Phase-amplitude coupling of delta brush unveiling neuronal modulation development in the neonatal brain

•Phase-amplitude coupling identified delta brushes as complex waveforms of slow delta waves and alpha-beta activities.•Phase-amplitude coupling of delta brushes being maximum around 32–36 post-menstrual weeks with occipital predominance.•Delta brushes have consistent coupling phases 0° or 180° betwe...

Full description

Saved in:
Bibliographic Details
Published inNeuroscience letters Vol. 735; p. 135211
Main Authors Shibata, Takashi, Otsubo, Hiroshi
Format Journal Article
LanguageEnglish
Published Ireland Elsevier B.V 14.09.2020
Subjects
Online AccessGet full text

Cover

Loading…
Abstract •Phase-amplitude coupling identified delta brushes as complex waveforms of slow delta waves and alpha-beta activities.•Phase-amplitude coupling of delta brushes being maximum around 32–36 post-menstrual weeks with occipital predominance.•Delta brushes have consistent coupling phases 0° or 180° between slow waves and alpha-beta activities through 31–40 weeks.•Phase-amplitude coupling might reflect the cortical neuronal fast activity modulated by slow waves of subcortical regions. Delta brushes are an indicator of brain maturity on a neonatal EEG. We investigated phase-amplitude coupling (PAC) between slow delta waves and superimposed alpha–beta activity in delta brushes to elucidate the spatiotemporal developments of the delta brush with post-menstrual weeks (PMW). The subjects were 18 neurologically intact patients (seven girls). We analyzed EEG within 42 PMW. Patients were divided into four age groups as follows: PMW ≤30w; 31–34 w; 35–38 w; and 39–42 w. We selected up to three epochs of 2-minute EEG segments including delta brushes. We calculated the modulation index (MI), direct mean vector length (dMVL), and mean of phase angle of coupling by PAC between slow waves (0.5–1.5 Hz) and fast activities (8–25 Hz) in four regions (F: Fp1 and Fp2, C: C3 and C4, T: T3 and T4, O: O1 and O2). We collected data from 18 patients and 31 epochs between 29 and 42 PMW, which comprised one, four, five, and eight patients, and two, seven, eight, and 14 epochs in the ≤30w, 31–34 w, 35–38 w, and 39–42 w groups, respectively. There were significant differences in the dMVL between the four regions in age groups ≤30w (P =  0.033) and 31–34w (0.017). Both MI and dMVL showed that delta brushes became higher in the occipital region from 32 to 36 PMW. The mean phase angle of coupling concentrated around either 0° or 180° for all age groups. PAC analysis revealed the spatiotemporal relations of alpha–beta activities that are modulated by slow delta waves in neonatal delta brushes. The delta brushes appeared to be at a maximum around 32–36 PMW with the predominant occipital distribution. The PAC of the delta brush might represent the cortical neuronal fast activity that is modulated by slow delta waves of subcortical regions during a particular neonatal period.
AbstractList Delta brushes are an indicator of brain maturity on a neonatal EEG. We investigated phase-amplitude coupling (PAC) between slow delta waves and superimposed alpha-beta activity in delta brushes to elucidate the spatiotemporal developments of the delta brush with post-menstrual weeks (PMW). The subjects were 18 neurologically intact patients (seven girls). We analyzed EEG within 42 PMW. Patients were divided into four age groups as follows: PMW ≤30w; 31-34 w; 35-38 w; and 39-42 w. We selected up to three epochs of 2-minute EEG segments including delta brushes. We calculated the modulation index (MI), direct mean vector length (dMVL), and mean of phase angle of coupling by PAC between slow waves (0.5-1.5 Hz) and fast activities (8-25 Hz) in four regions (F: Fp1 and Fp2, C: C3 and C4, T: T3 and T4, O: O1 and O2). We collected data from 18 patients and 31 epochs between 29 and 42 PMW, which comprised one, four, five, and eight patients, and two, seven, eight, and 14 epochs in the ≤30w, 31-34 w, 35-38 w, and 39-42 w groups, respectively. There were significant differences in the dMVL between the four regions in age groups ≤30w (P =  0.033) and 31-34w (0.017). Both MI and dMVL showed that delta brushes became higher in the occipital region from 32 to 36 PMW. The mean phase angle of coupling concentrated around either 0° or 180° for all age groups. PAC analysis revealed the spatiotemporal relations of alpha-beta activities that are modulated by slow delta waves in neonatal delta brushes. The delta brushes appeared to be at a maximum around 32-36 PMW with the predominant occipital distribution. The PAC of the delta brush might represent the cortical neuronal fast activity that is modulated by slow delta waves of subcortical regions during a particular neonatal period.
•Phase-amplitude coupling identified delta brushes as complex waveforms of slow delta waves and alpha-beta activities.•Phase-amplitude coupling of delta brushes being maximum around 32–36 post-menstrual weeks with occipital predominance.•Delta brushes have consistent coupling phases 0° or 180° between slow waves and alpha-beta activities through 31–40 weeks.•Phase-amplitude coupling might reflect the cortical neuronal fast activity modulated by slow waves of subcortical regions. Delta brushes are an indicator of brain maturity on a neonatal EEG. We investigated phase-amplitude coupling (PAC) between slow delta waves and superimposed alpha–beta activity in delta brushes to elucidate the spatiotemporal developments of the delta brush with post-menstrual weeks (PMW). The subjects were 18 neurologically intact patients (seven girls). We analyzed EEG within 42 PMW. Patients were divided into four age groups as follows: PMW ≤30w; 31–34 w; 35–38 w; and 39–42 w. We selected up to three epochs of 2-minute EEG segments including delta brushes. We calculated the modulation index (MI), direct mean vector length (dMVL), and mean of phase angle of coupling by PAC between slow waves (0.5–1.5 Hz) and fast activities (8–25 Hz) in four regions (F: Fp1 and Fp2, C: C3 and C4, T: T3 and T4, O: O1 and O2). We collected data from 18 patients and 31 epochs between 29 and 42 PMW, which comprised one, four, five, and eight patients, and two, seven, eight, and 14 epochs in the ≤30w, 31–34 w, 35–38 w, and 39–42 w groups, respectively. There were significant differences in the dMVL between the four regions in age groups ≤30w (P =  0.033) and 31–34w (0.017). Both MI and dMVL showed that delta brushes became higher in the occipital region from 32 to 36 PMW. The mean phase angle of coupling concentrated around either 0° or 180° for all age groups. PAC analysis revealed the spatiotemporal relations of alpha–beta activities that are modulated by slow delta waves in neonatal delta brushes. The delta brushes appeared to be at a maximum around 32–36 PMW with the predominant occipital distribution. The PAC of the delta brush might represent the cortical neuronal fast activity that is modulated by slow delta waves of subcortical regions during a particular neonatal period.
Delta brushes are an indicator of brain maturity on a neonatal EEG. We investigated phase-amplitude coupling (PAC) between slow delta waves and superimposed alpha-beta activity in delta brushes to elucidate the spatiotemporal developments of the delta brush with post-menstrual weeks (PMW).INTRODUCTIONDelta brushes are an indicator of brain maturity on a neonatal EEG. We investigated phase-amplitude coupling (PAC) between slow delta waves and superimposed alpha-beta activity in delta brushes to elucidate the spatiotemporal developments of the delta brush with post-menstrual weeks (PMW).The subjects were 18 neurologically intact patients (seven girls). We analyzed EEG within 42 PMW. Patients were divided into four age groups as follows: PMW ≤30w; 31-34 w; 35-38 w; and 39-42 w. We selected up to three epochs of 2-minute EEG segments including delta brushes. We calculated the modulation index (MI), direct mean vector length (dMVL), and mean of phase angle of coupling by PAC between slow waves (0.5-1.5 Hz) and fast activities (8-25 Hz) in four regions (F: Fp1 and Fp2, C: C3 and C4, T: T3 and T4, O: O1 and O2).METHODSThe subjects were 18 neurologically intact patients (seven girls). We analyzed EEG within 42 PMW. Patients were divided into four age groups as follows: PMW ≤30w; 31-34 w; 35-38 w; and 39-42 w. We selected up to three epochs of 2-minute EEG segments including delta brushes. We calculated the modulation index (MI), direct mean vector length (dMVL), and mean of phase angle of coupling by PAC between slow waves (0.5-1.5 Hz) and fast activities (8-25 Hz) in four regions (F: Fp1 and Fp2, C: C3 and C4, T: T3 and T4, O: O1 and O2).We collected data from 18 patients and 31 epochs between 29 and 42 PMW, which comprised one, four, five, and eight patients, and two, seven, eight, and 14 epochs in the ≤30w, 31-34 w, 35-38 w, and 39-42 w groups, respectively. There were significant differences in the dMVL between the four regions in age groups ≤30w (P =  0.033) and 31-34w (0.017). Both MI and dMVL showed that delta brushes became higher in the occipital region from 32 to 36 PMW. The mean phase angle of coupling concentrated around either 0° or 180° for all age groups.RESULTSWe collected data from 18 patients and 31 epochs between 29 and 42 PMW, which comprised one, four, five, and eight patients, and two, seven, eight, and 14 epochs in the ≤30w, 31-34 w, 35-38 w, and 39-42 w groups, respectively. There were significant differences in the dMVL between the four regions in age groups ≤30w (P =  0.033) and 31-34w (0.017). Both MI and dMVL showed that delta brushes became higher in the occipital region from 32 to 36 PMW. The mean phase angle of coupling concentrated around either 0° or 180° for all age groups.PAC analysis revealed the spatiotemporal relations of alpha-beta activities that are modulated by slow delta waves in neonatal delta brushes. The delta brushes appeared to be at a maximum around 32-36 PMW with the predominant occipital distribution. The PAC of the delta brush might represent the cortical neuronal fast activity that is modulated by slow delta waves of subcortical regions during a particular neonatal period.CONCLUSIONSPAC analysis revealed the spatiotemporal relations of alpha-beta activities that are modulated by slow delta waves in neonatal delta brushes. The delta brushes appeared to be at a maximum around 32-36 PMW with the predominant occipital distribution. The PAC of the delta brush might represent the cortical neuronal fast activity that is modulated by slow delta waves of subcortical regions during a particular neonatal period.
ArticleNumber 135211
Author Otsubo, Hiroshi
Shibata, Takashi
Author_xml – sequence: 1
  givenname: Takashi
  orcidid: 0000-0003-4912-279X
  surname: Shibata
  fullname: Shibata, Takashi
– sequence: 2
  givenname: Hiroshi
  surname: Otsubo
  fullname: Otsubo, Hiroshi
  email: hiroshi.otsubo@sickkids.ca
BackLink https://www.ncbi.nlm.nih.gov/pubmed/32593774$$D View this record in MEDLINE/PubMed
BookMark eNqFkUlPHDEUhC0EgoHkH0RRH7n0xFtvHCJFKCwSUjhwt9z2a8Yjtz14GYl_Hw8NlxzCyZb9Vdmv6hwdO-8AoW8Erwkm7Y_t2kG2kNYU03LEGkrIEVqRvqN1N3T0GK0ww7xmA8dn6DzGLca4IQ0_RWeMNgPrOr5Cz48bGaGW886alDVUyueydc-VnyoNNslqDDluquz2YN4uyrPBO2mr2etsZTLeFXIP1u9mcKkyrkobKFiBUsHGII37gk4maSN8fV8v0NPN76fru_rhz-399a-HWnHap7olTEM_kmmAvhsBM9Aj7aluuRoIpUQzxbCeCCHDNEI38abtZFsCYA3jZGIX6HKx3QX_kiEmMZuowFpZvpOjoPyQz9ByUtDv72geZ9BiF8wsw6v4yKYAVwuggo8xwCSUSW_jpjKRFQSLQxFiK5YixKEIsRRRxPwf8Yf_J7KfiwxKRnsDQURlwCnQJoBKQnvzf4O_uLOlKQ
CitedBy_id crossref_primary_10_1016_j_nbd_2022_105863
crossref_primary_10_1186_s12887_023_04421_3
crossref_primary_10_1016_j_jneumeth_2022_109578
crossref_primary_10_26599_BSA_2023_9050025
crossref_primary_10_1016_j_compbiomed_2024_109477
crossref_primary_10_1097_WNP_0000000000000828
crossref_primary_10_3389_fnins_2022_803708
crossref_primary_10_1140_epjs_s11734_023_01071_5
crossref_primary_10_3390_brainsci12070854
crossref_primary_10_1016_j_cmpb_2021_106593
crossref_primary_10_1016_j_clinph_2022_02_010
crossref_primary_10_3389_fnint_2022_933426
Cites_doi 10.1111/epi.15541
10.1016/j.neuron.2010.07.015
10.1016/j.clinph.2017.03.031
10.1152/jn.00106.2010
10.1016/j.expneurol.2013.10.019
10.1371/journal.pone.0079028
10.1111/epi.13380
10.1002/hbm.23618
10.1016/j.neucli.2010.02.002
10.1111/epi.13912
10.1093/cercor/bhl069
10.1126/science.1128115
10.1016/j.clinph.2016.03.022
10.1016/S0169-328X(01)00280-7
10.1111/j.1469-8749.2002.tb00278.x
10.1162/jocn.2008.21020
10.1016/j.cnp.2016.11.002
10.3389/fnins.2019.00573
10.1111/epi.14544
10.1111/epi.13572
10.1152/jn.00759.2006
10.1093/cercor/bhn115
10.1111/j.1469-8749.1972.tb02603.x
10.1097/WNP.0b013e3182872b24
10.1126/science.1099745
10.1016/j.braindev.2009.07.006
ContentType Journal Article
Copyright 2020 Elsevier B.V.
Copyright © 2020 Elsevier B.V. All rights reserved.
Copyright_xml – notice: 2020 Elsevier B.V.
– notice: Copyright © 2020 Elsevier B.V. All rights reserved.
DBID AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
DOI 10.1016/j.neulet.2020.135211
DatabaseName CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList MEDLINE

MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Medicine
Anatomy & Physiology
EISSN 1872-7972
ExternalDocumentID 32593774
10_1016_j_neulet_2020_135211
S030439402030481X
Genre Journal Article
GroupedDBID ---
--K
--M
-~X
.~1
0R~
123
1B1
1RT
1~.
1~5
4.4
457
4G.
53G
5RE
7-5
71M
8P~
9JM
AABNK
AACTN
AADPK
AAEDW
AAIAV
AAIKJ
AAKOC
AALRI
AAOAW
AAXLA
AAXUO
ABCQJ
ABFNM
ABFRF
ABJNI
ABLJU
ABMAC
ABYKQ
ACDAQ
ACGFO
ACGFS
ACIUM
ACRLP
ADBBV
ADEZE
AEBSH
AEFWE
AEKER
AENEX
AFKWA
AFTJW
AFXIZ
AGHFR
AGUBO
AGWIK
AGYEJ
AIEXJ
AIKHN
AITUG
AJOXV
ALMA_UNASSIGNED_HOLDINGS
AMFUW
AMRAJ
AXJTR
BKOJK
BLXMC
CS3
DU5
EBS
EFJIC
EFLBG
EO8
EO9
EP2
EP3
F5P
FDB
FIRID
FNPLU
FYGXN
G-Q
GBLVA
IHE
J1W
KOM
M2V
M41
MO0
MOBAO
N9A
O-L
O9-
OAUVE
OZT
P-8
P-9
P2P
PC.
Q38
RIG
ROL
RPZ
SCC
SDF
SDG
SDP
SES
SPCBC
SSN
SSZ
T5K
WH7
YCJ
~G-
.55
.GJ
29N
5VS
AAEDT
AAQFI
AAQXK
AATTM
AAXKI
AAYWO
AAYXX
ABWVN
ABXDB
ACRPL
ACVFH
ADCNI
ADIYS
ADMUD
ADNMO
AEIPS
AETEA
AEUPX
AFJKZ
AFPUW
AGCQF
AGQPQ
AGRNS
AHHHB
AIGII
AIIUN
AKBMS
AKRWK
AKYEP
ANKPU
APXCP
ASPBG
AVWKF
AZFZN
BNPGV
CITATION
EJD
FEDTE
FGOYB
G-2
HMQ
HVGLF
HZ~
MVM
R2-
SEW
SNS
SSH
WUQ
X7M
ZGI
ZXP
ZY4
CGR
CUY
CVF
ECM
EIF
NPM
7X8
EFKBS
ID FETCH-LOGICAL-c428t-613de8b1f9e87be03edb282d64c91221d3c30df1119fbe7f4567a602035341f3
IEDL.DBID .~1
ISSN 0304-3940
1872-7972
IngestDate Sun Aug 24 04:11:42 EDT 2025
Wed Feb 19 02:28:31 EST 2025
Tue Jul 01 01:44:02 EDT 2025
Thu Apr 24 23:02:19 EDT 2025
Fri Feb 23 02:46:56 EST 2024
IsPeerReviewed true
IsScholarly true
Keywords MVL
HFOs
Direct mean vector length
PACT
Electroencephalography
White matter
dMVL
Modulation index
PAC
Neonate
Developing modulator
PMW
MI
SOZ
Language English
License Copyright © 2020 Elsevier B.V. All rights reserved.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-613de8b1f9e87be03edb282d64c91221d3c30df1119fbe7f4567a602035341f3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-4912-279X
PMID 32593774
PQID 2418729641
PQPubID 23479
ParticipantIDs proquest_miscellaneous_2418729641
pubmed_primary_32593774
crossref_citationtrail_10_1016_j_neulet_2020_135211
crossref_primary_10_1016_j_neulet_2020_135211
elsevier_sciencedirect_doi_10_1016_j_neulet_2020_135211
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2020-09-14
PublicationDateYYYYMMDD 2020-09-14
PublicationDate_xml – month: 09
  year: 2020
  text: 2020-09-14
  day: 14
PublicationDecade 2020
PublicationPlace Ireland
PublicationPlace_xml – name: Ireland
PublicationTitle Neuroscience letters
PublicationTitleAlternate Neurosci Lett
PublicationYear 2020
Publisher Elsevier B.V
Publisher_xml – name: Elsevier B.V
References von Ellenrieder, Frauscher, Dubeau, Gotman (bib0060) 2016; 57
Lilliu, Pernas-Alonso, Trelles, di Porzio, Zuddas, Perrone-Capano (bib0135) 2001; 96
Minlebaev, Ben-Ari, Khazipov (bib0130) 2009; 19
Hülsemann, Naumann, Rasch (bib0050) 2019; 13
Tort, Komorowski, Eichenbaum, Kopell (bib0040) 2010; 104
Milh, Kaminska, Huon, Lapillonne, Ben-Ari, Khazipov (bib0110) 2007; 17
Motoi, Miyakoshi, Abel, Jeong, Nakai, Sugiura, Luat, Agarwal, Sood, Asano (bib0055) 2018; 59
Ewald, Cline (bib0140) 2008
Colonnese, Kaminska, Minlebaev, Milh, Bloem, Lescure, Moriette, Chiron, Ben-Ari, Khazipov (bib0115) 2010; 67
Miyakoshi, Delorme, Mullen, Kojima, Makeig, Asano (bib0085) 2013; 2013
Whitehead, Pressler, Fabrizi (bib0005) 2017; 2
André, Lamblin, d’Allest, Curzi-Dascalova, Moussalli-Salefranque, Nguyen The Tich, Vecchierini-Blineau, Wallois, Walls-Esquivel, Plouin (bib0015) 2010; 40
Rajagopalan, Scott, Liu, Poskitt, Chau, Miller, Studholme (bib0090) 2017; 38
Tsuchida, Wusthoff, Shellhaas, Abend, Hahn, Sullivan, Nguyen, Weinstein, Scher, Riviello, Clancy, American Clinical Neurophysiology Society Critical Care Monitoring Committee (bib0010) 2013; 30
Weiss, Orosz, Salamon, Moy, Wei, Van’t Klooster, Knight, Harper, Bragin, Fried, Engel, Staba (bib0070) 2016; 57
Chipaux, Colonnese, Mauguen, Fellous, Mokhtari, Lezcano, Milh, Dulac, Chiron, Khazipov, Kaminska (bib0120) 2013; 8
Okumura, Hayakawa, Kato, Kuno, Watanabe (bib0105) 2002; 44
Iimura, Jones, Hattori, Okazawa, Noda, Hoashi, Nonoda, Asano, Akiyama, Go, Ochi, Snead, Donner, Rutka, Drake, Otsubo (bib0080) 2017; 128
Watanabe, Iwase (bib0020) 1972; 14
Cohen, Elger, Fell (bib0045) 2009; 21
Koszer, Moshé, Holmes (bib0025) 2006
Chan, Yamazaki, Akiyama, Chu, Donner, Otsubo (bib0145) 2010; 32
Nonoda, Miyakoshi, Ojeda, Makeig, Juhász, Sood, Asano (bib0075) 2016; 127
Canolty, Edwards, Dalal, Soltani, Nagarajan, Kirsch, Berger, Barbare, Knight (bib0035) 2006; 313
Amiri, Frauscher, Gotman (bib0100) 2019; 60
Minlebaev, Ben-Ari, Khazipov (bib0125) 2007; 97
Buzsáki, Draguhn (bib0030) 2004; 304
Song, Orosz, Chervoneva, Waldman, Fried, Wu, Sharan, Salamon, Gorniak, Dewar, Bragin, Engel, Sperling, Staba, Weiss (bib0095) 2017; 58
Ibrahim, Wong, Anderson, Singh-Cadieux, Akiyama, Ochi, Otsubo, Okanishi, Valiante, Donner, Rutka, Snead, Doesburg (bib0065) 2014; 251
Lilliu (10.1016/j.neulet.2020.135211_bib0135) 2001; 96
Whitehead (10.1016/j.neulet.2020.135211_bib0005) 2017; 2
Okumura (10.1016/j.neulet.2020.135211_bib0105) 2002; 44
Chan (10.1016/j.neulet.2020.135211_bib0145) 2010; 32
Buzsáki (10.1016/j.neulet.2020.135211_bib0030) 2004; 304
Miyakoshi (10.1016/j.neulet.2020.135211_bib0085) 2013; 2013
Song (10.1016/j.neulet.2020.135211_bib0095) 2017; 58
Rajagopalan (10.1016/j.neulet.2020.135211_bib0090) 2017; 38
Watanabe (10.1016/j.neulet.2020.135211_bib0020) 1972; 14
Tsuchida (10.1016/j.neulet.2020.135211_bib0010) 2013; 30
Motoi (10.1016/j.neulet.2020.135211_bib0055) 2018; 59
Ibrahim (10.1016/j.neulet.2020.135211_bib0065) 2014; 251
Milh (10.1016/j.neulet.2020.135211_bib0110) 2007; 17
Ewald (10.1016/j.neulet.2020.135211_bib0140) 2008
von Ellenrieder (10.1016/j.neulet.2020.135211_bib0060) 2016; 57
Chipaux (10.1016/j.neulet.2020.135211_bib0120) 2013; 8
Koszer (10.1016/j.neulet.2020.135211_bib0025) 2006
Minlebaev (10.1016/j.neulet.2020.135211_bib0130) 2009; 19
Cohen (10.1016/j.neulet.2020.135211_bib0045) 2009; 21
Iimura (10.1016/j.neulet.2020.135211_bib0080) 2017; 128
Minlebaev (10.1016/j.neulet.2020.135211_bib0125) 2007; 97
Tort (10.1016/j.neulet.2020.135211_bib0040) 2010; 104
Colonnese (10.1016/j.neulet.2020.135211_bib0115) 2010; 67
André (10.1016/j.neulet.2020.135211_bib0015) 2010; 40
Hülsemann (10.1016/j.neulet.2020.135211_bib0050) 2019; 13
Nonoda (10.1016/j.neulet.2020.135211_bib0075) 2016; 127
Amiri (10.1016/j.neulet.2020.135211_bib0100) 2019; 60
Weiss (10.1016/j.neulet.2020.135211_bib0070) 2016; 57
Canolty (10.1016/j.neulet.2020.135211_bib0035) 2006; 313
References_xml – volume: 8
  year: 2013
  ident: bib0120
  article-title: Auditory stimuli mimicking ambient sounds drive temporal “delta-brushes” in premature infants
  publication-title: PLoS One
– volume: 97
  start-page: 692
  year: 2007
  end-page: 700
  ident: bib0125
  article-title: Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo
  publication-title: J. Neurophysiol.
– volume: 67
  start-page: 480
  year: 2010
  end-page: 498
  ident: bib0115
  article-title: A conserved switch in sensory processing prepares developing neocortex for vision
  publication-title: Neuron
– volume: 313
  start-page: 1626
  year: 2006
  end-page: 1628
  ident: bib0035
  article-title: High gamma power is phase-locked to theta oscillations in human neocortex
  publication-title: Science
– volume: 251
  start-page: 30
  year: 2014
  end-page: 38
  ident: bib0065
  article-title: Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms
  publication-title: Exp. Neurol.
– volume: 57
  start-page: 1916
  year: 2016
  end-page: 1930
  ident: bib0070
  article-title: Ripples on spikes show increased phase-amplitude coupling in mesial temporal lobe epilepsy seizure-onset zones
  publication-title: Epilepsia
– start-page: 1
  year: 2008
  end-page: 15
  ident: bib0140
  article-title: NMDA receptors and brain development
  publication-title: Biol. NMDA Recept.
– volume: 2
  start-page: 12
  year: 2017
  end-page: 18
  ident: bib0005
  article-title: Characteristics and clinical significance of delta brushes in the EEG of premature infants
  publication-title: Clin. Neurophysiol. Pract.
– volume: 14
  start-page: 373
  year: 1972
  end-page: 381
  ident: bib0020
  article-title: Spindle-like fast rhythms in the EEGs of low-birth weight infants
  publication-title: Dev. Med. Child Neurol.
– volume: 40
  start-page: 59
  year: 2010
  end-page: 124
  ident: bib0015
  article-title: Electroencephalography in premature and full-term infants. Developmental features and glossary
  publication-title: Clin. Neurophysiol.
– volume: 30
  start-page: 161
  year: 2013
  end-page: 173
  ident: bib0010
  article-title: American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee
  publication-title: J. Clin. Neurophysiol.
– volume: 58
  start-page: 1972
  year: 2017
  end-page: 1984
  ident: bib0095
  article-title: Bimodal coupling of ripples and slower oscillations during sleep in patients with focal epilepsy
  publication-title: Epilepsia
– volume: 44
  start-page: 729
  year: 2002
  end-page: 734
  ident: bib0105
  article-title: Developmental outcome and types of chronic-stage EEG abnormalities in preterm infants
  publication-title: Dev. Med. Child Neurol.
– start-page: 70
  year: 2006
  end-page: 86
  ident: bib0025
  article-title: Visual analysis of the neonatal electroencephalogram
  publication-title: Clin. Neurophysiol. Infancy, Childhood, Adolesc.
– volume: 38
  start-page: 4322
  year: 2017
  end-page: 4336
  ident: bib0090
  article-title: Complementary cortical gray and white matter developmental patterns in healthy, preterm neonates
  publication-title: Hum. Brain Mapp.
– volume: 21
  start-page: 390
  year: 2009
  end-page: 402
  ident: bib0045
  article-title: Oscillatory activity and phase-amplitude coupling in the human medial frontal cortex during decision making
  publication-title: J. Cogn. Neurosci.
– volume: 59
  start-page: 1954
  year: 2018
  end-page: 1965
  ident: bib0055
  article-title: Phase-amplitude coupling between interictal high-frequency activity and slow waves in epilepsy surgery
  publication-title: Epilepsia
– volume: 2013
  start-page: 3282
  year: 2013
  end-page: 3285
  ident: bib0085
  article-title: Automated detection of cross-frequency coupling in the electrocorticogram for clinical inspection
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf.
– volume: 128
  start-page: 1197
  year: 2017
  end-page: 1205
  ident: bib0080
  article-title: Epileptogenic high-frequency oscillations skip the motor area in children with multilobar drug-resistant epilepsy
  publication-title: Clin. Neurophysiol.
– volume: 96
  start-page: 133
  year: 2001
  end-page: 141
  ident: bib0135
  article-title: Ontogeny of AMPA receptor gene expression in the developing rat midbrain and striatum
  publication-title: Brain Res. Mol. Brain Res.
– volume: 104
  start-page: 1195
  year: 2010
  end-page: 1210
  ident: bib0040
  article-title: Measuring phase-amplitude coupling between neuronal oscillations of different frequencies
  publication-title: J. Neurophysiol.
– volume: 60
  start-page: 1160
  year: 2019
  end-page: 1170
  ident: bib0100
  article-title: Interictal coupling of HFOs and slow oscillations predicts the seizure-onset pattern in mesiotemporal lobe epilepsy
  publication-title: Epilepsia
– volume: 32
  start-page: 482
  year: 2010
  end-page: 486
  ident: bib0145
  article-title: Rapid oscillatory activity in delta brushes of premature and term neonatal EEG
  publication-title: Brain Dev.
– volume: 127
  start-page: 2489
  year: 2016
  end-page: 2499
  ident: bib0075
  article-title: Interictal high-frequency oscillations generated by seizure onset and eloquent areas may be differentially coupled with different slow waves
  publication-title: Clin. Neurophysiol.
– volume: 304
  start-page: 1926
  year: 2004
  end-page: 1929
  ident: bib0030
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
– volume: 13
  start-page: 573
  year: 2019
  ident: bib0050
  article-title: Quantification of phase-amplitude coupling in neuronal oscillations: comparison of phase-locking value, mean vector length, modulation index, and generalized-linear-modeling-cross-frequency-coupling
  publication-title: Front. Neurosci.
– volume: 19
  start-page: 688
  year: 2009
  end-page: 696
  ident: bib0130
  article-title: NMDA receptors pattern early activity in the developing barrel cortex in vivo
  publication-title: Cereb. Cortex
– volume: 57
  start-page: 869
  year: 2016
  end-page: 878
  ident: bib0060
  article-title: Interaction with slow waves during sleep improves discrimination of physiologic and pathologic high-frequency oscillations (80-500 Hz)
  publication-title: Epilepsia
– volume: 17
  start-page: 1582
  year: 2007
  end-page: 1594
  ident: bib0110
  article-title: Rapid cortical oscillations and early motor activity in premature human neonate
  publication-title: Cereb. Cortex
– start-page: 70
  year: 2006
  ident: 10.1016/j.neulet.2020.135211_bib0025
  article-title: Visual analysis of the neonatal electroencephalogram
– volume: 60
  start-page: 1160
  year: 2019
  ident: 10.1016/j.neulet.2020.135211_bib0100
  article-title: Interictal coupling of HFOs and slow oscillations predicts the seizure-onset pattern in mesiotemporal lobe epilepsy
  publication-title: Epilepsia
  doi: 10.1111/epi.15541
– volume: 67
  start-page: 480
  year: 2010
  ident: 10.1016/j.neulet.2020.135211_bib0115
  article-title: A conserved switch in sensory processing prepares developing neocortex for vision
  publication-title: Neuron
  doi: 10.1016/j.neuron.2010.07.015
– volume: 128
  start-page: 1197
  year: 2017
  ident: 10.1016/j.neulet.2020.135211_bib0080
  article-title: Epileptogenic high-frequency oscillations skip the motor area in children with multilobar drug-resistant epilepsy
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2017.03.031
– volume: 104
  start-page: 1195
  year: 2010
  ident: 10.1016/j.neulet.2020.135211_bib0040
  article-title: Measuring phase-amplitude coupling between neuronal oscillations of different frequencies
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00106.2010
– volume: 251
  start-page: 30
  year: 2014
  ident: 10.1016/j.neulet.2020.135211_bib0065
  article-title: Dynamic modulation of epileptic high frequency oscillations by the phase of slower cortical rhythms
  publication-title: Exp. Neurol.
  doi: 10.1016/j.expneurol.2013.10.019
– volume: 8
  year: 2013
  ident: 10.1016/j.neulet.2020.135211_bib0120
  article-title: Auditory stimuli mimicking ambient sounds drive temporal “delta-brushes” in premature infants
  publication-title: PLoS One
  doi: 10.1371/journal.pone.0079028
– volume: 57
  start-page: 869
  year: 2016
  ident: 10.1016/j.neulet.2020.135211_bib0060
  article-title: Interaction with slow waves during sleep improves discrimination of physiologic and pathologic high-frequency oscillations (80-500 Hz)
  publication-title: Epilepsia
  doi: 10.1111/epi.13380
– volume: 38
  start-page: 4322
  year: 2017
  ident: 10.1016/j.neulet.2020.135211_bib0090
  article-title: Complementary cortical gray and white matter developmental patterns in healthy, preterm neonates
  publication-title: Hum. Brain Mapp.
  doi: 10.1002/hbm.23618
– volume: 40
  start-page: 59
  year: 2010
  ident: 10.1016/j.neulet.2020.135211_bib0015
  article-title: Electroencephalography in premature and full-term infants. Developmental features and glossary
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.neucli.2010.02.002
– volume: 58
  start-page: 1972
  year: 2017
  ident: 10.1016/j.neulet.2020.135211_bib0095
  article-title: Bimodal coupling of ripples and slower oscillations during sleep in patients with focal epilepsy
  publication-title: Epilepsia
  doi: 10.1111/epi.13912
– volume: 17
  start-page: 1582
  year: 2007
  ident: 10.1016/j.neulet.2020.135211_bib0110
  article-title: Rapid cortical oscillations and early motor activity in premature human neonate
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhl069
– volume: 313
  start-page: 1626
  year: 2006
  ident: 10.1016/j.neulet.2020.135211_bib0035
  article-title: High gamma power is phase-locked to theta oscillations in human neocortex
  publication-title: Science
  doi: 10.1126/science.1128115
– volume: 127
  start-page: 2489
  year: 2016
  ident: 10.1016/j.neulet.2020.135211_bib0075
  article-title: Interictal high-frequency oscillations generated by seizure onset and eloquent areas may be differentially coupled with different slow waves
  publication-title: Clin. Neurophysiol.
  doi: 10.1016/j.clinph.2016.03.022
– volume: 96
  start-page: 133
  year: 2001
  ident: 10.1016/j.neulet.2020.135211_bib0135
  article-title: Ontogeny of AMPA receptor gene expression in the developing rat midbrain and striatum
  publication-title: Brain Res. Mol. Brain Res.
  doi: 10.1016/S0169-328X(01)00280-7
– start-page: 1
  year: 2008
  ident: 10.1016/j.neulet.2020.135211_bib0140
  article-title: NMDA receptors and brain development
– volume: 44
  start-page: 729
  year: 2002
  ident: 10.1016/j.neulet.2020.135211_bib0105
  article-title: Developmental outcome and types of chronic-stage EEG abnormalities in preterm infants
  publication-title: Dev. Med. Child Neurol.
  doi: 10.1111/j.1469-8749.2002.tb00278.x
– volume: 21
  start-page: 390
  year: 2009
  ident: 10.1016/j.neulet.2020.135211_bib0045
  article-title: Oscillatory activity and phase-amplitude coupling in the human medial frontal cortex during decision making
  publication-title: J. Cogn. Neurosci.
  doi: 10.1162/jocn.2008.21020
– volume: 2
  start-page: 12
  year: 2017
  ident: 10.1016/j.neulet.2020.135211_bib0005
  article-title: Characteristics and clinical significance of delta brushes in the EEG of premature infants
  publication-title: Clin. Neurophysiol. Pract.
  doi: 10.1016/j.cnp.2016.11.002
– volume: 13
  start-page: 573
  year: 2019
  ident: 10.1016/j.neulet.2020.135211_bib0050
  article-title: Quantification of phase-amplitude coupling in neuronal oscillations: comparison of phase-locking value, mean vector length, modulation index, and generalized-linear-modeling-cross-frequency-coupling
  publication-title: Front. Neurosci.
  doi: 10.3389/fnins.2019.00573
– volume: 59
  start-page: 1954
  year: 2018
  ident: 10.1016/j.neulet.2020.135211_bib0055
  article-title: Phase-amplitude coupling between interictal high-frequency activity and slow waves in epilepsy surgery
  publication-title: Epilepsia
  doi: 10.1111/epi.14544
– volume: 57
  start-page: 1916
  year: 2016
  ident: 10.1016/j.neulet.2020.135211_bib0070
  article-title: Ripples on spikes show increased phase-amplitude coupling in mesial temporal lobe epilepsy seizure-onset zones
  publication-title: Epilepsia
  doi: 10.1111/epi.13572
– volume: 97
  start-page: 692
  year: 2007
  ident: 10.1016/j.neulet.2020.135211_bib0125
  article-title: Network mechanisms of spindle-burst oscillations in the neonatal rat barrel cortex in vivo
  publication-title: J. Neurophysiol.
  doi: 10.1152/jn.00759.2006
– volume: 19
  start-page: 688
  year: 2009
  ident: 10.1016/j.neulet.2020.135211_bib0130
  article-title: NMDA receptors pattern early activity in the developing barrel cortex in vivo
  publication-title: Cereb. Cortex
  doi: 10.1093/cercor/bhn115
– volume: 14
  start-page: 373
  year: 1972
  ident: 10.1016/j.neulet.2020.135211_bib0020
  article-title: Spindle-like fast rhythms in the EEGs of low-birth weight infants
  publication-title: Dev. Med. Child Neurol.
  doi: 10.1111/j.1469-8749.1972.tb02603.x
– volume: 30
  start-page: 161
  year: 2013
  ident: 10.1016/j.neulet.2020.135211_bib0010
  article-title: American clinical neurophysiology society standardized EEG terminology and categorization for the description of continuous EEG monitoring in neonates: report of the American Clinical Neurophysiology Society critical care monitoring committee
  publication-title: J. Clin. Neurophysiol.
  doi: 10.1097/WNP.0b013e3182872b24
– volume: 304
  start-page: 1926
  year: 2004
  ident: 10.1016/j.neulet.2020.135211_bib0030
  article-title: Neuronal oscillations in cortical networks
  publication-title: Science
  doi: 10.1126/science.1099745
– volume: 32
  start-page: 482
  year: 2010
  ident: 10.1016/j.neulet.2020.135211_bib0145
  article-title: Rapid oscillatory activity in delta brushes of premature and term neonatal EEG
  publication-title: Brain Dev.
  doi: 10.1016/j.braindev.2009.07.006
– volume: 2013
  start-page: 3282
  year: 2013
  ident: 10.1016/j.neulet.2020.135211_bib0085
  article-title: Automated detection of cross-frequency coupling in the electrocorticogram for clinical inspection
  publication-title: Conf. Proc. IEEE Eng. Med. Biol. Soc. IEEE Eng. Med. Biol. Soc. Annu. Conf.
SSID ssj0005154
Score 2.3807547
Snippet •Phase-amplitude coupling identified delta brushes as complex waveforms of slow delta waves and alpha-beta activities.•Phase-amplitude coupling of delta...
Delta brushes are an indicator of brain maturity on a neonatal EEG. We investigated phase-amplitude coupling (PAC) between slow delta waves and superimposed...
SourceID proquest
pubmed
crossref
elsevier
SourceType Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 135211
SubjectTerms Brain - growth & development
Child Development - physiology
Delta Rhythm - physiology
Developing modulator
Direct mean vector length
Electroencephalography
Electroencephalography - methods
Female
Humans
Infant, Newborn
Male
Modulation index
Neonate
Neurogenesis - physiology
White matter
Title Phase-amplitude coupling of delta brush unveiling neuronal modulation development in the neonatal brain
URI https://dx.doi.org/10.1016/j.neulet.2020.135211
https://www.ncbi.nlm.nih.gov/pubmed/32593774
https://www.proquest.com/docview/2418729641
Volume 735
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS8NAEF5EQbyItr4frCDeYrvJ5nUsRalKRVChtyX70kpNS9sIXvztzmySqgcRvOUxS5aZzTx2vp0h5DQ0Ok4TBdoPoY080m0PjELkZbaN5cUi8JpxQ79_G_Ue-fUgHCyRbn0WBmGVle4vdbrT1tWTVsXN1mQ4bN1jUg_7evt4kbABnmDnMa7y849vMA8WliWkMAMA1PXxOYfxyk0B3IEo0XcNIHzGfjNPv7mfzgxdbpD1yn-knXKKm2TJ5A3S7OQQO7--0zPqEJ1uq7xBVvtV4rxJnu6ewVx5GeLHsZolVeMCz-I-0bGl2ozmGZXTYvZMi_zNDN0LV-kSv_U61lWPL6q_IEZ0mFNwHoEM99-BTGKziS3ycHnx0O15VY8FT0HgMYfIMdAmkcymJomlaQdGS4jCdMRVynyf6UAFbW1BI6ZWmtiCvxVnEfI8BPtng22ynI9zs0uodB3LUq4iZrjmoQxVkphY2TC02vp8jwQ1Z4Wq6o9jG4yRqIFmL6KUh0B5iFIee8RbjJqU9Tf-oI9roYkf60iAifhj5EktYwG_GOZNMmBhMRPg5CQxpqeBZqcU_mIuAYSPAbjQ-__-7gFZwzvEoDB-SJbn08IcgaMzl8duJR-Tlc7VTe_2E_rQ_F4
linkProvider Elsevier
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV1LS-RAEC58gHpZfOvuqi2ItzjTSed1FFFm1RHBEebWpF86ohnRieBlf_tWdRIfBxH2FtLVdFOV1KPr6yqAvdiaNM80aj-CNorEdAM0CklQuC6VF0vQa6YD_f5F0rsWp8N4OAVH7V0YglU2ur_W6V5bN286DTc7j6NR54qSetTXO6SHjA-nYVbg70ttDA7-fsB58LiuIUUpACRv7895kFdpK2QPhomh7wARcv6VffrK__R26GQRfjQOJDus97gEU7ZchpXDEoPnh1e2zzyk05-VL8Ncv8mcr8DN5S3aq6AgADmVs2R6XNFl3Bs2dszY-0nB1FP1fMuq8sWO_IAvdUlrPYxN0-SLmXeMERuVDL1HJKMDeCRT1G1iFQYnx4OjXtA0WQg0Rh4TDB0jYzPFXW6zVNluZI3CMMwkQuc8DLmJdNQ1DlVi7pRNHTpcaZEQ02M0gC5ag5lyXNoNYMq3LMuFTrgVRsQq1llmU-3i2BkXik2IWs5K3RQgpz4Y97JFmt3JWh6S5CFreWxC8DbrsS7A8Q192gpNfvqQJNqIb2butjKW-I9R4qRAFlbPEr2cLKX8NNKs18J_20uE8WOEPvTP_153B-Z7g_65PP9zcfYLFmiEAClc_IaZyVNlt9Drmaht_1X_A7Qd_ew
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Phase-amplitude+coupling+of+delta+brush+unveiling+neuronal+modulation+development+in+the+neonatal+brain&rft.jtitle=Neuroscience+letters&rft.au=Shibata%2C+Takashi&rft.au=Otsubo%2C+Hiroshi&rft.date=2020-09-14&rft.pub=Elsevier+B.V&rft.issn=0304-3940&rft.eissn=1872-7972&rft.volume=735&rft_id=info:doi/10.1016%2Fj.neulet.2020.135211&rft.externalDocID=S030439402030481X
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0304-3940&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0304-3940&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0304-3940&client=summon