Engineering enzyme activity using an expanded amino acid alphabet
Abstract Enzyme design and engineering strategies are typically constrained by the limited size of nature’s genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a p...
Saved in:
Published in | Protein engineering, design and selection Vol. 36 |
---|---|
Main Authors | , , , |
Format | Journal Article |
Language | English |
Published |
England
Oxford University Press
21.01.2023
|
Subjects | |
Online Access | Get full text |
Cover
Loading…
Abstract | Abstract
Enzyme design and engineering strategies are typically constrained by the limited size of nature’s genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature’s genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years. |
---|---|
AbstractList | Enzyme design and engineering strategies are typically constrained by the limited size of nature’s genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature’s genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years. Abstract Enzyme design and engineering strategies are typically constrained by the limited size of nature’s genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature’s genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years. Enzyme design and engineering strategies are typically constrained by the limited size of nature's genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature's genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years.Enzyme design and engineering strategies are typically constrained by the limited size of nature's genetic alphabet, comprised of only 20 canonical amino acids. In recent years, site-selective incorporation of non-canonical amino acids (ncAAs) via an expanded genetic code has emerged as a powerful means of inserting new functional components into proteins, with hundreds of structurally diverse ncAAs now available. Here, we highlight how the emergence of an expanded repertoire of amino acids has opened new avenues in enzyme design and engineering. ncAAs have been used to probe complex biological mechanisms, augment enzyme function and, most ambitiously, embed new catalytic mechanisms into protein active sites that would be challenging to access within the constraints of nature's genetic code. We predict that the studies reviewed in this article, along with further advances in genetic code expansion technology, will establish ncAA incorporation as an increasingly important tool for biocatalysis in the coming years. |
Author | Green, Anthony P Taylor, Christopher J Birch-Price, Zachary Ortmayer, Mary |
Author_xml | – sequence: 1 givenname: Zachary surname: Birch-Price fullname: Birch-Price, Zachary email: zachary.price@postgrad.manchester.ac.uk – sequence: 2 givenname: Christopher J surname: Taylor fullname: Taylor, Christopher J email: christopher.taylor-10@postgrad.manchester.ac.uk – sequence: 3 givenname: Mary surname: Ortmayer fullname: Ortmayer, Mary email: mary.ortmayer@manchester.ac.uk – sequence: 4 givenname: Anthony P orcidid: 0000-0003-0454-1798 surname: Green fullname: Green, Anthony P email: anthony.green@manchester.ac.uk |
BackLink | https://www.ncbi.nlm.nih.gov/pubmed/36370045$$D View this record in MEDLINE/PubMed |
BookMark | eNqFkc9LwzAcxYMo_j57kx5FmEuaNE0vgoz5AwZe9BzS5Nst0ia1ScXtr7djU1QQT3kkn_ce5B2hXecdIHRG8BXBBR23nY9g3Xi-UhoTuoMOSc7IaJBs90un_AAdhfCCccpzQvbRAeU0x5hlh-hm6ubWAXTWzRNwq2UDidLRvtm4TPqwvlUugfdWOQMmUY11fgDsIOt2oUqIJ2ivUnWA0-15jJ5vp0-T-9Hs8e5hcjMbaZaKOGKkUHyQuCw1N0zTLKMcRM4My3QpqNFVLnRaGF5wUggB2BSVKTkvocoKAfQYXW9y275swGhwsVO1bDvbqG4pvbLy54uzCzn3b7IQnGJKhoCLbUDnX3sIUTY2aKhr5cD3QaY5zQTnjLEBPf_e9VXy-W8DkG0A3fkQOqiktlFF69fVtpYEy_U-cruP3O4z-Ma_fJ_RfzsuNw7ft__CH-fOpxc |
CitedBy_id | crossref_primary_10_1002_pro_4640 crossref_primary_10_1021_acs_chemrev_4c00329 crossref_primary_10_1038_s41586_024_07391_3 crossref_primary_10_3389_fsybi_2024_1419557 crossref_primary_10_1021_acs_chemrev_3c00855 crossref_primary_10_1021_acsnano_4c13663 crossref_primary_10_1002_smsc_202300095 crossref_primary_10_3390_app14135546 crossref_primary_10_1021_acs_chemrev_3c00938 crossref_primary_10_1021_acs_chemrev_4c00112 crossref_primary_10_1021_acssynbio_4c00248 crossref_primary_10_1038_s41467_024_46123_z crossref_primary_10_1021_acs_chemrev_4c00077 crossref_primary_10_1021_acs_chemrev_4c00116 crossref_primary_10_1021_acs_chemrev_4c00136 crossref_primary_10_1021_jacsau_4c00247 crossref_primary_10_1002_ange_202317161 crossref_primary_10_1021_acscatal_4c06052 crossref_primary_10_1021_acs_chemrev_4c00120 crossref_primary_10_1021_acs_jcim_4c01827 crossref_primary_10_1002_anie_202317161 crossref_primary_10_1016_j_rineng_2024_103641 crossref_primary_10_1021_acscatal_3c02746 |
Cites_doi | 10.1002/anie.201813499 10.1038/s41586-022-04414-9 10.1038/s41586-022-05335-3 10.1038/s41557-021-00833-9 10.1038/nature24031 10.1021/ja211499q 10.1038/nsb913 10.1002/anie.201610129 10.1038/nature11117 10.1002/anie.200602877 10.1021/ja010726a 10.1007/s12257-019-0163-x 10.15252/embj.2018101174 10.1016/j.cbpa.2020.01.006 10.1038/nchembio.203 10.1002/cctc.202101875 10.1021/cb3006227 10.1021/cr200075y 10.1021/acs.chemrev.0c01201 10.1038/cr.2016.39 10.1038/s41929-019-0420-6 10.1021/acs.chemrev.6b00737 10.1126/science.1231434 10.1021/ja0640187 10.1021/jacs.7b12621 10.1038/s41586-018-0781-z 10.1021/ja055927j 10.1038/s41586-022-04456-z 10.1093/nar/gkv1255 10.1021/acs.biochem.9b00006 10.1038/nchembio.1498 10.1016/j.synbio.2018.09.003 10.1038/s41557-018-0150-4 10.1038/nchem.2781 10.1021/jacs.6b06843 10.1038/343767a0 10.1021/jacs.9b02700 10.1021/ja970453c 10.1021/ja803213p 10.1038/s41586-022-05342-4 10.1038/s41929-018-0105-6 10.1021/jacs.5b05790 10.1021/acscatal.1c00996 10.1021/bi100238r 10.1038/s41557-018-0059-y 10.1038/s41557-018-0082-z 10.1021/sb400082j 10.1038/emboj.2008.263 10.1021/ja0380906 10.1074/jbc.M600495200 10.1146/annurev.biochem.052308.105824 10.1016/j.jinorgbio.2022.111863 10.1021/acscatal.9b05129 10.1038/s41586-019-1262-8 10.1002/pro.2059 10.3390/molecules23071662 10.1021/ja063358p 10.1021/acscatal.9b02272 10.1021/jacs.6b07029 10.1038/417463a 10.1021/ja3037367 10.1038/nature19946 10.1021/ja067189k 10.1021/jacsau.1c00145 10.1021/ja4059553 10.1021/cb500032c 10.1002/anie.201207229 10.1038/nature06879 10.1039/C4SC01525H 10.1021/cr068370e |
ContentType | Journal Article |
Copyright | The Author(s) 2022. Published by Oxford University Press. 2022 The Author(s) 2022. Published by Oxford University Press. |
Copyright_xml | – notice: The Author(s) 2022. Published by Oxford University Press. 2022 – notice: The Author(s) 2022. Published by Oxford University Press. |
DBID | TOX AAYXX CITATION CGR CUY CVF ECM EIF NPM 7X8 5PM |
DOI | 10.1093/protein/gzac013 |
DatabaseName | Oxford Journals Open Access Collection CrossRef Medline MEDLINE MEDLINE (Ovid) MEDLINE MEDLINE PubMed MEDLINE - Academic PubMed Central (Full Participant titles) |
DatabaseTitle | CrossRef MEDLINE Medline Complete MEDLINE with Full Text PubMed MEDLINE (Ovid) MEDLINE - Academic |
DatabaseTitleList | CrossRef MEDLINE MEDLINE - Academic |
Database_xml | – sequence: 1 dbid: NPM name: PubMed url: https://proxy.k.utb.cz/login?url=http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?db=PubMed sourceTypes: Index Database – sequence: 2 dbid: EIF name: MEDLINE url: https://proxy.k.utb.cz/login?url=https://www.webofscience.com/wos/medline/basic-search sourceTypes: Index Database – sequence: 3 dbid: TOX name: Open Access: Oxford University Press Open Journals url: https://academic.oup.com/journals/ sourceTypes: Publisher |
DeliveryMethod | fulltext_linktorsrc |
EISSN | 1741-0134 |
ExternalDocumentID | PMC9863031 36370045 10_1093_protein_gzac013 10.1093/protein/gzac013 |
Genre | Journal Article |
GrantInformation_xml | – fundername: European Research Council (ERC Starter Grant grantid: 757991 – fundername: Biotechnology and Biological Sciences Research Council – fundername: Biotechnology and Biological Sciences Research Council Manchester Doctoral Training Partnership – fundername: Centre of Excellence for Biocatalysis, Biotransformations and Biocatalytic Manufacture Studentship – fundername: ; – fundername: ; grantid: 757991 |
GroupedDBID | --- -E4 -~X .2P .GJ .I3 .ZR 0R~ 123 18M 29P 2WC 4.4 482 48X 53G 5RE 5VS 5WA 5WD 70D AABZA AACZT AAIMJ AAJKP AAJQQ AAMVS AAOGV AAPNW AAPQZ AAPXW AARHZ AAUAY AAUQX AAVAP AAVLN AAWDT ABDFA ABEJV ABEUO ABGNP ABIME ABIXL ABKDP ABMNT ABNGD ABNHQ ABNKS ABPQP ABPTD ABQLI ABQTQ ABVGC ABWST ABXVV ABXZS ABZBJ ACFRR ACGFO ACGFS ACIWK ACPRK ACUFI ACUKT ACUTJ ACUTO ADBBV ADEYI ADEZT ADFTL ADGKP ADGZP ADHKW ADHZD ADIPN ADNBA ADOCK ADQBN ADRTK ADVEK ADYVW ADZTZ AEGPL AEHUL AEJOX AEKSI AELWJ AEMDU AENZO AEPUE AETBJ AEWNT AFFNX AFFZL AFGWE AFIYH AFOFC AFRAH AGINJ AGKEF AGQXC AGSYK AHMBA AHMMS AHXPO AIAGR AIJHB AJEEA AJNCP AKHUL ALMA_UNASSIGNED_HOLDINGS ALUQC ALXQX ANFBD APIBT APWMN AQDSO ARIXL ATGXG ATTQO AZFZN BAWUL BAYMD BCRHZ BEYMZ BQDIO BSWAC BTRTY BVRKM C1A CAG CDBKE COF CS3 CZ4 DAKXR DIK DILTD D~K EBD EBS EE~ EJD ELUNK EMOBN F5P F9B FEDTE FHSFR FLUFQ FOEOM FOTVD FQBLK GAUVT GJXCC H13 H5~ HAR HH5 HVGLF HW0 HZ~ I-F IH2 IOX JXSIZ KAQDR KBUDW KOP KQ8 KSI KSN M-Z M49 N9A NGC NLBLG NOMLY NOYVH NTWIH NU- NVLIB O0~ O9- OAWHX OBC OBOKY OBS OCZFY ODMLO OEB OES OJQWA OJZSN OK1 OPAEJ OVD OWPYF O~Y P2P PAFKI PB- PEELM PQQKQ Q1. Q5Y R44 RD5 RNI ROL ROX RUSNO RW1 RXO RZO SV3 TEORI TJX TLC TOX TR2 W8F X7H YAYTL YKOAZ YXANX ZKX ~91 AAYXX AGORE AHGBF AJBYB CITATION 1TH AAMDB ADJQC ADRIX ADZXQ CGR CUY CVF ECM EIF J21 NPM 7X8 5PM |
ID | FETCH-LOGICAL-c428t-419a6c420bbc6d4c35536e874d45cb83dcf78c29d6961988e0d9fdb66bef598e3 |
IEDL.DBID | TOX |
ISSN | 1741-0126 1741-0134 |
IngestDate | Thu Aug 21 18:38:41 EDT 2025 Fri Jul 11 07:48:50 EDT 2025 Wed Feb 19 02:26:31 EST 2025 Tue Jul 01 03:42:43 EDT 2025 Thu Apr 24 23:06:04 EDT 2025 Wed Apr 02 07:04:07 EDT 2025 |
IsDoiOpenAccess | true |
IsOpenAccess | true |
IsPeerReviewed | true |
IsScholarly | true |
Keywords | non-canonical amino acids genetic code expansion directed evolution |
Language | English |
License | This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited. https://creativecommons.org/licenses/by/4.0 The Author(s) 2022. Published by Oxford University Press. |
LinkModel | DirectLink |
MergedId | FETCHMERGED-LOGICAL-c428t-419a6c420bbc6d4c35536e874d45cb83dcf78c29d6961988e0d9fdb66bef598e3 |
Notes | ObjectType-Article-1 SourceType-Scholarly Journals-1 ObjectType-Feature-2 content type line 23 |
ORCID | 0000-0003-0454-1798 |
OpenAccessLink | https://dx.doi.org/10.1093/protein/gzac013 |
PMID | 36370045 |
PQID | 2735866444 |
PQPubID | 23479 |
ParticipantIDs | pubmedcentral_primary_oai_pubmedcentral_nih_gov_9863031 proquest_miscellaneous_2735866444 pubmed_primary_36370045 crossref_citationtrail_10_1093_protein_gzac013 crossref_primary_10_1093_protein_gzac013 oup_primary_10_1093_protein_gzac013 |
ProviderPackageCode | CITATION AAYXX |
PublicationCentury | 2000 |
PublicationDate | 2023-01-21 |
PublicationDateYYYYMMDD | 2023-01-21 |
PublicationDate_xml | – month: 01 year: 2023 text: 2023-01-21 day: 21 |
PublicationDecade | 2020 |
PublicationPlace | England |
PublicationPlace_xml | – name: England |
PublicationTitle | Protein engineering, design and selection |
PublicationTitleAlternate | Protein Eng Des Sel |
PublicationYear | 2023 |
Publisher | Oxford University Press |
Publisher_xml | – name: Oxford University Press |
References | Long (2023012112193391700_ref37) 2011; 111 Agostini (2023012112193391700_ref1) 2017; 56 Sun (2023012112193391700_ref58) 2022; 611 Röthlisberger (2023012112193391700_ref53) 2008; 453 Wu (2023012112193391700_ref65) 2016; 138 Dirksen (2023012112193391700_ref19) 2006; 45 Won (2023012112193391700_ref64) 2019; 24 Yang (2023012112193391700_ref68) 2001; 123 Liu (2023012112193391700_ref36) 2018; 10 Bos (2023012112193391700_ref7) 2015; 137 Englert (2023012112193391700_ref22) 2015; 43 Ozaki (2023012112193391700_ref48) 1997; 119 Bornscheuer (2023012112193391700_ref6) 2012; 485 Richter (2023012112193391700_ref52) 2012; 134 Liu (2023012112193391700_ref34) 2006; 281 Lovelock (2023012112193391700_ref38) 2022; 606 Yu (2023012112193391700_ref69) 2022; 234 Crawshaw (2023012112193391700_ref17) 2021; 14 Wurz (2023012112193391700_ref66) 2007; 107 Trimble (2023012112193391700_ref61) 2022; 611 Drienovská (2023012112193391700_ref20) 2015; 6 Ortmayer (2023012112193391700_ref46) 2021; 1 Pagar (2023012112193391700_ref49) 2021; 121 Madoori (2023012112193391700_ref39) 2009; 28 Meharenna (2023012112193391700_ref42) 2010; 49 Carminati (2023012112193391700_ref11) 2019; 9 Onderko (2023012112193391700_ref44) 2017; 9 Cappadocia (2023012112193391700_ref10) 2018; 118 Morikubo (2023012112193391700_ref43) 2006; 128 Huang (2023012112193391700_ref27) 2016; 537 Althoff (2023012112193391700_ref2) 2012; 21 Sharp (2023012112193391700_ref55) 2003; 10 Griffin (2023012112193391700_ref25) 2012 Brady (2023012112193391700_ref8) 1990; 343 Huang (2023012112193391700_ref28) 2018; 3 Turner (2023012112193391700_ref62) 2009; 5 Zhou (2023012112193391700_ref71) 2013; 52 Chandgude (2023012112193391700_ref12) 2019; 141 Xiao (2023012112193391700_ref67) 2014; 9 Chatterjee (2023012112193391700_ref13) 2013; 135 Liu (2023012112193391700_ref35) 2010; 79 Leveson-Gower (2023012112193391700_ref32) 2022; 14 Bjelic (2023012112193391700_ref5) 2013; 8 Drienovská (2023012112193391700_ref21) 2018; 10 Pott (2023012112193391700_ref50) 2018; 140 Magarvey (2023012112193391700_ref40) 2006; 128 Li (2023012112193391700_ref33) 2019; 58 Swatek (2023012112193391700_ref59) 2016; 26 Tang (2023012112193391700_ref60) 2022; 602 Coelho (2023012112193391700_ref16) 2013; 339 Jaitzig (2023012112193391700_ref30) 2014; 3 Otto (2023012112193391700_ref47); 97 Huguenin-Dezot (2023012112193391700_ref29) 2019; 565 Chen (2023012112193391700_ref14) 2018; 23 Leveson-Gower (2023012112193391700_ref31) 2021; 11 De Visser (2023012112193391700_ref63) 2003; 125 Seyedsayamdost (2023012112193391700_ref54) 2006; 128 Sivaramakrishnan (2023012112193391700_ref56) 2012; 134 Evans (2023012112193391700_ref23) 2019; 38 Dirksen (2023012112193391700_ref18) 2006; 128 Zhao (2023012112193391700_ref70) 2020; 55 Chin (2023012112193391700_ref15) 2017; 550 Rajagopalan (2023012112193391700_ref51) 2014; 10 Berglund (2023012112193391700_ref3) 2002; 417 Biegasiewicz (2023012112193391700_ref4) 2018; 10 Green (2023012112193391700_ref24) 2016; 138 Hayashi (2023012112193391700_ref26) 2018; 1 Ortmayer (2023012112193391700_ref45) 2020; 10 Mayer (2023012112193391700_ref41) 2019; 58 Zhou (2023012112193391700_ref72) 2020; 3 Burke (2023012112193391700_ref9) 2019; 570 Smith (2023012112193391700_ref57) 2008; 130 |
References_xml | – volume: 58 start-page: 2083 year: 2019 ident: 2023012112193391700_ref41 publication-title: Angewandte Chemie Int. Edn. doi: 10.1002/anie.201813499 – volume: 602 start-page: 701 year: 2022 ident: 2023012112193391700_ref60 publication-title: Nature doi: 10.1038/s41586-022-04414-9 – volume: 611 year: 2022 ident: 2023012112193391700_ref61 publication-title: Nature doi: 10.1038/s41586-022-05335-3 – volume: 14 start-page: 313 year: 2021 ident: 2023012112193391700_ref17 publication-title: Nat. Chem. doi: 10.1038/s41557-021-00833-9 – volume: 550 start-page: 53 year: 2017 ident: 2023012112193391700_ref15 publication-title: Nature doi: 10.1038/nature24031 – volume: 134 start-page: 6673 year: 2012 ident: 2023012112193391700_ref56 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja211499q – volume: 10 start-page: 303 year: 2003 ident: 2023012112193391700_ref55 publication-title: Nat. Struct. Biol. doi: 10.1038/nsb913 – volume: 56 start-page: 9680 year: 2017 ident: 2023012112193391700_ref1 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201610129 – volume: 485 start-page: 185 year: 2012 ident: 2023012112193391700_ref6 publication-title: Nature doi: 10.1038/nature11117 – volume: 45 start-page: 7581 year: 2006 ident: 2023012112193391700_ref19 publication-title: Angewandte Chemie Int. Edn. doi: 10.1002/anie.200602877 – volume: 123 start-page: 11004 year: 2001 ident: 2023012112193391700_ref68 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja010726a – volume-title: Proceedings of the National Academy of Sciences year: 2012 ident: 2023012112193391700_ref25 – volume: 24 start-page: 592 year: 2019 ident: 2023012112193391700_ref64 publication-title: Biotechnol. Bioprocess Eng. doi: 10.1007/s12257-019-0163-x – volume: 38 year: 2019 ident: 2023012112193391700_ref23 publication-title: EMBO J. doi: 10.15252/embj.2018101174 – volume: 55 start-page: 136 year: 2020 ident: 2023012112193391700_ref70 publication-title: Curr. Opin. Chem. Biol. doi: 10.1016/j.cbpa.2020.01.006 – volume: 5 start-page: 567 year: 2009 ident: 2023012112193391700_ref62 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.203 – volume: 14 start-page: e202101875 year: 2022 ident: 2023012112193391700_ref32 publication-title: ChemCatChem doi: 10.1002/cctc.202101875 – volume: 8 start-page: 749 year: 2013 ident: 2023012112193391700_ref5 publication-title: ACS Chem. Biol. doi: 10.1021/cb3006227 – volume: 111 start-page: 6022 year: 2011 ident: 2023012112193391700_ref37 publication-title: Chem. Rev. doi: 10.1021/cr200075y – volume: 121 start-page: 6173 year: 2021 ident: 2023012112193391700_ref49 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.0c01201 – volume: 26 start-page: 399 year: 2016 ident: 2023012112193391700_ref59 publication-title: Cell Res. doi: 10.1038/cr.2016.39 – volume: 3 start-page: 289 year: 2020 ident: 2023012112193391700_ref72 publication-title: Nat. Catal. doi: 10.1038/s41929-019-0420-6 – volume: 118 start-page: 889 year: 2018 ident: 2023012112193391700_ref10 publication-title: Chem. Rev. doi: 10.1021/acs.chemrev.6b00737 – volume: 339 start-page: 307 year: 2013 ident: 2023012112193391700_ref16 publication-title: Science doi: 10.1126/science.1231434 – volume: 128 start-page: 10698 year: 2006 ident: 2023012112193391700_ref40 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0640187 – volume: 140 start-page: 1535 year: 2018 ident: 2023012112193391700_ref50 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.7b12621 – volume: 565 start-page: 112 year: 2019 ident: 2023012112193391700_ref29 publication-title: Nature doi: 10.1038/s41586-018-0781-z – volume: 128 start-page: 1562 year: 2006 ident: 2023012112193391700_ref54 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja055927j – volume: 606 start-page: 49 year: 2022 ident: 2023012112193391700_ref38 publication-title: Nature doi: 10.1038/s41586-022-04456-z – volume: 43 start-page: 11061 year: 2015 ident: 2023012112193391700_ref22 publication-title: Nucleic Acids Res. doi: 10.1093/nar/gkv1255 – volume: 58 start-page: 2218 year: 2019 ident: 2023012112193391700_ref33 publication-title: Biochemistry doi: 10.1021/acs.biochem.9b00006 – volume: 10 start-page: 386 year: 2014 ident: 2023012112193391700_ref51 publication-title: Nat. Chem. Biol. doi: 10.1038/nchembio.1498 – volume: 3 start-page: 150 year: 2018 ident: 2023012112193391700_ref28 publication-title: Synthetic and Systems Biotechnology doi: 10.1016/j.synbio.2018.09.003 – volume: 10 start-page: 1201 year: 2018 ident: 2023012112193391700_ref36 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0150-4 – volume: 9 start-page: 623 year: 2017 ident: 2023012112193391700_ref44 publication-title: Nat. Chem. doi: 10.1038/nchem.2781 – volume: 138 start-page: 11890 year: 2016 ident: 2023012112193391700_ref65 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b06843 – volume: 343 start-page: 767 year: 1990 ident: 2023012112193391700_ref8 publication-title: Nature doi: 10.1038/343767a0 – volume: 141 start-page: 9145 year: 2019 ident: 2023012112193391700_ref12 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.9b02700 – volume: 119 start-page: 6666 year: 1997 ident: 2023012112193391700_ref48 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja970453c – volume: 130 start-page: 15361 year: 2008 ident: 2023012112193391700_ref57 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja803213p – volume: 611 year: 2022 ident: 2023012112193391700_ref58 publication-title: Nature doi: 10.1038/s41586-022-05342-4 – volume: 1 start-page: 578 year: 2018 ident: 2023012112193391700_ref26 publication-title: Nat. Catal. doi: 10.1038/s41929-018-0105-6 – volume: 137 start-page: 9796 year: 2015 ident: 2023012112193391700_ref7 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.5b05790 – volume: 11 start-page: 6763 year: 2021 ident: 2023012112193391700_ref31 publication-title: ACS Catal. doi: 10.1021/acscatal.1c00996 – volume: 49 start-page: 2984 year: 2010 ident: 2023012112193391700_ref42 publication-title: Biochemistry doi: 10.1021/bi100238r – volume: 10 start-page: 770 year: 2018 ident: 2023012112193391700_ref4 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0059-y – volume: 10 start-page: 946 year: 2018 ident: 2023012112193391700_ref21 publication-title: Nat. Chem. doi: 10.1038/s41557-018-0082-z – volume: 3 start-page: 432 year: 2014 ident: 2023012112193391700_ref30 publication-title: ACS Synth. Biol. doi: 10.1021/sb400082j – volume: 28 start-page: 156 year: 2009 ident: 2023012112193391700_ref39 publication-title: EMBO J. doi: 10.1038/emboj.2008.263 – volume: 125 start-page: 15779 year: 2003 ident: 2023012112193391700_ref63 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja0380906 – volume: 281 start-page: 24024 year: 2006 ident: 2023012112193391700_ref34 publication-title: J. Biol. Chem. doi: 10.1074/jbc.M600495200 – volume: 79 start-page: 413 year: 2010 ident: 2023012112193391700_ref35 publication-title: Annu. Rev. Biochem. doi: 10.1146/annurev.biochem.052308.105824 – volume: 234 year: 2022 ident: 2023012112193391700_ref69 publication-title: J. Inorg. Biochem. doi: 10.1016/j.jinorgbio.2022.111863 – volume: 10 start-page: 2735 year: 2020 ident: 2023012112193391700_ref45 publication-title: ACS Catal. doi: 10.1021/acscatal.9b05129 – volume: 97 ident: 2023012112193391700_ref47 publication-title: Chem. Rev. – volume: 570 start-page: 219 year: 2019 ident: 2023012112193391700_ref9 publication-title: Nature doi: 10.1038/s41586-019-1262-8 – volume: 21 start-page: 717 year: 2012 ident: 2023012112193391700_ref2 publication-title: Protein Sci. doi: 10.1002/pro.2059 – volume: 23 start-page: 1662 year: 2018 ident: 2023012112193391700_ref14 publication-title: Molecules doi: 10.3390/molecules23071662 – volume: 128 start-page: 13184 year: 2006 ident: 2023012112193391700_ref43 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja063358p – volume: 9 start-page: 9683 year: 2019 ident: 2023012112193391700_ref11 publication-title: ACS Catalysis doi: 10.1021/acscatal.9b02272 – volume: 138 start-page: 11344 year: 2016 ident: 2023012112193391700_ref24 publication-title: J. Am. Chem. Soc. doi: 10.1021/jacs.6b07029 – volume: 417 start-page: 463 year: 2002 ident: 2023012112193391700_ref3 publication-title: Nature doi: 10.1038/417463a – volume: 134 start-page: 16197 year: 2012 ident: 2023012112193391700_ref52 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja3037367 – volume: 537 start-page: 320 year: 2016 ident: 2023012112193391700_ref27 publication-title: Nature doi: 10.1038/nature19946 – volume: 128 start-page: 15602 year: 2006 ident: 2023012112193391700_ref18 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja067189k – volume: 1 start-page: 913 year: 2021 ident: 2023012112193391700_ref46 publication-title: JACS Au doi: 10.1021/jacsau.1c00145 – volume: 135 start-page: 12540 year: 2013 ident: 2023012112193391700_ref13 publication-title: J. Am. Chem. Soc. doi: 10.1021/ja4059553 – volume: 9 start-page: 1092 year: 2014 ident: 2023012112193391700_ref67 publication-title: ACS Chem. Biol. doi: 10.1021/cb500032c – volume: 52 start-page: 1203 year: 2013 ident: 2023012112193391700_ref71 publication-title: Angew. Chem. Int. Ed. doi: 10.1002/anie.201207229 – volume: 453 start-page: 190 year: 2008 ident: 2023012112193391700_ref53 publication-title: Nature doi: 10.1038/nature06879 – volume: 6 start-page: 770 year: 2015 ident: 2023012112193391700_ref20 publication-title: Chem. Sci. doi: 10.1039/C4SC01525H – volume: 107 start-page: 5570 year: 2007 ident: 2023012112193391700_ref66 publication-title: Chem. Rev. doi: 10.1021/cr068370e |
SSID | ssj0026711 |
Score | 2.4876583 |
SecondaryResourceType | review_article |
Snippet | Abstract
Enzyme design and engineering strategies are typically constrained by the limited size of nature’s genetic alphabet, comprised of only 20 canonical... Enzyme design and engineering strategies are typically constrained by the limited size of nature’s genetic alphabet, comprised of only 20 canonical amino... Enzyme design and engineering strategies are typically constrained by the limited size of nature's genetic alphabet, comprised of only 20 canonical amino... |
SourceID | pubmedcentral proquest pubmed crossref oup |
SourceType | Open Access Repository Aggregation Database Index Database Enrichment Source Publisher |
SubjectTerms | Amino Acids - chemistry Amino Acids - genetics Biocatalysis Cloning, Molecular Genetic Code - genetics Proteins - chemistry Review |
Title | Engineering enzyme activity using an expanded amino acid alphabet |
URI | https://www.ncbi.nlm.nih.gov/pubmed/36370045 https://www.proquest.com/docview/2735866444 https://pubmed.ncbi.nlm.nih.gov/PMC9863031 |
Volume | 36 |
hasFullText | 1 |
inHoldings | 1 |
isFullTextHit | |
isPrint | |
link | http://utb.summon.serialssolutions.com/2.0.0/link/0/eLvHCXMwjV1LS8NAEF6kJy-i-IqPEtGDl2iS3Wx2j0UsVVEvLfQWsq9asGmxKWh_vbNJGhof6G0hs0uYWZjv29n9BqELRYzxpWQeBtoGBMWEHlex9mgE4JkEIhbGEsXHJ9obkPthNKxkcuY_lPA5vi4EC4Aljpap9IsGtZCCrUx-_3lYcysaF612AV9bdhzSlYrP9_mNBNR41LaGLb9ekVzLOd1ttFWBRbdTRncHbehsF3XWJARdnS0_Jtq1rxNsEwjXXmMfuWnm6veZPR5WbjoZZ1MwGMPQvqsVOt9Dg-5t_6bnVY0QPAnsILeV2pTC0BdCUkUkYARMNYuJIpEUDCtpYiZDrigHPsSY9hU3SlAqtIk403gftbJppg-RS6WIZZpaNVpCRKoFV1EgFZYGK99I7qCrlXcSWamE22YVr0lZrcZJ5c6kcqeDLusJs1Ig43fTc3D331Znq3AksNVt_SLN9HQxTwBpRYwCgCMOOijDUy-GKbZC_ZGD4kbgagMro938ko1fCjltzijk8eDoX393jDZtw3l7CBMGJ6iVvy30KcCSXLQBkN89tItt-QliNOeO |
linkProvider | Oxford University Press |
openUrl | ctx_ver=Z39.88-2004&ctx_enc=info%3Aofi%2Fenc%3AUTF-8&rfr_id=info%3Asid%2Fsummon.serialssolutions.com&rft_val_fmt=info%3Aofi%2Ffmt%3Akev%3Amtx%3Ajournal&rft.genre=article&rft.atitle=Engineering+enzyme+activity+using+an+expanded+amino+acid+alphabet&rft.jtitle=Protein+engineering%2C+design+and+selection&rft.au=Birch-Price%2C+Zachary&rft.au=Taylor%2C+Christopher+J&rft.au=Ortmayer%2C+Mary&rft.au=Green%2C+Anthony+P&rft.date=2023-01-21&rft.issn=1741-0134&rft.eissn=1741-0134&rft.volume=36&rft_id=info:doi/10.1093%2Fprotein%2Fgzac013&rft.externalDBID=NO_FULL_TEXT |
thumbnail_l | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/lc.gif&issn=1741-0126&client=summon |
thumbnail_m | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/mc.gif&issn=1741-0126&client=summon |
thumbnail_s | http://covers-cdn.summon.serialssolutions.com/index.aspx?isbn=/sc.gif&issn=1741-0126&client=summon |