A trichromatic MOF composite for multidimensional ratiometric luminescent sensing
Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easil...
Saved in:
Published in | Chemical science (Cambridge) Vol. 9; no. 11; pp. 2918 - 2926 |
---|---|
Main Authors | , , , , , , , |
Format | Journal Article |
Language | English |
Published |
England
Royal Society of Chemistry
21.03.2018
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite (
W2
) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF
via
ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in
W2
, while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes.
A trichromatic MOF composite utilizes its MOF matrix and two encapsulated cations collectively to achieve unprecedented multi-dimensional ratiometric luminescent sensing with high selectivity and sensitivity. |
---|---|
AbstractList | Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite (W2) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF via ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in W2, while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes.Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite (W2) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF via ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in W2, while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes. Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite ( W2 ) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF via ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in W2 , while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes. Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite ( ) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in , while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes. Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite ( W2 ) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF via ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in W2 , while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes. A trichromatic MOF composite utilizes its MOF matrix and two encapsulated cations collectively to achieve unprecedented multi-dimensional ratiometric luminescent sensing with high selectivity and sensitivity. Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite (W2) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF via ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in W2, while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes. A trichromatic MOF composite utilizes its MOF matrix and two encapsulated cations collectively to achieve unprecedented multi-dimensional ratiometric luminescent sensing with high selectivity and sensitivity. Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite ( W2 ) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF via ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in W2 , while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes. |
Author | Duan, Chun-Ying Zhao, He Zhou, Huajun Sun, Ying-Ji Ni, Jun Zhang, Jian-Jun Liu, Shu-Qin Li, Yan-Qin |
AuthorAffiliation | State Key Laboratory of Structural Chemistry Chinese Academy of Sciences University of Arkansas High Density Electronics Center Dalian University of Technology State Key Laboratory of Fine Chemicals Fujian Institute of Research on the Structure of Matter Chemistry College |
AuthorAffiliation_xml | – sequence: 0 name: State Key Laboratory of Structural Chemistry – sequence: 0 name: State Key Laboratory of Fine Chemicals – sequence: 0 name: Chinese Academy of Sciences – sequence: 0 name: University of Arkansas – sequence: 0 name: Chemistry College – sequence: 0 name: High Density Electronics Center – sequence: 0 name: Fujian Institute of Research on the Structure of Matter – sequence: 0 name: Dalian University of Technology – name: d State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , 350002 , China – name: c State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian , 116024 , China . Email: cyduan@dlut.edu.cn – name: a Chemistry College , Dalian University of Technology , Dalian 116024 , China . Email: zhangjj@dlut.edu.cn – name: b High Density Electronics Center , University of Arkansas , Fayetteville , Arkansas 72701 , USA . Email: hxz001@uark.edu |
Author_xml | – sequence: 1 givenname: He surname: Zhao fullname: Zhao, He – sequence: 2 givenname: Jun surname: Ni fullname: Ni, Jun – sequence: 3 givenname: Jian-Jun surname: Zhang fullname: Zhang, Jian-Jun – sequence: 4 givenname: Shu-Qin surname: Liu fullname: Liu, Shu-Qin – sequence: 5 givenname: Ying-Ji surname: Sun fullname: Sun, Ying-Ji – sequence: 6 givenname: Huajun surname: Zhou fullname: Zhou, Huajun – sequence: 7 givenname: Yan-Qin surname: Li fullname: Li, Yan-Qin – sequence: 8 givenname: Chun-Ying surname: Duan fullname: Duan, Chun-Ying |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/29732075$$D View this record in MEDLINE/PubMed |
BookMark | eNptksFLHDEYxYMoVbdevCsDXqSw9UsymUkugi61FRQpbc8hk8loZJKsyYzgf2-m625b6SmB_N7jfe_LPtr2wRuEDjF8xkDFmeZJAwDBzRbaI1DiecWo2N7cCeyig5QeMwOUYkbqD2iXiJoSqNke-n5RDNHqhxicGqwubu-uCh3cMiQ7mKILsXBjP9jWOuOTDV71RcxgcGaSFf3orDdJGz8UaSL8_Ue006k-mYO3c4Z-XX35ufg2v7n7er24uJnrkvBhzqrWYMq5VgIzLhpilM75SkIZCFGRuuVYUKhAEVqppusAGlNWtal5K7DQdIbOV77LsXGmnSJE1ctltE7FFxmUlf--ePsg78OzZAKXjPJscPpmEMPTaNIgnc2T9L3yJoxJEqCshpqwKqMn79DHMMZcxkThEkhVCsjU8d-JNlHWbWcAVoCOIaVoOqntMLU5BbS9xCCnncoF_7H4vdPLLPn0TrJ2_S98tIJj0hvuzwehrwYhqq8 |
CitedBy_id | crossref_primary_10_1039_C9CS00778D crossref_primary_10_1039_C9TC05180E crossref_primary_10_1039_D0NJ02145H crossref_primary_10_1039_C9DT04305E crossref_primary_10_1002_adma_201805871 crossref_primary_10_1016_j_jlumin_2021_118480 crossref_primary_10_1039_C8CS00061A crossref_primary_10_1002_chem_201901924 crossref_primary_10_1021_acsami_4c07732 crossref_primary_10_1016_j_isci_2021_103035 crossref_primary_10_1016_j_isci_2021_103398 crossref_primary_10_1007_s40843_019_1169_9 crossref_primary_10_3390_molecules28176337 crossref_primary_10_1016_j_snb_2022_132041 crossref_primary_10_1080_02603594_2023_2261103 crossref_primary_10_1039_D2DT01032A crossref_primary_10_1016_j_microc_2023_109660 crossref_primary_10_1039_D2TC01550A crossref_primary_10_1021_acs_inorgchem_0c02853 crossref_primary_10_3390_s23249719 crossref_primary_10_1039_D2CE01327D crossref_primary_10_1016_j_jssc_2024_124990 crossref_primary_10_1039_C9TB01931F crossref_primary_10_1016_j_jlumin_2021_117958 crossref_primary_10_1016_j_jssc_2022_123231 crossref_primary_10_1016_j_dyepig_2019_107993 crossref_primary_10_1021_acs_cgd_0c01026 crossref_primary_10_1016_j_cej_2019_06_026 crossref_primary_10_1039_C8DT04692A crossref_primary_10_3390_membranes12030277 crossref_primary_10_1002_adom_201901659 crossref_primary_10_1016_j_microc_2023_108925 crossref_primary_10_1002_adom_202002180 crossref_primary_10_1002_slct_202102575 crossref_primary_10_1016_j_colsurfa_2021_127665 crossref_primary_10_1080_00958972_2021_1907843 crossref_primary_10_1071_CH21156 crossref_primary_10_1002_smll_202005327 crossref_primary_10_1039_D0TC02200D crossref_primary_10_1002_chem_202103297 crossref_primary_10_1039_D2CE01159J crossref_primary_10_1021_acs_jced_1c00787 crossref_primary_10_1039_D0NA00396D crossref_primary_10_1002_adom_202100733 crossref_primary_10_1002_aoc_5774 crossref_primary_10_3390_bios13040435 crossref_primary_10_1038_s42004_022_00690_8 crossref_primary_10_1002_chem_201801686 crossref_primary_10_2139_ssrn_4068410 crossref_primary_10_1016_j_bios_2024_116606 crossref_primary_10_1016_j_micromeso_2019_03_034 crossref_primary_10_1021_acssuschemeng_3c00022 crossref_primary_10_1021_acs_inorgchem_8b03001 crossref_primary_10_1021_acs_macromol_8b01632 crossref_primary_10_1021_acs_cgd_1c01268 crossref_primary_10_1016_j_ica_2020_119843 crossref_primary_10_1002_anie_202410453 crossref_primary_10_1016_j_talanta_2022_123663 crossref_primary_10_1039_D2CE01417C crossref_primary_10_1039_D1TA00062D crossref_primary_10_1021_acssensors_0c02562 crossref_primary_10_1016_j_ica_2024_122520 crossref_primary_10_1016_j_saa_2022_120896 crossref_primary_10_1039_D0CC04733C crossref_primary_10_1021_acsami_9b22130 crossref_primary_10_1039_D3AN01711G crossref_primary_10_1039_D0MH00249F crossref_primary_10_1021_acsmaterialslett_2c00558 crossref_primary_10_1039_D0DT04276E crossref_primary_10_1039_D1TC02841C crossref_primary_10_3390_inorganics12090239 crossref_primary_10_1039_C9TA00384C crossref_primary_10_3389_fchem_2021_651866 crossref_primary_10_1021_acs_inorgchem_9b00084 crossref_primary_10_1039_D0QI00780C crossref_primary_10_1021_acs_inorgchem_0c02044 crossref_primary_10_1021_acs_cgd_3c00685 crossref_primary_10_3390_nano8100796 crossref_primary_10_1002_adom_202100283 crossref_primary_10_1002_ange_202501151 crossref_primary_10_1039_C9CC05533A crossref_primary_10_1016_j_trac_2020_115939 crossref_primary_10_1039_D0CC01006E crossref_primary_10_1021_acs_inorgchem_9b03635 crossref_primary_10_1021_acs_jpca_0c08649 crossref_primary_10_1039_C8TC04626C crossref_primary_10_1021_acs_analchem_9b00848 crossref_primary_10_1016_j_snb_2020_129025 crossref_primary_10_1021_jacs_9b07236 crossref_primary_10_1016_j_poly_2018_07_024 crossref_primary_10_1021_acs_inorgchem_9b03368 crossref_primary_10_1039_D2CE01466A crossref_primary_10_1016_j_ccr_2022_214859 crossref_primary_10_1016_j_cej_2022_139931 crossref_primary_10_1002_ange_202410453 crossref_primary_10_1002_anie_202501151 crossref_primary_10_1002_smll_202100607 crossref_primary_10_1039_D0CS00955E crossref_primary_10_1016_j_jlumin_2019_116908 crossref_primary_10_1039_D0NR02149K crossref_primary_10_1021_acs_cgd_9b01736 |
Cites_doi | 10.1039/C5CS00837A 10.1021/jacs.5b06929 10.1016/j.ccr.2014.10.006 10.1021/acs.accounts.6b00416 10.1039/C6SC03401B 10.1002/anie.201405619 10.1039/C4EE02853H 10.1002/adma.201700778 10.1021/ja106851d 10.1021/cr200101d 10.1039/C7CE00236J 10.1021/ac5032308 10.1039/b802352m 10.1021/acs.cgd.6b00656 10.1021/acsami.7b07901 10.1021/acsami.7b04172 10.1002/adfm.201100115 10.1021/ja906911q 10.1002/advs.201600481 10.1021/acs.cgd.5b01448 10.1002/adma.201601861 10.1038/ncomms3717 10.1021/acs.accounts.7b00387 10.1039/C5CC06453H 10.1002/adfm.201102157 10.1021/acs.inorgchem.7b00457 10.1002/anie.200604268 10.1002/anie.201602116 10.1039/C2CS35224A 10.1039/C5CC07004J 10.1002/adma.201404700 10.1021/acs.accounts.7b00151 10.1021/jacs.7b08574 10.1039/C7CC05345B 10.1021/acs.chemrev.6b00346 10.1039/c1jm10332f 10.1002/chem.201500562 10.1002/adfm.201501756 10.1039/C6CS00930A 10.1039/b807086p 10.1039/C5CC09029F 10.1021/cr2004103 10.1021/acs.inorgchem.7b00252 10.1039/C5CC08703A 10.1039/C4CS00010B 10.1039/C3CS60472A 10.1039/C7TC00936D 10.1021/acsami.6b12118 10.1039/C4CS00222A 10.1002/anie.201307331 10.1021/ja903947b |
ContentType | Journal Article |
Copyright | Copyright Royal Society of Chemistry 2018 This journal is © The Royal Society of Chemistry 2018 2018 |
Copyright_xml | – notice: Copyright Royal Society of Chemistry 2018 – notice: This journal is © The Royal Society of Chemistry 2018 2018 |
DBID | AAYXX CITATION NPM 7SR 8BQ 8FD JG9 7X8 5PM |
DOI | 10.1039/c8sc00021b |
DatabaseName | CrossRef PubMed Engineered Materials Abstracts METADEX Technology Research Database Materials Research Database MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Materials Research Database Engineered Materials Abstracts Technology Research Database METADEX MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic CrossRef PubMed Materials Research Database |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Chemistry |
EISSN | 2041-6539 |
EndPage | 2926 |
ExternalDocumentID | PMC5914538 29732075 10_1039_C8SC00021B c8sc00021b |
Genre | Journal Article |
GroupedDBID | -JG 0-7 0R~ 53G 705 7~J AAEMU AAFWJ AAIWI AAJAE AARTK AAXHV ABEMK ABPDG ABXOH ACGFS ACIWK ADBBV ADMRA AEFDR AENEX AESAV AFLYV AGEGJ AGRSR AGSTE AHGCF AKBGW ALMA_UNASSIGNED_HOLDINGS ANUXI AOIJS APEMP AUDPV AZFZN BCNDV BLAPV BSQNT C6K D0L EE0 EF- F5P GROUPED_DOAJ H13 HYE HZ~ H~N O-G O9- OK1 PGMZT R7C R7D RAOCF RCNCU RNS RPM RRC RSCEA RVUXY SKA SKF SKH SKJ SKM SKR SKZ SLC SLF SLH SMJ AAWGC AAYXX ABASK ABIQK ACRPL ADNMO AETIL AFPKN AFRZK AFVBQ AGQPQ AHGXI AKMSF ALSGL ANBJS ANLMG ASPBG AVWKF CAG CITATION COF ECGLT FEDTE HVGLF J3G J3H J3I L-8 ROL RPMJG NPM 7SR 8BQ 8FD JG9 7X8 5PM |
ID | FETCH-LOGICAL-c428t-56de1388ca91589b2eac3314235099627d8193060a236abff00be467e78d919c3 |
ISSN | 2041-6520 |
IngestDate | Thu Aug 21 14:06:33 EDT 2025 Fri Jul 11 09:06:13 EDT 2025 Fri Jul 25 09:32:08 EDT 2025 Mon Jul 21 06:04:57 EDT 2025 Tue Jul 01 03:46:18 EDT 2025 Thu Apr 24 23:04:06 EDT 2025 Tue Dec 17 20:58:59 EST 2024 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 11 |
Language | English |
License | This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0) |
LinkModel | OpenURL |
MergedId | FETCHMERGED-LOGICAL-c428t-56de1388ca91589b2eac3314235099627d8193060a236abff00be467e78d919c3 |
Notes | 1565928 For ESI and crystallographic data in CIF or other electronic format see DOI 10.1039/c8sc00021b Electronic supplementary information (ESI) available: Detailed synthesis, encapsulating and sensing procedures. Additional figures (Fig. S1-S32) and tables (Tables S1 and S2). CCDC ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0001-5107-1296 0000-0001-9434-2498 0000-0001-7250-5102 0000-0001-8490-6587 0000-0001-6238-1871 0000-0002-1679-7005 0000-0002-5036-2320 0000-0003-1638-6633 |
OpenAccessLink | http://dx.doi.org/10.1039/c8sc00021b |
PMID | 29732075 |
PQID | 2014026490 |
PQPubID | 2047492 |
PageCount | 9 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_5914538 proquest_miscellaneous_2035707256 pubmed_primary_29732075 rsc_primary_c8sc00021b crossref_citationtrail_10_1039_C8SC00021B proquest_journals_2014026490 crossref_primary_10_1039_C8SC00021B |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2018-03-21 |
PublicationDateYYYYMMDD | 2018-03-21 |
PublicationDate_xml | – month: 03 year: 2018 text: 2018-03-21 day: 21 |
PublicationDecade | 2010 |
PublicationPlace | England |
PublicationPlace_xml | – name: England – name: Cambridge |
PublicationTitle | Chemical science (Cambridge) |
PublicationTitleAlternate | Chem Sci |
PublicationYear | 2018 |
Publisher | Royal Society of Chemistry |
Publisher_xml | – name: Royal Society of Chemistry |
References | Huang (C8SC00021B-(cit15)/*[position()=1]) 2017; 56 Qi (C8SC00021B-(cit23)/*[position()=2]) 2017; 53 Perry (C8SC00021B-(cit6)/*[position()=3]) 2009; 38 Pramanik (C8SC00021B-(cit22)/*[position()=1]) 2011; 133 Dong (C8SC00021B-(cit13)/*[position()=1]) 2014; 53 Wen (C8SC00021B-(cit18)/*[position()=3]) 2017; 29 Hu (C8SC00021B-(cit5)/*[position()=2]) 2014; 43 Fleetham (C8SC00021B-(cit19)/*[position()=1]) 2017; 29 (C8SC00021B-(cit1)/*[position()=1]) 2001 Hu (C8SC00021B-(cit14)/*[position()=2]) 2015; 51 Cui (C8SC00021B-(cit5)/*[position()=3]) 2012; 112 Ahmad (C8SC00021B-(cit3)/*[position()=2]) 2015; 44 Cui (C8SC00021B-(cit18)/*[position()=2]) 2015; 25 Wang (C8SC00021B-(cit23)/*[position()=3]) 2017; 9 Lin (C8SC00021B-(cit8)/*[position()=1]) 2015; 51 Dai (C8SC00021B-(cit22)/*[position()=3]) 2017; 19 Sun (C8SC00021B-(cit18)/*[position()=1]) 2013; 4 Lu (C8SC00021B-(cit7)/*[position()=3]) 2016; 55 Zhang (C8SC00021B-(cit15)/*[position()=2]) 2016; 8 Haldar (C8SC00021B-(cit12)/*[position()=2]) 2016; 16 Wang (C8SC00021B-(cit10)/*[position()=1]) 2009; 131 Yang (C8SC00021B-(cit3)/*[position()=1]) 2013; 113 Nasalevich (C8SC00021B-(cit7)/*[position()=4]) 2015; 8 Cui (C8SC00021B-(cit13)/*[position()=3]) 2015; 27 Lustig (C8SC00021B-(cit4)/*[position()=2]) 2017; 46 Bai (C8SC00021B-(cit6)/*[position()=2]) 2016; 45 Zhang (C8SC00021B-(cit9)/*[position()=1]) 2015; 137 Xie (C8SC00021B-(cit18)/*[position()=4]) 2016; 52 Hancock (C8SC00021B-(cit19)/*[position()=2]) 2013; 42 Allendorf (C8SC00021B-(cit10)/*[position()=2]) 2009; 38 Lyu (C8SC00021B-(cit2)/*[position()=1]) 2017; 4 Zhao (C8SC00021B-(cit13)/*[position()=2]) 2015; 21 Zhou (C8SC00021B-(cit20)/*[position()=1]) 2016; 52 Thorarinsdottir (C8SC00021B-(cit21)/*[position()=2]) 2017; 139 Zhang (C8SC00021B-(cit5)/*[position()=1]) 2015; 284 Hu (C8SC00021B-(cit21)/*[position()=3]) 2017; 8 Karmakar (C8SC00021B-(cit4)/*[position()=1]) 2017; 50 Hu (C8SC00021B-(cit21)/*[position()=4]) 2014; 86 Zhu (C8SC00021B-(cit6)/*[position()=4]) 2014; 43 Wan (C8SC00021B-(cit21)/*[position()=1]) 2011; 21 Haldar (C8SC00021B-(cit12)/*[position()=1]) 2014; 53 Zhang (C8SC00021B-(cit7)/*[position()=2]) 2009; 131 Chen (C8SC00021B-(cit14)/*[position()=1]) 2017; 9 Zhang (C8SC00021B-(cit23)/*[position()=1]) 2017; 5 C8SC00021B-(cit16)/*[position()=1] Zhang (C8SC00021B-(cit7)/*[position()=1]) 2007; 46 Wu (C8SC00021B-(cit9)/*[position()=3]) 2011; 21 Ye (C8SC00021B-(cit11)/*[position()=1]) 2017; 56 Wu (C8SC00021B-(cit9)/*[position()=2]) 2012; 22 Schoedel (C8SC00021B-(cit6)/*[position()=1]) 2016; 116 Saha (C8SC00021B-(cit19)/*[position()=3]) 2016; 49 Di (C8SC00021B-(cit22)/*[position()=2]) 2016; 16 Yan (C8SC00021B-(cit4)/*[position()=3]) 2017; 50 |
References_xml | – issn: 2001 publication-title: Chemiluminescence in Analytical Chemistry – issn: 2008 publication-title: PLATON, Multipurpose Crystallographic Tool doi: Spek – volume: 45 start-page: 2327 year: 2016 ident: C8SC00021B-(cit6)/*[position()=2] publication-title: Chem. Soc. Rev. doi: 10.1039/C5CS00837A – volume: 137 start-page: 12203 year: 2015 ident: C8SC00021B-(cit9)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b06929 – volume: 284 start-page: 206 year: 2015 ident: C8SC00021B-(cit5)/*[position()=1] publication-title: Coord. Chem. Rev. doi: 10.1016/j.ccr.2014.10.006 – volume: 49 start-page: 2527 year: 2016 ident: C8SC00021B-(cit19)/*[position()=3] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.6b00416 – volume: 8 start-page: 466 year: 2017 ident: C8SC00021B-(cit21)/*[position()=3] publication-title: Chem. Sci. doi: 10.1039/C6SC03401B – volume: 53 start-page: 11772 year: 2014 ident: C8SC00021B-(cit12)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201405619 – volume: 8 start-page: 364 year: 2015 ident: C8SC00021B-(cit7)/*[position()=4] publication-title: Energy Environ. Sci. doi: 10.1039/C4EE02853H – volume: 29 start-page: 1700778 year: 2017 ident: C8SC00021B-(cit18)/*[position()=3] publication-title: Adv. Mater. doi: 10.1002/adma.201700778 – volume: 133 start-page: 4153 year: 2011 ident: C8SC00021B-(cit22)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja106851d – volume: 112 start-page: 1126 year: 2012 ident: C8SC00021B-(cit5)/*[position()=3] publication-title: Chem. Rev. doi: 10.1021/cr200101d – volume: 19 start-page: 2786 year: 2017 ident: C8SC00021B-(cit22)/*[position()=3] publication-title: CrystEngComm doi: 10.1039/C7CE00236J – volume: 86 start-page: 10484 year: 2014 ident: C8SC00021B-(cit21)/*[position()=4] publication-title: Anal. Chem. doi: 10.1021/ac5032308 – volume: 38 start-page: 1330 year: 2009 ident: C8SC00021B-(cit10)/*[position()=2] publication-title: Chem. Soc. Rev. doi: 10.1039/b802352m – volume: 16 start-page: 4539 year: 2016 ident: C8SC00021B-(cit22)/*[position()=2] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.6b00656 – volume: 9 start-page: 24671 year: 2017 ident: C8SC00021B-(cit14)/*[position()=1] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b07901 – volume: 9 start-page: 20076 year: 2017 ident: C8SC00021B-(cit23)/*[position()=3] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.7b04172 – volume: 21 start-page: 2788 year: 2011 ident: C8SC00021B-(cit9)/*[position()=3] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201100115 – volume: 131 start-page: 17040 year: 2009 ident: C8SC00021B-(cit7)/*[position()=2] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja906911q – volume: 4 start-page: 1600481 year: 2017 ident: C8SC00021B-(cit2)/*[position()=1] publication-title: Adv. Sci. doi: 10.1002/advs.201600481 – volume: 16 start-page: 82 year: 2016 ident: C8SC00021B-(cit12)/*[position()=2] publication-title: Cryst. Growth Des. doi: 10.1021/acs.cgd.5b01448 – volume: 29 start-page: 1601861 year: 2017 ident: C8SC00021B-(cit19)/*[position()=1] publication-title: Adv. Mater. doi: 10.1002/adma.201601861 – volume: 4 start-page: 2717 year: 2013 ident: C8SC00021B-(cit18)/*[position()=1] publication-title: Nat. Commun. doi: 10.1038/ncomms3717 – volume: 50 start-page: 2789 year: 2017 ident: C8SC00021B-(cit4)/*[position()=3] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00387 – volume: 51 start-page: 16996 year: 2015 ident: C8SC00021B-(cit8)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC06453H – volume: 22 start-page: 1698 year: 2012 ident: C8SC00021B-(cit9)/*[position()=2] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201102157 – volume: 56 start-page: 6362 year: 2017 ident: C8SC00021B-(cit15)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00457 – volume: 46 start-page: 4995 year: 2007 ident: C8SC00021B-(cit7)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.200604268 – volume: 55 start-page: 9474 year: 2016 ident: C8SC00021B-(cit7)/*[position()=3] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201602116 – volume: 42 start-page: 1500 year: 2013 ident: C8SC00021B-(cit19)/*[position()=2] publication-title: Chem. Soc. Rev. doi: 10.1039/C2CS35224A – volume: 51 start-page: 17521 year: 2015 ident: C8SC00021B-(cit14)/*[position()=2] publication-title: Chem. Commun. doi: 10.1039/C5CC07004J – volume: 27 start-page: 1420 year: 2015 ident: C8SC00021B-(cit13)/*[position()=3] publication-title: Adv. Mater. doi: 10.1002/adma.201404700 – ident: C8SC00021B-(cit16)/*[position()=1] – volume: 50 start-page: 2457 year: 2017 ident: C8SC00021B-(cit4)/*[position()=1] publication-title: Acc. Chem. Res. doi: 10.1021/acs.accounts.7b00151 – volume: 139 start-page: 15836 year: 2017 ident: C8SC00021B-(cit21)/*[position()=2] publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b08574 – volume: 53 start-page: 10318 year: 2017 ident: C8SC00021B-(cit23)/*[position()=2] publication-title: Chem. Commun. doi: 10.1039/C7CC05345B – volume: 116 start-page: 12466 year: 2016 ident: C8SC00021B-(cit6)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00346 – volume: 21 start-page: 10321 year: 2011 ident: C8SC00021B-(cit21)/*[position()=1] publication-title: J. Mater. Chem. doi: 10.1039/c1jm10332f – volume: 21 start-page: 9748 year: 2015 ident: C8SC00021B-(cit13)/*[position()=2] publication-title: Chem.–Eur. J. doi: 10.1002/chem.201500562 – volume: 25 start-page: 4796 year: 2015 ident: C8SC00021B-(cit18)/*[position()=2] publication-title: Adv. Funct. Mater. doi: 10.1002/adfm.201501756 – volume-title: Chemiluminescence in Analytical Chemistry year: 2001 ident: C8SC00021B-(cit1)/*[position()=1] – volume: 46 start-page: 3243 year: 2017 ident: C8SC00021B-(cit4)/*[position()=2] publication-title: Chem. Soc. Rev. doi: 10.1039/C6CS00930A – volume: 38 start-page: 1400 year: 2009 ident: C8SC00021B-(cit6)/*[position()=3] publication-title: Chem. Soc. Rev. doi: 10.1039/b807086p – volume: 52 start-page: 2265 year: 2016 ident: C8SC00021B-(cit20)/*[position()=1] publication-title: Chem. Commun. doi: 10.1039/C5CC09029F – volume: 113 start-page: 192 year: 2013 ident: C8SC00021B-(cit3)/*[position()=1] publication-title: Chem. Rev. doi: 10.1021/cr2004103 – volume: 56 start-page: 4238 year: 2017 ident: C8SC00021B-(cit11)/*[position()=1] publication-title: Inorg. Chem. doi: 10.1021/acs.inorgchem.7b00252 – volume: 52 start-page: 3288 year: 2016 ident: C8SC00021B-(cit18)/*[position()=4] publication-title: Chem. Commun. doi: 10.1039/C5CC08703A – volume: 43 start-page: 5815 year: 2014 ident: C8SC00021B-(cit5)/*[position()=2] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00010B – volume: 43 start-page: 5468 year: 2014 ident: C8SC00021B-(cit6)/*[position()=4] publication-title: Chem. Soc. Rev. doi: 10.1039/C3CS60472A – volume: 5 start-page: 4661 year: 2017 ident: C8SC00021B-(cit23)/*[position()=1] publication-title: J. Mater. Chem. C doi: 10.1039/C7TC00936D – volume: 8 start-page: 32259 year: 2016 ident: C8SC00021B-(cit15)/*[position()=2] publication-title: ACS Appl. Mater. Interfaces doi: 10.1021/acsami.6b12118 – volume: 44 start-page: 9 year: 2015 ident: C8SC00021B-(cit3)/*[position()=2] publication-title: Chem. Soc. Rev. doi: 10.1039/C4CS00222A – volume: 53 start-page: 1575 year: 2014 ident: C8SC00021B-(cit13)/*[position()=1] publication-title: Angew. Chem., Int. Ed. doi: 10.1002/anie.201307331 – volume: 131 start-page: 13572 year: 2009 ident: C8SC00021B-(cit10)/*[position()=1] publication-title: J. Am. Chem. Soc. doi: 10.1021/ja903947b |
SSID | ssj0000331527 |
Score | 2.5302656 |
Snippet | Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single... A trichromatic MOF composite utilizes its MOF matrix and two encapsulated cations collectively to achieve unprecedented multi-dimensional ratiometric... |
SourceID | pubmedcentral proquest pubmed crossref rsc |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
StartPage | 2918 |
SubjectTerms | Chemistry Detection Iridium Light emission Low cost Metal-organic frameworks Recognition Ruthenium Sensitivity analysis White light |
Title | A trichromatic MOF composite for multidimensional ratiometric luminescent sensing |
URI | https://www.ncbi.nlm.nih.gov/pubmed/29732075 https://www.proquest.com/docview/2014026490 https://www.proquest.com/docview/2035707256 https://pubmed.ncbi.nlm.nih.gov/PMC5914538 |
Volume | 9 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gFeEF-DwJiC4AVVASeOE_uxVEwT2kCDFRVeqny46iSWTm3zwl_PnT9Sdx0S8BJV8TWO_Lucz_bd7wh5LepaCsVFVJasjtKUskhiMFWssgJmnDKTM8wdPvuUnYzTjxM-6fVOvaildl2-rX7dmlfyP6jCPcAVs2T_AdnuoXADfgO-cAWE4fpXGA8HyK8_Xy4M7-rZ52MdIo5xWIbLW4cL1kjgb8g3BhrvK6yiVQ3ALGHMO4ZnDlYoYScxx1vgqARc5g-e97oML28D4ce8WJgJbHPGYfI9Gk_EBv6CMkZew-llq7df5210binA7Q5ErFPyTFqzMVQJTeMo4wn1rar0lSf2TaQ0BnfHdlOG1KeVWFVopuMtAw_jfn2lUcRaWwk11VZuMGW7pj2yn8CiIemT_S_fxpPv3Z4bZcxW8e1e2THWMvlu0zMyRNtnbbsrO2uQ3VDavaWrHKM9lIv75J5dWoRDoycPSE81D8mdkavo94icD0NfX0LQl7DTlxD0JbypL6GnL6GnL6HVl8dkfPzhYnQS2ZIaUQXrzHXEs1rFTIiqkDEXskxg3oVBAZ8aHEesw1SDhwirSFokLCvK2YzSUsFcqnJRy1hW7ID0m0WjnpIQltqFmKk651KkXPGCwf8xDxrulLTiAXnjRm5aWb55LHvyc6rjHpicjsTXkR7w9wF51cleG5aVW6UOHQBT-xWupgluEYBXL2lAXnbNMLB48FU0atGiDOM5zcG7D8gTg1fXjQM6IPkWkp0A8q9vtzSXc83DzmWcgr8QkAPAvJPfqNGzP3b2nNzdfEiHpL9etuoFOLfr8khvCh1Zzf0NFOOjjw |
linkProvider | Royal Society of Chemistry |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+trichromatic+MOF+composite+for+multidimensional+ratiometric+luminescent+sensing&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Zhao%2C+He&rft.au=Ni%2C+Jun&rft.au=Zhang%2C+Jian-Jun&rft.au=Liu%2C+Shu-Qin&rft.date=2018-03-21&rft.issn=2041-6520&rft.volume=9&rft.issue=11&rft.spage=2918&rft_id=info:doi/10.1039%2Fc8sc00021b&rft_id=info%3Apmid%2F29732075&rft.externalDocID=29732075 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon |