Quantum twisting microscopy of phonons in twisted bilayer graphene
The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge....
Saved in:
Published in | Nature (London) Vol. 641; no. 8062; pp. 345 - 351 |
---|---|
Main Authors | , , , , , , , , , |
Format | Journal Article |
Language | English |
Published |
London
Nature Publishing Group UK
08.05.2025
Nature Publishing Group |
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron–phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope
1
(QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, the inelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (TBG) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, TBG exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric ‘phason’ mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons
2
, magnons
3
and spinons
4
in quantum materials.
Generalization of a quantum twisting microscope to cryogenic temperatures in twisted bilayer graphene shows the ability to map phononic dispersions through inelastic momentum-conserving tunnelling and reveals an angle-dependent coupling between electrons and phonons. |
---|---|
AbstractList | The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron–phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope
1
(QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, the inelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (TBG) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, TBG exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric ‘phason’ mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons
2
, magnons
3
and spinons
4
in quantum materials.
Generalization of a quantum twisting microscope to cryogenic temperatures in twisted bilayer graphene shows the ability to map phononic dispersions through inelastic momentum-conserving tunnelling and reveals an angle-dependent coupling between electrons and phonons. The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron-phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope1 (QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, the inelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (TBG) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, TBG exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric 'phason' mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons2, magnons3 and spinons4 in quantum materials.The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron-phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope1 (QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, the inelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (TBG) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, TBG exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric 'phason' mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons2, magnons3 and spinons4 in quantum materials. The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such asresistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modesremain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron-phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope' (QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, theinelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (ТВС) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, ТВС exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric 'phason' mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons?, magnons' and spinons· in quantum materials. The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron-phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope (QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, the inelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (TBG) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, TBG exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric 'phason' mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons , magnons and spinons in quantum materials. |
Author | Glazman, L. Inbar, A. Ilani, S. Guinea, F. Birkbeck, J. Xiao, J. Watanabe, K. Taniguchi, T. Berg, E. von Oppen, F. |
Author_xml | – sequence: 1 givenname: J. orcidid: 0000-0002-6916-4375 surname: Birkbeck fullname: Birkbeck, J. organization: Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 2 givenname: J. surname: Xiao fullname: Xiao, J. organization: Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 3 givenname: A. surname: Inbar fullname: Inbar, A. organization: Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 4 givenname: T. orcidid: 0000-0002-1467-3105 surname: Taniguchi fullname: Taniguchi, T. organization: National Institute for Materials Science – sequence: 5 givenname: K. orcidid: 0000-0003-3701-8119 surname: Watanabe fullname: Watanabe, K. organization: National Institute for Materials Science – sequence: 6 givenname: E. orcidid: 0000-0001-8956-3384 surname: Berg fullname: Berg, E. organization: Department of Condensed Matter Physics, Weizmann Institute of Science – sequence: 7 givenname: L. orcidid: 0000-0002-2870-3387 surname: Glazman fullname: Glazman, L. organization: Department of Physics, Yale University – sequence: 8 givenname: F. orcidid: 0000-0001-5915-5427 surname: Guinea fullname: Guinea, F. organization: IMDEA Nanoscience, Donostia International Physics Center – sequence: 9 givenname: F. orcidid: 0000-0002-2537-7256 surname: von Oppen fullname: von Oppen, F. organization: Dahlem Center for Complex Quantum Systems, Fachbereich Physik, Freie Universität Berlin – sequence: 10 givenname: S. orcidid: 0000-0001-8589-7723 surname: Ilani fullname: Ilani, S. email: shahal.ilani@weizmann.ac.il organization: Department of Condensed Matter Physics, Weizmann Institute of Science |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/40269161$$D View this record in MEDLINE/PubMed |
BookMark | eNp9kUtv1TAQhS3Uit4W_gALFIkNm1CPHduTFYKKAlKlqhKsLcfxvddVYgc7Ad1_j9uU8liwmsV858zjnJKjEIMj5AXQN0A5nucGBMqaMlFTRIQan5ANNErWjUR1RDaUMiwtLk_Iac63lFIBqnlKThrKZAsSNuT9zWLCvIzV_MPn2YddNXqbYrZxOlRxW037WKbmyoeVcH3V-cEcXKp2yUx7F9wzcrw1Q3bPH-oZ-Xr54cvFp_rq-uPni3dXtW0YzrWQBlsOvVXYMCoZFRQBFONtuQKsND3vu446JhVTBkVnoaVgt0ohBWgtPyNvV99p6UbXWxfmZAY9JT-adNDReP13J_i93sXvGsosFIwXh9cPDil-W1ye9eizdcNggotL1hzaholGSlrQV_-gt3FJodynOYMWW0ChCvXyz5Ued_n13wKwFbj7aU5u-4gA1Xch6jVEXULU9yFqLCK-inKBw86l37P_o_oJ03mdrQ |
Cites_doi | 10.1016/j.ssc.2007.03.052 10.1103/PhysRevB.26.4514 10.1103/PhysRevLett.128.065901 10.1103/PhysRevLett.92.075501 10.1038/nmat3245 10.1103/PhysRevB.103.235401 10.1103/PhysRevB.110.085160 10.1038/s41586-024-08227-w 10.1103/PhysRevB.106.075420 10.1103/PhysRevB.100.155426 10.1016/j.ssc.2004.04.042 10.1103/PhysRevLett.109.236604 10.1103/PhysRevB.99.140302 10.1103/PhysRevB.76.035439 10.1021/acs.nanolett.2c02010 10.1038/s41586-022-05685-y 10.1103/PhysRevLett.122.257002 10.1103/PhysRevLett.133.266201 10.1103/PhysRevB.101.195425 10.1038/s41467-018-03479-3 10.1016/j.aop.2020.168193 10.1103/PhysRevB.107.075408 10.1103/PhysRevB.110.205407 10.1103/PhysRevB.75.045404 10.1143/JPSJ.75.124701 10.1038/nnano.2016.85 10.1038/s41567-019-0596-3 10.1039/D0CP05833E 10.1103/PhysRevLett.87.037001 10.1103/PhysRevB.110.045133 10.1103/PhysRevLett.124.076801 10.1103/PhysRevB.98.241412 10.1088/2053-1583/ad3b0e 10.1103/PhysRevB.109.035127 10.1021/acs.nanolett.6b01657 10.1103/PhysRevLett.105.256805 10.1021/nl201771h 10.1038/nature26160 10.1103/PhysRevB.99.165112 10.1103/PhysRevLett.93.185503 10.1103/PhysRevB.77.115449 10.1038/s41586-019-1477-8 10.1103/PhysRevB.108.075168 10.1103/PhysRevB.95.165408 10.1126/science.aaw1662 10.1038/srep16642 10.1103/PhysRevLett.121.257001 10.1103/PhysRevB.100.075416 10.1063/PT.3.4497 10.1103/PhysRevB.81.245412 10.1038/nphys1022 10.1103/PhysRevB.110.045116 10.1038/s41467-021-25864-1 10.1021/acs.nanolett.6b04369 10.1021/nl200758b 10.1103/PhysRevLett.116.186603 |
ContentType | Journal Article |
Copyright | The Author(s) 2025 2025. The Author(s). Copyright Nature Publishing Group 2025 The Author(s) 2025 2025 |
Copyright_xml | – notice: The Author(s) 2025 – notice: 2025. The Author(s). – notice: Copyright Nature Publishing Group 2025 – notice: The Author(s) 2025 2025 |
DBID | C6C AAYXX CITATION NPM 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD C1K FR3 H94 K9. KL. M7N NAPCQ P64 RC3 SOI 7X8 5PM |
DOI | 10.1038/s41586-025-08881-8 |
DatabaseName | Springer Nature OA/Free Journals CrossRef PubMed Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Calcium & Calcified Tissue Abstracts Chemoreception Abstracts Ecology Abstracts Entomology Abstracts (Full archive) Environment Abstracts Immunology Abstracts Meteorological & Geoastrophysical Abstracts Neurosciences Abstracts Nucleic Acids Abstracts Oncogenes and Growth Factors Abstracts Virology and AIDS Abstracts Technology Research Database Environmental Sciences and Pollution Management Engineering Research Database AIDS and Cancer Research Abstracts ProQuest Health & Medical Complete (Alumni) Meteorological & Geoastrophysical Abstracts - Academic Algology Mycology and Protozoology Abstracts (Microbiology C) Nursing & Allied Health Premium Biotechnology and BioEngineering Abstracts Genetics Abstracts Environment Abstracts MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef PubMed Virology and AIDS Abstracts Oncogenes and Growth Factors Abstracts Technology Research Database Nucleic Acids Abstracts ProQuest Health & Medical Complete (Alumni) Ecology Abstracts Neurosciences Abstracts Biotechnology and BioEngineering Abstracts Environmental Sciences and Pollution Management Entomology Abstracts Nursing & Allied Health Premium Genetics Abstracts Meteorological & Geoastrophysical Abstracts Animal Behavior Abstracts Bacteriology Abstracts (Microbiology B) Algology Mycology and Protozoology Abstracts (Microbiology C) AIDS and Cancer Research Abstracts Chemoreception Abstracts Immunology Abstracts Engineering Research Database Calcium & Calcified Tissue Abstracts Environment Abstracts Meteorological & Geoastrophysical Abstracts - Academic MEDLINE - Academic |
DatabaseTitleList | MEDLINE - Academic Virology and AIDS Abstracts PubMed |
Database_xml | – sequence: 1 dbid: C6C name: Springer Nature OA Free Journals url: http://www.springeropen.com/ sourceTypes: Publisher – sequence: 2 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database |
DeliveryMethod | fulltext_linktorsrc |
Discipline | Sciences (General) Physics |
EISSN | 1476-4687 |
EndPage | 351 |
ExternalDocumentID | PMC12058523 40269161 10_1038_s41586_025_08881_8 |
Genre | Journal Article |
GroupedDBID | --- --Z -DZ -ET -~X .55 .CO .XZ 07C 0R~ 123 186 1OL 29M 2KS 39C 5RE 6TJ 70F 7RV 85S 8WZ 97F A6W A7Z AAHBH AAHTB AAIKC AAKAB AAMNW AASDW AAYEP AAYZH ABDQB ABFSI ABIVO ABJNI ABLJU ABOCM ABPEJ ABPPZ ABWJO ABZEH ACBEA ACBWK ACGFO ACGFS ACGOD ACIWK ACKOT ACMFV ACMJI ACNCT ACPRK ACWUS ADBBV ADFRT ADUKH AENEX AFANA AFBBN AFFNX AFLOW AFRAH AFSHS AGAYW AGHSJ AGOIJ AGSOS AHMBA AHSBF AIDUJ ALFFA ALIPV ALMA_UNASSIGNED_HOLDINGS ALPWD AMTXH ARAPS ARMCB ASPBG ATCPS ATHPR ATWCN AVWKF AXYYD AZFZN BENPR BHPHI BIN BKKNO C6C CJ0 CS3 DU5 E.- E.L EAP EBS EE. EPS EXGXG F5P FAC FEDTE FQGFK FSGXE HCIFZ HG6 HVGLF HZ~ IAO ICQ IEA IEP IGS IH2 IHR INH IOF IPY KOO L7B LGEZI LOTEE LSO M0K M2O M7P N9A NADUK NEPJS NFIDA NXXTH O9- OBC ODYON OES OHH OMK OVD P2P PV9 RND RNS RNT RNTTT RXW SC5 SHXYY SIXXV SJN SNYQT SOJ TAE TAOOD TBHMF TDRGL TN5 TSG TWZ U5U UKR UMC UMD UQL VVN WH7 X7M XIH XKW XZL Y6R YAE YFH YJ6 YNT YOC YQT YR2 YR5 YXB YZZ ZCA ~02 ~88 ~KM AARCD AAYXX ABFSG ACSTC AEZWR AFHIU AHWEU AIXLP CITATION NAPCQ TEORI .-4 .GJ .HR 00M 08P 0WA 1CY 1VR 1VW 2XV 354 3EH 3O- 4.4 41X 41~ 42X 4R4 53G 663 79B 7X2 7X7 7XC 88E 88I 8AF 8AO 8C1 8CJ 8FE 8FG 8FH 8FI 8FJ 8G5 8R4 8R5 97L 9M8 A8Z AAJYS AAKAS AAVBQ ABAWZ ABDBF ABDPE ABEFU ABJCF ABNNU ABUWG ACBNA ACBTR ACRPL ACTDY ACUHS ADGHP ADNMO ADRHT ADXHL ADYSU ADZCM AETEA AEUYN AFFDN AFHKK AFKRA AGCDD AGGDT AGNAY AGQPQ AIDAL AIYXT AJUXI APEBS ARTTT AZQEC B0M BBNVY BCR BCU BDKGC BEC BES BGLVJ BKEYQ BKOMP BKSAR BLC BPHCQ BVXVI CCPQU D1I D1J D1K DB5 DO4 DWQXO EAD EAS EAZ EBC EBD EBO ECC EJD EMB EMF EMH EMK EMOBN EPL ESE ESN ESX EX3 FA8 FYUFA GNUQQ GUQSH HMCUK I-F INR ISR ITC J5H K6- KB. L-9 L6V LK5 LK8 M1P M2M M2P M7R M7S MVM N4W NEJ NPM OHT P-O P62 PATMY PCBAR PDBOC PEA PHGZM PHGZT PJZUB PM3 PPXIY PQGLB PQQKQ PROAC PSQYO PSYQQ PTHSS PYCSY Q2X QS- R05 R4F RHI S0X SJFOW SKT SV3 TH9 TUD TUS UBY UHB UKHRP USG VOH WOW X7L XOL YQI YQJ YV5 YXA YYP YYQ ZCG ZE2 ZGI ZHY ZKB ZY4 ~7V ~8M ~G0 7QG 7QL 7QP 7QR 7SN 7SS 7ST 7T5 7TG 7TK 7TM 7TO 7U9 8FD AFKWF C1K FR3 H94 K9. KL. M7N P64 RC3 SOI 7X8 5PM |
ID | FETCH-LOGICAL-c428t-56a8931dc784206205081172391581c6ad3dbb0e26727a85bc1901cf7780119c3 |
IEDL.DBID | C6C |
ISSN | 0028-0836 1476-4687 |
IngestDate | Thu Aug 21 18:27:10 EDT 2025 Wed Jul 02 04:50:11 EDT 2025 Sat Aug 23 13:04:22 EDT 2025 Mon Jul 21 05:47:44 EDT 2025 Tue Jul 01 04:54:09 EDT 2025 Thu May 08 05:26:46 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Issue | 8062 |
Language | English |
License | 2025. The Author(s). Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-56a8931dc784206205081172391581c6ad3dbb0e26727a85bc1901cf7780119c3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 14 content type line 23 |
ORCID | 0000-0002-1467-3105 0000-0003-3701-8119 0000-0001-8589-7723 0000-0001-5915-5427 0000-0002-2870-3387 0000-0002-2537-7256 0000-0002-6916-4375 0000-0001-8956-3384 |
OpenAccessLink | https://www.nature.com/articles/s41586-025-08881-8 |
PMID | 40269161 |
PQID | 3219891857 |
PQPubID | 40569 |
PageCount | 7 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_12058523 proquest_miscellaneous_3194254660 proquest_journals_3219891857 pubmed_primary_40269161 crossref_primary_10_1038_s41586_025_08881_8 springer_journals_10_1038_s41586_025_08881_8 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2025-05-08 |
PublicationDateYYYYMMDD | 2025-05-08 |
PublicationDate_xml | – month: 05 year: 2025 text: 2025-05-08 day: 08 |
PublicationDecade | 2020 |
PublicationPlace | London |
PublicationPlace_xml | – name: London – name: England |
PublicationSubtitle | International weekly journal of science |
PublicationTitle | Nature (London) |
PublicationTitleAbbrev | Nature |
PublicationTitleAlternate | Nature |
PublicationYear | 2025 |
Publisher | Nature Publishing Group UK Nature Publishing Group |
Publisher_xml | – name: Nature Publishing Group UK – name: Nature Publishing Group |
References | AS Mayorov (8881_CR6) 2011; 11 Y Cao (8881_CR9) 2020; 124 YH Kwan (8881_CR46) 2024; 110 R Bistritzer (8881_CR39) 2010; 81 A Ceferino (8881_CR53) 2024; 11 H Polshyn (8881_CR10) 2019; 15 PH Tan (8881_CR28) 2012; 11 M Koshino (8881_CR55) 2020; 101 H Ochoa (8881_CR23) 2022; 128 M Koshino (8881_CR19) 2019; 100 M Mohr (8881_CR31) 2007; 76 F Wu (8881_CR11) 2018; 121 DK Efetov (8881_CR36) 2010; 105 I Yudhistira (8881_CR14) 2019; 99 EH Hwang (8881_CR5) 2007; 77 YW Choi (8881_CR12) 2018; 98 B Lian (8881_CR16) 2019; 122 S Jung (8881_CR41) 2015; 5 Q Gao (8881_CR21) 2022; 106 EE Vdovin (8881_CR42) 2016; 116 A Inbar (8881_CR1) 2023; 614 M Polini (8881_CR7) 2020; 73 X Liu (8881_CR20) 2022; 22 F Pichler (8881_CR3) 2024; 110 F Wu (8881_CR15) 2019; 99 H Ochoa (8881_CR24) 2023; 108 R Al-Jishi (8881_CR52) 1982; 26 GSN Eliel (8881_CR29) 2018; 9 FHL Koppens (8881_CR2) 2011; 11 T Chari (8881_CR38) 2016; 16 AHC Neto (8881_CR48) 2007; 75 G Sharma (8881_CR17) 2021; 12 S Piscanec (8881_CR47) 2004; 93 Y Zhang (8881_CR40) 2008; 4 MMA Ezzi (8881_CR54) 2024; 133 AC Ferrari (8881_CR27) 2007; 143 B Holst (8881_CR35) 2021; 23 Y Cao (8881_CR8) 2018; 556 U Chandni (8881_CR43) 2016; 16 L Wirtz (8881_CR51) 2004; 131 V Perebeinos (8881_CR44) 2012; 109 J Xiao (8881_CR49) 2024; 110 C Chen (8881_CR26) 2024; 636 S Tanaka (8881_CR32) 2017; 95 V Peri (8881_CR4) 2024; 109 T Ando (8881_CR50) 2006; 75 C-X Liu (8881_CR13) 2024; 110 R Senga (8881_CR33) 2019; 573 SD Sarma (8881_CR45) 2020; 417 E Koren (8881_CR37) 2016; 11 C Lewandowski (8881_CR18) 2021; 103 H Ochoa (8881_CR22) 2019; 100 MX Na (8881_CR25) 2019; 366 J Kang (8881_CR56) 2023; 107 J Maultzsch (8881_CR30) 2004; 92 T Yildirim (8881_CR34) 2001; 87 |
References_xml | – volume: 143 start-page: 47 year: 2007 ident: 8881_CR27 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2007.03.052 – volume: 26 start-page: 4514 year: 1982 ident: 8881_CR52 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.26.4514 – volume: 128 start-page: 065901 year: 2022 ident: 8881_CR23 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.128.065901 – volume: 92 start-page: 075501 year: 2004 ident: 8881_CR30 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.92.075501 – volume: 11 start-page: 294 year: 2012 ident: 8881_CR28 publication-title: Nat. Mater. doi: 10.1038/nmat3245 – volume: 103 start-page: 235401 year: 2021 ident: 8881_CR18 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.103.235401 – volume: 110 start-page: 085160 year: 2024 ident: 8881_CR46 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.110.085160 – volume: 636 start-page: 342 year: 2024 ident: 8881_CR26 publication-title: Nature doi: 10.1038/s41586-024-08227-w – volume: 106 start-page: 075420 year: 2022 ident: 8881_CR21 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.106.075420 – volume: 100 start-page: 155426 year: 2019 ident: 8881_CR22 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.155426 – volume: 131 start-page: 141 year: 2004 ident: 8881_CR51 publication-title: Solid State Commun. doi: 10.1016/j.ssc.2004.04.042 – volume: 109 start-page: 236604 year: 2012 ident: 8881_CR44 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.109.236604 – volume: 99 start-page: 140302 year: 2019 ident: 8881_CR14 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.140302 – volume: 76 start-page: 035439 year: 2007 ident: 8881_CR31 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.76.035439 – volume: 22 start-page: 7791 year: 2022 ident: 8881_CR20 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.2c02010 – volume: 614 start-page: 682 year: 2023 ident: 8881_CR1 publication-title: Nature doi: 10.1038/s41586-022-05685-y – volume: 122 start-page: 257002 year: 2019 ident: 8881_CR16 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.122.257002 – volume: 133 start-page: 266201 year: 2024 ident: 8881_CR54 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.133.266201 – volume: 101 start-page: 195425 year: 2020 ident: 8881_CR55 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.101.195425 – volume: 9 year: 2018 ident: 8881_CR29 publication-title: Nat. Commun. doi: 10.1038/s41467-018-03479-3 – volume: 417 start-page: 168193 year: 2020 ident: 8881_CR45 publication-title: Ann. Phys. doi: 10.1016/j.aop.2020.168193 – volume: 107 start-page: 075408 year: 2023 ident: 8881_CR56 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.107.075408 – volume: 110 start-page: 205407 year: 2024 ident: 8881_CR49 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.110.205407 – volume: 75 start-page: 045404 year: 2007 ident: 8881_CR48 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.75.045404 – volume: 75 start-page: 124701 year: 2006 ident: 8881_CR50 publication-title: J. Phys. Soc. Jpn. doi: 10.1143/JPSJ.75.124701 – volume: 11 start-page: 752 year: 2016 ident: 8881_CR37 publication-title: Nat. Nanotechnol. doi: 10.1038/nnano.2016.85 – volume: 15 start-page: 1011 year: 2019 ident: 8881_CR10 publication-title: Nat. Phys. doi: 10.1038/s41567-019-0596-3 – volume: 23 start-page: 7653 year: 2021 ident: 8881_CR35 publication-title: Phys. Chem. Chem. Phys. doi: 10.1039/D0CP05833E – volume: 87 start-page: 037001 year: 2001 ident: 8881_CR34 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.87.037001 – volume: 110 start-page: 045133 year: 2024 ident: 8881_CR13 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.110.045133 – volume: 124 start-page: 076801 year: 2020 ident: 8881_CR9 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.124.076801 – volume: 98 start-page: 241412 year: 2018 ident: 8881_CR12 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.98.241412 – volume: 11 start-page: 035015 year: 2024 ident: 8881_CR53 publication-title: 2D Mater. doi: 10.1088/2053-1583/ad3b0e – volume: 109 start-page: 035127 year: 2024 ident: 8881_CR4 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.109.035127 – volume: 16 start-page: 4477 year: 2016 ident: 8881_CR38 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b01657 – volume: 105 start-page: 256805 year: 2010 ident: 8881_CR36 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.105.256805 – volume: 11 start-page: 3370 year: 2011 ident: 8881_CR2 publication-title: Nano Lett. doi: 10.1021/nl201771h – volume: 556 start-page: 43 year: 2018 ident: 8881_CR8 publication-title: Nature doi: 10.1038/nature26160 – volume: 99 start-page: 165112 year: 2019 ident: 8881_CR15 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.99.165112 – volume: 93 start-page: 185503 year: 2004 ident: 8881_CR47 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.93.185503 – volume: 77 start-page: 115449 year: 2007 ident: 8881_CR5 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.77.115449 – volume: 573 start-page: 247 year: 2019 ident: 8881_CR33 publication-title: Nature doi: 10.1038/s41586-019-1477-8 – volume: 108 start-page: 075168 year: 2023 ident: 8881_CR24 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.108.075168 – volume: 95 start-page: 165408 year: 2017 ident: 8881_CR32 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.95.165408 – volume: 366 start-page: 1231 year: 2019 ident: 8881_CR25 publication-title: Science doi: 10.1126/science.aaw1662 – volume: 5 year: 2015 ident: 8881_CR41 publication-title: Sci. Rep. doi: 10.1038/srep16642 – volume: 121 start-page: 257001 year: 2018 ident: 8881_CR11 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.121.257001 – volume: 100 start-page: 075416 year: 2019 ident: 8881_CR19 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.100.075416 – volume: 73 start-page: 28 year: 2020 ident: 8881_CR7 publication-title: Phys. Today doi: 10.1063/PT.3.4497 – volume: 81 start-page: 245412 year: 2010 ident: 8881_CR39 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.81.245412 – volume: 4 start-page: 627 year: 2008 ident: 8881_CR40 publication-title: Nat. Phys. doi: 10.1038/nphys1022 – volume: 110 start-page: 045116 year: 2024 ident: 8881_CR3 publication-title: Phys. Rev. B doi: 10.1103/PhysRevB.110.045116 – volume: 12 year: 2021 ident: 8881_CR17 publication-title: Nat. Commun. doi: 10.1038/s41467-021-25864-1 – volume: 16 start-page: 7982 year: 2016 ident: 8881_CR43 publication-title: Nano Lett. doi: 10.1021/acs.nanolett.6b04369 – volume: 11 start-page: 2396 year: 2011 ident: 8881_CR6 publication-title: Nano Lett. doi: 10.1021/nl200758b – volume: 116 start-page: 186603 year: 2016 ident: 8881_CR42 publication-title: Phys. Rev. Lett. doi: 10.1103/PhysRevLett.116.186603 |
SSID | ssj0005174 |
Score | 2.503073 |
Snippet | The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat... The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such asresistivity, heat... |
SourceID | pubmedcentral proquest pubmed crossref springer |
SourceType | Open Access Repository Aggregation Database Index Database Publisher |
StartPage | 345 |
SubjectTerms | 639/301/357/918 639/766/119/995 639/766/930/328/968 Acoustics Bias Bilayers Coupling Dispersions Electrons Energy Graphene Graphite Humanities and Social Sciences Interfaces Interlayers Magnons Microscopy Momentum multidisciplinary Phonons Plasmons Science Science (multidisciplinary) Spectrum analysis Superconductivity Thermal conductivity Twisting |
Title | Quantum twisting microscopy of phonons in twisted bilayer graphene |
URI | https://link.springer.com/article/10.1038/s41586-025-08881-8 https://www.ncbi.nlm.nih.gov/pubmed/40269161 https://www.proquest.com/docview/3219891857 https://www.proquest.com/docview/3194254660 https://pubmed.ncbi.nlm.nih.gov/PMC12058523 |
Volume | 641 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHgR31ZXieBB0WLbtGn2uLu4iKAgKHgrSZrqglvF3UX8986k7cr6OHhOSNJ5dGbIN18AjgJtMQjx3M8DnfoxV9xXurDoeLloh0WC9Rs1OF_fiMv7-OoheZiDqOmFcaB9R2npftMNOux8hIFGElw28dEvZOjLeVgk6nay6p7ofcE6vjEv140yAZe_rDEbjH5kmD-Bkt9uS10Q6q_CSp09sk513jWYs-U6LDkUpxmtw1rtqSN2XNNJn2xA93aC0psM2fid_Ll8ZEMC4VE7ygd7KRiB09H02KCsZtic6cGzwlScOTZrXGgT7vsXd71Lv345wTdYToz9RCjMQ8LcpDKOAhEFmIaFmKoQG7wMjVA5z7UObET3sEom2lBeYIo0lcQBZ_gWLODWdgeYEG1rUI8YxiJ6jU6nwmCJFesibvNYKQ9OGxFmrxVBRuYutrnMKoFnKPDMCTyTHrQaKWe1s4wyHhFwi0ipPDicDqOZ092FKu3LBOeE7Zio-0XgwXallOl2WAKjXYnQAzmjrukEotCeHSkHT45KO0TRSKzFPThrNPt1rr8_Y_d_0_dgOXJWR4bXgoXx28TuYy4z1gew2Ol3uzcHzog_AaCD7Ik |
linkProvider | Springer Nature |
linkToHtml | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6NoYm9TKzAljHASDxsgogkThz3ESqmbnSTJrXS3izbcVilNZtoKsS_585JWrWDB55t2c75Lved_PkzwIfIOExCvAiLyORhyjUPtSkdBl4h-nGZYf1GF5wvr8Rwkl7cZDdbkHR3YTxp30ta-t90xw77PMdEI4kum4UYFzIO5RN4ilhbEI1rIAYrWseG8nJ7USbi8i9jrCejRwjzMVFy47TUJ6Gz57DXokf2pVnvPmy5qgc7nsVp5z3YbyN1zk5aOenTF_D1eoHWW8xY_YviufrBZkTCo-sov9l9yYicjq7HplXTwxXMTO80QnHm1axxoJcwOfs2HgzD9uWE0GI5UYeZ0IhD4sLmMk0ikUQIw2KEKqQGL2MrdMELYyKX0DmslpmxhAtsmeeSNOAsfwXbOLU7BCZE31ncR0xjCb1GZ3JhscRKTZn2eap1AB87E6qHRiBD-YNtLlVjcIUGV97gSgZw3FlZtcEyVzwh4haJUgXwftmMbk5nF7py9wvsE_dTku4XUQAHzaYsp8MSGP1KxAHIte1adiAJ7fWWanrrpbRjNI3EWjyAT93Ortb17884-r_u7-DZcHw5UqPzq--vYTfxHkhOeAzb9c-Fe4O4pjZvvSP_AXYO7fw |
linkToPdf | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BFYhLxWdJgeJKHEAQmsSJ4z3Cwoq2gEACiZtlO067Ugmou6uq_54ZJ1m0fBw427Kd8Uzmjfz8DLAdGYdJiBdhEZk8TLnmoTalw8ArRCcuM6zf6ILz-YU4vUl_3Ga3UyDauzCetO8lLf1vumWHfRtgopFEl81CjAsZh_LgoSin4QPi7YiKrq7oPlE7nqkvN5dlIi5fGWcyIb1AmS_Jks9OTH0i6i3AxwZBssN6zYsw5aolmPVMTjtYgsUmWgdsp5GU3l2Go6sRWnB0x4b_KKarX-yOiHh0JeU_uy8ZEdTR_Vi_qnu4gpn-H41wnHlFaxxoBW56J9fd07B5PSG0WFIMw0xoxCJxYXOZJpFIIoRiMcIVUoSXsRW64IUxkUvoLFbLzFjCBrbMc0k6cJavwgxO7daACdFxFvcSU1lCL9KZXFgss1JTph2eah3AXmtC9VCLZCh_uM2lqg2u0ODKG1zJADZaK6smYAaKJ0TeImGqAL6Om9HV6fxCV-5-hH3iTkry_SIK4FO9KePpsAxG3xJxAHJiu8YdSEZ7sqXq__Zy2jGaRmI9HsB-u7NP63r7Mz6_r_sWzF0e99TZ94uf6zCfeAckH9yAmeHfkdtEaDM0X7wfPwLvze8F |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+twisting+microscopy+of+phonons+in+twisted+bilayer+graphene&rft.jtitle=Nature+%28London%29&rft.au=Birkbeck%2C+J.&rft.au=Xiao%2C+J.&rft.au=Inbar%2C+A.&rft.au=Taniguchi%2C+T.&rft.date=2025-05-08&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=641&rft.issue=8062&rft.spage=345&rft.epage=351&rft_id=info:doi/10.1038%2Fs41586-025-08881-8&rft.externalDocID=10_1038_s41586_025_08881_8 |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon |