Quantum twisting microscopy of phonons in twisted bilayer graphene

The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge....

Full description

Saved in:
Bibliographic Details
Published inNature (London) Vol. 641; no. 8062; pp. 345 - 351
Main Authors Birkbeck, J., Xiao, J., Inbar, A., Taniguchi, T., Watanabe, K., Berg, E., Glazman, L., Guinea, F., von Oppen, F., Ilani, S.
Format Journal Article
LanguageEnglish
Published London Nature Publishing Group UK 08.05.2025
Nature Publishing Group
Subjects
Online AccessGet full text

Cover

Loading…
Abstract The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron–phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope 1 (QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, the inelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (TBG) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, TBG exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric ‘phason’ mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons 2 , magnons 3 and spinons 4 in quantum materials. Generalization of a quantum twisting microscope to cryogenic temperatures in twisted bilayer graphene shows the ability to map phononic dispersions through inelastic momentum-conserving tunnelling and reveals an angle-dependent coupling between electrons and phonons.
AbstractList The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron–phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope 1 (QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, the inelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (TBG) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, TBG exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric ‘phason’ mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons 2 , magnons 3 and spinons 4 in quantum materials. Generalization of a quantum twisting microscope to cryogenic temperatures in twisted bilayer graphene shows the ability to map phononic dispersions through inelastic momentum-conserving tunnelling and reveals an angle-dependent coupling between electrons and phonons.
The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron-phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope1 (QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, the inelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (TBG) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, TBG exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric 'phason' mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons2, magnons3 and spinons4 in quantum materials.The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron-phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope1 (QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, the inelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (TBG) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, TBG exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric 'phason' mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons2, magnons3 and spinons4 in quantum materials.
The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such asresistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modesremain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron-phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope' (QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, theinelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (ТВС) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, ТВС exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric 'phason' mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons?, magnons' and spinons· in quantum materials.
The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat conductivity and superconductivity. However, direct measurements of this coupling for individual phonon modes remain a substantial challenge. In this work, we introduce a new technique for mapping phonon dispersions and electron-phonon coupling (EPC) in van der Waals (vdW) materials. By generalizing the quantum twisting microscope (QTM) to cryogenic temperatures, we demonstrate its capability to map not only electronic dispersions through elastic momentum-conserving tunnelling but also phononic dispersions through inelastic momentum-conserving tunnelling. Crucially, the inelastic tunnelling strength provides a direct and quantitative measure of the momentum and mode-resolved EPC. We use this technique to measure the phonon spectrum and EPC of twisted bilayer graphene (TBG) with twist angles larger than 6°. Notably, we find that, unlike standard acoustic phonons, whose coupling to electrons diminishes as their momentum tends to zero, TBG exhibits a low-energy mode whose coupling increases with decreasing twist angle. We show that this unusual coupling arises from the modulation of the interlayer tunnelling by a layer-antisymmetric 'phason' mode of the moiré system. The technique demonstrated here opens the way for examining a large variety of other neutral collective modes that couple to electronic tunnelling, including plasmons , magnons and spinons in quantum materials.
Author Glazman, L.
Inbar, A.
Ilani, S.
Guinea, F.
Birkbeck, J.
Xiao, J.
Watanabe, K.
Taniguchi, T.
Berg, E.
von Oppen, F.
Author_xml – sequence: 1
  givenname: J.
  orcidid: 0000-0002-6916-4375
  surname: Birkbeck
  fullname: Birkbeck, J.
  organization: Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 2
  givenname: J.
  surname: Xiao
  fullname: Xiao, J.
  organization: Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 3
  givenname: A.
  surname: Inbar
  fullname: Inbar, A.
  organization: Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 4
  givenname: T.
  orcidid: 0000-0002-1467-3105
  surname: Taniguchi
  fullname: Taniguchi, T.
  organization: National Institute for Materials Science
– sequence: 5
  givenname: K.
  orcidid: 0000-0003-3701-8119
  surname: Watanabe
  fullname: Watanabe, K.
  organization: National Institute for Materials Science
– sequence: 6
  givenname: E.
  orcidid: 0000-0001-8956-3384
  surname: Berg
  fullname: Berg, E.
  organization: Department of Condensed Matter Physics, Weizmann Institute of Science
– sequence: 7
  givenname: L.
  orcidid: 0000-0002-2870-3387
  surname: Glazman
  fullname: Glazman, L.
  organization: Department of Physics, Yale University
– sequence: 8
  givenname: F.
  orcidid: 0000-0001-5915-5427
  surname: Guinea
  fullname: Guinea, F.
  organization: IMDEA Nanoscience, Donostia International Physics Center
– sequence: 9
  givenname: F.
  orcidid: 0000-0002-2537-7256
  surname: von Oppen
  fullname: von Oppen, F.
  organization: Dahlem Center for Complex Quantum Systems, Fachbereich Physik, Freie Universität Berlin
– sequence: 10
  givenname: S.
  orcidid: 0000-0001-8589-7723
  surname: Ilani
  fullname: Ilani, S.
  email: shahal.ilani@weizmann.ac.il
  organization: Department of Condensed Matter Physics, Weizmann Institute of Science
BackLink https://www.ncbi.nlm.nih.gov/pubmed/40269161$$D View this record in MEDLINE/PubMed
BookMark eNp9kUtv1TAQhS3Uit4W_gALFIkNm1CPHduTFYKKAlKlqhKsLcfxvddVYgc7Ad1_j9uU8liwmsV858zjnJKjEIMj5AXQN0A5nucGBMqaMlFTRIQan5ANNErWjUR1RDaUMiwtLk_Iac63lFIBqnlKThrKZAsSNuT9zWLCvIzV_MPn2YddNXqbYrZxOlRxW037WKbmyoeVcH3V-cEcXKp2yUx7F9wzcrw1Q3bPH-oZ-Xr54cvFp_rq-uPni3dXtW0YzrWQBlsOvVXYMCoZFRQBFONtuQKsND3vu446JhVTBkVnoaVgt0ohBWgtPyNvV99p6UbXWxfmZAY9JT-adNDReP13J_i93sXvGsosFIwXh9cPDil-W1ye9eizdcNggotL1hzaholGSlrQV_-gt3FJodynOYMWW0ChCvXyz5Ued_n13wKwFbj7aU5u-4gA1Xch6jVEXULU9yFqLCK-inKBw86l37P_o_oJ03mdrQ
Cites_doi 10.1016/j.ssc.2007.03.052
10.1103/PhysRevB.26.4514
10.1103/PhysRevLett.128.065901
10.1103/PhysRevLett.92.075501
10.1038/nmat3245
10.1103/PhysRevB.103.235401
10.1103/PhysRevB.110.085160
10.1038/s41586-024-08227-w
10.1103/PhysRevB.106.075420
10.1103/PhysRevB.100.155426
10.1016/j.ssc.2004.04.042
10.1103/PhysRevLett.109.236604
10.1103/PhysRevB.99.140302
10.1103/PhysRevB.76.035439
10.1021/acs.nanolett.2c02010
10.1038/s41586-022-05685-y
10.1103/PhysRevLett.122.257002
10.1103/PhysRevLett.133.266201
10.1103/PhysRevB.101.195425
10.1038/s41467-018-03479-3
10.1016/j.aop.2020.168193
10.1103/PhysRevB.107.075408
10.1103/PhysRevB.110.205407
10.1103/PhysRevB.75.045404
10.1143/JPSJ.75.124701
10.1038/nnano.2016.85
10.1038/s41567-019-0596-3
10.1039/D0CP05833E
10.1103/PhysRevLett.87.037001
10.1103/PhysRevB.110.045133
10.1103/PhysRevLett.124.076801
10.1103/PhysRevB.98.241412
10.1088/2053-1583/ad3b0e
10.1103/PhysRevB.109.035127
10.1021/acs.nanolett.6b01657
10.1103/PhysRevLett.105.256805
10.1021/nl201771h
10.1038/nature26160
10.1103/PhysRevB.99.165112
10.1103/PhysRevLett.93.185503
10.1103/PhysRevB.77.115449
10.1038/s41586-019-1477-8
10.1103/PhysRevB.108.075168
10.1103/PhysRevB.95.165408
10.1126/science.aaw1662
10.1038/srep16642
10.1103/PhysRevLett.121.257001
10.1103/PhysRevB.100.075416
10.1063/PT.3.4497
10.1103/PhysRevB.81.245412
10.1038/nphys1022
10.1103/PhysRevB.110.045116
10.1038/s41467-021-25864-1
10.1021/acs.nanolett.6b04369
10.1021/nl200758b
10.1103/PhysRevLett.116.186603
ContentType Journal Article
Copyright The Author(s) 2025
2025. The Author(s).
Copyright Nature Publishing Group 2025
The Author(s) 2025 2025
Copyright_xml – notice: The Author(s) 2025
– notice: 2025. The Author(s).
– notice: Copyright Nature Publishing Group 2025
– notice: The Author(s) 2025 2025
DBID C6C
AAYXX
CITATION
NPM
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
C1K
FR3
H94
K9.
KL.
M7N
NAPCQ
P64
RC3
SOI
7X8
5PM
DOI 10.1038/s41586-025-08881-8
DatabaseName Springer Nature OA/Free Journals
CrossRef
PubMed
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Calcium & Calcified Tissue Abstracts
Chemoreception Abstracts
Ecology Abstracts
Entomology Abstracts (Full archive)
Environment Abstracts
Immunology Abstracts
Meteorological & Geoastrophysical Abstracts
Neurosciences Abstracts
Nucleic Acids Abstracts
Oncogenes and Growth Factors Abstracts
Virology and AIDS Abstracts
Technology Research Database
Environmental Sciences and Pollution Management
Engineering Research Database
AIDS and Cancer Research Abstracts
ProQuest Health & Medical Complete (Alumni)
Meteorological & Geoastrophysical Abstracts - Academic
Algology Mycology and Protozoology Abstracts (Microbiology C)
Nursing & Allied Health Premium
Biotechnology and BioEngineering Abstracts
Genetics Abstracts
Environment Abstracts
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
PubMed
Virology and AIDS Abstracts
Oncogenes and Growth Factors Abstracts
Technology Research Database
Nucleic Acids Abstracts
ProQuest Health & Medical Complete (Alumni)
Ecology Abstracts
Neurosciences Abstracts
Biotechnology and BioEngineering Abstracts
Environmental Sciences and Pollution Management
Entomology Abstracts
Nursing & Allied Health Premium
Genetics Abstracts
Meteorological & Geoastrophysical Abstracts
Animal Behavior Abstracts
Bacteriology Abstracts (Microbiology B)
Algology Mycology and Protozoology Abstracts (Microbiology C)
AIDS and Cancer Research Abstracts
Chemoreception Abstracts
Immunology Abstracts
Engineering Research Database
Calcium & Calcified Tissue Abstracts
Environment Abstracts
Meteorological & Geoastrophysical Abstracts - Academic
MEDLINE - Academic
DatabaseTitleList

MEDLINE - Academic
Virology and AIDS Abstracts
PubMed
Database_xml – sequence: 1
  dbid: C6C
  name: Springer Nature OA Free Journals
  url: http://www.springeropen.com/
  sourceTypes: Publisher
– sequence: 2
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
DeliveryMethod fulltext_linktorsrc
Discipline Sciences (General)
Physics
EISSN 1476-4687
EndPage 351
ExternalDocumentID PMC12058523
40269161
10_1038_s41586_025_08881_8
Genre Journal Article
GroupedDBID ---
--Z
-DZ
-ET
-~X
.55
.CO
.XZ
07C
0R~
123
186
1OL
29M
2KS
39C
5RE
6TJ
70F
7RV
85S
8WZ
97F
A6W
A7Z
AAHBH
AAHTB
AAIKC
AAKAB
AAMNW
AASDW
AAYEP
AAYZH
ABDQB
ABFSI
ABIVO
ABJNI
ABLJU
ABOCM
ABPEJ
ABPPZ
ABWJO
ABZEH
ACBEA
ACBWK
ACGFO
ACGFS
ACGOD
ACIWK
ACKOT
ACMFV
ACMJI
ACNCT
ACPRK
ACWUS
ADBBV
ADFRT
ADUKH
AENEX
AFANA
AFBBN
AFFNX
AFLOW
AFRAH
AFSHS
AGAYW
AGHSJ
AGOIJ
AGSOS
AHMBA
AHSBF
AIDUJ
ALFFA
ALIPV
ALMA_UNASSIGNED_HOLDINGS
ALPWD
AMTXH
ARAPS
ARMCB
ASPBG
ATCPS
ATHPR
ATWCN
AVWKF
AXYYD
AZFZN
BENPR
BHPHI
BIN
BKKNO
C6C
CJ0
CS3
DU5
E.-
E.L
EAP
EBS
EE.
EPS
EXGXG
F5P
FAC
FEDTE
FQGFK
FSGXE
HCIFZ
HG6
HVGLF
HZ~
IAO
ICQ
IEA
IEP
IGS
IH2
IHR
INH
IOF
IPY
KOO
L7B
LGEZI
LOTEE
LSO
M0K
M2O
M7P
N9A
NADUK
NEPJS
NFIDA
NXXTH
O9-
OBC
ODYON
OES
OHH
OMK
OVD
P2P
PV9
RND
RNS
RNT
RNTTT
RXW
SC5
SHXYY
SIXXV
SJN
SNYQT
SOJ
TAE
TAOOD
TBHMF
TDRGL
TN5
TSG
TWZ
U5U
UKR
UMC
UMD
UQL
VVN
WH7
X7M
XIH
XKW
XZL
Y6R
YAE
YFH
YJ6
YNT
YOC
YQT
YR2
YR5
YXB
YZZ
ZCA
~02
~88
~KM
AARCD
AAYXX
ABFSG
ACSTC
AEZWR
AFHIU
AHWEU
AIXLP
CITATION
NAPCQ
TEORI
.-4
.GJ
.HR
00M
08P
0WA
1CY
1VR
1VW
2XV
354
3EH
3O-
4.4
41X
41~
42X
4R4
53G
663
79B
7X2
7X7
7XC
88E
88I
8AF
8AO
8C1
8CJ
8FE
8FG
8FH
8FI
8FJ
8G5
8R4
8R5
97L
9M8
A8Z
AAJYS
AAKAS
AAVBQ
ABAWZ
ABDBF
ABDPE
ABEFU
ABJCF
ABNNU
ABUWG
ACBNA
ACBTR
ACRPL
ACTDY
ACUHS
ADGHP
ADNMO
ADRHT
ADXHL
ADYSU
ADZCM
AETEA
AEUYN
AFFDN
AFHKK
AFKRA
AGCDD
AGGDT
AGNAY
AGQPQ
AIDAL
AIYXT
AJUXI
APEBS
ARTTT
AZQEC
B0M
BBNVY
BCR
BCU
BDKGC
BEC
BES
BGLVJ
BKEYQ
BKOMP
BKSAR
BLC
BPHCQ
BVXVI
CCPQU
D1I
D1J
D1K
DB5
DO4
DWQXO
EAD
EAS
EAZ
EBC
EBD
EBO
ECC
EJD
EMB
EMF
EMH
EMK
EMOBN
EPL
ESE
ESN
ESX
EX3
FA8
FYUFA
GNUQQ
GUQSH
HMCUK
I-F
INR
ISR
ITC
J5H
K6-
KB.
L-9
L6V
LK5
LK8
M1P
M2M
M2P
M7R
M7S
MVM
N4W
NEJ
NPM
OHT
P-O
P62
PATMY
PCBAR
PDBOC
PEA
PHGZM
PHGZT
PJZUB
PM3
PPXIY
PQGLB
PQQKQ
PROAC
PSQYO
PSYQQ
PTHSS
PYCSY
Q2X
QS-
R05
R4F
RHI
S0X
SJFOW
SKT
SV3
TH9
TUD
TUS
UBY
UHB
UKHRP
USG
VOH
WOW
X7L
XOL
YQI
YQJ
YV5
YXA
YYP
YYQ
ZCG
ZE2
ZGI
ZHY
ZKB
ZY4
~7V
~8M
~G0
7QG
7QL
7QP
7QR
7SN
7SS
7ST
7T5
7TG
7TK
7TM
7TO
7U9
8FD
AFKWF
C1K
FR3
H94
K9.
KL.
M7N
P64
RC3
SOI
7X8
5PM
ID FETCH-LOGICAL-c428t-56a8931dc784206205081172391581c6ad3dbb0e26727a85bc1901cf7780119c3
IEDL.DBID C6C
ISSN 0028-0836
1476-4687
IngestDate Thu Aug 21 18:27:10 EDT 2025
Wed Jul 02 04:50:11 EDT 2025
Sat Aug 23 13:04:22 EDT 2025
Mon Jul 21 05:47:44 EDT 2025
Tue Jul 01 04:54:09 EDT 2025
Thu May 08 05:26:46 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Issue 8062
Language English
License 2025. The Author(s).
Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-56a8931dc784206205081172391581c6ad3dbb0e26727a85bc1901cf7780119c3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 14
content type line 23
ORCID 0000-0002-1467-3105
0000-0003-3701-8119
0000-0001-8589-7723
0000-0001-5915-5427
0000-0002-2870-3387
0000-0002-2537-7256
0000-0002-6916-4375
0000-0001-8956-3384
OpenAccessLink https://www.nature.com/articles/s41586-025-08881-8
PMID 40269161
PQID 3219891857
PQPubID 40569
PageCount 7
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_12058523
proquest_miscellaneous_3194254660
proquest_journals_3219891857
pubmed_primary_40269161
crossref_primary_10_1038_s41586_025_08881_8
springer_journals_10_1038_s41586_025_08881_8
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2025-05-08
PublicationDateYYYYMMDD 2025-05-08
PublicationDate_xml – month: 05
  year: 2025
  text: 2025-05-08
  day: 08
PublicationDecade 2020
PublicationPlace London
PublicationPlace_xml – name: London
– name: England
PublicationSubtitle International weekly journal of science
PublicationTitle Nature (London)
PublicationTitleAbbrev Nature
PublicationTitleAlternate Nature
PublicationYear 2025
Publisher Nature Publishing Group UK
Nature Publishing Group
Publisher_xml – name: Nature Publishing Group UK
– name: Nature Publishing Group
References AS Mayorov (8881_CR6) 2011; 11
Y Cao (8881_CR9) 2020; 124
YH Kwan (8881_CR46) 2024; 110
R Bistritzer (8881_CR39) 2010; 81
A Ceferino (8881_CR53) 2024; 11
H Polshyn (8881_CR10) 2019; 15
PH Tan (8881_CR28) 2012; 11
M Koshino (8881_CR55) 2020; 101
H Ochoa (8881_CR23) 2022; 128
M Koshino (8881_CR19) 2019; 100
M Mohr (8881_CR31) 2007; 76
F Wu (8881_CR11) 2018; 121
DK Efetov (8881_CR36) 2010; 105
I Yudhistira (8881_CR14) 2019; 99
EH Hwang (8881_CR5) 2007; 77
YW Choi (8881_CR12) 2018; 98
B Lian (8881_CR16) 2019; 122
S Jung (8881_CR41) 2015; 5
Q Gao (8881_CR21) 2022; 106
EE Vdovin (8881_CR42) 2016; 116
A Inbar (8881_CR1) 2023; 614
M Polini (8881_CR7) 2020; 73
X Liu (8881_CR20) 2022; 22
F Pichler (8881_CR3) 2024; 110
F Wu (8881_CR15) 2019; 99
H Ochoa (8881_CR24) 2023; 108
R Al-Jishi (8881_CR52) 1982; 26
GSN Eliel (8881_CR29) 2018; 9
FHL Koppens (8881_CR2) 2011; 11
T Chari (8881_CR38) 2016; 16
AHC Neto (8881_CR48) 2007; 75
G Sharma (8881_CR17) 2021; 12
S Piscanec (8881_CR47) 2004; 93
Y Zhang (8881_CR40) 2008; 4
MMA Ezzi (8881_CR54) 2024; 133
AC Ferrari (8881_CR27) 2007; 143
B Holst (8881_CR35) 2021; 23
Y Cao (8881_CR8) 2018; 556
U Chandni (8881_CR43) 2016; 16
L Wirtz (8881_CR51) 2004; 131
V Perebeinos (8881_CR44) 2012; 109
J Xiao (8881_CR49) 2024; 110
C Chen (8881_CR26) 2024; 636
S Tanaka (8881_CR32) 2017; 95
V Peri (8881_CR4) 2024; 109
T Ando (8881_CR50) 2006; 75
C-X Liu (8881_CR13) 2024; 110
R Senga (8881_CR33) 2019; 573
SD Sarma (8881_CR45) 2020; 417
E Koren (8881_CR37) 2016; 11
C Lewandowski (8881_CR18) 2021; 103
H Ochoa (8881_CR22) 2019; 100
MX Na (8881_CR25) 2019; 366
J Kang (8881_CR56) 2023; 107
J Maultzsch (8881_CR30) 2004; 92
T Yildirim (8881_CR34) 2001; 87
References_xml – volume: 143
  start-page: 47
  year: 2007
  ident: 8881_CR27
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2007.03.052
– volume: 26
  start-page: 4514
  year: 1982
  ident: 8881_CR52
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.26.4514
– volume: 128
  start-page: 065901
  year: 2022
  ident: 8881_CR23
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.128.065901
– volume: 92
  start-page: 075501
  year: 2004
  ident: 8881_CR30
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.92.075501
– volume: 11
  start-page: 294
  year: 2012
  ident: 8881_CR28
  publication-title: Nat. Mater.
  doi: 10.1038/nmat3245
– volume: 103
  start-page: 235401
  year: 2021
  ident: 8881_CR18
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.103.235401
– volume: 110
  start-page: 085160
  year: 2024
  ident: 8881_CR46
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.110.085160
– volume: 636
  start-page: 342
  year: 2024
  ident: 8881_CR26
  publication-title: Nature
  doi: 10.1038/s41586-024-08227-w
– volume: 106
  start-page: 075420
  year: 2022
  ident: 8881_CR21
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.106.075420
– volume: 100
  start-page: 155426
  year: 2019
  ident: 8881_CR22
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.155426
– volume: 131
  start-page: 141
  year: 2004
  ident: 8881_CR51
  publication-title: Solid State Commun.
  doi: 10.1016/j.ssc.2004.04.042
– volume: 109
  start-page: 236604
  year: 2012
  ident: 8881_CR44
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.109.236604
– volume: 99
  start-page: 140302
  year: 2019
  ident: 8881_CR14
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.140302
– volume: 76
  start-page: 035439
  year: 2007
  ident: 8881_CR31
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.76.035439
– volume: 22
  start-page: 7791
  year: 2022
  ident: 8881_CR20
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.2c02010
– volume: 614
  start-page: 682
  year: 2023
  ident: 8881_CR1
  publication-title: Nature
  doi: 10.1038/s41586-022-05685-y
– volume: 122
  start-page: 257002
  year: 2019
  ident: 8881_CR16
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.122.257002
– volume: 133
  start-page: 266201
  year: 2024
  ident: 8881_CR54
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.133.266201
– volume: 101
  start-page: 195425
  year: 2020
  ident: 8881_CR55
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.101.195425
– volume: 9
  year: 2018
  ident: 8881_CR29
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-018-03479-3
– volume: 417
  start-page: 168193
  year: 2020
  ident: 8881_CR45
  publication-title: Ann. Phys.
  doi: 10.1016/j.aop.2020.168193
– volume: 107
  start-page: 075408
  year: 2023
  ident: 8881_CR56
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.107.075408
– volume: 110
  start-page: 205407
  year: 2024
  ident: 8881_CR49
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.110.205407
– volume: 75
  start-page: 045404
  year: 2007
  ident: 8881_CR48
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.75.045404
– volume: 75
  start-page: 124701
  year: 2006
  ident: 8881_CR50
  publication-title: J. Phys. Soc. Jpn.
  doi: 10.1143/JPSJ.75.124701
– volume: 11
  start-page: 752
  year: 2016
  ident: 8881_CR37
  publication-title: Nat. Nanotechnol.
  doi: 10.1038/nnano.2016.85
– volume: 15
  start-page: 1011
  year: 2019
  ident: 8881_CR10
  publication-title: Nat. Phys.
  doi: 10.1038/s41567-019-0596-3
– volume: 23
  start-page: 7653
  year: 2021
  ident: 8881_CR35
  publication-title: Phys. Chem. Chem. Phys.
  doi: 10.1039/D0CP05833E
– volume: 87
  start-page: 037001
  year: 2001
  ident: 8881_CR34
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.87.037001
– volume: 110
  start-page: 045133
  year: 2024
  ident: 8881_CR13
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.110.045133
– volume: 124
  start-page: 076801
  year: 2020
  ident: 8881_CR9
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.124.076801
– volume: 98
  start-page: 241412
  year: 2018
  ident: 8881_CR12
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.98.241412
– volume: 11
  start-page: 035015
  year: 2024
  ident: 8881_CR53
  publication-title: 2D Mater.
  doi: 10.1088/2053-1583/ad3b0e
– volume: 109
  start-page: 035127
  year: 2024
  ident: 8881_CR4
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.109.035127
– volume: 16
  start-page: 4477
  year: 2016
  ident: 8881_CR38
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b01657
– volume: 105
  start-page: 256805
  year: 2010
  ident: 8881_CR36
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.105.256805
– volume: 11
  start-page: 3370
  year: 2011
  ident: 8881_CR2
  publication-title: Nano Lett.
  doi: 10.1021/nl201771h
– volume: 556
  start-page: 43
  year: 2018
  ident: 8881_CR8
  publication-title: Nature
  doi: 10.1038/nature26160
– volume: 99
  start-page: 165112
  year: 2019
  ident: 8881_CR15
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.99.165112
– volume: 93
  start-page: 185503
  year: 2004
  ident: 8881_CR47
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.93.185503
– volume: 77
  start-page: 115449
  year: 2007
  ident: 8881_CR5
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.77.115449
– volume: 573
  start-page: 247
  year: 2019
  ident: 8881_CR33
  publication-title: Nature
  doi: 10.1038/s41586-019-1477-8
– volume: 108
  start-page: 075168
  year: 2023
  ident: 8881_CR24
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.108.075168
– volume: 95
  start-page: 165408
  year: 2017
  ident: 8881_CR32
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.95.165408
– volume: 366
  start-page: 1231
  year: 2019
  ident: 8881_CR25
  publication-title: Science
  doi: 10.1126/science.aaw1662
– volume: 5
  year: 2015
  ident: 8881_CR41
  publication-title: Sci. Rep.
  doi: 10.1038/srep16642
– volume: 121
  start-page: 257001
  year: 2018
  ident: 8881_CR11
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.121.257001
– volume: 100
  start-page: 075416
  year: 2019
  ident: 8881_CR19
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.100.075416
– volume: 73
  start-page: 28
  year: 2020
  ident: 8881_CR7
  publication-title: Phys. Today
  doi: 10.1063/PT.3.4497
– volume: 81
  start-page: 245412
  year: 2010
  ident: 8881_CR39
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.81.245412
– volume: 4
  start-page: 627
  year: 2008
  ident: 8881_CR40
  publication-title: Nat. Phys.
  doi: 10.1038/nphys1022
– volume: 110
  start-page: 045116
  year: 2024
  ident: 8881_CR3
  publication-title: Phys. Rev. B
  doi: 10.1103/PhysRevB.110.045116
– volume: 12
  year: 2021
  ident: 8881_CR17
  publication-title: Nat. Commun.
  doi: 10.1038/s41467-021-25864-1
– volume: 16
  start-page: 7982
  year: 2016
  ident: 8881_CR43
  publication-title: Nano Lett.
  doi: 10.1021/acs.nanolett.6b04369
– volume: 11
  start-page: 2396
  year: 2011
  ident: 8881_CR6
  publication-title: Nano Lett.
  doi: 10.1021/nl200758b
– volume: 116
  start-page: 186603
  year: 2016
  ident: 8881_CR42
  publication-title: Phys. Rev. Lett.
  doi: 10.1103/PhysRevLett.116.186603
SSID ssj0005174
Score 2.503073
Snippet The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such as resistivity, heat...
The coupling between electrons and phonons is one of the fundamental interactions in solids, underpinning a wide range of phenomena, such asresistivity, heat...
SourceID pubmedcentral
proquest
pubmed
crossref
springer
SourceType Open Access Repository
Aggregation Database
Index Database
Publisher
StartPage 345
SubjectTerms 639/301/357/918
639/766/119/995
639/766/930/328/968
Acoustics
Bias
Bilayers
Coupling
Dispersions
Electrons
Energy
Graphene
Graphite
Humanities and Social Sciences
Interfaces
Interlayers
Magnons
Microscopy
Momentum
multidisciplinary
Phonons
Plasmons
Science
Science (multidisciplinary)
Spectrum analysis
Superconductivity
Thermal conductivity
Twisting
Title Quantum twisting microscopy of phonons in twisted bilayer graphene
URI https://link.springer.com/article/10.1038/s41586-025-08881-8
https://www.ncbi.nlm.nih.gov/pubmed/40269161
https://www.proquest.com/docview/3219891857
https://www.proquest.com/docview/3194254660
https://pubmed.ncbi.nlm.nih.gov/PMC12058523
Volume 641
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1LS8QwEB58IHgR31ZXieBB0WLbtGn2uLu4iKAgKHgrSZrqglvF3UX8986k7cr6OHhOSNJ5dGbIN18AjgJtMQjx3M8DnfoxV9xXurDoeLloh0WC9Rs1OF_fiMv7-OoheZiDqOmFcaB9R2npftMNOux8hIFGElw28dEvZOjLeVgk6nay6p7ofcE6vjEv140yAZe_rDEbjH5kmD-Bkt9uS10Q6q_CSp09sk513jWYs-U6LDkUpxmtw1rtqSN2XNNJn2xA93aC0psM2fid_Ll8ZEMC4VE7ygd7KRiB09H02KCsZtic6cGzwlScOTZrXGgT7vsXd71Lv345wTdYToz9RCjMQ8LcpDKOAhEFmIaFmKoQG7wMjVA5z7UObET3sEom2lBeYIo0lcQBZ_gWLODWdgeYEG1rUI8YxiJ6jU6nwmCJFesibvNYKQ9OGxFmrxVBRuYutrnMKoFnKPDMCTyTHrQaKWe1s4wyHhFwi0ipPDicDqOZ092FKu3LBOeE7Zio-0XgwXallOl2WAKjXYnQAzmjrukEotCeHSkHT45KO0TRSKzFPThrNPt1rr8_Y_d_0_dgOXJWR4bXgoXx28TuYy4z1gew2Ol3uzcHzog_AaCD7Ik
linkProvider Springer Nature
linkToHtml http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1Rb9MwED6NoYm9TKzAljHASDxsgogkThz3ESqmbnSTJrXS3izbcVilNZtoKsS_585JWrWDB55t2c75Lved_PkzwIfIOExCvAiLyORhyjUPtSkdBl4h-nGZYf1GF5wvr8Rwkl7cZDdbkHR3YTxp30ta-t90xw77PMdEI4kum4UYFzIO5RN4ilhbEI1rIAYrWseG8nJ7USbi8i9jrCejRwjzMVFy47TUJ6Gz57DXokf2pVnvPmy5qgc7nsVp5z3YbyN1zk5aOenTF_D1eoHWW8xY_YviufrBZkTCo-sov9l9yYicjq7HplXTwxXMTO80QnHm1axxoJcwOfs2HgzD9uWE0GI5UYeZ0IhD4sLmMk0ikUQIw2KEKqQGL2MrdMELYyKX0DmslpmxhAtsmeeSNOAsfwXbOLU7BCZE31ncR0xjCb1GZ3JhscRKTZn2eap1AB87E6qHRiBD-YNtLlVjcIUGV97gSgZw3FlZtcEyVzwh4haJUgXwftmMbk5nF7py9wvsE_dTku4XUQAHzaYsp8MSGP1KxAHIte1adiAJ7fWWanrrpbRjNI3EWjyAT93Ortb17884-r_u7-DZcHw5UqPzq--vYTfxHkhOeAzb9c-Fe4O4pjZvvSP_AXYO7fw
linkToPdf http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwlV1NT9wwEB0BFYhLxWdJgeJKHEAQmsSJ4z3Cwoq2gEACiZtlO067Ugmou6uq_54ZJ1m0fBw427Kd8Uzmjfz8DLAdGYdJiBdhEZk8TLnmoTalw8ArRCcuM6zf6ILz-YU4vUl_3Ga3UyDauzCetO8lLf1vumWHfRtgopFEl81CjAsZh_LgoSin4QPi7YiKrq7oPlE7nqkvN5dlIi5fGWcyIb1AmS_Jks9OTH0i6i3AxwZBssN6zYsw5aolmPVMTjtYgsUmWgdsp5GU3l2Go6sRWnB0x4b_KKarX-yOiHh0JeU_uy8ZEdTR_Vi_qnu4gpn-H41wnHlFaxxoBW56J9fd07B5PSG0WFIMw0xoxCJxYXOZJpFIIoRiMcIVUoSXsRW64IUxkUvoLFbLzFjCBrbMc0k6cJavwgxO7daACdFxFvcSU1lCL9KZXFgss1JTph2eah3AXmtC9VCLZCh_uM2lqg2u0ODKG1zJADZaK6smYAaKJ0TeImGqAL6Om9HV6fxCV-5-hH3iTkry_SIK4FO9KePpsAxG3xJxAHJiu8YdSEZ7sqXq__Zy2jGaRmI9HsB-u7NP63r7Mz6_r_sWzF0e99TZ94uf6zCfeAckH9yAmeHfkdtEaDM0X7wfPwLvze8F
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Quantum+twisting+microscopy+of+phonons+in+twisted+bilayer+graphene&rft.jtitle=Nature+%28London%29&rft.au=Birkbeck%2C+J.&rft.au=Xiao%2C+J.&rft.au=Inbar%2C+A.&rft.au=Taniguchi%2C+T.&rft.date=2025-05-08&rft.pub=Nature+Publishing+Group+UK&rft.issn=0028-0836&rft.eissn=1476-4687&rft.volume=641&rft.issue=8062&rft.spage=345&rft.epage=351&rft_id=info:doi/10.1038%2Fs41586-025-08881-8&rft.externalDocID=10_1038_s41586_025_08881_8
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=0028-0836&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=0028-0836&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=0028-0836&client=summon