A trichromatic MOF composite for multidimensional ratiometric luminescent sensing

Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easil...

Full description

Saved in:
Bibliographic Details
Published inChemical science (Cambridge) Vol. 9; no. 11; pp. 2918 - 2926
Main Authors Zhao, He, Ni, Jun, Zhang, Jian-Jun, Liu, Shu-Qin, Sun, Ying-Ji, Zhou, Huajun, Li, Yan-Qin, Duan, Chun-Ying
Format Journal Article
LanguageEnglish
Published England Royal Society of Chemistry 21.03.2018
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite ( W2 ) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF via ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in W2 , while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes. A trichromatic MOF composite utilizes its MOF matrix and two encapsulated cations collectively to achieve unprecedented multi-dimensional ratiometric luminescent sensing with high selectivity and sensitivity.
AbstractList Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite (W2) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF via ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in W2, while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes.Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite (W2) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF via ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in W2, while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes.
Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite ( W2 ) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF via ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in W2 , while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes.
Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite ( ) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in , while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes.
Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite ( W2 ) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF via ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in W2 , while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes. A trichromatic MOF composite utilizes its MOF matrix and two encapsulated cations collectively to achieve unprecedented multi-dimensional ratiometric luminescent sensing with high selectivity and sensitivity.
Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite (W2) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF via ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in W2, while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes.
A trichromatic MOF composite utilizes its MOF matrix and two encapsulated cations collectively to achieve unprecedented multi-dimensional ratiometric luminescent sensing with high selectivity and sensitivity. Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single or dual emissions responsive to analyte molecules, demonstrate limited sensitivity and selectivity because the single emissions can be easily affected by many non-analyte factors, while the dual emissions can only offer single-ratiometric luminescent sensing. Here we report a white-light-emitting trichromatic MOF composite ( W2 ) as the first multidimensional ratiometric luminescent probe. It is facilely synthesized by simultaneously incorporating red- and green-emitting iridium and ruthenium complex cations as encapsulated luminescent modules (ELMs) into a porous blue-emitting MOF via ion exchange. Specific volatile organic solvents (VOSs) can cause VOS-dependent changes to the MOF-to-ELM energy transfer efficiencies in W2 , while nitroaromatic (NAC) vapors intriguingly and unprecedentedly quench the three emissions at different rates, both of which enable visible luminescent sensing. Each VOS can be correlated to a unique combination of the two MOF-to-ELM ratios of emission-peak heights, enabling a two-dimensional (2D) code recognition. Furthermore, the time-dependent evolution of the two ratios upon exposure to selective NAC vapors can be mapped out, achieving the first 3D code recognition. Both the synthetic and sensing strategies can be further implemented to develop low-cost and effective luminescent probes.
Author Duan, Chun-Ying
Zhao, He
Zhou, Huajun
Sun, Ying-Ji
Ni, Jun
Zhang, Jian-Jun
Liu, Shu-Qin
Li, Yan-Qin
AuthorAffiliation State Key Laboratory of Structural Chemistry
Chinese Academy of Sciences
University of Arkansas
High Density Electronics Center
Dalian University of Technology
State Key Laboratory of Fine Chemicals
Fujian Institute of Research on the Structure of Matter
Chemistry College
AuthorAffiliation_xml – sequence: 0
  name: State Key Laboratory of Structural Chemistry
– sequence: 0
  name: State Key Laboratory of Fine Chemicals
– sequence: 0
  name: Chinese Academy of Sciences
– sequence: 0
  name: University of Arkansas
– sequence: 0
  name: Chemistry College
– sequence: 0
  name: High Density Electronics Center
– sequence: 0
  name: Fujian Institute of Research on the Structure of Matter
– sequence: 0
  name: Dalian University of Technology
– name: d State Key Laboratory of Structural Chemistry , Fujian Institute of Research on the Structure of Matter , Chinese Academy of Sciences , Fuzhou , 350002 , China
– name: c State Key Laboratory of Fine Chemicals , Dalian University of Technology , Dalian , 116024 , China . Email: cyduan@dlut.edu.cn
– name: a Chemistry College , Dalian University of Technology , Dalian 116024 , China . Email: zhangjj@dlut.edu.cn
– name: b High Density Electronics Center , University of Arkansas , Fayetteville , Arkansas 72701 , USA . Email: hxz001@uark.edu
Author_xml – sequence: 1
  givenname: He
  surname: Zhao
  fullname: Zhao, He
– sequence: 2
  givenname: Jun
  surname: Ni
  fullname: Ni, Jun
– sequence: 3
  givenname: Jian-Jun
  surname: Zhang
  fullname: Zhang, Jian-Jun
– sequence: 4
  givenname: Shu-Qin
  surname: Liu
  fullname: Liu, Shu-Qin
– sequence: 5
  givenname: Ying-Ji
  surname: Sun
  fullname: Sun, Ying-Ji
– sequence: 6
  givenname: Huajun
  surname: Zhou
  fullname: Zhou, Huajun
– sequence: 7
  givenname: Yan-Qin
  surname: Li
  fullname: Li, Yan-Qin
– sequence: 8
  givenname: Chun-Ying
  surname: Duan
  fullname: Duan, Chun-Ying
BackLink https://www.ncbi.nlm.nih.gov/pubmed/29732075$$D View this record in MEDLINE/PubMed
BookMark eNptksFLHDEYxYMoVbdevCsDXqSw9UsymUkugi61FRQpbc8hk8loZJKsyYzgf2-m625b6SmB_N7jfe_LPtr2wRuEDjF8xkDFmeZJAwDBzRbaI1DiecWo2N7cCeyig5QeMwOUYkbqD2iXiJoSqNke-n5RDNHqhxicGqwubu-uCh3cMiQ7mKILsXBjP9jWOuOTDV71RcxgcGaSFf3orDdJGz8UaSL8_Ue006k-mYO3c4Z-XX35ufg2v7n7er24uJnrkvBhzqrWYMq5VgIzLhpilM75SkIZCFGRuuVYUKhAEVqppusAGlNWtal5K7DQdIbOV77LsXGmnSJE1ctltE7FFxmUlf--ePsg78OzZAKXjPJscPpmEMPTaNIgnc2T9L3yJoxJEqCshpqwKqMn79DHMMZcxkThEkhVCsjU8d-JNlHWbWcAVoCOIaVoOqntMLU5BbS9xCCnncoF_7H4vdPLLPn0TrJ2_S98tIJj0hvuzwehrwYhqq8
CitedBy_id crossref_primary_10_1039_C9CS00778D
crossref_primary_10_1039_C9TC05180E
crossref_primary_10_1039_D0NJ02145H
crossref_primary_10_1039_C9DT04305E
crossref_primary_10_1002_adma_201805871
crossref_primary_10_1016_j_jlumin_2021_118480
crossref_primary_10_1039_C8CS00061A
crossref_primary_10_1002_chem_201901924
crossref_primary_10_1021_acsami_4c07732
crossref_primary_10_1016_j_isci_2021_103035
crossref_primary_10_1016_j_isci_2021_103398
crossref_primary_10_1007_s40843_019_1169_9
crossref_primary_10_3390_molecules28176337
crossref_primary_10_1016_j_snb_2022_132041
crossref_primary_10_1080_02603594_2023_2261103
crossref_primary_10_1039_D2DT01032A
crossref_primary_10_1016_j_microc_2023_109660
crossref_primary_10_1039_D2TC01550A
crossref_primary_10_1021_acs_inorgchem_0c02853
crossref_primary_10_3390_s23249719
crossref_primary_10_1039_D2CE01327D
crossref_primary_10_1016_j_jssc_2024_124990
crossref_primary_10_1039_C9TB01931F
crossref_primary_10_1016_j_jlumin_2021_117958
crossref_primary_10_1016_j_jssc_2022_123231
crossref_primary_10_1016_j_dyepig_2019_107993
crossref_primary_10_1021_acs_cgd_0c01026
crossref_primary_10_1016_j_cej_2019_06_026
crossref_primary_10_1039_C8DT04692A
crossref_primary_10_3390_membranes12030277
crossref_primary_10_1002_adom_201901659
crossref_primary_10_1016_j_microc_2023_108925
crossref_primary_10_1002_adom_202002180
crossref_primary_10_1002_slct_202102575
crossref_primary_10_1016_j_colsurfa_2021_127665
crossref_primary_10_1080_00958972_2021_1907843
crossref_primary_10_1071_CH21156
crossref_primary_10_1002_smll_202005327
crossref_primary_10_1039_D0TC02200D
crossref_primary_10_1002_chem_202103297
crossref_primary_10_1039_D2CE01159J
crossref_primary_10_1021_acs_jced_1c00787
crossref_primary_10_1039_D0NA00396D
crossref_primary_10_1002_adom_202100733
crossref_primary_10_1002_aoc_5774
crossref_primary_10_3390_bios13040435
crossref_primary_10_1038_s42004_022_00690_8
crossref_primary_10_1002_chem_201801686
crossref_primary_10_2139_ssrn_4068410
crossref_primary_10_1016_j_bios_2024_116606
crossref_primary_10_1016_j_micromeso_2019_03_034
crossref_primary_10_1021_acssuschemeng_3c00022
crossref_primary_10_1021_acs_inorgchem_8b03001
crossref_primary_10_1021_acs_macromol_8b01632
crossref_primary_10_1021_acs_cgd_1c01268
crossref_primary_10_1016_j_ica_2020_119843
crossref_primary_10_1002_anie_202410453
crossref_primary_10_1016_j_talanta_2022_123663
crossref_primary_10_1039_D2CE01417C
crossref_primary_10_1039_D1TA00062D
crossref_primary_10_1021_acssensors_0c02562
crossref_primary_10_1016_j_ica_2024_122520
crossref_primary_10_1016_j_saa_2022_120896
crossref_primary_10_1039_D0CC04733C
crossref_primary_10_1021_acsami_9b22130
crossref_primary_10_1039_D3AN01711G
crossref_primary_10_1039_D0MH00249F
crossref_primary_10_1021_acsmaterialslett_2c00558
crossref_primary_10_1039_D0DT04276E
crossref_primary_10_1039_D1TC02841C
crossref_primary_10_3390_inorganics12090239
crossref_primary_10_1039_C9TA00384C
crossref_primary_10_3389_fchem_2021_651866
crossref_primary_10_1021_acs_inorgchem_9b00084
crossref_primary_10_1039_D0QI00780C
crossref_primary_10_1021_acs_inorgchem_0c02044
crossref_primary_10_1021_acs_cgd_3c00685
crossref_primary_10_3390_nano8100796
crossref_primary_10_1002_adom_202100283
crossref_primary_10_1002_ange_202501151
crossref_primary_10_1039_C9CC05533A
crossref_primary_10_1016_j_trac_2020_115939
crossref_primary_10_1039_D0CC01006E
crossref_primary_10_1021_acs_inorgchem_9b03635
crossref_primary_10_1021_acs_jpca_0c08649
crossref_primary_10_1039_C8TC04626C
crossref_primary_10_1021_acs_analchem_9b00848
crossref_primary_10_1016_j_snb_2020_129025
crossref_primary_10_1021_jacs_9b07236
crossref_primary_10_1016_j_poly_2018_07_024
crossref_primary_10_1021_acs_inorgchem_9b03368
crossref_primary_10_1039_D2CE01466A
crossref_primary_10_1016_j_ccr_2022_214859
crossref_primary_10_1016_j_cej_2022_139931
crossref_primary_10_1002_ange_202410453
crossref_primary_10_1002_anie_202501151
crossref_primary_10_1002_smll_202100607
crossref_primary_10_1039_D0CS00955E
crossref_primary_10_1016_j_jlumin_2019_116908
crossref_primary_10_1039_D0NR02149K
crossref_primary_10_1021_acs_cgd_9b01736
Cites_doi 10.1039/C5CS00837A
10.1021/jacs.5b06929
10.1016/j.ccr.2014.10.006
10.1021/acs.accounts.6b00416
10.1039/C6SC03401B
10.1002/anie.201405619
10.1039/C4EE02853H
10.1002/adma.201700778
10.1021/ja106851d
10.1021/cr200101d
10.1039/C7CE00236J
10.1021/ac5032308
10.1039/b802352m
10.1021/acs.cgd.6b00656
10.1021/acsami.7b07901
10.1021/acsami.7b04172
10.1002/adfm.201100115
10.1021/ja906911q
10.1002/advs.201600481
10.1021/acs.cgd.5b01448
10.1002/adma.201601861
10.1038/ncomms3717
10.1021/acs.accounts.7b00387
10.1039/C5CC06453H
10.1002/adfm.201102157
10.1021/acs.inorgchem.7b00457
10.1002/anie.200604268
10.1002/anie.201602116
10.1039/C2CS35224A
10.1039/C5CC07004J
10.1002/adma.201404700
10.1021/acs.accounts.7b00151
10.1021/jacs.7b08574
10.1039/C7CC05345B
10.1021/acs.chemrev.6b00346
10.1039/c1jm10332f
10.1002/chem.201500562
10.1002/adfm.201501756
10.1039/C6CS00930A
10.1039/b807086p
10.1039/C5CC09029F
10.1021/cr2004103
10.1021/acs.inorgchem.7b00252
10.1039/C5CC08703A
10.1039/C4CS00010B
10.1039/C3CS60472A
10.1039/C7TC00936D
10.1021/acsami.6b12118
10.1039/C4CS00222A
10.1002/anie.201307331
10.1021/ja903947b
ContentType Journal Article
Copyright Copyright Royal Society of Chemistry 2018
This journal is © The Royal Society of Chemistry 2018 2018
Copyright_xml – notice: Copyright Royal Society of Chemistry 2018
– notice: This journal is © The Royal Society of Chemistry 2018 2018
DBID AAYXX
CITATION
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
DOI 10.1039/c8sc00021b
DatabaseName CrossRef
PubMed
Engineered Materials Abstracts
METADEX
Technology Research Database
Materials Research Database
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Materials Research Database
Engineered Materials Abstracts
Technology Research Database
METADEX
MEDLINE - Academic
DatabaseTitleList MEDLINE - Academic
CrossRef
PubMed

Materials Research Database

Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Chemistry
EISSN 2041-6539
EndPage 2926
ExternalDocumentID PMC5914538
29732075
10_1039_C8SC00021B
c8sc00021b
Genre Journal Article
GroupedDBID -JG
0-7
0R~
53G
705
7~J
AAEMU
AAFWJ
AAIWI
AAJAE
AARTK
AAXHV
ABEMK
ABPDG
ABXOH
ACGFS
ACIWK
ADBBV
ADMRA
AEFDR
AENEX
AESAV
AFLYV
AGEGJ
AGRSR
AGSTE
AHGCF
AKBGW
ALMA_UNASSIGNED_HOLDINGS
ANUXI
AOIJS
APEMP
AUDPV
AZFZN
BCNDV
BLAPV
BSQNT
C6K
D0L
EE0
EF-
F5P
GROUPED_DOAJ
H13
HYE
HZ~
H~N
O-G
O9-
OK1
PGMZT
R7C
R7D
RAOCF
RCNCU
RNS
RPM
RRC
RSCEA
RVUXY
SKA
SKF
SKH
SKJ
SKM
SKR
SKZ
SLC
SLF
SLH
SMJ
AAWGC
AAYXX
ABASK
ABIQK
ACRPL
ADNMO
AETIL
AFPKN
AFRZK
AFVBQ
AGQPQ
AHGXI
AKMSF
ALSGL
ANBJS
ANLMG
ASPBG
AVWKF
CAG
CITATION
COF
ECGLT
FEDTE
HVGLF
J3G
J3H
J3I
L-8
ROL
RPMJG
NPM
7SR
8BQ
8FD
JG9
7X8
5PM
ID FETCH-LOGICAL-c428t-56de1388ca91589b2eac3314235099627d8193060a236abff00be467e78d919c3
ISSN 2041-6520
IngestDate Thu Aug 21 14:06:33 EDT 2025
Fri Jul 11 09:06:13 EDT 2025
Fri Jul 25 09:32:08 EDT 2025
Mon Jul 21 06:04:57 EDT 2025
Tue Jul 01 03:46:18 EDT 2025
Thu Apr 24 23:04:06 EDT 2025
Tue Dec 17 20:58:59 EST 2024
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 11
Language English
License This article is freely available. This article is licensed under a Creative Commons Attribution 3.0 Unported Licence (CC BY 3.0)
LinkModel OpenURL
MergedId FETCHMERGED-LOGICAL-c428t-56de1388ca91589b2eac3314235099627d8193060a236abff00be467e78d919c3
Notes 1565928
For ESI and crystallographic data in CIF or other electronic format see DOI
10.1039/c8sc00021b
Electronic supplementary information (ESI) available: Detailed synthesis, encapsulating and sensing procedures. Additional figures (Fig. S1-S32) and tables (Tables S1 and S2). CCDC
ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0001-5107-1296
0000-0001-9434-2498
0000-0001-7250-5102
0000-0001-8490-6587
0000-0001-6238-1871
0000-0002-1679-7005
0000-0002-5036-2320
0000-0003-1638-6633
OpenAccessLink http://dx.doi.org/10.1039/c8sc00021b
PMID 29732075
PQID 2014026490
PQPubID 2047492
PageCount 9
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_5914538
proquest_miscellaneous_2035707256
pubmed_primary_29732075
rsc_primary_c8sc00021b
crossref_citationtrail_10_1039_C8SC00021B
proquest_journals_2014026490
crossref_primary_10_1039_C8SC00021B
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2018-03-21
PublicationDateYYYYMMDD 2018-03-21
PublicationDate_xml – month: 03
  year: 2018
  text: 2018-03-21
  day: 21
PublicationDecade 2010
PublicationPlace England
PublicationPlace_xml – name: England
– name: Cambridge
PublicationTitle Chemical science (Cambridge)
PublicationTitleAlternate Chem Sci
PublicationYear 2018
Publisher Royal Society of Chemistry
Publisher_xml – name: Royal Society of Chemistry
References Huang (C8SC00021B-(cit15)/*[position()=1]) 2017; 56
Qi (C8SC00021B-(cit23)/*[position()=2]) 2017; 53
Perry (C8SC00021B-(cit6)/*[position()=3]) 2009; 38
Pramanik (C8SC00021B-(cit22)/*[position()=1]) 2011; 133
Dong (C8SC00021B-(cit13)/*[position()=1]) 2014; 53
Wen (C8SC00021B-(cit18)/*[position()=3]) 2017; 29
Hu (C8SC00021B-(cit5)/*[position()=2]) 2014; 43
Fleetham (C8SC00021B-(cit19)/*[position()=1]) 2017; 29
(C8SC00021B-(cit1)/*[position()=1]) 2001
Hu (C8SC00021B-(cit14)/*[position()=2]) 2015; 51
Cui (C8SC00021B-(cit5)/*[position()=3]) 2012; 112
Ahmad (C8SC00021B-(cit3)/*[position()=2]) 2015; 44
Cui (C8SC00021B-(cit18)/*[position()=2]) 2015; 25
Wang (C8SC00021B-(cit23)/*[position()=3]) 2017; 9
Lin (C8SC00021B-(cit8)/*[position()=1]) 2015; 51
Dai (C8SC00021B-(cit22)/*[position()=3]) 2017; 19
Sun (C8SC00021B-(cit18)/*[position()=1]) 2013; 4
Lu (C8SC00021B-(cit7)/*[position()=3]) 2016; 55
Zhang (C8SC00021B-(cit15)/*[position()=2]) 2016; 8
Haldar (C8SC00021B-(cit12)/*[position()=2]) 2016; 16
Wang (C8SC00021B-(cit10)/*[position()=1]) 2009; 131
Yang (C8SC00021B-(cit3)/*[position()=1]) 2013; 113
Nasalevich (C8SC00021B-(cit7)/*[position()=4]) 2015; 8
Cui (C8SC00021B-(cit13)/*[position()=3]) 2015; 27
Lustig (C8SC00021B-(cit4)/*[position()=2]) 2017; 46
Bai (C8SC00021B-(cit6)/*[position()=2]) 2016; 45
Zhang (C8SC00021B-(cit9)/*[position()=1]) 2015; 137
Xie (C8SC00021B-(cit18)/*[position()=4]) 2016; 52
Hancock (C8SC00021B-(cit19)/*[position()=2]) 2013; 42
Allendorf (C8SC00021B-(cit10)/*[position()=2]) 2009; 38
Lyu (C8SC00021B-(cit2)/*[position()=1]) 2017; 4
Zhao (C8SC00021B-(cit13)/*[position()=2]) 2015; 21
Zhou (C8SC00021B-(cit20)/*[position()=1]) 2016; 52
Thorarinsdottir (C8SC00021B-(cit21)/*[position()=2]) 2017; 139
Zhang (C8SC00021B-(cit5)/*[position()=1]) 2015; 284
Hu (C8SC00021B-(cit21)/*[position()=3]) 2017; 8
Karmakar (C8SC00021B-(cit4)/*[position()=1]) 2017; 50
Hu (C8SC00021B-(cit21)/*[position()=4]) 2014; 86
Zhu (C8SC00021B-(cit6)/*[position()=4]) 2014; 43
Wan (C8SC00021B-(cit21)/*[position()=1]) 2011; 21
Haldar (C8SC00021B-(cit12)/*[position()=1]) 2014; 53
Zhang (C8SC00021B-(cit7)/*[position()=2]) 2009; 131
Chen (C8SC00021B-(cit14)/*[position()=1]) 2017; 9
Zhang (C8SC00021B-(cit23)/*[position()=1]) 2017; 5
C8SC00021B-(cit16)/*[position()=1]
Zhang (C8SC00021B-(cit7)/*[position()=1]) 2007; 46
Wu (C8SC00021B-(cit9)/*[position()=3]) 2011; 21
Ye (C8SC00021B-(cit11)/*[position()=1]) 2017; 56
Wu (C8SC00021B-(cit9)/*[position()=2]) 2012; 22
Schoedel (C8SC00021B-(cit6)/*[position()=1]) 2016; 116
Saha (C8SC00021B-(cit19)/*[position()=3]) 2016; 49
Di (C8SC00021B-(cit22)/*[position()=2]) 2016; 16
Yan (C8SC00021B-(cit4)/*[position()=3]) 2017; 50
References_xml – issn: 2001
  publication-title: Chemiluminescence in Analytical Chemistry
– issn: 2008
  publication-title: PLATON, Multipurpose Crystallographic Tool
  doi: Spek
– volume: 45
  start-page: 2327
  year: 2016
  ident: C8SC00021B-(cit6)/*[position()=2]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C5CS00837A
– volume: 137
  start-page: 12203
  year: 2015
  ident: C8SC00021B-(cit9)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b06929
– volume: 284
  start-page: 206
  year: 2015
  ident: C8SC00021B-(cit5)/*[position()=1]
  publication-title: Coord. Chem. Rev.
  doi: 10.1016/j.ccr.2014.10.006
– volume: 49
  start-page: 2527
  year: 2016
  ident: C8SC00021B-(cit19)/*[position()=3]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.6b00416
– volume: 8
  start-page: 466
  year: 2017
  ident: C8SC00021B-(cit21)/*[position()=3]
  publication-title: Chem. Sci.
  doi: 10.1039/C6SC03401B
– volume: 53
  start-page: 11772
  year: 2014
  ident: C8SC00021B-(cit12)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201405619
– volume: 8
  start-page: 364
  year: 2015
  ident: C8SC00021B-(cit7)/*[position()=4]
  publication-title: Energy Environ. Sci.
  doi: 10.1039/C4EE02853H
– volume: 29
  start-page: 1700778
  year: 2017
  ident: C8SC00021B-(cit18)/*[position()=3]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201700778
– volume: 133
  start-page: 4153
  year: 2011
  ident: C8SC00021B-(cit22)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja106851d
– volume: 112
  start-page: 1126
  year: 2012
  ident: C8SC00021B-(cit5)/*[position()=3]
  publication-title: Chem. Rev.
  doi: 10.1021/cr200101d
– volume: 19
  start-page: 2786
  year: 2017
  ident: C8SC00021B-(cit22)/*[position()=3]
  publication-title: CrystEngComm
  doi: 10.1039/C7CE00236J
– volume: 86
  start-page: 10484
  year: 2014
  ident: C8SC00021B-(cit21)/*[position()=4]
  publication-title: Anal. Chem.
  doi: 10.1021/ac5032308
– volume: 38
  start-page: 1330
  year: 2009
  ident: C8SC00021B-(cit10)/*[position()=2]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b802352m
– volume: 16
  start-page: 4539
  year: 2016
  ident: C8SC00021B-(cit22)/*[position()=2]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.6b00656
– volume: 9
  start-page: 24671
  year: 2017
  ident: C8SC00021B-(cit14)/*[position()=1]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b07901
– volume: 9
  start-page: 20076
  year: 2017
  ident: C8SC00021B-(cit23)/*[position()=3]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.7b04172
– volume: 21
  start-page: 2788
  year: 2011
  ident: C8SC00021B-(cit9)/*[position()=3]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201100115
– volume: 131
  start-page: 17040
  year: 2009
  ident: C8SC00021B-(cit7)/*[position()=2]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja906911q
– volume: 4
  start-page: 1600481
  year: 2017
  ident: C8SC00021B-(cit2)/*[position()=1]
  publication-title: Adv. Sci.
  doi: 10.1002/advs.201600481
– volume: 16
  start-page: 82
  year: 2016
  ident: C8SC00021B-(cit12)/*[position()=2]
  publication-title: Cryst. Growth Des.
  doi: 10.1021/acs.cgd.5b01448
– volume: 29
  start-page: 1601861
  year: 2017
  ident: C8SC00021B-(cit19)/*[position()=1]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201601861
– volume: 4
  start-page: 2717
  year: 2013
  ident: C8SC00021B-(cit18)/*[position()=1]
  publication-title: Nat. Commun.
  doi: 10.1038/ncomms3717
– volume: 50
  start-page: 2789
  year: 2017
  ident: C8SC00021B-(cit4)/*[position()=3]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00387
– volume: 51
  start-page: 16996
  year: 2015
  ident: C8SC00021B-(cit8)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC06453H
– volume: 22
  start-page: 1698
  year: 2012
  ident: C8SC00021B-(cit9)/*[position()=2]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201102157
– volume: 56
  start-page: 6362
  year: 2017
  ident: C8SC00021B-(cit15)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00457
– volume: 46
  start-page: 4995
  year: 2007
  ident: C8SC00021B-(cit7)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.200604268
– volume: 55
  start-page: 9474
  year: 2016
  ident: C8SC00021B-(cit7)/*[position()=3]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201602116
– volume: 42
  start-page: 1500
  year: 2013
  ident: C8SC00021B-(cit19)/*[position()=2]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C2CS35224A
– volume: 51
  start-page: 17521
  year: 2015
  ident: C8SC00021B-(cit14)/*[position()=2]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC07004J
– volume: 27
  start-page: 1420
  year: 2015
  ident: C8SC00021B-(cit13)/*[position()=3]
  publication-title: Adv. Mater.
  doi: 10.1002/adma.201404700
– ident: C8SC00021B-(cit16)/*[position()=1]
– volume: 50
  start-page: 2457
  year: 2017
  ident: C8SC00021B-(cit4)/*[position()=1]
  publication-title: Acc. Chem. Res.
  doi: 10.1021/acs.accounts.7b00151
– volume: 139
  start-page: 15836
  year: 2017
  ident: C8SC00021B-(cit21)/*[position()=2]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b08574
– volume: 53
  start-page: 10318
  year: 2017
  ident: C8SC00021B-(cit23)/*[position()=2]
  publication-title: Chem. Commun.
  doi: 10.1039/C7CC05345B
– volume: 116
  start-page: 12466
  year: 2016
  ident: C8SC00021B-(cit6)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00346
– volume: 21
  start-page: 10321
  year: 2011
  ident: C8SC00021B-(cit21)/*[position()=1]
  publication-title: J. Mater. Chem.
  doi: 10.1039/c1jm10332f
– volume: 21
  start-page: 9748
  year: 2015
  ident: C8SC00021B-(cit13)/*[position()=2]
  publication-title: Chem.–Eur. J.
  doi: 10.1002/chem.201500562
– volume: 25
  start-page: 4796
  year: 2015
  ident: C8SC00021B-(cit18)/*[position()=2]
  publication-title: Adv. Funct. Mater.
  doi: 10.1002/adfm.201501756
– volume-title: Chemiluminescence in Analytical Chemistry
  year: 2001
  ident: C8SC00021B-(cit1)/*[position()=1]
– volume: 46
  start-page: 3243
  year: 2017
  ident: C8SC00021B-(cit4)/*[position()=2]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C6CS00930A
– volume: 38
  start-page: 1400
  year: 2009
  ident: C8SC00021B-(cit6)/*[position()=3]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/b807086p
– volume: 52
  start-page: 2265
  year: 2016
  ident: C8SC00021B-(cit20)/*[position()=1]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC09029F
– volume: 113
  start-page: 192
  year: 2013
  ident: C8SC00021B-(cit3)/*[position()=1]
  publication-title: Chem. Rev.
  doi: 10.1021/cr2004103
– volume: 56
  start-page: 4238
  year: 2017
  ident: C8SC00021B-(cit11)/*[position()=1]
  publication-title: Inorg. Chem.
  doi: 10.1021/acs.inorgchem.7b00252
– volume: 52
  start-page: 3288
  year: 2016
  ident: C8SC00021B-(cit18)/*[position()=4]
  publication-title: Chem. Commun.
  doi: 10.1039/C5CC08703A
– volume: 43
  start-page: 5815
  year: 2014
  ident: C8SC00021B-(cit5)/*[position()=2]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00010B
– volume: 43
  start-page: 5468
  year: 2014
  ident: C8SC00021B-(cit6)/*[position()=4]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C3CS60472A
– volume: 5
  start-page: 4661
  year: 2017
  ident: C8SC00021B-(cit23)/*[position()=1]
  publication-title: J. Mater. Chem. C
  doi: 10.1039/C7TC00936D
– volume: 8
  start-page: 32259
  year: 2016
  ident: C8SC00021B-(cit15)/*[position()=2]
  publication-title: ACS Appl. Mater. Interfaces
  doi: 10.1021/acsami.6b12118
– volume: 44
  start-page: 9
  year: 2015
  ident: C8SC00021B-(cit3)/*[position()=2]
  publication-title: Chem. Soc. Rev.
  doi: 10.1039/C4CS00222A
– volume: 53
  start-page: 1575
  year: 2014
  ident: C8SC00021B-(cit13)/*[position()=1]
  publication-title: Angew. Chem., Int. Ed.
  doi: 10.1002/anie.201307331
– volume: 131
  start-page: 13572
  year: 2009
  ident: C8SC00021B-(cit10)/*[position()=1]
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja903947b
SSID ssj0000331527
Score 2.5302656
Snippet Low-cost, high-performance luminescent probes with wide application potential have been actively pursued. Conventional luminescent probes, which rely on single...
A trichromatic MOF composite utilizes its MOF matrix and two encapsulated cations collectively to achieve unprecedented multi-dimensional ratiometric...
SourceID pubmedcentral
proquest
pubmed
crossref
rsc
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
StartPage 2918
SubjectTerms Chemistry
Detection
Iridium
Light emission
Low cost
Metal-organic frameworks
Recognition
Ruthenium
Sensitivity analysis
White light
Title A trichromatic MOF composite for multidimensional ratiometric luminescent sensing
URI https://www.ncbi.nlm.nih.gov/pubmed/29732075
https://www.proquest.com/docview/2014026490
https://www.proquest.com/docview/2035707256
https://pubmed.ncbi.nlm.nih.gov/PMC5914538
Volume 9
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwnV3db9MwELe67gFeEF-DwJiC4AVVASeOE_uxVEwT2kCDFRVeqny46iSWTm3zwl_PnT9Sdx0S8BJV8TWO_Lucz_bd7wh5LepaCsVFVJasjtKUskhiMFWssgJmnDKTM8wdPvuUnYzTjxM-6fVOvaildl2-rX7dmlfyP6jCPcAVs2T_AdnuoXADfgO-cAWE4fpXGA8HyK8_Xy4M7-rZ52MdIo5xWIbLW4cL1kjgb8g3BhrvK6yiVQ3ALGHMO4ZnDlYoYScxx1vgqARc5g-e97oML28D4ce8WJgJbHPGYfI9Gk_EBv6CMkZew-llq7df5210binA7Q5ErFPyTFqzMVQJTeMo4wn1rar0lSf2TaQ0BnfHdlOG1KeVWFVopuMtAw_jfn2lUcRaWwk11VZuMGW7pj2yn8CiIemT_S_fxpPv3Z4bZcxW8e1e2THWMvlu0zMyRNtnbbsrO2uQ3VDavaWrHKM9lIv75J5dWoRDoycPSE81D8mdkavo94icD0NfX0LQl7DTlxD0JbypL6GnL6GnL6HVl8dkfPzhYnQS2ZIaUQXrzHXEs1rFTIiqkDEXskxg3oVBAZ8aHEesw1SDhwirSFokLCvK2YzSUsFcqnJRy1hW7ID0m0WjnpIQltqFmKk651KkXPGCwf8xDxrulLTiAXnjRm5aWb55LHvyc6rjHpicjsTXkR7w9wF51cleG5aVW6UOHQBT-xWupgluEYBXL2lAXnbNMLB48FU0atGiDOM5zcG7D8gTg1fXjQM6IPkWkp0A8q9vtzSXc83DzmWcgr8QkAPAvJPfqNGzP3b2nNzdfEiHpL9etuoFOLfr8khvCh1Zzf0NFOOjjw
linkProvider Royal Society of Chemistry
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=A+trichromatic+MOF+composite+for+multidimensional+ratiometric+luminescent+sensing&rft.jtitle=Chemical+science+%28Cambridge%29&rft.au=Zhao%2C+He&rft.au=Ni%2C+Jun&rft.au=Zhang%2C+Jian-Jun&rft.au=Liu%2C+Shu-Qin&rft.date=2018-03-21&rft.issn=2041-6520&rft.volume=9&rft.issue=11&rft.spage=2918&rft_id=info:doi/10.1039%2Fc8sc00021b&rft_id=info%3Apmid%2F29732075&rft.externalDocID=29732075
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=2041-6520&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=2041-6520&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=2041-6520&client=summon