Functional assistance for stress distribution in cell culture membrane under periodically stretching
Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the te...
Saved in:
Published in | Journal of biomechanics Vol. 125; p. 110564 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
Kidlington
Elsevier Ltd
26.08.2021
Elsevier Limited |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the tensile section, in order to determine the effect of various cyclic strains on cultured human keratinocytes (HK) cells. This device is used to determine the effect of 3% and 5% cyclic strain and shear strain on cell proliferation and arrangement at 1 Hz. The results show that compared with static and 3% strain, a 5% cyclic strain better inhibits the proliferation of HK cells. Compared to the initial cell attachment when there is no specific directionality, the cells are aligned in the vertical stretching direction after cyclic stretching. This equipment increases the efficiency of the experiment and more intuitively maps the cell behavior and shape to the strain field and the response to the shear strain. |
---|---|
AbstractList | Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the tensile section, in order to determine the effect of various cyclic strains on cultured human keratinocytes (HK) cells. This device is used to determine the effect of 3% and 5% cyclic strain and shear strain on cell proliferation and arrangement at 1 Hz. The results show that compared with static and 3% strain, a 5% cyclic strain better inhibits the proliferation of HK cells. Compared to the initial cell attachment when there is no specific directionality, the cells are aligned in the vertical stretching direction after cyclic stretching. This equipment increases the efficiency of the experiment and more intuitively maps the cell behavior and shape to the strain field and the response to the shear strain. Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the tensile section, in order to determine the effect of various cyclic strains on cultured human keratinocytes (HK) cells. This device is used to determine the effect of 3% and 5% cyclic strain and shear strain on cell proliferation and arrangement at 1 Hz. The results show that compared with static and 3% strain, a 5% cyclic strain better inhibits the proliferation of HK cells. Compared to the initial cell attachment when there is no specific directionality, the cells are aligned in the vertical stretching direction after cyclic stretching. This equipment increases the efficiency of the experiment and more intuitively maps the cell behavior and shape to the strain field and the response to the shear strain.Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the tensile section, in order to determine the effect of various cyclic strains on cultured human keratinocytes (HK) cells. This device is used to determine the effect of 3% and 5% cyclic strain and shear strain on cell proliferation and arrangement at 1 Hz. The results show that compared with static and 3% strain, a 5% cyclic strain better inhibits the proliferation of HK cells. Compared to the initial cell attachment when there is no specific directionality, the cells are aligned in the vertical stretching direction after cyclic stretching. This equipment increases the efficiency of the experiment and more intuitively maps the cell behavior and shape to the strain field and the response to the shear strain. Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that are suitable for cells without conducting multiple trials. This study develops a device that increases the strain gradient by changing the tensile section, in order to determine the effect of various cyclic strains on cultured human keratinocytes (HK) cells. This device is used to determine the effect of 3% and 5% cyclic strain and shear strain on cell proliferation and arrangement at 1 Hz. The results show that compared with static and 3% strain, a 5% cyclic strain better inhibits the proliferation of HK cells. Compared to the initial cell attachment when there is no specific directionality, the cells are aligned in the vertical stretching direction after cyclic stretching. This equipment increases the efficiency of the experiment and more intuitively maps the cell behavior and shape to the strain field and the response to the shear strain. |
ArticleNumber | 110564 |
Author | Wang, I-Jong Shih, Po-Jen Dai, Zhi-Xuan Yen, Jia-Yush |
Author_xml | – sequence: 1 givenname: Zhi-Xuan surname: Dai fullname: Dai, Zhi-Xuan organization: Department of Mechanical Engineering, National Taiwan University, 10617 Taipei, Taiwan – sequence: 2 givenname: Po-Jen surname: Shih fullname: Shih, Po-Jen email: pjshih@ntu.edu.tw organization: Department of Biomedical Engineering, National Taiwan University, 10617 Taipei, Taiwan – sequence: 3 givenname: Jia-Yush surname: Yen fullname: Yen, Jia-Yush organization: Department of Mechanical Engineering, National Taiwan University, 10617 Taipei, Taiwan – sequence: 4 givenname: I-Jong surname: Wang fullname: Wang, I-Jong organization: Department of Ophthalmology, National Taiwan University Hospital, Taipei, Taiwan |
BookMark | eNqNkUFrHCEYhiWkkE3av1CEXnqZjTrOjAultIQkLQR6ac_i6Gfj1NGtOoX993Wy6WUv6Un4fN6Xj-e7ROchBkDoLSVbSmh_PW2n0cUZ9OOWEUa3lJKu52doQ8XQNqwV5BxtSP1pdmxHLtBlzhMhZODDboPM3RJ0cTEoj1XOLhcVNGAbE84lQc7Y1Fly47JC2AWswXusF1-WBHiGeUwqAF6CgYT3kFw0TivvD0_5oh9d-PkavbLKZ3jz_F6hH3e332--NA_f7r_efH5oNGeiNL2BgfR9Nyhr-pGDscSMQOigKGimO2MFs3QUbBw4pyMDIYwSpLUtHahtu_YKvT_27lP8vUAucnZ53bduGJcsWdcR1reUk4q-O0GnuKRq4YkSnPeMi0r1R0qnmHMCK_fJzSodJCVylS8n-U--XOXLo_wa_HAS1K6oVWFJyvmX45-Ocai2_jhIMmsH9TDGJdBFmuhervh4UqG9C-tpfsHhfwr-ArPjvcI |
CitedBy_id | crossref_primary_10_1111_odi_14469 crossref_primary_10_3390_pr10030605 crossref_primary_10_1177_15353702231198079 crossref_primary_10_1002_admi_202202477 |
Cites_doi | 10.1021/acsnano.9b09941 10.1186/s12938-016-0198-6 10.1155/2014/189516 10.1016/j.jbiotec.2007.08.007 10.1016/j.scr.2015.01.001 10.1007/s11340-014-9965-0 10.1016/0021-9290(94)90057-4 10.1152/ajplung.00097.2014 10.1007/s10856-007-3125-3 10.1016/j.jbiomech.2004.09.030 10.3892/mmr.2014.2984 10.1038/ncomms4938 10.1016/S0090-4295(01)01648-X 10.1089/ten.tea.2012.0135 10.1098/rsif.2014.0685 10.1371/journal.pone.0077328 10.1152/ajplung.00399.2000 10.1016/j.jbiomech.2010.05.002 10.1016/j.jbiomech.2004.08.012 10.1016/j.yexcr.2004.11.001 10.1016/j.jbiomech.2006.04.011 10.1634/stemcells.22-3-313 10.1083/jcb.200505018 10.1165/rcmb.2012-0252OC 10.1016/j.medengphy.2011.09.024 10.1016/S0021-9290(01)00150-6 |
ContentType | Journal Article |
Copyright | 2021 Elsevier Ltd 2021. Elsevier Ltd Copyright © 2021 Elsevier Ltd. All rights reserved. |
Copyright_xml | – notice: 2021 Elsevier Ltd – notice: 2021. Elsevier Ltd – notice: Copyright © 2021 Elsevier Ltd. All rights reserved. |
DBID | AAYXX CITATION 3V. 7QP 7TB 7TS 7X7 7XB 88E 8AO 8FD 8FE 8FH 8FI 8FJ 8FK 8G5 ABUWG AFKRA AZQEC BBNVY BENPR BHPHI CCPQU DWQXO FR3 FYUFA GHDGH GNUQQ GUQSH HCIFZ K9. LK8 M0S M1P M2O M7P MBDVC PHGZM PHGZT PJZUB PKEHL PPXIY PQEST PQGLB PQQKQ PQUKI Q9U 7X8 |
DOI | 10.1016/j.jbiomech.2021.110564 |
DatabaseName | CrossRef ProQuest Central (Corporate) Calcium & Calcified Tissue Abstracts Mechanical & Transportation Engineering Abstracts Physical Education Index Health & Medical Collection ProQuest Central (purchase pre-March 2016) Medical Database (Alumni Edition) ProQuest Pharma Collection Technology Research Database ProQuest SciTech Collection ProQuest Natural Science Collection Hospital Premium Collection Hospital Premium Collection (Alumni Edition) ProQuest Central (Alumni) (purchase pre-March 2016) Research Library (Alumni) ProQuest Central (Alumni) ProQuest Central UK/Ireland ProQuest Central Essentials Biological Science Collection ProQuest Central Natural Science Collection ProQuest One ProQuest Central Engineering Research Database Health Research Premium Collection Health Research Premium Collection (Alumni) ProQuest Central Student ProQuest Research Library SciTech Premium Collection ProQuest Health & Medical Complete (Alumni) ProQuest Biological Science Collection Health & Medical Collection (Alumni) Medical Database Research Library Biological Science Database Research Library (Corporate) ProQuest Central Premium ProQuest One Academic (New) ProQuest Health & Medical Research Collection ProQuest One Academic Middle East (New) ProQuest One Health & Nursing ProQuest One Academic Eastern Edition (DO NOT USE) ProQuest One Applied & Life Sciences ProQuest One Academic ProQuest One Academic UKI Edition ProQuest Central Basic MEDLINE - Academic |
DatabaseTitle | CrossRef Research Library Prep ProQuest Central Student Technology Research Database ProQuest One Academic Middle East (New) Mechanical & Transportation Engineering Abstracts ProQuest Central Essentials ProQuest Health & Medical Complete (Alumni) ProQuest Central (Alumni Edition) SciTech Premium Collection ProQuest One Community College ProQuest One Health & Nursing Research Library (Alumni Edition) ProQuest Natural Science Collection ProQuest Pharma Collection Physical Education Index ProQuest Central ProQuest One Applied & Life Sciences ProQuest Health & Medical Research Collection Health Research Premium Collection Health and Medicine Complete (Alumni Edition) Natural Science Collection ProQuest Central Korea Health & Medical Research Collection Biological Science Collection ProQuest Research Library ProQuest Central (New) ProQuest Medical Library (Alumni) ProQuest Biological Science Collection ProQuest Central Basic ProQuest One Academic Eastern Edition ProQuest Hospital Collection Health Research Premium Collection (Alumni) Biological Science Database ProQuest SciTech Collection ProQuest Hospital Collection (Alumni) ProQuest Health & Medical Complete ProQuest Medical Library ProQuest One Academic UKI Edition Engineering Research Database ProQuest One Academic Calcium & Calcified Tissue Abstracts ProQuest One Academic (New) ProQuest Central (Alumni) MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Research Library Prep |
Database_xml | – sequence: 1 dbid: BENPR name: ProQuest Central url: https://www.proquest.com/central sourceTypes: Aggregation Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Medicine Engineering Anatomy & Physiology |
EISSN | 1873-2380 |
ExternalDocumentID | 10_1016_j_jbiomech_2021_110564 S0021929021003444 |
GeographicLocations | United States--US Taiwan |
GeographicLocations_xml | – name: Taiwan – name: United States--US |
GroupedDBID | --- --K --M --Z -~X .1- .55 .FO .~1 0R~ 1B1 1P~ 1RT 1~. 1~5 4.4 457 4G. 5GY 5VS 7-5 71M 7X7 88E 8AO 8FE 8FH 8FI 8FJ 8G5 8P~ 9JM 9JN AABNK AAEDT AAEDW AAIKJ AAKOC AALRI AAOAW AAQFI AATTM AAXKI AAXUO AAYWO ABBQC ABFNM ABJNI ABMAC ABMZM ABUWG ACDAQ ACGFS ACIEU ACIUM ACIWK ACPRK ACRLP ACVFH ADBBV ADCNI ADEZE ADTZH AEBSH AECPX AEIPS AEKER AENEX AEUPX AEVXI AFKRA AFPUW AFRHN AFTJW AFXIZ AGCQF AGUBO AGYEJ AHHHB AHJVU AHMBA AIEXJ AIGII AIIUN AIKHN AITUG AJRQY AJUYK AKBMS AKRWK AKYEP ALMA_UNASSIGNED_HOLDINGS AMRAJ ANKPU ANZVX APXCP AXJTR AZQEC BBNVY BENPR BHPHI BJAXD BKOJK BLXMC BNPGV BPHCQ BVXVI CCPQU CS3 DU5 DWQXO EBS EFJIC EFKBS EO8 EO9 EP2 EP3 F5P FDB FIRID FNPLU FYGXN FYUFA G-Q GBLVA GNUQQ GUQSH HCIFZ HMCUK IHE J1W JJJVA KOM LK8 M1P M29 M2O M31 M41 M7P MO0 N9A O-L O9- OAUVE OH. OT. OZT P-8 P-9 P2P PC. PHGZM PHGZT PJZUB PPXIY PQGLB PQQKQ PROAC PSQYO PUEGO Q38 ROL SCC SDF SDG SDP SEL SES SJN SPC SPCBC SSH SST SSZ T5K UKHRP UPT X7M YQT Z5R ZMT ~G- AACTN AAIAV ABLVK ABYKQ AFCTW AFKWA AJOXV AMFUW EFLBG LCYCR .GJ 29J 53G AAQQT AAQXK AAYXX ABWVN ABXDB ACNNM ACRPL ADMUD ADNMO AFJKZ AGHFR AGQPQ AGRNS AI. ALIPV ASPBG AVWKF AZFZN CITATION EBD EJD FEDTE FGOYB G-2 HEE HMK HMO HVGLF HZ~ H~9 I-F ML~ MVM OHT R2- RIG RPZ SAE SEW VH1 WUQ XOL XPP ZGI 3V. 7QP 7TB 7TS 7XB 8FD 8FK FR3 K9. MBDVC PKEHL PQEST PQUKI Q9U 7X8 |
ID | FETCH-LOGICAL-c428t-6de706657afd6b4edf0dbe017a1ec2c5df82f1b82b7441b2e88da803f3171f353 |
IEDL.DBID | .~1 |
ISSN | 0021-9290 1873-2380 |
IngestDate | Fri Jul 11 11:26:43 EDT 2025 Wed Aug 13 04:28:42 EDT 2025 Tue Jul 01 00:44:19 EDT 2025 Thu Apr 24 23:03:25 EDT 2025 Fri Feb 23 02:39:30 EST 2024 Tue Aug 26 16:32:17 EDT 2025 |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | Stress distribution Human keratinocytes Cyclic stretching Finite element analysis (FEA) |
Language | English |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-6de706657afd6b4edf0dbe017a1ec2c5df82f1b82b7441b2e88da803f3171f353 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
PQID | 2558446248 |
PQPubID | 1226346 |
ParticipantIDs | proquest_miscellaneous_2550263140 proquest_journals_2558446248 crossref_primary_10_1016_j_jbiomech_2021_110564 crossref_citationtrail_10_1016_j_jbiomech_2021_110564 elsevier_sciencedirect_doi_10_1016_j_jbiomech_2021_110564 elsevier_clinicalkey_doi_10_1016_j_jbiomech_2021_110564 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2021-08-26 |
PublicationDateYYYYMMDD | 2021-08-26 |
PublicationDate_xml | – month: 08 year: 2021 text: 2021-08-26 day: 26 |
PublicationDecade | 2020 |
PublicationPlace | Kidlington |
PublicationPlace_xml | – name: Kidlington |
PublicationTitle | Journal of biomechanics |
PublicationYear | 2021 |
Publisher | Elsevier Ltd Elsevier Limited |
Publisher_xml | – name: Elsevier Ltd – name: Elsevier Limited |
References | Davidovich, DiPaolo, Lawrence, Chhour, Yehya, Margulies (b0035) 2013; 49 Boyle, Kume, Wyczalkowski, Taber, Pless, Xia, Genin, Thomopoulos (b0010) 2014; 11 Greiner, Chen, Spatz, Kemkemer (b0050) 2013; 8 Orsola, Adam, Peters, Freeman (b0095) 2002; 59 Dai, Tian, Luo, Wazir, Yue, Li, Wang (b0025) 2015; 11 Sato, Adachi, Matsuo, Tomita (b0105) 2005; 38 Wedgwood, Lakshminrusimha, Schumacker, Steinhorn (b0130) 2015; 309 Shakiba, Alisafaei, Savadipour, Rowe, Liu, Pryse, Shenoy, Elson, Genin (b0110) 2020; 14 Zhang, Luo, Chen, Sun, Xu, Ju, Song (b0145) 2015; 14 Shikata, Rios, Kawkitinarong, DePaola, Garcia, Birukov (b0115) 2005; 304 Dan, Velot, Decot, Menu (b0030) 2015; 128 Haga, Li, Chien (b0055) 2007; 40 Gilbert, Weinhold, Banes, Link, Jones (b0045) 1994; 27 Xie, Yang, Chen, Li (b0135) 2012; 34 Barron, Brougham, Coghlan, McLucas, O’Mahoney, Stenson-Cox, McHugh (b0005) 2007; 18 Masuda, Takahashi, Anada, Arai, Fukuda, Takano-Yamamoto, Suzuki (b0085) 2008; 133 Morita, Sato, Watanabe, Ju (b0090) 2015; 55 Tata, Xu, Rao, Chuong, Nguyen, Chiao (b0120) 2011 Huang, Hagar, Frost, Sun, Cheung (b0060) 2004; 22 Chen, Kemkemer, Deibler, Spatz, Gao (b0015) 2012; 7 Chiang, Cheng, Pakstis, Dunkers (b0020) 2010; 43 Sanchez-Esteban, Wang, Cicchiello, Rubin (b0100) 2002; 282 Li, Haga, Chien (b0065) 2005; 38 Wang, Goldschmidt-Clermont, Wille, Yin (b0125) 2001; 34 Feng, Li, Chen, Liu, Rong, Wang, Du (b0040) 2016; 15 Livne, Bouchbinder, Geiger (b0070) 2014; 5 Lu, Mende, Yang, Körber, Schnittler, Weinert, Heubach, Werner, Ravens (b0080) 2013; 19 Lohberger, Kaltenegger, Stuendl, Payer, Rinner, Leithner (b0075) 2014; 2014 Yoshigi, Hoffman, Jensen, Yost, Beckerle (b0140) 2005; 171 Shakiba (10.1016/j.jbiomech.2021.110564_b0110) 2020; 14 Dan (10.1016/j.jbiomech.2021.110564_b0030) 2015; 128 Livne (10.1016/j.jbiomech.2021.110564_b0070) 2014; 5 Li (10.1016/j.jbiomech.2021.110564_b0065) 2005; 38 Gilbert (10.1016/j.jbiomech.2021.110564_b0045) 1994; 27 Huang (10.1016/j.jbiomech.2021.110564_b0060) 2004; 22 Dai (10.1016/j.jbiomech.2021.110564_b0025) 2015; 11 Barron (10.1016/j.jbiomech.2021.110564_b0005) 2007; 18 Greiner (10.1016/j.jbiomech.2021.110564_b0050) 2013; 8 Zhang (10.1016/j.jbiomech.2021.110564_b0145) 2015; 14 Shikata (10.1016/j.jbiomech.2021.110564_b0115) 2005; 304 Sanchez-Esteban (10.1016/j.jbiomech.2021.110564_b0100) 2002; 282 Haga (10.1016/j.jbiomech.2021.110564_b0055) 2007; 40 Wedgwood (10.1016/j.jbiomech.2021.110564_b0130) 2015; 309 Davidovich (10.1016/j.jbiomech.2021.110564_b0035) 2013; 49 Chiang (10.1016/j.jbiomech.2021.110564_b0020) 2010; 43 Wang (10.1016/j.jbiomech.2021.110564_b0125) 2001; 34 Xie (10.1016/j.jbiomech.2021.110564_b0135) 2012; 34 Morita (10.1016/j.jbiomech.2021.110564_b0090) 2015; 55 Lu (10.1016/j.jbiomech.2021.110564_b0080) 2013; 19 Masuda (10.1016/j.jbiomech.2021.110564_b0085) 2008; 133 Orsola (10.1016/j.jbiomech.2021.110564_b0095) 2002; 59 Chen (10.1016/j.jbiomech.2021.110564_b0015) 2012; 7 Yoshigi (10.1016/j.jbiomech.2021.110564_b0140) 2005; 171 Tata (10.1016/j.jbiomech.2021.110564_b0120) 2011 Feng (10.1016/j.jbiomech.2021.110564_b0040) 2016; 15 Sato (10.1016/j.jbiomech.2021.110564_b0105) 2005; 38 Boyle (10.1016/j.jbiomech.2021.110564_b0010) 2014; 11 Lohberger (10.1016/j.jbiomech.2021.110564_b0075) 2014; 2014 |
References_xml | – volume: 8 year: 2013 ident: b0050 article-title: Cyclic tensile strain controls cell shape and directs actin stress fiber formation and focal adhesion alignment in spreading cells publication-title: PLoS ONE – volume: 14 start-page: 155 year: 2015 end-page: 164 ident: b0145 article-title: Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells publication-title: Stem Cell Res. – volume: 11 start-page: 2292 year: 2015 end-page: 2298 ident: b0025 article-title: Cyclic stretch induces human bladder smooth muscle cell proliferation in vitro through muscarinic receptors publication-title: Mol. Med. Rep. – volume: 49 start-page: 156 year: 2013 end-page: 164 ident: b0035 article-title: Cyclic stretch–induced oxidative stress increases pulmonary alveolar epithelial permeability publication-title: Am. J. Respir. Cell Mol. Biol. – volume: 34 start-page: 1563 year: 2001 end-page: 1572 ident: b0125 article-title: Specificity of endothelial cell reorientation in response to cyclic mechanical stretching publication-title: J. Biomech. – volume: 7 year: 2012 ident: b0015 article-title: Cyclic stretch induces cell reorientation on substrates by destabilizing catch bonds in focal adhesions publication-title: PLoS ONE – volume: 11 start-page: 20140685 year: 2014 ident: b0010 article-title: Simple and accurate methods for quantifying deformation, disruption, and development in biological tissues publication-title: J. R. Soc. Interface – volume: 309 start-page: L196 year: 2015 end-page: L203 ident: b0130 article-title: Cyclic stretch stimulates mitochondrial reactive oxygen species and Nox4 signaling in pulmonary artery smooth muscle cells publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology – volume: 133 start-page: 231 year: 2008 end-page: 238 ident: b0085 article-title: Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells publication-title: J. Biotechnol. – volume: 18 start-page: 1973 year: 2007 end-page: 1981 ident: b0005 article-title: The effect of physiological cyclic stretch on the cell morphology, cell orientation and protein expression of endothelial cells publication-title: J. Mater. Sci. - Mater. Med. – volume: 304 start-page: 40 year: 2005 end-page: 49 ident: b0115 article-title: Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells publication-title: Exp. Cell Res. – volume: 171 start-page: 209 year: 2005 end-page: 215 ident: b0140 article-title: Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement publication-title: The Journal of cell biology – volume: 282 start-page: L448 year: 2002 end-page: L456 ident: b0100 article-title: Cyclic mechanical stretch inhibits cell proliferation and induces apoptosis in fetal rat lung fibroblasts publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology – volume: 22 start-page: 313 year: 2004 end-page: 323 ident: b0060 article-title: Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells publication-title: Stem cells – volume: 2014 start-page: 1 year: 2014 end-page: 10 ident: b0075 article-title: Effect of Cyclic Mechanical Stimulation on the Expression of Osteogenesis Genes in Human Intraoral Mesenchymal Stromal and Progenitor Cells publication-title: Biomed Res. Int. – volume: 19 start-page: 403 year: 2013 end-page: 414 ident: b0080 article-title: Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion publication-title: Tissue Eng. Part A – volume: 38 start-page: 1949 year: 2005 end-page: 1971 ident: b0065 article-title: Molecular basis of the effects of shear stress on vascular endothelial cells publication-title: J. Biomech. – volume: 38 start-page: 1895 year: 2005 end-page: 1901 ident: b0105 article-title: Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber structure in osteoblastic cells publication-title: J. Biomech. – volume: 43 start-page: 2613 year: 2010 end-page: 2617 ident: b0020 article-title: Solutions for determining equibiaxial substrate strain for dynamic cell culture publication-title: J. Biomech. – volume: 55 start-page: 635 year: 2015 end-page: 640 ident: b0090 article-title: Determination of precise optimal cyclic strain for tenogenic differentiation of mesenchymal stem cells using a non-uniform deformation field publication-title: Exp. Mech. – volume: 40 start-page: 947 year: 2007 end-page: 960 ident: b0055 article-title: Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells publication-title: J. Biomech. – volume: 128 start-page: 2415 year: 2015 end-page: 2422 ident: b0030 article-title: The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells publication-title: J. Cell Sci. – volume: 27 start-page: 1169 year: 1994 end-page: 1177 ident: b0045 article-title: Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro publication-title: J. Biomech. – volume: 14 start-page: 7868 year: 2020 end-page: 7879 ident: b0110 article-title: The balance between actomyosin contractility and microtubule polymerization regulates hierarchical protrusions that govern efficient fibroblast–collagen interactions publication-title: ACS Nano – volume: 34 start-page: 826 year: 2012 end-page: 831 ident: b0135 article-title: In vitro study of the effect of cyclic strains on the dermal fibroblast (GM3384) morphology—mapping of cell responses to strain field publication-title: Med. Eng. Phys. – volume: 15 start-page: 63 year: 2016 ident: b0040 article-title: Combined effects of interleukin-1β and cyclic stretching on metalloproteinase expression in corneal fibroblasts in vitro publication-title: Biomed. Eng. Online – year: 2011 ident: b0120 article-title: A novel multiwell device to study vascular smooth muscle cell responses under cyclic strain publication-title: Journal of Nanotechnology – volume: 59 start-page: 779 year: 2002 end-page: 783 ident: b0095 article-title: The decision to undergo DNA or protein synthesis is determined by the degree of mechanical deformation in human bladder muscle cells publication-title: Urology – volume: 5 start-page: 1 year: 2014 end-page: 8 ident: b0070 article-title: Cell reorientation under cyclic stretching publication-title: Nat. Commun. – volume: 14 start-page: 7868 year: 2020 ident: 10.1016/j.jbiomech.2021.110564_b0110 article-title: The balance between actomyosin contractility and microtubule polymerization regulates hierarchical protrusions that govern efficient fibroblast–collagen interactions publication-title: ACS Nano doi: 10.1021/acsnano.9b09941 – volume: 15 start-page: 63 year: 2016 ident: 10.1016/j.jbiomech.2021.110564_b0040 article-title: Combined effects of interleukin-1β and cyclic stretching on metalloproteinase expression in corneal fibroblasts in vitro publication-title: Biomed. Eng. Online doi: 10.1186/s12938-016-0198-6 – volume: 2014 start-page: 1 year: 2014 ident: 10.1016/j.jbiomech.2021.110564_b0075 article-title: Effect of Cyclic Mechanical Stimulation on the Expression of Osteogenesis Genes in Human Intraoral Mesenchymal Stromal and Progenitor Cells publication-title: Biomed Res. Int. doi: 10.1155/2014/189516 – volume: 133 start-page: 231 year: 2008 ident: 10.1016/j.jbiomech.2021.110564_b0085 article-title: Development of a cell culture system loading cyclic mechanical strain to chondrogenic cells publication-title: J. Biotechnol. doi: 10.1016/j.jbiotec.2007.08.007 – volume: 14 start-page: 155 year: 2015 ident: 10.1016/j.jbiomech.2021.110564_b0145 article-title: Cyclic mechanical stretching promotes migration but inhibits invasion of rat bone marrow stromal cells publication-title: Stem Cell Res. doi: 10.1016/j.scr.2015.01.001 – volume: 55 start-page: 635 year: 2015 ident: 10.1016/j.jbiomech.2021.110564_b0090 article-title: Determination of precise optimal cyclic strain for tenogenic differentiation of mesenchymal stem cells using a non-uniform deformation field publication-title: Exp. Mech. doi: 10.1007/s11340-014-9965-0 – volume: 27 start-page: 1169 year: 1994 ident: 10.1016/j.jbiomech.2021.110564_b0045 article-title: Strain profiles for circular cell culture plates containing flexible surfaces employed to mechanically deform cells in vitro publication-title: J. Biomech. doi: 10.1016/0021-9290(94)90057-4 – volume: 309 start-page: L196 year: 2015 ident: 10.1016/j.jbiomech.2021.110564_b0130 article-title: Cyclic stretch stimulates mitochondrial reactive oxygen species and Nox4 signaling in pulmonary artery smooth muscle cells publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00097.2014 – volume: 18 start-page: 1973 year: 2007 ident: 10.1016/j.jbiomech.2021.110564_b0005 article-title: The effect of physiological cyclic stretch on the cell morphology, cell orientation and protein expression of endothelial cells publication-title: J. Mater. Sci. - Mater. Med. doi: 10.1007/s10856-007-3125-3 – volume: 38 start-page: 1949 year: 2005 ident: 10.1016/j.jbiomech.2021.110564_b0065 article-title: Molecular basis of the effects of shear stress on vascular endothelial cells publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.09.030 – volume: 11 start-page: 2292 year: 2015 ident: 10.1016/j.jbiomech.2021.110564_b0025 article-title: Cyclic stretch induces human bladder smooth muscle cell proliferation in vitro through muscarinic receptors publication-title: Mol. Med. Rep. doi: 10.3892/mmr.2014.2984 – volume: 5 start-page: 1 year: 2014 ident: 10.1016/j.jbiomech.2021.110564_b0070 article-title: Cell reorientation under cyclic stretching publication-title: Nat. Commun. doi: 10.1038/ncomms4938 – volume: 59 start-page: 779 year: 2002 ident: 10.1016/j.jbiomech.2021.110564_b0095 article-title: The decision to undergo DNA or protein synthesis is determined by the degree of mechanical deformation in human bladder muscle cells publication-title: Urology doi: 10.1016/S0090-4295(01)01648-X – year: 2011 ident: 10.1016/j.jbiomech.2021.110564_b0120 article-title: A novel multiwell device to study vascular smooth muscle cell responses under cyclic strain publication-title: Journal of Nanotechnology – volume: 19 start-page: 403 year: 2013 ident: 10.1016/j.jbiomech.2021.110564_b0080 article-title: Design and validation of a bioreactor for simulating the cardiac niche: a system incorporating cyclic stretch, electrical stimulation, and constant perfusion publication-title: Tissue Eng. Part A doi: 10.1089/ten.tea.2012.0135 – volume: 11 start-page: 20140685 year: 2014 ident: 10.1016/j.jbiomech.2021.110564_b0010 article-title: Simple and accurate methods for quantifying deformation, disruption, and development in biological tissues publication-title: J. R. Soc. Interface doi: 10.1098/rsif.2014.0685 – volume: 8 year: 2013 ident: 10.1016/j.jbiomech.2021.110564_b0050 article-title: Cyclic tensile strain controls cell shape and directs actin stress fiber formation and focal adhesion alignment in spreading cells publication-title: PLoS ONE doi: 10.1371/journal.pone.0077328 – volume: 282 start-page: L448 year: 2002 ident: 10.1016/j.jbiomech.2021.110564_b0100 article-title: Cyclic mechanical stretch inhibits cell proliferation and induces apoptosis in fetal rat lung fibroblasts publication-title: American Journal of Physiology-Lung Cellular and Molecular Physiology doi: 10.1152/ajplung.00399.2000 – volume: 43 start-page: 2613 year: 2010 ident: 10.1016/j.jbiomech.2021.110564_b0020 article-title: Solutions for determining equibiaxial substrate strain for dynamic cell culture publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2010.05.002 – volume: 38 start-page: 1895 year: 2005 ident: 10.1016/j.jbiomech.2021.110564_b0105 article-title: Quantitative evaluation of threshold fiber strain that induces reorganization of cytoskeletal actin fiber structure in osteoblastic cells publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2004.08.012 – volume: 304 start-page: 40 year: 2005 ident: 10.1016/j.jbiomech.2021.110564_b0115 article-title: Differential effects of shear stress and cyclic stretch on focal adhesion remodeling, site-specific FAK phosphorylation, and small GTPases in human lung endothelial cells publication-title: Exp. Cell Res. doi: 10.1016/j.yexcr.2004.11.001 – volume: 40 start-page: 947 year: 2007 ident: 10.1016/j.jbiomech.2021.110564_b0055 article-title: Molecular basis of the effects of mechanical stretch on vascular smooth muscle cells publication-title: J. Biomech. doi: 10.1016/j.jbiomech.2006.04.011 – volume: 22 start-page: 313 year: 2004 ident: 10.1016/j.jbiomech.2021.110564_b0060 article-title: Effects of cyclic compressive loading on chondrogenesis of rabbit bone-marrow derived mesenchymal stem cells publication-title: Stem cells doi: 10.1634/stemcells.22-3-313 – volume: 171 start-page: 209 year: 2005 ident: 10.1016/j.jbiomech.2021.110564_b0140 article-title: Mechanical force mobilizes zyxin from focal adhesions to actin filaments and regulates cytoskeletal reinforcement publication-title: The Journal of cell biology doi: 10.1083/jcb.200505018 – volume: 49 start-page: 156 year: 2013 ident: 10.1016/j.jbiomech.2021.110564_b0035 article-title: Cyclic stretch–induced oxidative stress increases pulmonary alveolar epithelial permeability publication-title: Am. J. Respir. Cell Mol. Biol. doi: 10.1165/rcmb.2012-0252OC – volume: 128 start-page: 2415 year: 2015 ident: 10.1016/j.jbiomech.2021.110564_b0030 article-title: The role of mechanical stimuli in the vascular differentiation of mesenchymal stem cells publication-title: J. Cell Sci. – volume: 34 start-page: 826 year: 2012 ident: 10.1016/j.jbiomech.2021.110564_b0135 article-title: In vitro study of the effect of cyclic strains on the dermal fibroblast (GM3384) morphology—mapping of cell responses to strain field publication-title: Med. Eng. Phys. doi: 10.1016/j.medengphy.2011.09.024 – volume: 34 start-page: 1563 year: 2001 ident: 10.1016/j.jbiomech.2021.110564_b0125 article-title: Specificity of endothelial cell reorientation in response to cyclic mechanical stretching publication-title: J. Biomech. doi: 10.1016/S0021-9290(01)00150-6 – volume: 7 year: 2012 ident: 10.1016/j.jbiomech.2021.110564_b0015 article-title: Cyclic stretch induces cell reorientation on substrates by destabilizing catch bonds in focal adhesions publication-title: PLoS ONE |
SSID | ssj0007479 |
Score | 2.383374 |
Snippet | Dynamic cell cultures simulate the in vivo cell environment for a regular loading system with curtain strains. However, it is difficult to obtain strains that... |
SourceID | proquest crossref elsevier |
SourceType | Aggregation Database Enrichment Source Index Database Publisher |
StartPage | 110564 |
SubjectTerms | Cell adhesion Cell culture Cell proliferation Cornea Cyclic stretching Experiments Fibroblasts Finite element analysis Finite element analysis (FEA) Human keratinocytes Keratinocytes Shear strain Shear stress Smooth muscle Stem cells Stress concentration Stress distribution Stretching |
SummonAdditionalLinks | – databaseName: Health & Medical Collection dbid: 7X7 link: http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV3NS-wwEB_8ANGD6Kq476lEEG_RfjeeRMRFBD0p7C00yRRc3O6q68H_3pk0XeXBU69tp4XOZOY33wBHDjFPLRYyzU0pM2siWRVpJk2EkcqsjRVyvOP2rrh-yG6G-TAE3F5DWWWnE72idhPLMfJTgr6KXJckU-fTZ8lbozi7GlZoLMIyjy5jqS6Hc4eLZ8OHEo9YEgyIvnQIj05Gvr_dJySSmKvh8yL7n3H6R0172zPYgPUAGsVFy-VNWMCmB1sXDTnM43dxLHwZp4-P92Dty4TBHqzchtz5FrgBmbA28icIMTNuJIYLAq2ibRgRjofohv1X4rERHNQX7WgOFGMck2PdoOCusxfBA5InPsfz9O7pZ74ocxseBlf3l9cy7FiQlhyPmSwclj77UtWuMBm6OnIG6ZhWMdrE5q5WSR0blZiSgJNJUClXqSitCXfEdZqnO7DUTBrcBUFaE7kjCGsy-QSzKvKWqpqvuCI7K7EPefdztQ0DyHkPxpPuKs1GumOKZqbolil9OJ3TTdsRHD9SlB3vdNdgSipRk5X4kfJsThkgSAstfkW714mJDorgVX-KbR8O57fpCDMLiWmTN_8MecIpubp_vn_FX1jl73FIOyn2YGn28ob7hIlm5sAL_gddwAxc priority: 102 providerName: ProQuest |
Title | Functional assistance for stress distribution in cell culture membrane under periodically stretching |
URI | https://www.clinicalkey.com/#!/content/1-s2.0-S0021929021003444 https://dx.doi.org/10.1016/j.jbiomech.2021.110564 https://www.proquest.com/docview/2558446248 https://www.proquest.com/docview/2550263140 |
Volume | 125 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwpV3dS-NAEB9EQe4eDq13XM8PVpB7i83HJtk-9sRSFYscJ_RtyWYn0GJT8eqDL_e3O7PZ9FQQBV8ammRIm9md-f1mZ2YBjiximpSYBUlq8kCWJgyKLJGBCTFUsiwjhRzvuBxno2t5Pkkna3DS1sJwWqW3_Y1Nd9ban-n5t9m7nU65xpdmW9xn0sJ967gnqJQ5j_Ljf__TPAgu-zSPKOC7n1QJz45nrsbdLUrEEWfEp5l8zUG9MNXO_wy34IsHjmLQ_LZtWMO6AzuDmkjz_EH8FC6V08XIO_D5SZfBDmxe-vXzHbBDcmNN9E8QambsSH9YEHAVTdGIsNxI1--BJaa14MC-aNpzoJjjnMh1jYIrz-4EN0leuHWemwcnv3SJmV_henj652QU-H0WgpLIxzLILOZuBaaobGYk2iq0BmmqFhGWcZnaSsVVZFRscgJPJkalbKHCpCLsEVVJmnyD9XpR43cQZDmRq4KwIrdPUKsgxlRUfMZmsp9jF9L25erSNyHnvTBudJttNtOtUjQrRTdK6UJvJXfbtOF4UyJvdafbIlMyi5o8xZuS_ZXks6H4Ltm9dphobwz-amJtilh3LFUXDleXaRqzCklpi3t3D7HhhOjujw88fhc-8TeOecfZHqwv7-5xn0DT0hy4WUGf-SQ_gI3B2cVoTMdfp-Or34_SKxqV |
linkProvider | Elsevier |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV1Lb9NAEB5VReJxQJCCCBRYJOC21F6_tgeEKiBKadNTK-W2eHfHElHjlDYVyp_iNzKz9oYKCcqlV9tjS57ZmW_eAK89YpE5LGVW2ErmziayLrNc2gQTnTuXauR4x-SoHJ_kX6bFdAN-xl4YLquMOjEoar9wHCPfIeiryXVRuf5w9l3y1ijOrsYVGp1YHODqB7lsF-_3PxF_3yg1-nz8cSz7rQLSEdReytJjFfINdeNLm6NvEm-RBLNO0SlX-EarJrVa2YqgglWota91kjVkadMmbIkglX-LDG_Czl41XTt4PIu-LylJJcGO5EpH8uzdLPTThwSISrn6vijzvxnDP8xCsHWjB3C_B6lir5Oqh7CB7QC29lpy0Ocr8VaEstEQjx_AvSsTDQdwe9Ln6rfAj8hkdpFGQQidcSoJmCCQLLoGFeF5aG-_b0t8awUnEUQ3CgTFHOfkyLcouMvtXPBA5kXIKZ2uAv0yFIE-gpMb-fuPYbNdtPgEBGlp5A4kbAhiEKyryTurG77iy3y3wiEU8eca1w88570bpyZWts1MZIphppiOKUPYWdOddSM_rqWoIu9MbGglFWzIKl1Lubum7CFPB2X-i3Y7ionpFc-F-X1MhvBqfZtUBrOQmLa4DM-Q552Ra_303694CXfGx5NDc7h_dPAM7vK3OZyuym3YXJ5f4nPCY0v7IhwCAV9v-tT9Ao93Sg8 |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwtV3da9RAEB_KFYo-SL0qnlZdQX1bL9l89kGk2h6ttUcRC31bs9kJ9Ojlanul3L_mX-fMZvcsgtaXviaZBDKzM7_5BnhtEbOkxlwmmSlkWptIVnmSShNhVKZ1HZfI8Y7Dcb53nH4-yU5W4GfoheGyyqATnaK2s5pj5EOCviW5Lioth40vizjaGX04_yF5gxRnWsM6jU5EDnBxTe7b5fv9HeL1G6VGu98-7Um_YUDWBLvnMrdYuNxD1djcpGibyBokIa1irFWd2aZUTWxKZQqCDUZhWdqqjJKGrG7cuI0RpP5XC_aKerD6cXd89HVpBwio-wKTWBIIiW70J0_eTVx3vUuHqJhr8bM8_Ztp_MNIOMs3WocHHrKK7U7GHsIKtn3Y2G7JXZ8uxFvhikhddL4P92_MN-zD2qHP3G-AHZEB7eKOgvA6o1YSN0GQWXTtKsLyCF-_fUuctoJTCqIbDIJiilNy61sU3PN2IXg888xlmM4Wjn7uSkIfwfGd_P_H0GtnLT4BQTobuR8JGwIcBPIq8tWqhq_YPN0qcABZ-Lm69uPPeQvHmQ51bhMdmKKZKbpjygCGS7rzbgDIrRRF4J0O7a2kkDXZqFspt5aUHgB1wOa_aDeDmGivhi7170MzgFfL26RAmIXEtNmVe4b88IQc7af_fsVLWKMTp7_sjw-ewT3-NMfWVb4JvfnFFT4ncDY3L_wpEPD9rg_eL238T6o |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Functional+assistance+for+stress+distribution+in+cell+culture+membrane+under+periodically+stretching&rft.jtitle=Journal+of+biomechanics&rft.au=Dai%2C+Zhi-Xuan&rft.au=Shih%2C+Po-Jen&rft.au=Yen%2C+Jia-Yush&rft.au=Wang%2C+I-Jong&rft.date=2021-08-26&rft.pub=Elsevier+Ltd&rft.issn=0021-9290&rft.volume=125&rft_id=info:doi/10.1016%2Fj.jbiomech.2021.110564&rft.externalDocID=S0021929021003444 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0021-9290&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0021-9290&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0021-9290&client=summon |