Engineering enzyme activity using an expanded amino acid alphabet

Abstract Enzyme design and engineering strategies are typically constrained by the limited size of nature’s genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a p...

Full description

Saved in:
Bibliographic Details
Published inProtein engineering, design and selection Vol. 36
Main Authors Birch-Price, Zachary, Taylor, Christopher J, Ortmayer, Mary, Green, Anthony P
Format Journal Article
LanguageEnglish
Published England Oxford University Press 21.01.2023
Subjects
Online AccessGet full text

Cover

Loading…
Abstract Abstract Enzyme design and engineering strategies are typically constrained by the limited size of nature’s genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature’s genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years.
AbstractList Enzyme design and engineering strategies are typically constrained by the limited size of nature’s genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature’s genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years.
Abstract Enzyme design and engineering strategies are typically constrained by the limited size of nature’s genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature’s genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years.
Enzyme design and engineering strategies are typically constrained by the limited size of nature's genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature's genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years.Enzyme design and engineering strategies are typically constrained by the limited size of nature's genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature's genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years.
Author Green, Anthony P
Taylor, Christopher J
Birch-Price, Zachary
Ortmayer, Mary
Author_xml – sequence: 1
  givenname: Zachary
  surname: Birch-Price
  fullname: Birch-Price, Zachary
  email: zachary.price@postgrad.manchester.ac.uk
– sequence: 2
  givenname: Christopher J
  surname: Taylor
  fullname: Taylor, Christopher J
  email: christopher.taylor-10@postgrad.manchester.ac.uk
– sequence: 3
  givenname: Mary
  surname: Ortmayer
  fullname: Ortmayer, Mary
  email: mary.ortmayer@manchester.ac.uk
– sequence: 4
  givenname: Anthony P
  orcidid: 0000-0003-0454-1798
  surname: Green
  fullname: Green, Anthony P
  email: anthony.green@manchester.ac.uk
BackLink https://www.ncbi.nlm.nih.gov/pubmed/36370045$$D View this record in MEDLINE/PubMed
BookMark eNqFkc9LwzAcxYMo_j57kx5FmEuaNE0vgoz5AwZe9BzS5Nst0ia1ScXtr7djU1QQT3kkn_ce5B2hXecdIHRG8BXBBR23nY9g3Xi-UhoTuoMOSc7IaJBs90un_AAdhfCCccpzQvbRAeU0x5hlh-hm6ubWAXTWzRNwq2UDidLRvtm4TPqwvlUugfdWOQMmUY11fgDsIOt2oUqIJ2ivUnWA0-15jJ5vp0-T-9Hs8e5hcjMbaZaKOGKkUHyQuCw1N0zTLKMcRM4My3QpqNFVLnRaGF5wUggB2BSVKTkvocoKAfQYXW9y275swGhwsVO1bDvbqG4pvbLy54uzCzn3b7IQnGJKhoCLbUDnX3sIUTY2aKhr5cD3QaY5zQTnjLEBPf_e9VXy-W8DkG0A3fkQOqiktlFF69fVtpYEy_U-cruP3O4z-Ma_fJ_RfzsuNw7ft__CH-fOpxc
CitedBy_id crossref_primary_10_1002_pro_4640
crossref_primary_10_1021_acs_chemrev_4c00329
crossref_primary_10_1038_s41586_024_07391_3
crossref_primary_10_3389_fsybi_2024_1419557
crossref_primary_10_1021_acs_chemrev_3c00855
crossref_primary_10_1021_acsnano_4c13663
crossref_primary_10_1002_smsc_202300095
crossref_primary_10_3390_app14135546
crossref_primary_10_1021_acs_chemrev_3c00938
crossref_primary_10_1021_acs_chemrev_4c00112
crossref_primary_10_1021_acssynbio_4c00248
crossref_primary_10_1038_s41467_024_46123_z
crossref_primary_10_1021_acs_chemrev_4c00077
crossref_primary_10_1021_acs_chemrev_4c00116
crossref_primary_10_1021_acs_chemrev_4c00136
crossref_primary_10_1021_jacsau_4c00247
crossref_primary_10_1002_ange_202317161
crossref_primary_10_1021_acscatal_4c06052
crossref_primary_10_1021_acs_chemrev_4c00120
crossref_primary_10_1021_acs_jcim_4c01827
crossref_primary_10_1002_anie_202317161
crossref_primary_10_1016_j_rineng_2024_103641
crossref_primary_10_1021_acscatal_3c02746
Cites_doi 10.1002/anie.201813499
10.1038/s41586-022-04414-9
10.1038/s41586-022-05335-3
10.1038/s41557-021-00833-9
10.1038/nature24031
10.1021/ja211499q
10.1038/nsb913
10.1002/anie.201610129
10.1038/nature11117
10.1002/anie.200602877
10.1021/ja010726a
10.1007/s12257-019-0163-x
10.15252/embj.2018101174
10.1016/j.cbpa.2020.01.006
10.1038/nchembio.203
10.1002/cctc.202101875
10.1021/cb3006227
10.1021/cr200075y
10.1021/acs.chemrev.0c01201
10.1038/cr.2016.39
10.1038/s41929-019-0420-6
10.1021/acs.chemrev.6b00737
10.1126/science.1231434
10.1021/ja0640187
10.1021/jacs.7b12621
10.1038/s41586-018-0781-z
10.1021/ja055927j
10.1038/s41586-022-04456-z
10.1093/nar/gkv1255
10.1021/acs.biochem.9b00006
10.1038/nchembio.1498
10.1016/j.synbio.2018.09.003
10.1038/s41557-018-0150-4
10.1038/nchem.2781
10.1021/jacs.6b06843
10.1038/343767a0
10.1021/jacs.9b02700
10.1021/ja970453c
10.1021/ja803213p
10.1038/s41586-022-05342-4
10.1038/s41929-018-0105-6
10.1021/jacs.5b05790
10.1021/acscatal.1c00996
10.1021/bi100238r
10.1038/s41557-018-0059-y
10.1038/s41557-018-0082-z
10.1021/sb400082j
10.1038/emboj.2008.263
10.1021/ja0380906
10.1074/jbc.M600495200
10.1146/annurev.biochem.052308.105824
10.1016/j.jinorgbio.2022.111863
10.1021/acscatal.9b05129
10.1038/s41586-019-1262-8
10.1002/pro.2059
10.3390/molecules23071662
10.1021/ja063358p
10.1021/acscatal.9b02272
10.1021/jacs.6b07029
10.1038/417463a
10.1021/ja3037367
10.1038/nature19946
10.1021/ja067189k
10.1021/jacsau.1c00145
10.1021/ja4059553
10.1021/cb500032c
10.1002/anie.201207229
10.1038/nature06879
10.1039/C4SC01525H
10.1021/cr068370e
ContentType Journal Article
Copyright The Author(s) 2022. Published by Oxford University Press. 2022
The Author(s) 2022. Published by Oxford University Press.
Copyright_xml – notice: The Author(s) 2022. Published by Oxford University Press. 2022
– notice: The Author(s) 2022. Published by Oxford University Press.
DBID TOX
AAYXX
CITATION
CGR
CUY
CVF
ECM
EIF
NPM
7X8
5PM
DOI 10.1093/protein/gzac013
DatabaseName Oxford Journals Open Access Collection
CrossRef
Medline
MEDLINE
MEDLINE (Ovid)
MEDLINE
MEDLINE
PubMed
MEDLINE - Academic
PubMed Central (Full Participant titles)
DatabaseTitle CrossRef
MEDLINE
Medline Complete
MEDLINE with Full Text
PubMed
MEDLINE (Ovid)
MEDLINE - Academic
DatabaseTitleList CrossRef
MEDLINE


MEDLINE - Academic
Database_xml – sequence: 1
  dbid: NPM
  name: PubMed
  url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed
  sourceTypes: Index Database
– sequence: 2
  dbid: EIF
  name: MEDLINE
  url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search
  sourceTypes: Index Database
– sequence: 3
  dbid: TOX
  name: Open Access: Oxford University Press Open Journals
  url: https://academic.oup.com/journals/
  sourceTypes: Publisher
DeliveryMethod fulltext_linktorsrc
EISSN 1741-0134
ExternalDocumentID PMC9863031
36370045
10_1093_protein_gzac013
10.1093/protein/gzac013
Genre Journal Article
GrantInformation_xml – fundername: European Research Council (ERC Starter Grant
  grantid: 757991
– fundername: Biotechnology and Biological Sciences Research Council
– fundername: Biotechnology and Biological Sciences Research Council Manchester Doctoral Training Partnership
– fundername: Centre of Excellence for Biocatalysis, Biotransformations and Biocatalytic Manufacture Studentship
– fundername: ;
– fundername: ;
  grantid: 757991
GroupedDBID ---
-E4
-~X
.2P
.GJ
.I3
.ZR
0R~
123
18M
29P
2WC
4.4
482
48X
53G
5RE
5VS
5WA
5WD
70D
AABZA
AACZT
AAIMJ
AAJKP
AAJQQ
AAMVS
AAOGV
AAPNW
AAPQZ
AAPXW
AARHZ
AAUAY
AAUQX
AAVAP
AAVLN
AAWDT
ABDFA
ABEJV
ABEUO
ABGNP
ABIME
ABIXL
ABKDP
ABMNT
ABNGD
ABNHQ
ABNKS
ABPQP
ABPTD
ABQLI
ABQTQ
ABVGC
ABWST
ABXVV
ABXZS
ABZBJ
ACFRR
ACGFO
ACGFS
ACIWK
ACPRK
ACUFI
ACUKT
ACUTJ
ACUTO
ADBBV
ADEYI
ADEZT
ADFTL
ADGKP
ADGZP
ADHKW
ADHZD
ADIPN
ADNBA
ADOCK
ADQBN
ADRTK
ADVEK
ADYVW
ADZTZ
AEGPL
AEHUL
AEJOX
AEKSI
AELWJ
AEMDU
AENZO
AEPUE
AETBJ
AEWNT
AFFNX
AFFZL
AFGWE
AFIYH
AFOFC
AFRAH
AGINJ
AGKEF
AGQXC
AGSYK
AHMBA
AHMMS
AHXPO
AIAGR
AIJHB
AJEEA
AJNCP
AKHUL
ALMA_UNASSIGNED_HOLDINGS
ALUQC
ALXQX
ANFBD
APIBT
APWMN
AQDSO
ARIXL
ATGXG
ATTQO
AZFZN
BAWUL
BAYMD
BCRHZ
BEYMZ
BQDIO
BSWAC
BTRTY
BVRKM
C1A
CAG
CDBKE
COF
CS3
CZ4
DAKXR
DIK
DILTD
D~K
EBD
EBS
EE~
EJD
ELUNK
EMOBN
F5P
F9B
FEDTE
FHSFR
FLUFQ
FOEOM
FOTVD
FQBLK
GAUVT
GJXCC
H13
H5~
HAR
HH5
HVGLF
HW0
HZ~
I-F
IH2
IOX
JXSIZ
KAQDR
KBUDW
KOP
KQ8
KSI
KSN
M-Z
M49
N9A
NGC
NLBLG
NOMLY
NOYVH
NTWIH
NU-
NVLIB
O0~
O9-
OAWHX
OBC
OBOKY
OBS
OCZFY
ODMLO
OEB
OES
OJQWA
OJZSN
OK1
OPAEJ
OVD
OWPYF
O~Y
P2P
PAFKI
PB-
PEELM
PQQKQ
Q1.
Q5Y
R44
RD5
RNI
ROL
ROX
RUSNO
RW1
RXO
RZO
SV3
TEORI
TJX
TLC
TOX
TR2
W8F
X7H
YAYTL
YKOAZ
YXANX
ZKX
~91
AAYXX
AGORE
AHGBF
AJBYB
CITATION
1TH
AAMDB
ADJQC
ADRIX
ADZXQ
CGR
CUY
CVF
ECM
EIF
J21
NPM
7X8
5PM
ID FETCH-LOGICAL-c428t-419a6c420bbc6d4c35536e874d45cb83dcf78c29d6961988e0d9fdb66bef598e3
IEDL.DBID TOX
ISSN 1741-0126
1741-0134
IngestDate Thu Aug 21 18:38:41 EDT 2025
Fri Jul 11 07:48:50 EDT 2025
Wed Feb 19 02:26:31 EST 2025
Tue Jul 01 03:42:43 EDT 2025
Thu Apr 24 23:06:04 EDT 2025
Wed Apr 02 07:04:07 EDT 2025
IsDoiOpenAccess true
IsOpenAccess true
IsPeerReviewed true
IsScholarly true
Keywords non-canonical amino acids
genetic code expansion
directed evolution
Language English
License This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.
https://creativecommons.org/licenses/by/4.0
The Author(s) 2022. Published by Oxford University Press.
LinkModel DirectLink
MergedId FETCHMERGED-LOGICAL-c428t-419a6c420bbc6d4c35536e874d45cb83dcf78c29d6961988e0d9fdb66bef598e3
Notes ObjectType-Article-1
SourceType-Scholarly Journals-1
ObjectType-Feature-2
content type line 23
ORCID 0000-0003-0454-1798
OpenAccessLink https://dx.doi.org/10.1093/protein/gzac013
PMID 36370045
PQID 2735866444
PQPubID 23479
ParticipantIDs pubmedcentral_primary_oai_pubmedcentral_nih_gov_9863031
proquest_miscellaneous_2735866444
pubmed_primary_36370045
crossref_citationtrail_10_1093_protein_gzac013
crossref_primary_10_1093_protein_gzac013
oup_primary_10_1093_protein_gzac013
ProviderPackageCode CITATION
AAYXX
PublicationCentury 2000
PublicationDate 2023-01-21
PublicationDateYYYYMMDD 2023-01-21
PublicationDate_xml – month: 01
  year: 2023
  text: 2023-01-21
  day: 21
PublicationDecade 2020
PublicationPlace England
PublicationPlace_xml – name: England
PublicationTitle Protein engineering, design and selection
PublicationTitleAlternate Protein Eng Des Sel
PublicationYear 2023
Publisher Oxford University Press
Publisher_xml – name: Oxford University Press
References Long (2023012112193391700_ref37) 2011; 111
Agostini (2023012112193391700_ref1) 2017; 56
Sun (2023012112193391700_ref58) 2022; 611
Röthlisberger (2023012112193391700_ref53) 2008; 453
Wu (2023012112193391700_ref65) 2016; 138
Dirksen (2023012112193391700_ref19) 2006; 45
Won (2023012112193391700_ref64) 2019; 24
Yang (2023012112193391700_ref68) 2001; 123
Liu (2023012112193391700_ref36) 2018; 10
Bos (2023012112193391700_ref7) 2015; 137
Englert (2023012112193391700_ref22) 2015; 43
Ozaki (2023012112193391700_ref48) 1997; 119
Bornscheuer (2023012112193391700_ref6) 2012; 485
Richter (2023012112193391700_ref52) 2012; 134
Liu (2023012112193391700_ref34) 2006; 281
Lovelock (2023012112193391700_ref38) 2022; 606
Yu (2023012112193391700_ref69) 2022; 234
Crawshaw (2023012112193391700_ref17) 2021; 14
Wurz (2023012112193391700_ref66) 2007; 107
Trimble (2023012112193391700_ref61) 2022; 611
Drienovská (2023012112193391700_ref20) 2015; 6
Ortmayer (2023012112193391700_ref46) 2021; 1
Pagar (2023012112193391700_ref49) 2021; 121
Madoori (2023012112193391700_ref39) 2009; 28
Meharenna (2023012112193391700_ref42) 2010; 49
Carminati (2023012112193391700_ref11) 2019; 9
Onderko (2023012112193391700_ref44) 2017; 9
Cappadocia (2023012112193391700_ref10) 2018; 118
Morikubo (2023012112193391700_ref43) 2006; 128
Huang (2023012112193391700_ref27) 2016; 537
Althoff (2023012112193391700_ref2) 2012; 21
Sharp (2023012112193391700_ref55) 2003; 10
Griffin (2023012112193391700_ref25) 2012
Brady (2023012112193391700_ref8) 1990; 343
Huang (2023012112193391700_ref28) 2018; 3
Turner (2023012112193391700_ref62) 2009; 5
Zhou (2023012112193391700_ref71) 2013; 52
Chandgude (2023012112193391700_ref12) 2019; 141
Xiao (2023012112193391700_ref67) 2014; 9
Chatterjee (2023012112193391700_ref13) 2013; 135
Liu (2023012112193391700_ref35) 2010; 79
Leveson-Gower (2023012112193391700_ref32) 2022; 14
Bjelic (2023012112193391700_ref5) 2013; 8
Drienovská (2023012112193391700_ref21) 2018; 10
Pott (2023012112193391700_ref50) 2018; 140
Magarvey (2023012112193391700_ref40) 2006; 128
Li (2023012112193391700_ref33) 2019; 58
Swatek (2023012112193391700_ref59) 2016; 26
Tang (2023012112193391700_ref60) 2022; 602
Coelho (2023012112193391700_ref16) 2013; 339
Jaitzig (2023012112193391700_ref30) 2014; 3
Otto (2023012112193391700_ref47); 97
Huguenin-Dezot (2023012112193391700_ref29) 2019; 565
Chen (2023012112193391700_ref14) 2018; 23
Leveson-Gower (2023012112193391700_ref31) 2021; 11
De Visser (2023012112193391700_ref63) 2003; 125
Seyedsayamdost (2023012112193391700_ref54) 2006; 128
Sivaramakrishnan (2023012112193391700_ref56) 2012; 134
Evans (2023012112193391700_ref23) 2019; 38
Dirksen (2023012112193391700_ref18) 2006; 128
Zhao (2023012112193391700_ref70) 2020; 55
Chin (2023012112193391700_ref15) 2017; 550
Rajagopalan (2023012112193391700_ref51) 2014; 10
Berglund (2023012112193391700_ref3) 2002; 417
Biegasiewicz (2023012112193391700_ref4) 2018; 10
Green (2023012112193391700_ref24) 2016; 138
Hayashi (2023012112193391700_ref26) 2018; 1
Ortmayer (2023012112193391700_ref45) 2020; 10
Mayer (2023012112193391700_ref41) 2019; 58
Zhou (2023012112193391700_ref72) 2020; 3
Burke (2023012112193391700_ref9) 2019; 570
Smith (2023012112193391700_ref57) 2008; 130
References_xml – volume: 58
  start-page: 2083
  year: 2019
  ident: 2023012112193391700_ref41
  publication-title: Angewandte Chemie Int. Edn.
  doi: 10.1002/anie.201813499
– volume: 602
  start-page: 701
  year: 2022
  ident: 2023012112193391700_ref60
  publication-title: Nature
  doi: 10.1038/s41586-022-04414-9
– volume: 611
  year: 2022
  ident: 2023012112193391700_ref61
  publication-title: Nature
  doi: 10.1038/s41586-022-05335-3
– volume: 14
  start-page: 313
  year: 2021
  ident: 2023012112193391700_ref17
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-021-00833-9
– volume: 550
  start-page: 53
  year: 2017
  ident: 2023012112193391700_ref15
  publication-title: Nature
  doi: 10.1038/nature24031
– volume: 134
  start-page: 6673
  year: 2012
  ident: 2023012112193391700_ref56
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja211499q
– volume: 10
  start-page: 303
  year: 2003
  ident: 2023012112193391700_ref55
  publication-title: Nat. Struct. Biol.
  doi: 10.1038/nsb913
– volume: 56
  start-page: 9680
  year: 2017
  ident: 2023012112193391700_ref1
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201610129
– volume: 485
  start-page: 185
  year: 2012
  ident: 2023012112193391700_ref6
  publication-title: Nature
  doi: 10.1038/nature11117
– volume: 45
  start-page: 7581
  year: 2006
  ident: 2023012112193391700_ref19
  publication-title: Angewandte Chemie Int. Edn.
  doi: 10.1002/anie.200602877
– volume: 123
  start-page: 11004
  year: 2001
  ident: 2023012112193391700_ref68
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja010726a
– volume-title: Proceedings of the National Academy of Sciences
  year: 2012
  ident: 2023012112193391700_ref25
– volume: 24
  start-page: 592
  year: 2019
  ident: 2023012112193391700_ref64
  publication-title: Biotechnol. Bioprocess Eng.
  doi: 10.1007/s12257-019-0163-x
– volume: 38
  year: 2019
  ident: 2023012112193391700_ref23
  publication-title: EMBO J.
  doi: 10.15252/embj.2018101174
– volume: 55
  start-page: 136
  year: 2020
  ident: 2023012112193391700_ref70
  publication-title: Curr. Opin. Chem. Biol.
  doi: 10.1016/j.cbpa.2020.01.006
– volume: 5
  start-page: 567
  year: 2009
  ident: 2023012112193391700_ref62
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.203
– volume: 14
  start-page: e202101875
  year: 2022
  ident: 2023012112193391700_ref32
  publication-title: ChemCatChem
  doi: 10.1002/cctc.202101875
– volume: 8
  start-page: 749
  year: 2013
  ident: 2023012112193391700_ref5
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb3006227
– volume: 111
  start-page: 6022
  year: 2011
  ident: 2023012112193391700_ref37
  publication-title: Chem. Rev.
  doi: 10.1021/cr200075y
– volume: 121
  start-page: 6173
  year: 2021
  ident: 2023012112193391700_ref49
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.0c01201
– volume: 26
  start-page: 399
  year: 2016
  ident: 2023012112193391700_ref59
  publication-title: Cell Res.
  doi: 10.1038/cr.2016.39
– volume: 3
  start-page: 289
  year: 2020
  ident: 2023012112193391700_ref72
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-019-0420-6
– volume: 118
  start-page: 889
  year: 2018
  ident: 2023012112193391700_ref10
  publication-title: Chem. Rev.
  doi: 10.1021/acs.chemrev.6b00737
– volume: 339
  start-page: 307
  year: 2013
  ident: 2023012112193391700_ref16
  publication-title: Science
  doi: 10.1126/science.1231434
– volume: 128
  start-page: 10698
  year: 2006
  ident: 2023012112193391700_ref40
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0640187
– volume: 140
  start-page: 1535
  year: 2018
  ident: 2023012112193391700_ref50
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.7b12621
– volume: 565
  start-page: 112
  year: 2019
  ident: 2023012112193391700_ref29
  publication-title: Nature
  doi: 10.1038/s41586-018-0781-z
– volume: 128
  start-page: 1562
  year: 2006
  ident: 2023012112193391700_ref54
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja055927j
– volume: 606
  start-page: 49
  year: 2022
  ident: 2023012112193391700_ref38
  publication-title: Nature
  doi: 10.1038/s41586-022-04456-z
– volume: 43
  start-page: 11061
  year: 2015
  ident: 2023012112193391700_ref22
  publication-title: Nucleic Acids Res.
  doi: 10.1093/nar/gkv1255
– volume: 58
  start-page: 2218
  year: 2019
  ident: 2023012112193391700_ref33
  publication-title: Biochemistry
  doi: 10.1021/acs.biochem.9b00006
– volume: 10
  start-page: 386
  year: 2014
  ident: 2023012112193391700_ref51
  publication-title: Nat. Chem. Biol.
  doi: 10.1038/nchembio.1498
– volume: 3
  start-page: 150
  year: 2018
  ident: 2023012112193391700_ref28
  publication-title: Synthetic and Systems Biotechnology
  doi: 10.1016/j.synbio.2018.09.003
– volume: 10
  start-page: 1201
  year: 2018
  ident: 2023012112193391700_ref36
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0150-4
– volume: 9
  start-page: 623
  year: 2017
  ident: 2023012112193391700_ref44
  publication-title: Nat. Chem.
  doi: 10.1038/nchem.2781
– volume: 138
  start-page: 11890
  year: 2016
  ident: 2023012112193391700_ref65
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b06843
– volume: 343
  start-page: 767
  year: 1990
  ident: 2023012112193391700_ref8
  publication-title: Nature
  doi: 10.1038/343767a0
– volume: 141
  start-page: 9145
  year: 2019
  ident: 2023012112193391700_ref12
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.9b02700
– volume: 119
  start-page: 6666
  year: 1997
  ident: 2023012112193391700_ref48
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja970453c
– volume: 130
  start-page: 15361
  year: 2008
  ident: 2023012112193391700_ref57
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja803213p
– volume: 611
  year: 2022
  ident: 2023012112193391700_ref58
  publication-title: Nature
  doi: 10.1038/s41586-022-05342-4
– volume: 1
  start-page: 578
  year: 2018
  ident: 2023012112193391700_ref26
  publication-title: Nat. Catal.
  doi: 10.1038/s41929-018-0105-6
– volume: 137
  start-page: 9796
  year: 2015
  ident: 2023012112193391700_ref7
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.5b05790
– volume: 11
  start-page: 6763
  year: 2021
  ident: 2023012112193391700_ref31
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.1c00996
– volume: 49
  start-page: 2984
  year: 2010
  ident: 2023012112193391700_ref42
  publication-title: Biochemistry
  doi: 10.1021/bi100238r
– volume: 10
  start-page: 770
  year: 2018
  ident: 2023012112193391700_ref4
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0059-y
– volume: 10
  start-page: 946
  year: 2018
  ident: 2023012112193391700_ref21
  publication-title: Nat. Chem.
  doi: 10.1038/s41557-018-0082-z
– volume: 3
  start-page: 432
  year: 2014
  ident: 2023012112193391700_ref30
  publication-title: ACS Synth. Biol.
  doi: 10.1021/sb400082j
– volume: 28
  start-page: 156
  year: 2009
  ident: 2023012112193391700_ref39
  publication-title: EMBO J.
  doi: 10.1038/emboj.2008.263
– volume: 125
  start-page: 15779
  year: 2003
  ident: 2023012112193391700_ref63
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja0380906
– volume: 281
  start-page: 24024
  year: 2006
  ident: 2023012112193391700_ref34
  publication-title: J. Biol. Chem.
  doi: 10.1074/jbc.M600495200
– volume: 79
  start-page: 413
  year: 2010
  ident: 2023012112193391700_ref35
  publication-title: Annu. Rev. Biochem.
  doi: 10.1146/annurev.biochem.052308.105824
– volume: 234
  year: 2022
  ident: 2023012112193391700_ref69
  publication-title: J. Inorg. Biochem.
  doi: 10.1016/j.jinorgbio.2022.111863
– volume: 10
  start-page: 2735
  year: 2020
  ident: 2023012112193391700_ref45
  publication-title: ACS Catal.
  doi: 10.1021/acscatal.9b05129
– volume: 97
  ident: 2023012112193391700_ref47
  publication-title: Chem. Rev.
– volume: 570
  start-page: 219
  year: 2019
  ident: 2023012112193391700_ref9
  publication-title: Nature
  doi: 10.1038/s41586-019-1262-8
– volume: 21
  start-page: 717
  year: 2012
  ident: 2023012112193391700_ref2
  publication-title: Protein Sci.
  doi: 10.1002/pro.2059
– volume: 23
  start-page: 1662
  year: 2018
  ident: 2023012112193391700_ref14
  publication-title: Molecules
  doi: 10.3390/molecules23071662
– volume: 128
  start-page: 13184
  year: 2006
  ident: 2023012112193391700_ref43
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja063358p
– volume: 9
  start-page: 9683
  year: 2019
  ident: 2023012112193391700_ref11
  publication-title: ACS Catalysis
  doi: 10.1021/acscatal.9b02272
– volume: 138
  start-page: 11344
  year: 2016
  ident: 2023012112193391700_ref24
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/jacs.6b07029
– volume: 417
  start-page: 463
  year: 2002
  ident: 2023012112193391700_ref3
  publication-title: Nature
  doi: 10.1038/417463a
– volume: 134
  start-page: 16197
  year: 2012
  ident: 2023012112193391700_ref52
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja3037367
– volume: 537
  start-page: 320
  year: 2016
  ident: 2023012112193391700_ref27
  publication-title: Nature
  doi: 10.1038/nature19946
– volume: 128
  start-page: 15602
  year: 2006
  ident: 2023012112193391700_ref18
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja067189k
– volume: 1
  start-page: 913
  year: 2021
  ident: 2023012112193391700_ref46
  publication-title: JACS Au
  doi: 10.1021/jacsau.1c00145
– volume: 135
  start-page: 12540
  year: 2013
  ident: 2023012112193391700_ref13
  publication-title: J. Am. Chem. Soc.
  doi: 10.1021/ja4059553
– volume: 9
  start-page: 1092
  year: 2014
  ident: 2023012112193391700_ref67
  publication-title: ACS Chem. Biol.
  doi: 10.1021/cb500032c
– volume: 52
  start-page: 1203
  year: 2013
  ident: 2023012112193391700_ref71
  publication-title: Angew. Chem. Int. Ed.
  doi: 10.1002/anie.201207229
– volume: 453
  start-page: 190
  year: 2008
  ident: 2023012112193391700_ref53
  publication-title: Nature
  doi: 10.1038/nature06879
– volume: 6
  start-page: 770
  year: 2015
  ident: 2023012112193391700_ref20
  publication-title: Chem. Sci.
  doi: 10.1039/C4SC01525H
– volume: 107
  start-page: 5570
  year: 2007
  ident: 2023012112193391700_ref66
  publication-title: Chem. Rev.
  doi: 10.1021/cr068370e
SSID ssj0026711
Score 2.4876583
SecondaryResourceType review_article
Snippet Abstract Enzyme design and engineering strategies are typically constrained by the limited size of nature’s genetic alphabet, comprised of only 20 canonical...
Enzyme design and engineering strategies are typically constrained by the limited size of nature’s genetic alphabet, comprised of only 20 canonical amino...
Enzyme design and engineering strategies are typically constrained by the limited size of nature's genetic alphabet, comprised of only 20 canonical amino...
SourceID pubmedcentral
proquest
pubmed
crossref
oup
SourceType Open Access Repository
Aggregation Database
Index Database
Enrichment Source
Publisher
SubjectTerms Amino Acids - chemistry
Amino Acids - genetics
Biocatalysis
Cloning, Molecular
Genetic Code - genetics
Proteins - chemistry
Review
Title Engineering enzyme activity using an expanded amino acid alphabet
URI https://www.ncbi.nlm.nih.gov/pubmed/36370045
https://www.proquest.com/docview/2735866444
https://pubmed.ncbi.nlm.nih.gov/PMC9863031
Volume 36
hasFullText 1
inHoldings 1
isFullTextHit
isPrint
link http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kJy-i-IqPEtGDl2iS3Wx2j0UsVVEvLfQWsq9asGmxKWh_vbNJGhof6G0hs0uYWZjv29n9BqELRYzxpWQeBtoGBMWEHlex9mgE4JkEIhbGEsXHJ9obkPthNKxkcuY_lPA5vi4EC4Aljpap9IsGtZCCrUx-_3lYcysaF612AV9bdhzSlYrP9_mNBNR41LaGLb9ekVzLOd1ttFWBRbdTRncHbehsF3XWJARdnS0_Jtq1rxNsEwjXXmMfuWnm6veZPR5WbjoZZ1MwGMPQvqsVOt9Dg-5t_6bnVY0QPAnsILeV2pTC0BdCUkUkYARMNYuJIpEUDCtpYiZDrigHPsSY9hU3SlAqtIk403gftbJppg-RS6WIZZpaNVpCRKoFV1EgFZYGK99I7qCrlXcSWamE22YVr0lZrcZJ5c6kcqeDLusJs1Ig43fTc3D331Znq3AksNVt_SLN9HQxTwBpRYwCgCMOOijDUy-GKbZC_ZGD4kbgagMro938ko1fCjltzijk8eDoX393jDZtw3l7CBMGJ6iVvy30KcCSXLQBkN89tItt-QliNOeO
linkProvider Oxford University Press
openUrl ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+enzyme+activity+using+an+expanded+amino+acid+alphabet&rft.jtitle=Protein+engineering%2C+design+and+selection&rft.au=Birch-Price%2C+Zachary&rft.au=Taylor%2C+Christopher+J&rft.au=Ortmayer%2C+Mary&rft.au=Green%2C+Anthony+P&rft.date=2023-01-21&rft.issn=1741-0134&rft.eissn=1741-0134&rft.volume=36&rft_id=info:doi/10.1093%2Fprotein%2Fgzac013&rft.externalDBID=NO_FULL_TEXT
thumbnail_l http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-0126&client=summon
thumbnail_m http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-0126&client=summon
thumbnail_s http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-0126&client=summon