Quantum twisting microscopy of phonons in twisted bilayer graphene

The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge....

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 641; no. 8062; pp. 345 - 351
Main Authors Birkbeck, J., Xiao, J., Inbar, A., Taniguchi, T., Watanabe, K., Berg, E., Glazman, L., Guinea, F., von Oppen, F., Ilani, S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.05.2025
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
More Information
Summary:The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron–phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope 1 (QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, the inelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (TBG) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, TBG exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric ‘phason’ mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons 2 , magnons 3 and spinons 4 in quantum materials. Generalization of a quantum twisting microscope to cryogenic temperatures in twisted bilayer graphene shows the ability to map phononic dispersions through inelastic momentum-conserving tunnelling and reveals an angle-dependent coupling between electrons and phonons.
Bibliography:ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ISSN:0028-0836
1476-4687
1476-4687
DOI:10.1038/s41586-025-08881-8