.2006.04.011
10.1634/stemcells.22-3-313
10.1083/jcb.200505018
10.1165/rcmb.2012-0252OC
10.1016/j.medengphy.2011.09.024
10.1016/S0021-9290(01)00150-6
ContentType Journal Article
Copyright 2021 Elsevier Ltd
2021. Elsevier Ltd
Copyright © 2021 Elsevier Ltd. All rights reserved.
Copyright_xml – notice: 2021 Elsevier Ltd
– notice: 2021. Elsevier Ltd
– notice: Copyright © 2021 Elsevier Ltd. All rights reserved.
DBID AAYXX
CITATION
3V.
7QP
7TB
7TS
7X7
7XB
88E
8AO
8FD
8FE
8FH
8FI
8FJ
8FK
8G5
ABUWG
AFKRA
AZQEC
BBNVY
BENPR
BHPHI
CCPQU
DWQXO
FR3
FYUFA
GHDGH
GNUQQ
GUQSH
HCIFZ
K9.
LK8
M0S
M1P
M2O
M7P
MBDVC
PHGZM
PHGZT
PJZUB
PKEHL
PPXIY
PQEST
PQGLB
PQQKQ
PQUKI
Q9U
7X8
DOI 10.1016/j.jbiomech.2021.110564
DatabaseName CrossRef
ProQuest Central (Corporate)
Calcium & Calcified Tissue Abstracts
Mechanical & Transportation Engineering Abstracts
Physical Education Index
Health & Medical Collection
ProQuest Central (purchase pre-March 2016)
Medical Database (Alumni Edition)
ProQuest Pharma Collection
Technology Research Database
ProQuest SciTech Collection
ProQuest Natural Science Collection
Hospital Premium Collection
Hospital Premium Collection (Alumni Edition)
ProQuest Central (Alumni) (purchase pre-March 2016)
Research Library (Alumni)
ProQuest Central (Alumni)
ProQuest Central UK/Ireland
ProQuest Central Essentials
Biological Science Collection
ProQuest Central
Natural Science Collection
ProQuest One
ProQuest Central
Engineering Research Database
Health Research Premium Collection
Health Research Premium Collection (Alumni)
ProQuest Central Student
ProQuest Research Library
SciTech Premium Collection
ProQuest Health & Medical Complete (Alumni)
ProQuest Biological Science Collection
Health & Medical Collection (Alumni)
Medical Database
Research Library
Biological Science Database
Research Library (Corporate)
ProQuest Central Premium
ProQuest One Academic (New)
ProQuest Health & Medical Research Collection
ProQuest One Academic Middle East (New)
ProQuest One Health & Nursing
ProQuest One Academic Eastern Edition (DO NOT USE)
ProQuest One Applied & Life Sciences
ProQuest One Academic
ProQuest One Academic UKI Edition
ProQuest Central Basic
MEDLINE - Academic
DatabaseTitle CrossRef
Research Library Prep
ProQuest Central Student
Technology Research Database
ProQuest One Academic Middle East (New)
Mechanical & Transportation Engineering Abstracts
ProQuest Central Essentials
ProQuest Health & Medical Complete (Alumni)
ProQuest Central (Alumni Edition)
SciTech Premium Collection
ProQuest One Community College
ProQuest One Health & Nursing
Research Library (Alumni Edition)
ProQuest Natural Science Collection
ProQuest Pharma Collection
Physical Education Index
ProQuest Central
ProQuest One Applied & Life Sciences
ProQuest Health & Medical Research Collection
Health Research Premium Collection
Health and Medicine Complete (Alumni Edition)
Natural Science Collection
ProQuest Central Korea
Health & Medical Research Collection
Biological Science Collection
ProQuest Research Library
ProQuest Central (New)
ProQuest Medical Library (Alumni)
ProQuest Biological Science Collection
ProQuest Central Basic
ProQuest One Academic Eastern Edition
ProQuest Hospital Collection
Health Research Premium Collection (Alumni)
Biological Science Database
ProQuest SciTech Collection
ProQuest Hospital Collection (Alumni)
ProQuest Health & Medical Complete
ProQuest Medical Library
ProQuest One Academic UKI Edition
Engineering Research Database
ProQuest One Academic
Calcium & Calcified Tissue Abstracts
ProQuest One Academic (New)
ProQuest Central (Alumni)
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Research Library Prep
Database_xml – sequence: 1
  dbid: BENPR
  name: ProQuest Central
  url: https://www.proquest.com/central
  sourceTypes: Aggregation Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Engineering
Anatomy & Physiology
EISSN 1873-2380
ExternalDocumentID 10_1016_j_jbiomech_2021_110564
S0021929021003444
GeographicLocations United States--US
Taiwan
GeographicLocations_xml – name: Taiwan
– name: United States--US
GroupedDBID ---
--K
--M
--Z
-~X
.1-
.55
.FO
.~1
0R~
1B1
1P~
1RT
1~.
1~5
4.4
457
4G.
5GY
5VS
7-5
71M
7X7
88E
8AO
8FE
8FH
8FI
8FJ
8G5
8P~
9JM
9JN
AABNK
AAEDT
AAEDW
AAIKJ
AAKOC
AALRI
AAOAW
AAQFI
AATTM
AAXKI
AAXUO
AAYWO
ABBQC
ABFNM
ABJNI
ABMAC
ABMZM
ABUWG
ACDAQ
ACGFS
ACIEU
ACIUM
ACIWK
ACPRK
ACRLP
ACVFH
ADBBV
ADCNI
ADEZE
ADTZH
AEBSH
AECPX
AEIPS
AEKER
AENEX
AEUPX
AEVXI
AFKRA
AFPUW
AFRHN
AFTJW
AFXIZ
AGCQF
AGUBO
AGYEJ
AHHHB
AHJVU
AHMBA
AIEXJ
AIGII
AIIUN
AIKHN
AITUG
AJRQY
AJUYK
AKBMS
AKRWK
AKYEP
ALMA_UNASSIGNED_HOLDINGS
AMRAJ
ANKPU
ANZVX
APXCP
AXJTR
AZQEC
BBNVY
BENPR
BHPHI
BJAXD
BKOJK
BLXMC
BNPGV
BPHCQ
BVXVI
CCPQU
CS3
DU5
DWQXO
EBS
EFJIC
EFKBS
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
FYUFA
G-Q
GBLVA
GNUQQ
GUQSH
HCIFZ
HMCUK
IHE
J1W
JJJVA
KOM
LK8
M1P
M29
M2O
M31
M41
M7P
MO0
N9A
O-L
O9-
OAUVE
OH.
OT.
OZT
P-8
P-9
P2P
PC.
PHGZM
PHGZT
PJZUB
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PUEGO
Q38
ROL
SCC
SDF
SDG
SDP
SEL
SES
SJN
SPC
SPCBC
SSH
SST
SSZ
T5K
UKHRP
UPT
X7M
YQT
Z5R
ZMT
~G-
AACTN
AAIAV
ABLVK
ABYKQ
AFCTW
AFKWA
AJOXV
AMFUW
EFLBG
LCYCR
.GJ
29J
53G
AAQQT
AAQXK
AAYXX
ABWVN
ABXDB
ACNNM
ACRPL
ADMUD
ADNMO
AFJKZ
AGHFR
AGQPQ
AGRNS
AI.
ALIPV
ASPBG
AVWKF
AZFZN
CITATION
EBD
EJD
FEDTE
FGOYB
G-2
HEE
HMK
HMO
HVGLF
HZ~
H~9
I-F
ML~
MVM
OHT
R2-
RIG
RPZ
SAE
SEW
VH1
WUQ
XOL
XPP
ZGI
3V.
7QP
7TB
7TS
7XB
8FD
8FK
FR3
K9.
MBDVC
PKEHL
PQEST
PQUKI
Q9U
7X8
ID FETCH-LOGICAL-c428t-6de706657afd6b4edf0dbe017a1ec2c5df82f1b82b7441b2e88da803f3171f353
IEDL.DBID .~1
ISSN 0021-9290
1873-2380
IngestDate Fri Jul 11 11:26:43 EDT 2025
Wed Aug 13 04:28:42 EDT 2025
Tue Jul 01 00:44:19 EDT 2025
Thu Apr 24 23:03:25 EDT 2025
Fri Feb 23 02:39:30 EST 2024
Tue Aug 26 16:32:17 EDT 2025
IsPeerReviewed true
IsScholarly true
Keywords Stress distribution
Human keratinocytes
Cyclic stretching
Finite element analysis (FEA)
Language English
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-6de706657afd6b4edf0dbe017a1ec2c5df82f1b82b7441b2e88da803f3171f353
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
PQID 2558446248
PQPubID 1226346
ParticipantIDs proquest_miscellaneous_2550263140
proquest_journals_2558446248
crossref_primary_10_1016_j_jbiomech_2021_110564
crossref_citationtrail_10_1016_j_jbiomech_2021_110564
elsevier_sciencedirect_doi_10_1016_j_jbiomech_2021_110564
elsevier_clinicalkey_doi_10_1016_j_jbiomech_2021_110564
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2021-08-26
PublicationDateYYYYMMDD 2021-08-26
PublicationDate_xml – month: 08
  year: 2021
  text: 2021-08-26
  day: 26
PublicationDecade 2020
PublicationPlace Kidlington
PublicationPlace_xml – name: Kidlington
PublicationTitle Journal of biomechanics
PublicationYear 2021
Publisher Elsevier Ltd
Elsevier Limited
Publisher_xml – name: Elsevier Ltd
– name: Elsevier Limited
References Davidovich, DiPaolo, Lawrence, Chhour, Yehya, Margulies (b0035) 2013; 49
Boyle, Kume, Wyczalkowski, Taber, Pless, Xia, Genin, Thomopoulos (b0010) 2014; 11
Greiner, Chen, Spatz, Kemkemer (b0050) 2013; 8
Orsola, Adam, Peters, Freeman (b0095) 2002; 59
Dai, Tian, Luo, Wazir, Yue, Li, Wang (b0025) 2015; 11
Sato, Adachi, Matsuo, Tomita (b0105) 2005; 38
Wedgwood, Lakshminrusimha, Schumacker, Steinhorn (b0130) 2015; 309
Shakiba, Alisafaei, Savadipour, Rowe, Liu, Pryse, Shenoy, Elson, Genin (b0110) 2020; 14
Zhang, Luo, Chen, Sun, Xu, Ju, Song (b0145) 2015; 14
Shikata, Rios, Kawkitinarong, DePaola, Garcia, Birukov (b0115) 2005; 304
Dan, Velot, Decot, Menu (b0030) 2015; 128
Haga, Li, Chien (b0055) 2007; 40
Gilbert, Weinhold, Banes, Link, Jones (b0045) 1994; 27
Xie, Yang, Chen, Li (b0135) 2012; 34
Barron, Brougham, Coghlan, McLucas, O’Mahoney, Stenson-Cox, McHugh (b0005) 2007; 18
Masuda, Takahashi, Anada, Arai, Fukuda, Takano-Yamamoto, Suzuki (b0085) 2008; 133
Morita, Sato, Watanabe, Ju (b0090) 2015; 55
Tata, Xu, Rao, Chuong, Nguyen, Chiao (b0120) 2011
Huang, Hagar, Frost, Sun, Cheung (b0060) 2004; 22
Chen, Kemkemer, Deibler, Spatz, Gao (b0015) 2012; 7
Chiang, Cheng, Pakstis, Dunkers (b0020) 2010; 43
Sanchez-Esteban, Wang, Cicchiello, Rubin (b0100) 2002; 282
Li, Haga, Chien (b0065) 2005; 38
Wang, Goldschmidt-Clermont, Wille, Yin (b0125) 2001; 34
Feng, Li, Chen, Liu, Rong, Wang, Du (b0040) 2016; 15
Livne, Bouchbinder, Geiger (b0070) 2014; 5
Lu, Mende, Yang, Körber, Schnittler, Weinert, Heubach, Werner, Ravens (b0080) 2013; 19
Lohberger, Kaltenegger, Stuendl, Payer, Rinner, Leithner (b0075) 2014; 2014
Yoshigi, Hoffman, Jensen, Yost, Beckerle (b0140) 2005; 171
Shakiba (10.1016/j.jbiomech.2021.110564_b0110) 2020; 14
Dan (10.1016/j.jbiomech.2021.110564_b0030) 2015; 128
Livne (10.1016/j.jbiomech.2021.110564_b0070) 2014; 5
Li (10.1016/j.jbiomech.2021.110564_b0065) 2005; 38
Gilbert (10.1016/j.jbiomech.2021.110564_b0045) 1994; 27
Huang (10.1016/j.jbiomech.2021.110564_b0060) 2004; 22
Dai (10.1016/j.jbiomech.2021.110564_b0025) 2015; 11
Barron (10.1016/j.jbiomech.2021.110564_b0005) 2007; 18
Greiner (10.1016/j.jbiomech.2021.110564_b0050) 2013; 8
Zhang (10.1016/j.jbiomech.2021.110564_b0145) 2015; 14
Shikata (10.1016/j.jbiomech.2021.110564_b0115) 2005; 304
Sanchez-Esteban (10.1016/j.jbiomech.2021.110564_b0100) 2002; 282
Haga (10.1016/j.jbiomech.2021.110564_b0055) 2007; 40
Wedgwood (10.1016/j.jbiomech.2021.110564_b0130) 2015; 309
Davidovich (10.1016/j.jbiomech.2021.110564_b0035) 2013; 49
Chiang (10.1016/j.jbiomech.2021.110564_b0020) 2010; 43
Wang (10.1016/j.jbiomech.2021.110564_b0125) 2001; 34
Xie (10.1016/j.jbiomech.2021.110564_b0135) 2012; 34
Morita (10.1016/j.jbiomech.2021.110564_b0090) 2015; 55
Lu (10.1016/j.jbiomech.2021.110564_b0080) 2013; 19
Masuda (10.1016/j.jbiomech.2021.110564_b0085) 2008; 133
Orsola (10.1016/j.jbiomech.2021.110564_b0095) 2002; 59
Chen (10.1016/j.jbiomech.2021.110564_b0015) 2012; 7
Yoshigi (10.1016/j.jbiomech.2021.110564_b0140) 2005; 171
Tata (10.1016/j.jbiomech.2021.110564_b0120) 2011
Feng (10.1016/j.jbiomech.2021.110564_b0040) 2016; 15
Sato (10.1016/j.jbiomech.2021.110564_b0105) 2005; 38
Boyle (10.1016/j.jbiomech.2021.110564_b0010) 2014; 11
Lohberger (10.1016/j.jbiomech.2021.110564_b0075) 2014; 2014
References_xml – volume: 8
  year: 2013
  ident: b0050
  article-title: Cyclic tensile strain controls cell shape and directs actin stress fiber formation and focal adhesion alignment in spreading cells
  publication-title: PLoS ONE
– volume: 14
  start-page: 155
  year: 2015
  end-page: 164
  ident: b0145
  article-title: Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells
  publication-title: Stem Cell Res.
– volume: 11
  start-page: 2292
  year: 2015
  end-page: 2298
  ident: b0025
  article-title: Cyclic stretch induces human bladder smooth muscle cell proliferation in vitro through muscarinic receptors
  publication-title: Mol. Med. Rep.
– volume: 49
  start-page: 156
  year: 2013
  end-page: 164
  ident: b0035
  article-title: Cyclic stretch–induced oxidative stress increases pulmonary alveolar epithelial permeability
  publication-title: Am. J. Respir. Cell Mol. Biol.
– volume: 34
  start-page: 1563
  year: 2001
  end-page: 1572
  ident: b0125
  article-title: Specificity of endothelial cell reorientation in response to cyclic mechanical stretching
  publication-title: J. Biomech.
– volume: 7
  year: 2012
  ident: b0015
  article-title: Cyclic stretch induces cell reorientation on substrates by destabilizing catch bonds in focal adhesions
  publication-title: PLoS ONE
– volume: 11
  start-page: 20140685
  year: 2014
  ident: b0010
  article-title: Simple and accurate methods for quantifying deformation, disruption, and development in biological tissues
  publication-title: J. R. Soc. Interface
– volume: 309
  start-page: L196
  year: 2015
  end-page: L203
  ident: b0130
  article-title: Cyclic stretch stimulates mitochondrial reactive oxygen species and Nox4 signaling in pulmonary artery smooth muscle cells
  publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology
– volume: 133
  start-page: 231
  year: 2008
  end-page: 238
  ident: b0085
  article-title: Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells
  publication-title: J. Biotechnol.
– volume: 18
  start-page: 1973
  year: 2007
  end-page: 1981
  ident: b0005
  article-title: The effect of physiological cyclic stretch on the cell morphology, cell orientation and protein expression of endothelial cells
  publication-title: J. Mater. Sci. - Mater. Med.
– volume: 304
  start-page: 40
  year: 2005
  end-page: 49
  ident: b0115
  article-title: Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells
  publication-title: Exp. Cell Res.
– volume: 171
  start-page: 209
  year: 2005
  end-page: 215
  ident: b0140
  article-title: Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement
  publication-title: The Journal of cell biology
– volume: 282
  start-page: L448
  year: 2002
  end-page: L456
  ident: b0100
  article-title: Cyclic mechanical stretch inhibits cell proliferation and induces apoptosis in fetal rat lung fibroblasts
  publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology
– volume: 22
  start-page: 313
  year: 2004
  end-page: 323
  ident: b0060
  article-title: Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells
  publication-title: Stem cells
– volume: 2014
  start-page: 1
  year: 2014
  end-page: 10
  ident: b0075
  article-title: Effect of Cyclic Mechanical Stimulation on the Expression of Osteogenesis Genes in Human Intraoral Mesenchymal Stromal and Progenitor Cells
  publication-title: Biomed Res. Int.
– volume: 19
  start-page: 403
  year: 2013
  end-page: 414
  ident: b0080
  article-title: Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion
  publication-title: Tissue Eng. Part A
– volume: 38
  start-page: 1949
  year: 2005
  end-page: 1971
  ident: b0065
  article-title: Molecular basis of the effects of shear stress on vascular endothelial cells
  publication-title: J. Biomech.
– volume: 38
  start-page: 1895
  year: 2005
  end-page: 1901
  ident: b0105
  article-title: Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber structure in osteoblastic cells
  publication-title: J. Biomech.
– volume: 43
  start-page: 2613
  year: 2010
  end-page: 2617
  ident: b0020
  article-title: Solutions for determining equibiaxial substrate strain for dynamic cell culture
  publication-title: J. Biomech.
– volume: 55
  start-page: 635
  year: 2015
  end-page: 640
  ident: b0090
  article-title: Determination of precise optimal cyclic strain for tenogenic differentiation of mesenchymal stem cells using a non-uniform deformation field
  publication-title: Exp. Mech.
– volume: 40
  start-page: 947
  year: 2007
  end-page: 960
  ident: b0055
  article-title: Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells
  publication-title: J. Biomech.
– volume: 128
  start-page: 2415
  year: 2015
  end-page: 2422
  ident: b0030
  article-title: The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells
  publication-title: J. Cell Sci.
– volume: 27
  start-page: 1169
  year: 1994
  end-page: 1177
  ident: b0045
  article-title: Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro
  publication-title: J. Biomech.
– volume: 14
  start-page: 7868
  year: 2020
  end-page: 7879
  ident: b0110
  article-title: The balance between actomyosin contractility and microtubule polymerization regulates hierarchical protrusions that govern efficient fibroblast–collagen interactions
  publication-title: ACS Nano
– volume: 34
  start-page: 826
  year: 2012
  end-page: 831
  ident: b0135
  article-title: In vitro study of the effect of cyclic strains on the dermal fibroblast (GM3384) morphology—mapping of cell responses to strain field
  publication-title: Med. Eng. Phys.
– volume: 15
  start-page: 63
  year: 2016
  ident: b0040
  article-title: Combined effects of interleukin-1β and cyclic stretching on metalloproteinase expression in corneal fibroblasts in vitro
  publication-title: Biomed. Eng. Online
– year: 2011
  ident: b0120
  article-title: A novel multiwell device to study vascular smooth muscle cell responses under cyclic strain
  publication-title: Journal of Nanotechnology
– volume: 59
  start-page: 779
  year: 2002
  end-page: 783
  ident: b0095
  article-title: The decision to undergo DNA or protein synthesis is determined by the degree of mechanical deformation in human bladder muscle cells
  publication-title: Urology
– volume: 5
  start-page: 1
  year: 2014
  end-page: 8
  ident: b0070
  article-title: Cell reorientation under cyclic stretching
  publication-title: Nat. Commun.
– volume: 14
  start-page: 7868
  year: 2020
  ident: 10.1016/j.jbiomech.2021.110564_b0110
  article-title: The balance between actomyosin contractility and microtubule polymerization regulates hierarchical protrusions that govern efficient fibroblast–collagen interactions
  publication-title: ACS Nano
  doi: 10.1021/acsnano.9b09941
– volume: 15
  start-page: 63
  year: 2016
  ident: 10.1016/j.jbiomech.2021.110564_b0040
  article-title: Combined effects of interleukin-1β and cyclic stretching on metalloproteinase expression in corneal fibroblasts in vitro
  publication-title: Biomed. Eng. Online
  doi: 10.1186/s12938-016-0198-6
– volume: 2014
  start-page: 1
  year: 2014
  ident: 10.1016/j.jbiomech.2021.110564_b0075
  article-title: Effect of Cyclic Mechanical Stimulation on the Expression of Osteogenesis Genes in Human Intraoral Mesenchymal Stromal and Progenitor Cells
  publication-title: Biomed Res. Int.
  doi: 10.1155/2014/189516
– volume: 133
  start-page: 231
  year: 2008
  ident: 10.1016/j.jbiomech.2021.110564_b0085
  article-title: Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells
  publication-title: J. Biotechnol.
  doi: 10.1016/j.jbiotec.2007.08.007
– volume: 14
  start-page: 155
  year: 2015
  ident: 10.1016/j.jbiomech.2021.110564_b0145
  article-title: Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells
  publication-title: Stem Cell Res.
  doi: 10.1016/j.scr.2015.01.001
– volume: 55
  start-page: 635
  year: 2015
  ident: 10.1016/j.jbiomech.2021.110564_b0090
  article-title: Determination of precise optimal cyclic strain for tenogenic differentiation of mesenchymal stem cells using a non-uniform deformation field
  publication-title: Exp. Mech.
  doi: 10.1007/s11340-014-9965-0
– volume: 27
  start-page: 1169
  year: 1994
  ident: 10.1016/j.jbiomech.2021.110564_b0045
  article-title: Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro
  publication-title: J. Biomech.
  doi: 10.1016/0021-9290(94)90057-4
– volume: 309
  start-page: L196
  year: 2015
  ident: 10.1016/j.jbiomech.2021.110564_b0130
  article-title: Cyclic stretch stimulates mitochondrial reactive oxygen species and Nox4 signaling in pulmonary artery smooth muscle cells
  publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00097.2014
– volume: 18
  start-page: 1973
  year: 2007
  ident: 10.1016/j.jbiomech.2021.110564_b0005
  article-title: The effect of physiological cyclic stretch on the cell morphology, cell orientation and protein expression of endothelial cells
  publication-title: J. Mater. Sci. - Mater. Med.
  doi: 10.1007/s10856-007-3125-3
– volume: 38
  start-page: 1949
  year: 2005
  ident: 10.1016/j.jbiomech.2021.110564_b0065
  article-title: Molecular basis of the effects of shear stress on vascular endothelial cells
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.09.030
– volume: 11
  start-page: 2292
  year: 2015
  ident: 10.1016/j.jbiomech.2021.110564_b0025
  article-title: Cyclic stretch induces human bladder smooth muscle cell proliferation in vitro through muscarinic receptors
  publication-title: Mol. Med. Rep.
  doi: 10.3892/mmr.2014.2984
– volume: 5
  start-page: 1
  year: 2014
  ident: 10.1016/j.jbiomech.2021.110564_b0070
  article-title: Cell reorientation under cyclic stretching
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms4938
– volume: 59
  start-page: 779
  year: 2002
  ident: 10.1016/j.jbiomech.2021.110564_b0095
  article-title: The decision to undergo DNA or protein synthesis is determined by the degree of mechanical deformation in human bladder muscle cells
  publication-title: Urology
  doi: 10.1016/S0090-4295(01)01648-X
– year: 2011
  ident: 10.1016/j.jbiomech.2021.110564_b0120
  article-title: A novel multiwell device to study vascular smooth muscle cell responses under cyclic strain
  publication-title: Journal of Nanotechnology
– volume: 19
  start-page: 403
  year: 2013
  ident: 10.1016/j.jbiomech.2021.110564_b0080
  article-title: Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion
  publication-title: Tissue Eng. Part A
  doi: 10.1089/ten.tea.2012.0135
– volume: 11
  start-page: 20140685
  year: 2014
  ident: 10.1016/j.jbiomech.2021.110564_b0010
  article-title: Simple and accurate methods for quantifying deformation, disruption, and development in biological tissues
  publication-title: J. R. Soc. Interface
  doi: 10.1098/rsif.2014.0685
– volume: 8
  year: 2013
  ident: 10.1016/j.jbiomech.2021.110564_b0050
  article-title: Cyclic tensile strain controls cell shape and directs actin stress fiber formation and focal adhesion alignment in spreading cells
  publication-title: PLoS ONE
  doi: 10.1371/journal.pone.0077328
– volume: 282
  start-page: L448
  year: 2002
  ident: 10.1016/j.jbiomech.2021.110564_b0100
  article-title: Cyclic mechanical stretch inhibits cell proliferation and induces apoptosis in fetal rat lung fibroblasts
  publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology
  doi: 10.1152/ajplung.00399.2000
– volume: 43
  start-page: 2613
  year: 2010
  ident: 10.1016/j.jbiomech.2021.110564_b0020
  article-title: Solutions for determining equibiaxial substrate strain for dynamic cell culture
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2010.05.002
– volume: 38
  start-page: 1895
  year: 2005
  ident: 10.1016/j.jbiomech.2021.110564_b0105
  article-title: Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber structure in osteoblastic cells
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2004.08.012
– volume: 304
  start-page: 40
  year: 2005
  ident: 10.1016/j.jbiomech.2021.110564_b0115
  article-title: Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells
  publication-title: Exp. Cell Res.
  doi: 10.1016/j.yexcr.2004.11.001
– volume: 40
  start-page: 947
  year: 2007
  ident: 10.1016/j.jbiomech.2021.110564_b0055
  article-title: Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells
  publication-title: J. Biomech.
  doi: 10.1016/j.jbiomech.2006.04.011
– volume: 22
  start-page: 313
  year: 2004
  ident: 10.1016/j.jbiomech.2021.110564_b0060
  article-title: Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells
  publication-title: Stem cells
  doi: 10.1634/stemcells.22-3-313
– volume: 171
  start-page: 209
  year: 2005
  ident: 10.1016/j.jbiomech.2021.110564_b0140
  article-title: Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement
  publication-title: The Journal of cell biology
  doi: 10.1083/jcb.200505018
– volume: 49
  start-page: 156
  year: 2013
  ident: 10.1016/j.jbiomech.2021.110564_b0035
  article-title: Cyclic stretch–induced oxidative stress increases pulmonary alveolar epithelial permeability
  publication-title: Am. J. Respir. Cell Mol. Biol.
  doi: 10.1165/rcmb.2012-0252OC
– volume: 128
  start-page: 2415
  year: 2015
  ident: 10.1016/j.jbiomech.2021.110564_b0030
  article-title: The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells
  publication-title: J. Cell Sci.
– volume: 34
  start-page: 826
  year: 2012
  ident: 10.1016/j.jbiomech.2021.110564_b0135
  article-title: In vitro study of the effect of cyclic strains on the dermal fibroblast (GM3384) morphology—mapping of cell responses to strain field
  publication-title: Med. Eng. Phys.
  doi: 10.1016/j.medengphy.2011.09.024
– volume: 34
  start-page: 1563
  year: 2001
  ident: 10.1016/j.jbiomech.2021.110564_b0125
  article-title: Specificity of endothelial cell reorientation in response to cyclic mechanical stretching
  publication-title: J. Biomech.
  doi: 10.1016/S0021-9290(01)00150-6
– volume: 7
  year: 2012
  ident: 10.1016/j.jbiomech.2021.110564_b0015
  article-title: Cyclic stretch induces cell reorientation on substrates by destabilizing catch bonds in focal adhesions
  publication-title: PLoS ONE
SSID ssj0007479
Score 2.383374
Snippet Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that...
SourceID proquest
crossref
elsevier
SourceType Aggregation Database
Enrichment Source
Index Database
Publisher
StartPage 110564
SubjectTerms Cell adhesion
Cell culture
Cell proliferation
Cornea
Cyclic stretching
Experiments
Fibroblasts
Finite element analysis
Finite element analysis (FEA)
Human keratinocytes
Keratinocytes
Shear strain
Shear stress
Smooth muscle
Stem cells
Stress concentration
Stress distribution
Stretching
SummonAdditionalLinks – databaseName: Health & Medical Collection
  dbid: 7X7
  link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-wwEB_8ANGD6Kq476lEEG_RfjeeRMRFBD0p7C00yRRc3O6q68H_3pk0XeXBU69tp4XOZOY33wBHDjFPLRYyzU0pM2siWRVpJk2EkcqsjRVyvOP2rrh-yG6G-TAE3F5DWWWnE72idhPLMfJTgr6KXJckU-fTZ8lbozi7GlZoLMIyjy5jqS6Hc4eLZ8OHEo9YEgyIvnQIj05Gvr_dJySSmKvh8yL7n3H6R0172zPYgPUAGsVFy-VNWMCmB1sXDTnM43dxLHwZp4-P92Dty4TBHqzchtz5FrgBmbA28icIMTNuJIYLAq2ibRgRjofohv1X4rERHNQX7WgOFGMck2PdoOCusxfBA5InPsfz9O7pZ74ocxseBlf3l9cy7FiQlhyPmSwclj77UtWuMBm6OnIG6ZhWMdrE5q5WSR0blZiSgJNJUClXqSitCXfEdZqnO7DUTBrcBUFaE7kjCGsy-QSzKvKWqpqvuCI7K7EPefdztQ0DyHkPxpPuKs1GumOKZqbolil9OJ3TTdsRHD9SlB3vdNdgSipRk5X4kfJsThkgSAstfkW714mJDorgVX-KbR8O57fpCDMLiWmTN_8MecIpubp_vn_FX1jl73FIOyn2YGn28ob7hIlm5sAL_gddwAxc
  priority: 102
  providerName: ProQuest
Title Functional assistance for stress distribution in cell culture membrane under periodically stretching
URI https://www.clinicalkey.com/#!/content/1-s2.0-S0021929021003444
https://dx.doi.org/10.1016/j.jbiomech.2021.110564
https://www.proquest.com/docview/2558446248
https://www.proquest.com/docview/2550263140
Volume 125
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-NAEB9EQe4eDq13XM8PVpB7i83HJtk-9sRSFYscJ_RtyWYn0GJT8eqDL_e3O7PZ9FQQBV8ammRIm9md-f1mZ2YBjiximpSYBUlq8kCWJgyKLJGBCTFUsiwjhRzvuBxno2t5Pkkna3DS1sJwWqW3_Y1Nd9ban-n5t9m7nU65xpdmW9xn0sJ967gnqJQ5j_Ljf__TPAgu-zSPKOC7n1QJz45nrsbdLUrEEWfEp5l8zUG9MNXO_wy34IsHjmLQ_LZtWMO6AzuDmkjz_EH8FC6V08XIO_D5SZfBDmxe-vXzHbBDcmNN9E8QambsSH9YEHAVTdGIsNxI1--BJaa14MC-aNpzoJjjnMh1jYIrz-4EN0leuHWemwcnv3SJmV_henj652QU-H0WgpLIxzLILOZuBaaobGYk2iq0BmmqFhGWcZnaSsVVZFRscgJPJkalbKHCpCLsEVVJmnyD9XpR43cQZDmRq4KwIrdPUKsgxlRUfMZmsp9jF9L25erSNyHnvTBudJttNtOtUjQrRTdK6UJvJXfbtOF4UyJvdafbIlMyi5o8xZuS_ZXks6H4Ltm9dphobwz-amJtilh3LFUXDleXaRqzCklpi3t3D7HhhOjujw88fhc-8TeOecfZHqwv7-5xn0DT0hy4WUGf-SQ_gI3B2cVoTMdfp-Or34_SKxqV
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VReJxQJCCCBRYJOC21F6_tgeEKiBKadNTK-W2eHfHElHjlDYVyp_iNzKz9oYKCcqlV9tjS57ZmW_eAK89YpE5LGVW2ErmziayLrNc2gQTnTuXauR4x-SoHJ_kX6bFdAN-xl4YLquMOjEoar9wHCPfIeiryXVRuf5w9l3y1ijOrsYVGp1YHODqB7lsF-_3PxF_3yg1-nz8cSz7rQLSEdReytJjFfINdeNLm6NvEm-RBLNO0SlX-EarJrVa2YqgglWota91kjVkadMmbIkglX-LDG_Czl41XTt4PIu-LylJJcGO5EpH8uzdLPTThwSISrn6vijzvxnDP8xCsHWjB3C_B6lir5Oqh7CB7QC29lpy0Ocr8VaEstEQjx_AvSsTDQdwe9Ln6rfAj8hkdpFGQQidcSoJmCCQLLoGFeF5aG-_b0t8awUnEUQ3CgTFHOfkyLcouMvtXPBA5kXIKZ2uAv0yFIE-gpMb-fuPYbNdtPgEBGlp5A4kbAhiEKyryTurG77iy3y3wiEU8eca1w88570bpyZWts1MZIphppiOKUPYWdOddSM_rqWoIu9MbGglFWzIKl1Lubum7CFPB2X-i3Y7ionpFc-F-X1MhvBqfZtUBrOQmLa4DM-Q552Ra_303694CXfGx5NDc7h_dPAM7vK3OZyuym3YXJ5f4nPCY0v7IhwCAV9v-tT9Ao93Sg8
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_KFYo-SL0qnlZdQX1bL9l89kGk2h6ttUcRC31bs9kJ9Ojlanul3L_mX-fMZvcsgtaXviaZBDKzM7_5BnhtEbOkxlwmmSlkWptIVnmSShNhVKZ1HZfI8Y7Dcb53nH4-yU5W4GfoheGyyqATnaK2s5pj5EOCviW5Lioth40vizjaGX04_yF5gxRnWsM6jU5EDnBxTe7b5fv9HeL1G6VGu98-7Um_YUDWBLvnMrdYuNxD1djcpGibyBokIa1irFWd2aZUTWxKZQqCDUZhWdqqjJKGrG7cuI0RpP5XC_aKerD6cXd89HVpBwio-wKTWBIIiW70J0_eTVx3vUuHqJhr8bM8_Ztp_MNIOMs3WocHHrKK7U7GHsIKtn3Y2G7JXZ8uxFvhikhddL4P92_MN-zD2qHP3G-AHZEB7eKOgvA6o1YSN0GQWXTtKsLyCF-_fUuctoJTCqIbDIJiilNy61sU3PN2IXg888xlmM4Wjn7uSkIfwfGd_P_H0GtnLT4BQTobuR8JGwIcBPIq8tWqhq_YPN0qcABZ-Lm69uPPeQvHmQ51bhMdmKKZKbpjygCGS7rzbgDIrRRF4J0O7a2kkDXZqFspt5aUHgB1wOa_aDeDmGivhi7170MzgFfL26RAmIXEtNmVe4b88IQc7af_fsVLWKMTp7_sjw-ewT3-NMfWVb4JvfnFFT4ncDY3L_wpEPD9rg_eL238T6o
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+assistance+for+stress+distribution+in+cell+culture+membrane+under+periodically+stretching&rft.jtitle=Journal+of+biomechanics&rft.au=Dai%2C+Zhi-Xuan&rft.au=Shih%2C+Po-Jen&rft.au=Yen%2C+Jia-Yush&rft.au=Wang%2C+I-Jong&rft.date=2021-08-26&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=125&rft_id=info:doi/10.1016%2Fj.jbiomech.2021.110564&rft.externalDocID=S0021929021003444
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon